主编 :侯增谦
主管单位 :中国科学技术协会
主办单位 :中国地质学会
创刊 :1922年
国际标准刊号 :ISSN 1000-9515
国内统一刊号 :CN 11-2001
- 浏览排行
- 引用排行
- 下载排行
LI Xutong,ZHANG Yumeng,LIN Xianghong,ZHU Min,ZHAO Wenjin,TANG Lizhou,SHAN Xianren,GAI Zhikun
2024, 98(3):531-540. DOI: 10.1111/1755-6724.15168
摘要:New discovery of the early Silurian fossil fish Changxingaspis (Xiushuiaspidae, Galeaspida), Changxingaspis nianzhongi sp. nov. and C. gui, are described from the Tataertag Formation in Tarim Basin and the Kangshan Formation in Zhejiang Province, respectively. C. nianzhongi mainly differs from C. gui in the shape of the median dorsal opening that is transverse elliptic with a width/length ratio of about 3.0, the long lateral transverse canals extending to the lateral margin of the headshield, and the second lateral transverse canal with dichotomous branchings. Discovery of C. nianzhongi from the Tataertag Formation and C. gui from the Kangshan Formation provide direct evidence on the specific level for the correlation between these two formations, which further supports the Silurian fish-bearing red beds in northwest Zhejiang belonging to the Silurian Lower Red Beds (LRBs) rather than the Upper Red Beds (URBs). Additionally, as the first record of the Changxingaspis in Tarim Basin, it extends the paleogeographical distribution of this genus from the South China Block to the Tarim Block, providing new evidence to support faunal exchanges between these two blocks and the hypothesis of a united Tarim–South China Block during the early Silurian.
2024, 98(3):541-547. DOI: 10.1111/1755-6724.15173
摘要:A new genus and species, Cretopleciofungivora simpsoni gen. et sp. nov., from the extinct family Pleciofungivoridae (Diptera: Bibionomorpha), is discovered in mid-Cretaceous Kachin amber. Previously, this family was known only from imprints in sedimentary rocks of the Jurassic and the Lower Cretaceous. Discovery of a representative of Pleciofungivoridae in Kachin amber confirms the presence of the family in the Upper Cretaceous. The new species has a unique structure of fore tarsus, with lobed and extended tarsal segments II to IV, a feature hitherto known only in a few species of extant Sciaroidea. Although not particularly rare, the new species is currently known only from female specimens. Possible reasons for this phenomenon, very unusual in Sciaroidea, are briefly discussed, including parthenogenesis as a potentially plausible hypothesis.
2024, 98(3):548-568. DOI: 10.1111/1755-6724.15157
摘要:The Tianshan range, a Paleozoic orogenic belt in Central Asia, has undergone multiple phases of tectonic activities characterized by the N–S compression after the early Mesozoic, including the far-field effects of the Cenozoic Indian–Asian collision. However, there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range. Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic. Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts. Based on detail fieldwork conducted in this study, the middle–late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata. The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4 ± 3.1 and 215.5 ± 2.9 Ma, respectively, indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226–220 and 218–212 Ma. The geochronological distribution of detrital samples from the Early–Middle Triassic and Late Triassic revealed abrupt changes, suggesting a new source supply resulting from tectonic activation in the Tianshan range. The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226–220 Ma (during the Late Triassic) and ended at approximately 218–212 Ma. These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.
2024, 98(3):569-584. DOI: 10.1111/1755-6724.15164
摘要:Since the Cenozoic, the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India–Asia collision. However, the mechanism and timing of these tectonic processes still remain debated. Here, using apatite fission track dating and inverse thermal modeling, we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau. In contrast to previous views, we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites, indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times. In addition, we also suggest that the 5–2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau, because it led to the increase in atmospheric CO2 level and a hotter upper crust than before, which are efficient for suddenly fast rock weathering and erosion. Finally, we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.
TONG Qinlong,QIN Mingkuan,YE Fawang
2024, 98(3):585-601. DOI: 10.1111/1755-6724.15181
摘要:The Bayingobi basin is located in the middle of Central Asia Orogenic Belt, at the intersection of Paleo-Asian Ocean and Tethys Ocean, as well as the junction of multiple tectonic plates. This unique tectonic setting underpins the basin's intricate history of tectonic activity. To unravel the multifaceted tectono-thermal evolution within the southwestern region of the basin and to elucidate the implications of sandstone-hosted uranium mineralization, granitic and clastic rock samples were collected from the Zongnai Mts. uplift and Yingejing depression, and apatite fission track (AFT) dating and thermal history simulation analysis were performed. AFT dating findings reveal that the apparent ages of all samples fall within the range of 244 Ma to 112 Ma. In particular, the bedrock of the Zongnai Mts. and Jurassic detrital apatite fission tracks have undergone complete annealing, capturing the uplift-cooling age. Meanwhile, the AFT ages of Cretaceous detrital rocks are either equivalent to or notably exceed the age of sedimentary strata, signifying the cooling age of the provenance. A comprehensive examination of AFT ages and palaeocurrent direction analyses suggests that the Cretaceous source in the Tamusu area predominantly originated from the central and southern sectors of the Zongnai Mts. uplift. However, at a certain juncture during the Late Early Cretaceous, the Cretaceous provenance expanded to include the northern part of the Zongnai Mts. uplift. Based on the results of thermal history simulations and previous studies, it is considered that the Tamusu area has undergone four distinct tectonic uplift events since the Late Paleozoic. The first is the Late Permian to Early Triassic (260–240 Ma), which is associated with the closure of the Paleo-Asian Ocean and the accretionary orogeny within the Alxa region. The second uplift event took place in the Early Jurassic (190–175 Ma) and corresponded to intraplate orogeny following the closure of the Paleo-Asian Ocean. The third uplift event is the Late Jurassic to Early Cretaceous (160–120 Ma), which is linked to the East Asia's position as the convergence center of multiple tectonic plates during this period. The fourth uplift event is linked to the Late Early Cretaceous (112–100 Ma), driven either by the westward subduction of the eastern Pacific plate or the mantle upwelling resulting from the Bangong–Nujiang oceanic lithosphere subduction and slab break-off. The primary stress orientation for the first three tectonic uplift phases approximated a nearly SN direction, while the fourth stage featured a principal stress direction of NW. The fourth tectonic uplift event of the Late Early Cretaceous and basaltic eruption thermal event during this period likely exerted a significant influence on the formation of the Tamusu sandstone-hosted uranium deposit.
WANG Cheng,WEI Hantao,LIU Qingquan,YANG Zhao
2024, 98(3):602-616. DOI: 10.1111/1755-6724.15129
摘要:It is well established that Cretaceous magmatism in the South China Block (SCB) is related to the Paleo-Pacific subduction. However, the starting time and the associated deep crust-mantle processes are still debatable. Mafic dike swarms carry important information on the deep earth (including mantle) geodynamics and geochemical evolution. In the Jiangnan Orogen (South China), there is no information on whether the Mesozoic magmatic activities in this region are also directly related to the Pacific subduction or not. In this study, we present detailed zircon U-Pb geochronological, whole-rock element and Sr-Nd isotope data for Early Cretaceous Tuanshanbei dolerite dikes, and provide new constraints on the condition of the lithospheric mantle and mantle dynamics of the SCB during that time. LA-ICP-MS zircon U-Pb dating suggests that this dolerite erupted in the Early Cretaceous (~145 Ma). All samples have alkaline geochemical affinities with K2O + Na2O = 3.11–4.04 wt%, K2O/Na2O = 0.50–0.72, and Mg# = 62.24–65.13. They are enriched in LILE but depleted in HFSE with higher initial 87Sr/86Sr ratio (0.706896–0.714743) and lower εNd(t) (?2.61 to ?1.67). They have high Nb/U, Nb/La, La/Sm and Rb/Sr, and low La/Nb, La/Ta, Ce/Pb, Ba/Rb, Tb/Yb and Gd/Yb ratios. Such geochemical signatures suggest that the fractional crystallization is obvious but crustal contamination play a negligible role during magmatic evolution. Tuanshanbei dolerite were most likely derived from low-degree (2%–5%) partial melting of a phlogopite-bearing mantle material consisted of ~85% spinel peridotite and ~15% garnet peridotite previously metasomatized by asthenosphere-derived fluids/melts with minor subduction-derived fluids/melts. Slab-rollback generally lead to the upwelling of the hot asthenosphere. The upwelling of asthenosphere consuming the lithospheric mantle by thermo-mechanical-chemical erosion. The lithospheric mantle may have partially melted due to the heating by the upwelling asthenosphere and lithospheric extension. It is inferred that the Tuanshanbei dolerite might be associated with the initial slab rollback and corresponding lithospheric extension occurred potentially at ca. 145 Ma.
WANG Yabo,LIU Lei,ZHAO Zengxia,LIU Xijun,HUANG Wenmin
2024, 98(3):617-629. DOI: 10.1111/1755-6724.15136
摘要:The only occurrence of Lower Triassic silicic volcanic rocks within the South China Block is in the Qinzhou Bay area of Guangxi Province. LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Beisi and Banba formations formed between 248.8 ± 1.6 and 246.5 ± 1.3 Ma, coeval with peraluminous granites of the Qinzhou Bay Granitic Complex. The studied rhyolites and dacites are characterized by high SiO2, K2O, and Al2O3, and low MgO, CaO, and P2O5 contents and are classified as high-K calc-alkaline S-type rocks, with A/CNK = 0.98–1.19. The volcanic rocks are depleted in high ?eld strength elements, e.g., Nb, Ta, Ti, and P, and enriched in large ion lithophile elements, e.g., Rb, K, Sr, and Ba. Although the analyzed volcanic rocks have extremely enriched zircon Hf isotopic compositions (εHf(t) = ?29.1 to ?6.9), source discrimination indicators and high calculated Ti-in-zircon temperatures (798–835°C) reveal that magma derived from enriched lithospheric mantle not only provided a heat source for anatectic melting of the metasedimentary protoliths but was also an endmember component of the S-type silicic magma. The studied early Triassic volcanics are inferred to have formed immediately before closure of the Paleo-Tethys Ocean in this region, as the associated subduction would have generated an extensional setting in which the mantle-derived upwelling and volcanic activity occurred.
XIE Qifeng,DONG Yunpeng,CAI Yuanfeng,ZHAI Mingguo,XIAO Aifang,ZHANG Hong
2024, 98(3):630-640. DOI: 10.1111/1755-6724.15156
摘要:The magma sources, origins and precise forming ages of the miarolite from Qishan and Kuiqi intrusions are still uncertain. New results reveal that, miarolites from the Qishan and Kuiqi intrusions yield crystallization ages of ~101 and ~98 Ma, and they have a high formation temperature (~910°C) and low oxygen fugacity value, indicating crystallization condition at low pressure in the upper crust with temperature of 678°C. The Qishan and Kuiqi miarolites are characterized by enrichment in SiO2 and high-K alkali, depletion in Ca and Mg, and belong to the high-K weak peraluminous rock series. The samples are enriched in HFSEs (i.e., Ta, Zr and Hf) and LILEs (i.e., Ba, P and Sr), depleted in Ba and Sr with the negative anomaly of Eu. In the primitive mantle normalized trace element spider diagram, the samples show a right-inclined 'seagull-type' pattern, combined the ratios of (La/Yb)N, 10000 × Al/Ga, Rb/Nb and Nb/Ta etc., they were proved to be alkaline A-type granite. Combined the characterize of the trace elements, they were derived from clay-rich source accompanied pelite melting, and subjected to K-feldspar crystallization fractional. The values of εHf(t) and tDM2 are distributed in the range of ?2.8 to 3.3 with ~1.2 Ga, and ?6.0 to 4.0 with ~1.2 Ga, revealing that they were generated from the Mesoproterozoic Cathaysia basement rocks. The comprehensive research reveals the Kuiqi and Qishan intrusions derived from crust-mantle mixing and partial melting of the crust, respectively, resulting from lithospheric extension generated by the Paleo-Pacific Plate subducted into the European–Asian Plate.
WANG Qiuyu,CHEN Shouming,ZHANG Hongrui,LI Saisai
2024, 98(3):641-656. DOI: 10.1111/1755-6724.15182
摘要:High-silica granitoids record the formation and evolution of the continental crust. A new intrusive complex has been recognized among silicic volcanic rocks of the Weixi arc, Southwest China. The intrusions consist of granites, granitic porphyries, and granodiorites. Zircon U-Pb age data indicate that the Weixi granitoids formed at 248–240 Ma and were coeval with silicic volcanic rocks of the Weixi arc. The Weixi granitoids are enriched in Rb, Th, and U, depleted in Ba, Sr, Nb, Ta, and Ti, and have high light/heavy rare earth element ratios and slightly negative Eu anomalies. The Weixi granitoids have negative εNd(t) values (?9.8 to ?7.8) and negative zircon εHf(t) values (?12.02 to ?5.11). The geochemical and isotopic features suggest the Weixi granitoids were derived by partial melting of ancient crustal material. The Weixi granitoids and silicic volcanic rocks were derived from the same magma by crystal accumulation and melt extraction, respectively, and they record the formation of a continental arc in the central Sanjiang orogenic belt.
Kazem KAZEMI,Soroush MODABBERI,Parisa GHARIBNEJAD,XIAO Yilin,Fatemeh SARJOUGHIAN,Ali KANANIAN
2024, 98(3):657-678. DOI: 10.1111/1755-6724.15118
摘要:The Hesar pluton in the northern Urumieh–Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves (MMEs). Whole rock geochemistry, mineral chemistry, zircon U-Pb and Sr-Nd isotopes were measured. It is suggested that the rocks are metaluminous (A/CNK = 1.32–1.45), subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures. The host rocks yielded an U-Pb crystallization age of 37.3 ± 0.4 Ma for gabbro-diorite. MMEs have relatively low SiO2 contents (52.9–56.6 wt%) and high Mg# (49.8–58.7), probably reflecting a mantle-derived origin. Chondrite- and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment, HREE and HFSE depletion with slight negative Eu anomalies (Eu/Eu* = 0.86–1.03). The host rocks yield (87Sr/86Sr)i ratios of 0.70492–0.70510, positive εNd(t) values of +1.55–+2.06 and TDM2 of 707–736 Ma, which is consistent with the associated mafic microgranular enclaves ((87Sr/86Sr)i = 0.705014, εNd(t) = +1.75, TDM2 = 729 Ma). All data suggest magma-mixing for enclave and host rock formation, showing a complete equilibration between mixed-mafic and felsic magmas, followed by rapid diffusion. The TDM1(Nd) and TDM2(Nd) model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantle-derived magmas in a pre-collisional setting of Arabian–Eurasian plates. Clinopyroxene composition indicates a crystallization temperature of ~1000°C and a depth of ~9 km.
SHU Lei,YANG Renchao,SHEN Kun,YANG Deping,MAO Guangzhou,LI Min,LIU Pengrui,MA Xiaodong
2024, 98(3):679-700. DOI: 10.1111/1755-6724.15145
摘要:The Wangjiazhuang Cu (-Mo) deposit, located within the Zouping volcanic basin in western Shandong Province, China, is unique in this area for having an economic value. In order to expound the metallogenetic characteristics of this porphyry-like hydrothermal deposit, a detailed fluid inclusion study has been conducted, employing the techniques of representative sampling, fluid inclusion petrography, microthermometry, Raman spectroscopy, LA-ICP-MS analysis of single fluid inclusions, as well as cathode fluorescence spectrometer analysis of host mineral quartz. The deposit contains mainly two types of orebodies, i.e. veinlet-dissemination-stockwork orebodies in the K-Si alteration zone and pegmatitic-quartz sulfide veins above them. In addition, minor breccia ore occurs locally. Four types of fluid inclusions in the deposit and altered quartz monzonite are identified: L-type one- or two-phase aqueous inclusions, V-type vapor-rich inclusions with V/L ratios greater than 50%–90%, D-type multiphase fluid inclusions containing daughter minerals or solids and S-type silicate-bearing fluid inclusions containing mainly muscovite and biotite. Ore petrography and fluid inclusion study has revealed a three-stage mineralization process, driven by magmatic-hydrothermal fluid activity, as follows. Initially, a hydrothermal fluid, separated from the parent magma, infiltrated into the quartz monzonite, resulting in its extensive K-Si alteration, as indicated by silicate-bearing fluid inclusions trapped in altered quartz monzonite. This is followed by the early mineralization, the formation of quartz veinlets and dissemination-stockwork ores. During the main mineralization stage, due to the participation and mixing of meteoric groundwater with magmatic-sourced hydrothermal fluid, the cooling and phase separation caused deposition of metals from the hydrothermal fluids. As a result, the pegmatitic-quartz sulfide-vein ores formed. In the late mineralization stage, decreasing fluid salinity led to the formation of L-type aqueous inclusions and chalcopyrite-sulfosalt ore. Coexistence of V-type and D-type inclusions and their similar homogenization temperatures with different homogenization modes suggest that phase separation or boiling of the ore-forming fluids took place during the early and the main mineralization stages. The formation P-T conditions of S-type inclusions and the early and the main mineralization stages were estimated as ca. 156–182 MPa and 450–650°C, 350–450°C, 18–35 MPa and 280–380°C, 8–15 MPa, respectively, based on the microthermometric data of the fluid inclusions formed at the individual stages.
ZHANG Xiaoxu,TANG Juxing,LIN Bin,WANG Qin,HE Liang,YAN Gang,SHAO Rui,WU Qiang,DU Qiu,ZHAXI Pingcuo
2024, 98(3):701-716. DOI: 10.1111/1755-6724.15131
摘要:Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt (YPCB), Tibet. This study reports the results of cathodoluminescence, trace element and Sr isotope analyses of Mamupu scheelite samples, undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids. Three different types of scheelite are identified in the Mamupu deposit: scheelite A (Sch A) mainly occurs in breccias during the prograde stage, scheelite B (Sch B) forms in the chlorite-epidote alteration zone in the retrograde stage, while scheelite C (Sch C) occurs in distal quartz sulfide veins. The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage. Compared with ore-related porphyries, Sch A has a similar REE pattern, but with higher ΣREE, more depleted HREE and slightly lower (87Sr/86Sr)i ratios. These features suggest that Sch A is genetically related to ore-related porphyries, but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition. Sch B shows dark (Sch B-I) and light (Sch B-II) domains under CL imaging. From Sch B-I to Sch B-II, LREEs are gradually depleted, with MREEs being gradually enriched. Sch C has the highest LREE/HREE ratio, which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals, such as diopside and garnet, in the early prograde stage. The Mo content in Sch B and Sch C gradually decreased, indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later, the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity. The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca2+ for the precipitation of scheelite in the Mamupu deposit.
JIANG Hua,KONG Hua,LIU Biao,TAN Fucheng,QIN Yixue,HUANG Jingang,ZHU Yu
2024, 98(3):717-735. DOI: 10.1111/1755-6724.15177
摘要:Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information. This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit, which represents prominent gold mineralization in southern Hunan, China. Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques, including Backscattered Electron (BSE) imaging, Cathodoluminescence (CL) response, textural characterization, and analysis of rare-earth elements (REE), major contents, and trace element compositions. The garnet was dated U-Pb dating, which yielded a lower intercept age of 161.06 ± 1.93 Ma. This age is older than the underlying granodiorite porphyry, which has a concordia age of 155.13 ± 0.95 Ma determined by zircon U-Pb dating. These results suggest that the gold mineralization may be related to the concealed granite. Two groups of garnet changed from depleted Al garnet to enriched Al garnet, and the rare earth element (REE) patterns of these groups were converted from light REE (LREE)-enriched and heavy REE (HREE)-depleted with positive europium (Eu) anomalies to medium REE (MREE)-enriched from core to rim zoning. The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration. The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.
DING Gaoming,JI Genyuan,YAN Guolong,XU Yongzhong,WANG Kunming,XIAO Chun,WANG Quanle,GUO Dongbao
2024, 98(3):736-752. DOI: 10.1111/1755-6724.15160
摘要:Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization. This approach provides key information for the quantitative prediction of deep mineral localization, three-dimensional fine interpolation, analysis of spatial distribution patterns, and extraction of quantitative mineral-seeking markers. The Yechangping molybdenum (Mo) deposit is a significant and extensive porphyry-skarn deposit in the East Qinling–Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block. Abundant borehole data on ore-forming elements underpin deep geochemical predictions. The methodology includes the following steps: (1) Three-dimensional geological modeling of the deposit was established. (2) Correlation, cluster, and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify (Cu, Pb, Zn, Ag) and (Mo, W, mfe) assemblages. (3) A three-dimensional geochemical block model was constructed for Mo, W, mfe, Cu, Zn, Pb, and Ag using the ordinary kriging method, and the variational function was developed. (4) Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information, employing the variogram and w(Cu + Pb + Zn + Ag)/w(Mo + W) as predictive indicators. (5) Identifying the western, northwestern, and southwestern areas of the mine with limited mineralization potential, contrasted by the northeastern and southeastern areas favorable for mineral exploration.
Naveed Ur RAHMAN,XIAN Benzhong,FANG Linhao,CHEN Sirui,CHEN Peng,Zaheen ULLAH,WANG Pengyu
2024, 98(3):753-770. DOI: 10.1111/1755-6724.15167
摘要:The Carnian Pluvial Episode (CPE) fingerprints global environmental perturbations and biological extinction on land and oceans and is potentially linked to the Wrangellia Large Igneous Province (LIP). However, the correlation between terrestrial environmental changes and Wrangellia volcanism in the Ordos Basin during the CPE remains poorly understood. Records of negative carbon isotopic excursions (NCIEs), mercury (Hg), Hg/TOC, and Hg enrichment factor (HgEF) from oil shales in a large-scale terrestrial Ordos Basin in the Eastern Tethys were correlated with marine and other terrestrial successions. The three significant NCIEs in the study section were consistently correlated with those in the CPE successions of Europe, the UK, and South and North China. The U-Pb geochronology indicates a Ladinian–Carnian age for the Chang 7 Member. A comprehensive overview of the geochronology, NCIE correlation, and previous bio- and chronostratigraphic frameworks shows that the Ladinian–Carnian boundary is located in the lower part of Chang 7 in the Yishicun section. HgEF may be a more reliable proxy for tracing volcanic eruptions than the Hg/TOC ratio because the accumulation rates of TOC content largely vary in terrestrial and marine successions. The records of Hg, Hg/TOC, HgEF, and NCIEs in the Ordos Basin aligned with Carnian successions worldwide and were marked by similar anomalies, indicating a global response to the Wrangellia LIP during the CPE. Anoxia, a warm-humid climate, enhancement of detrital input, and NCIEs are synchronous with the CPE interval in the Ordos Basin, which suggests that the CPE combined with the regional Qinling Orogeny should dominate the enhanced rate of terrigenous input and paleoenvironmental evolution in the Ordos Basin.
LI Xin,CHEN Ge,XU Zhimin,LIU Qi,CHEN Tianci,SUN Yajun
2024, 98(3):771-785. DOI: 10.1111/1755-6724.15162
摘要:Saline aquifers are the most popular waste and CO2 injection and storage reservoirs worldwide. This project proposes that several optimal injection positions should be investigated as hydraulic pressure-focused positions, in order to relieve the high demands of pump performance. The comprehensive indices (Fi) representing the injectivity of different burial depths were obtained by using information entropy, based on the mercury injection experimental data of 13 rock samples. The results demonstrated that the burial depths of No. 4, No. 1 and No. 2 in the Liujiagou Formation were the most suitable positions for hydraulic focused injection, which means the upper 30 m thickness could be regarded as the hydraulic focused range in the saline aquifer with an average thickness of 400 m. In addition, some laboratory experiments and in situ tests were carried out for the purpose of certifying and analyzing results, including SEM, XRD, brittleness index and logging. The results suggested that the rock samples at the No. 4, No. 1 and No. 2 burial depth ranges have loose microstructure, weak cementation, as well as dual pores and fractures. The lithology is mainly quartz and feldspar, but the clay mineral content is high (10%–25%), which is positive for dissolution. The lithology is suitable for hydraulic fracturing to form extended cracks and micro-fissures during high-TDS (total dissolved solids) mine water injection, because of the high brittleness index. Finally, a theoretical and technical framework for high-TDS mine water injection was established, based on operating pilot engineering. Some theoretical defects and drawbacks learned from the field practices were summarized and solutions proposed. The research in this study could provide guidance and a paradigm for the inexpensive treatment of high-TDS mine water by injection and storage.
BO Ying,LIU Chenglin,JIAO Pengcheng,Lü Fenglin,ZHANG Hua
2024, 98(3):786-800. DOI: 10.1111/1755-6724.15127
摘要:Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang, Northwestern China. This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur, based on analytical data from 429 water samples (mainly brine). It is found that in the NE–SW direction, from the periphery to the Luobei sub-depression, while the hydrochemical type varies from the sodium sulfate subtype (S) to the magnesium sulfate subtype (M), the corresponding brine in the phase diagram transfers from the thenardite phase (Then) area, through the bloedite phase (Blo), epsomite phase (Eps), picromerite phase (Picro), finally reaching the sylvite phase (Syl) area. As for the degree of evolution, the sequence is the periphery < Luobei horizontally and the overlying glauberite brine < the underlying clastic brine vertically. It is concluded that the oxygen and hydrogen isotopic compositions of the brine have evidently been affected through the effects of evaporation and altitude, as well as the changes in local water circulation in recent years. Boron and chloride isotopic compositions show that the glauberite brine is formed under more arid conditions than the clastic one. The strontium isotopic composition indicates that the Lop Nur brine primarily originates from surface water; however, deep recharge may also be involved in the evolution of the brine, according to previous noble gas studies. It is confirmed that the brine in Lop Nur has become enriched with potassium prior to halite precipitation over the full course of the salt lake’s evolution. Based on chemical compositions of brine from drillhole LDK01 and previous lithological studies, the evolution of the salt lake can be divided into three stages and it is inferred that the brine in Lop Nur may have undergone at least two significant concentration-dilution periods.
WANG Luyao,LIU Kai,MA Yan,ZHANG Yaoyao,TONG Jue,JIA Wuhui,ZHANG Shouchuan,SUN Junliang
2024, 98(3):801-818. DOI: 10.1111/1755-6724.15161
摘要:Geothermal resources are increasingly gaining attention as a competitive, clean energy source to address the energy crisis and mitigate climate change. The Wugongshan area, situated in the southeast coast geothermal belt of China, is a typical geothermal anomaly and contains abundant medium- and low-temperature geothermal resources. This study employed hydrogeochemical and isotopic techniques to explore the cyclic evolution of geothermal water in the western Wugongshan region, encompassing the recharge origin, water–rock interaction mechanisms, and residence time. The results show that the geothermal water in the western region of Wugongshan is weakly alkaline, with low enthalpy and mineralization levels. The hydrochemistry of geothermal waters is dominated by Na-HCO3 and Na-SO4, while the hydrochemistry types of cold springs are all Na-HCO3. The hydrochemistry types of surface waters and rain waters are Na-HCO3 or Ca-HCO3. The δD and δ18O values reveal that the geothermal waters are recharged by atmospheric precipitation at an altitude between 550.0 and 1218.6 m. Molar ratios of major solutes and isotopic compositions of 87Sr/86Sr underscore the significant role of silicate weathering, dissolution, and cation exchange in controlling geothermal water chemistry. Additionally, geothermal waters experienced varying degrees of mixing with cold water during their ascent. The δ13C values suggest that the primary sources of carbon in the geothermal waters were biogenic and organic. The δ34S value suggests that the sulfates in geothermal water originate from sulfide minerals in the surrounding rock. Age dating using 3H and 14C isotopes suggests that geothermal waters have a residence time exceeding 1 kaBP and undergo a long-distance cycling process.
主编 :侯增谦
主管单位 :中国科学技术协会
主办单位 :中国地质学会
创刊 :1922年
国际标准刊号 :ISSN 1000-9515
国内统一刊号 :CN 11-2001