An Early Paleozoic Ultramafic Complex in the North Wulan Metamorphic Complex, North Qaidam: Contraints on the Nature of the Alaskan-type Continental Arc Root
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

We are grateful to Dr. Li Quanzhong for LA-ICP-MS zircon U-Pb dating, Dr. Wang Fangyue for their help with mineral major and trace element analyses. Dr. He Jiahao is thanked for the field assistance. This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 42272246, 41272221, 41902235).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Abstract:

    Orogenic peridotite is an important component of orogenic belts and retains crucial information on mantle magmatic activity, slab subduction, and melt or fluid metasomatism. To determine the source of the mantle-derived parental magma of the peridotite and to investigate the metasomatism that it experienced, we undertook an integrated study of the petrography, whole-rock major- and trace-element compositions, in situ zircon U-Pb geochronology, and mineral major- and trace-element compositions of an early Paleozoic ultramafic complex in the North Wulan area of North Qaidam. The Halihatu ultramafic–mafic complex is composed of dunite, pyroxene peridotite, and gabbro, which are characteristic of Alaskan-type complexes. The dunite yields a weighted mean 206Pb/238U age of 479 ± 5 Ma (MSWD = 0.7), which reflects the age of the metasomatism rather than the crystallization age of the ultramafic magma. The peridotites have high Mg# (89.8–91.8) and Cr contents (2419–5190 ppm), low Al2O3 (0.20–1.68 wt%) and Ni (289–1012 ppm) contents, and high olivine Fo contents (87–91), suggesting a large degree (~15%–22%) of partial melting of lithospheric ultramafic rocks followed by variable degrees of fractional crystallization of olivine and pyroxene. This is consistent with estimates of 15%–22.3% partial melting calculated using the Cr# of spinel crystals and with the low Yb (0.04–0.33 ppm) and Y (0.72–1.29 ppm) contents of clinopyroxene crystals. Whole-rock trace-element patterns show enrichment in large ion lithophile elements and depletion in high field strength elements, along with high Al2O3 (2.10–6.47 wt%) and low TiO2 (0.01–0.21 wt%) contents of clinopyroxene crystals, suggesting an arc magma cumulate trend. These features, along with the high olivine Fo contents (87–91 ppm), imply that the Halihatu peridotite is an Alaskan-type crustal cumulates derived from Mg-rich hydrous basaltic melts. The high estimated fO2 (FMQ +1.97 to FMQ +3.81) further supports the idea that they formed in an arc setting. The Ni/Co and Ni/Mn ratios and cumulate textures of the olivine, quenched boundaries between mafic and felsic melts, and the occurrence of tremolite and phlogopite reflect interactions between the Halihatu peridotite and injected silicate and carbonatitic melts in the lower crust. Therefore, we propose a new cumulate-infiltration model for the petrogenesis of Alaskan-type ultramafic complexes, which improves our understanding of the nature of Alaskan-type continental arc root.

    参考文献
    相似文献
    引证文献
引用本文

SHAN Jinming, NIU Manlan, LI Xiucai, WANG Lei, ZHANG Shuai.2023. An Early Paleozoic Ultramafic Complex in the North Wulan Metamorphic Complex, North Qaidam: Contraints on the Nature of the Alaskan-type Continental Arc Root[J]. ACTA GEOLOGICA SINICA(English edition),97(5):1388~1405

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-22
  • 最后修改日期:2023-05-16
  • 录用日期:
  • 在线发布日期: 2023-10-24
  • 出版日期: