The Development of Stylolites in Carbonate Formation: Implication for CO2 Sequestration
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

This work is partially funded by US Department of Energy through contracts of DE-FC26-05NT42592 (CO2 sequestration) and DE-FC26-08NT0005643 (Bakken Geomechanics) and by North Dakota Industry Commission together with five industrial sponsors (Denbury Resources Inc., Hess Corporation, Marathon Oil Company, St. Mary Land & Exploration Company, and Whiting Petroleum Corporation) under contract NDIC-G015-031, and by North Dakota Department of Commerce through UND’s Petroleum Research, Education and Entrepreneurship Center of Excellence (PREEC).


The Development of Stylolites in Carbonate Formation: Implication for CO2 Sequestration
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    The impact of CO2 sequestration on the host formation is an issue occurring over geologic time. Laboratory tests can provide important results to investigate this matter but have limitations due to a relatively short timeline. Based on literature review and core sample observation, naturally occurred geological phenomena, stylolites are studied in this paper for understanding CO2 sequestration in deep carbonate formations. Stylolites are distinctive and pervasive structures in carbonates that are related to water-assisted pressure solution. Pressure solution involving stylolitization is thought to be the main mechanism of compaction and cementation for many carbonates. In parallel, CO2 sequestration in carbonate formation involves extensive chemical reactions among water, CO2 and rock matrix, favoring chemical compaction as a consequence. An analogue between stylolites and CO2 sequestration induced formation heterogeneity exists in the sense of chemical compaction, as both pressure solution in stylolites and CO2 enriched solution in CO2 sequestration in carbonate formations may all introduce abnormal porous regions. The shear and/or tension fractures associated with stylolites zones may develop vertically or sub-vertically; all these give us alert for long-term safety of CO2 sequestration. Thus a study of stylolites will help to understand the CO2 sequestration in deep carbonate formation in the long run.

    Abstract:

    The impact of CO2 sequestration on the host formation is an issue occurring over geologic time. Laboratory tests can provide important results to investigate this matter but have limitations due to a relatively short timeline. Based on literature review and core sample observation, naturally occurred geological phenomena, stylolites are studied in this paper for understanding CO2 sequestration in deep carbonate formations. Stylolites are distinctive and pervasive structures in carbonates that are related to water-assisted pressure solution. Pressure solution involving stylolitization is thought to be the main mechanism of compaction and cementation for many carbonates. In parallel, CO2 sequestration in carbonate formation involves extensive chemical reactions among water, CO2 and rock matrix, favoring chemical compaction as a consequence. An analogue between stylolites and CO2 sequestration induced formation heterogeneity exists in the sense of chemical compaction, as both pressure solution in stylolites and CO2 enriched solution in CO2 sequestration in carbonate formations may all introduce abnormal porous regions. The shear and/or tension fractures associated with stylolites zones may develop vertically or sub-vertically; all these give us alert for long-term safety of CO2 sequestration. Thus a study of stylolites will help to understand the CO2 sequestration in deep carbonate formation in the long run.

    参考文献
    相似文献
    引证文献
引用本文

ZHOU Xuejun and ZENG Zhengwen.2014. The Development of Stylolites in Carbonate Formation: Implication for CO2 Sequestration[J]. ACTA GEOLOGICA SINICA(English edition),88(1):238~247

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-12-06
  • 最后修改日期:2013-07-08
  • 录用日期:
  • 在线发布日期: 2014-02-19
  • 出版日期: