-
古元古代的构造-岩浆-变质及火山-沉积等地质记录表明,华北克拉通存在三条古元古代构造带:东部的胶-辽-吉带、西部的孔兹岩带及中部造山带(图1;Zhao Guochun et al.,2001,2003,2005,2012),或称辽吉(胶辽)造山/活动带、丰镇造山/活动带和晋豫造山/活动带(图2;翟明国等,2007;Zhai Mingguo et al.,2011)。它们的构造属性、构造格架及动力学演化等关键科学问题不仅对正确认识华北克拉通的形成演化、陆块聚-散的动力学过程非常重要,也涉及到重要矿产资源的形成,因而受到了广泛关注。胶-辽-吉古元古代构造带作为华北克拉通最具代表性、最复杂的一条古元古代造山/活动带,它不仅接受了古元古代巨量陆壳物质沉积,并经历了多期岩浆-变质及构造变形事件的改造(Zhao Guochun et al.,2012; 刘福来等,2015;Liu Jianhui et al.,2021;及其参考文献),经历了十分复杂的构造演化过程。关于其构造属性及构造演化长期存在争议,存在陆内裂谷闭合(张秋生等,1988)、弧-陆(白瑾等,1996;Bai Jin et al.,1996)或陆-弧-陆碰撞(贺高品等,1998a,1998b)及大陆裂解形成初始洋盆-俯冲碰撞洋盆闭合(翟明国等,2007)等多种构造演化模式。为了约束胶-辽-吉带的构造属性及演化,针对其古元古代的岩浆作用、构造变形、变质演化及火山-沉积记录开展了大量的地质调查及研究工作,取得了一系列重要进展,包括:① 确定了胶-辽-吉带的空间格架(Zhao Guochun et al.,2012; 刘福来等,2015;Peng Chong et al.,2016,2020; Liu Chaohui et al.,2018);② 厘定了广泛分布的造山前伸展背景下形成的(2.2~2.1 Ga)条纹、条痕状A型花岗岩和数量有限的I型花岗岩(路孝平等,2004a,2004b,2005;郝德峰等,2004;Li Sanzhong et al.,2007; 杨德彬等,2009;郭素淑等,2009;Liu Jianhui et al.,2014,2021; 杨春明等,2015; Lan Tingguang et al.,2015; 田瑞聪等,2017; Cheng Shaobo et al.,2017; Wang Chengcheng et al.,2017;Wang Xinping et al.,2017,2020a,2020b; Liu Jin et al.,2018,2020,2021; Zhu Kai et al.,2019;杨玉伟等,2020),双峰式火山岩组合(张秋生等,1988;Peng Qiming et al.,1995; Bi Junhui et al.,2018)及同碰撞(路孝平等,2005;杨明春等,2015; Wang Xinping et al.,2017,2020b; Li Jian et al.,2020; Zhao Yan et al.,2021; Liu Jin et al.,2021)、碰撞后或非造山花岗岩(李三忠等,2003; 郝德峰等,2004;路孝平等,2004a,2004b,2005;杨进辉等,2007;Li Sanzhong,2007; Liu Jianhui et al.,2014; 任云伟等,2017;杨红等,2017;Liu Fulai et al.,2017; Zhang Xiaohui et al.,2021; Mu Maosong et al.,2022;及其参考文献);③ 测定了带内古元古代变质沉积地层碎屑锆石的U-Pb年龄组分及其Hf同位素成分(Luo Yan et al.,2004,2008; Lu Xiaoping et al.,2006; Wan Yusheng et al.,2006; 刘福来等,2015;Wang Fang et al.,2017; Liu Chaohui et al.,2018; Xu Wang et al.,2019; 及其参考文献);④ 重建了带内古元古代不同变质作用的P-T条件及P-T演化轨迹(Lu Liangzhao et al.,1996; 贺高品等,1998a,1998b; 刘文军等,1998;王舫等,2010;Tam et al.,2012a,2012b,2012c; Liu Pinghua et al.,2013; Cai Jia et al.,2020a,2020b; 及其参考文献);⑤ 识别出多期古元古代伸展及挤压构造变形(Yang Zhensheng et al.,1988; 杨振升等,1989,1995;Liu Junlai et al.,1997; 刘俊来等,2002a,2002b,2022a; Li Sanzhong et al.,2005,2012; Tian Zhonghua et al.,2017; Zhang Jian et al.,2020);⑥ 测定了带内古元古代变质铁镁质—超铁镁质岩的形成时代及变质时代(王惠初等,2011;刘平华等,2013; Meng En et al.,2014; Yuan Lingling et al.,2015; Wang Xinping et al.,2016; Xu Wang et al.,2019; Liu Jianhui et al.,2021)。这些研究进展极大地促进了我们对胶-辽-吉带构造演化的理解和认识。
-
图1 华北克拉通构造单元划分及古元古代造山/活动带(据Zhao Guochun et al.,2001,2005)
-
Fig.1 Tectonic subdivision and Paleoproterozoic orogenic/mobile belts of the North China craton (after Zhao Guochun et al., 2001, 2005)
-
目前,就胶-辽-吉古元古代构造带经历了起始的大陆伸展及随后地壳挤压增厚的造山作用已基本达成了共识,但对大陆伸展的动力学机制仍存在大陆内部软流圈(热点)上涌(Liu Jianhui et al.,2021)、大陆下地壳拆沉诱发软流圈物质上涌(Liu Jin et al.,2018,2020)及与板块俯冲后撤有关的弧后拉张(Xu Wang et al.,2019)等不同认识。对古元古代造山作用也存在哥伦比亚超大陆汇聚背景下受重力驱动的自发造山作用(Liu Jianhui et al.,2021)、受板块边界作用远场效应的板内诱发造山作用(Liu Jin et al.,2018,2020)及弧-陆碰撞(Xu Wang et al.,2019)等不同认识。本文通过总结与胶-辽-吉古元古代构造带形成演化有关的岩浆作用、变质沉积-火山岩系和变质作用及演化等方面的研究成果,结合构造变形及地球物理等方面的证据,对胶-辽-吉古元古代构造带的起源及动力学演化开展了综合讨论。
-
1 地质背景
-
胶-辽-吉古元古代构造带位于华北克拉通东部陆块,从吉南经辽东、胶北到达安徽五河地区呈北东-南西走向展布,延伸达1200 km,将东部陆块分为其北部的龙岗地块和南部的狼林地块(图1、3)。龙岗地块太古宙基底主要由新太古代TTG花岗质岩石组成,并存在少量古太古代—中太古代岩石(万渝生等,2005;Wan Yusheng et al.,2023; 及其参考文献),其中在鞍山—本溪地区保存有最老~3.8 Ga的岩石(Liu Dunyi et al.,1992,2008; Song Biao et al.,1996;万渝生等,1999,2001;Wang Yusheng et al.,2023; 及其参考文献)。狼林地块早前寒武纪变质基底主要由新太古代TTG花岗质岩石及古元古代变质表壳岩和花岗质岩石组成,它们记录了新太古代末~2.5 Ga及古元古代约1.95~1.85 Ga两期变质变形事件(Zhao Guochun et al.,2006; Zhang Xiaohui et al.,2016a,2016b; 赵磊等,2016a,2016b; Zhai Mingguo et al.,2019; Zhao Lei et al.,2020,2024)。传统上,龙岗地块与狼林地块被认为具有统一的太古宙克拉通基底,称为中-朝克拉通(张秋生等,1988;Wu Jiashan et al.,1998)。最近的研究也证实它们具有统一的早前寒武纪变质基底及演化历史(Zhai Mingguo et al.,2019; Zhao Lei et al.,2020,2024)。
-
图2 华北克拉通古元古代造山/活动带(据Zhai Mingguo et al.,2011)
-
Fig.2 Paleoproterozoic orogenic/mobile belts in the North China craton (modified after Zhai Mingguo et al., 2011)
-
胶-辽-吉古元古代构造带主要由大量的古元古代花岗质岩石、变质基性侵入岩墙和绿片岩相至麻粒岩相变质的火山-沉积岩系组成(张秋生等,1988; Liu Jianhui et al.,2021; 及其参考文献)。古元古代花岗质岩石包括造山前伸展背景约2.2~2.0 Ga侵位的条痕状、片麻状A型花岗岩和数量有限的I型花岗岩、同碰撞I型和S型花岗岩(Liu Jianhui et al.,2021; 及其参考文献)及碰撞后未变形的斑状花岗岩和碱性正长岩。变质基性岩包括形成于2.2~2.1 Ga的变质基性岩墙和形成于1.9~1.8 Ga的变质枕状熔岩(王惠初等,2011;Meng En et al.,2014; Yuan Lingling et al.,2015; Wang Xinping et al.,2016),前者部分经历了1.95~1.80 Ga近等温降压顺时针P-T演化的高压-超高温麻粒岩相变质作用(Tam et al.,2012a,2012b; Liu Pinghua et al.,2013,2017;刘平华等,2017; Cai Jia et al.,2020a)。古元古代变质火山-沉积岩系包括中国安徽的五河群、胶北的荆山群和粉子山群、辽东地区的南、北辽河群、吉南地区的吉安群和老岭群及朝鲜北部的摩天岭群。大量碎屑锆石U-Pb年龄数据显示,其物源主要来自两侧的太古宙变质基底和古元古代花岗质岩石,其沉积时代为2.20~1.95 Ga,并且普遍经历了约1.95~1.80 Ga具有顺时针变质P-T演化轨迹的绿片岩相—高压麻粒岩相变质作用(卢良兆等,1996;贺高品等,1998a,1998b; Zhou Xiwen et al.,2004; Tam et al.,2012a,2012b; Zou Yi et al.,2017,2019; Cai Jia et al.,2020b)或逆时针变质P-T演化轨迹的变质作用(卢良兆等,1996;贺高品等,1998a,1998b; Zou Yi et al.,2018)。中生代以来,胶-辽-吉古元古代构造带经历多期花岗质岩浆侵位和构造变形改造(Wu Fuyuan et al.,2005; Liu Junlai et al.,2005,2013,2022b),并卷入了中国东部中生代印支期—燕山期造山作用(Liu Fulai et al.,2014;刘俊来等,2022b;陈慧等,2022;任纪舜等,2024),使得带内不同地层及岩体之间的相互关系,以及该带的主要边界、空间展布、规模及延伸方向存在不同的认识(图2、3;Zhao Guochun et al.,2005,2012; 翟明国等,2007;Zhai Mingguo et al.,2011; 翟明国,2012; 刘福来等,2015;吴福元等,2016)。
-
图3 东部陆块胶-辽-吉造山/活动带的地质简图(据Zhao Guochun et al.,2005; 刘福来等2015)
-
Fig.3 Simplified geological map of the Paleoproterozoic Jiao-Liao-Ji orogenic/active belt in Eastern block, North China craton (after Zhao Guochun et al., 2005; Liu Fulai et al., 2015)
-
2 岩浆作用
-
胶-辽-吉古元古代构造带岩浆作用强烈,伴随构造带的整个发展演化过程,包括造山前伸展构造环境的双峰式岩浆作用、同碰撞地壳挤压增厚背景下的岩浆作用及碰撞后造山带垮塌环境的岩浆作用等。这些不同时期不同构造背景下形成的不同性质岩浆作用为胶-辽-吉古元古代构造带的形成、发展及演化提供了重要的约束。
-
2.1 造山前(2.2~2.0 Ga)花岗质岩石
-
胶-辽-吉古元古代构造带造山前花岗质岩浆作用是构造带内最强烈的岩浆作用,沿整个构造带广泛发育,形成了构造带内最广泛分布的条纹、条痕状花岗质片麻岩,包括(含磁铁矿)黑云角闪二长花岗岩、正长(钾长)花岗岩、正长岩及黑云母花岗岩等(附表1)。这些造山前侵位的变形花岗质岩石一个最典型的特征是发育有由磁铁矿、黑云母及角闪石等暗色矿物组成的暗色条痕或条纹,形成条痕或条纹状构造,统称“条痕状辽吉花岗岩”。锆石U-Pb年代学研究显示,它们主要形成于2.2~2.1 Ga,部分形成于2.1~2.0 Ga,并记录了1.95~1.80 Ga的变质作用(附表1)。这些变形的花岗质岩石具高硅、富铁及全碱(图4a),K2O/Na2O比值大于1,贫钙、镁(低Mg#)、铝及钛,属铁质、碱钙性或钙-碱性系列(图4c、d),它们具有较高的稀土元素总量,轻微的轻重稀土分异,显示了明显的铕负异常(图5a),高的Th、U、Zr、Hf、K、Yb及Y含量,低的Sr、Ti、Cr及Ni含量(图5b),同时它们具有高的Zr+Nb+Ce+Y(图6a、b)及10000Ga/Al值(图6c、d),使其与未分异的M型、I型及S型花岗岩有所区分,在A型花岗岩判别图解上显示为A型花岗岩。此外,它们具有高的岩浆形成温度(Lan Tingguang et al.,2015; Wang Chengcheng et al.,2017; Wang Xinping et al.,2017,2020a; Liu Jin et al.,2021),这些岩石地球化学特征指示它们具有典型A型花岗岩的特征。根据Eby(1992)A型花岗岩的分类,属于A2型花岗岩。全岩Nd及锆石Hf同位素指示它们主要源自TTG岩石的重熔,并有少量源自地幔新生物质的加入(图7a、b; Lan Tingguang et al.,2015; Wang Xinping et al.,2017,2020a,2020b; Zhao Yan et al.,2021; Mu Maosong et al.,2022)。这些具有典型A型花岗岩岩石地球化学成分、造山前形成的变形花岗质岩石形成于高温低压的伸展构造背景下大陆地壳(TTG岩石)的部分熔融。
-
此外,除了广泛分布的A型花岗岩外,胶-辽-吉古元古代构造带内也存在造山前形成的具有埃达克质花岗岩地球化学性质的I型花岗岩,它们与A型花岗岩同时形成,但岩体数量及规模有限,目前对于它们的成因存在拆沉地壳、加厚下地壳或俯冲洋壳的部分熔融等多种认识(宋运红等,2016;Li Jian et al.,2020; Liu Jin et al.,2020;Wang Xinping et al.,2020a; 及其参考文献)。根据它们所处的伸展构造背景,基性下地壳的部分熔融是I型花岗岩形成的一种可选模式。
-
2.2 造山前(2.2~2.1 Ga)基性岩
-
造山前的基性岩浆作用在胶-辽-吉古元古代构造带广泛发生,形成带内广泛分布的变质基性岩墙、岩脉或岩块,以及巨厚的变质基性火山(玄武岩)沉积。锆石U-Pb年代学研究显示,它们主要形成于2.2~2.1 Ga,并普遍记录了1.95~1.80 Ga的变质作用(附表1),这些变质基性侵入岩及变质基性火山岩与同时形成的花岗质岩石及酸性火山岩构成胶-辽-吉古元古代构造带造山前伸展背景下的双峰式岩浆作用。它们具有亚碱性拉斑系列玄武质岩石地球化学属性(图4a、b),显示变化的硅及铝,高的钙、铁,低的镁、全碱、钛及Mg#值,轻稀土(LREE)相对重稀土(HREE)轻微富集,无明显的Eu异常,富集大离子亲石元素(LILEs)Rb、Ba及K,亏损高场强元素(HFSEs)Nb、Ta、Zr、Hf及Ti等,显示出与E-MORB玄武岩类似的稀土及微量元素地球化学特征(图5c、d),正的锆石εHf(t)值(图7c、d)及变化的全岩εNd(t)值。它们的全岩主量及微量元素地球化学变化趋势及锆石Hf及全岩Nd同位素表明它们可能形成于大陆裂谷环境,源自软流圈地幔的部分熔融(Liu Jianhui et al.,2021)。并且它们的原始岩浆在上升过程中经历了大陆岩石圈地幔及大陆地壳的同化混染作用,以及斜长石、橄榄石及单斜辉石的分离结晶及磷灰石和钛-铁氧化物(如钛铁矿、磁铁矿)的堆晶作用。
-
图4 胶-辽-吉古元古代构造带造山前A型花岗岩及造山前变质基性岩地球化学分类图
-
Fig.4 Geochemical classification of pre-orogenic A-type granitoid and meta-mafic rocks in the Paleoproterozoic Jiao-Liao-Ji tectonic belt
-
(a)—TAS(硅-碱)岩石分类图(据Le Bas et al.,1986);(b)—变质基性岩AFM((Na2O+K2O)-FeO-MgO)图(据Irvine and Baragar,1971);(c)—TFeO/(TFeO+MgO)vs. SiO2;(d)—(Na2O+K2O-CaO)vs. SiO2(据Frost et al.,2001); A型花岗岩数据源自Lan Tingguang et al.,2015; Wang Xinping et al.,2017,2020a; Liu Jin et al.,2018,2020; Liu Jianhui et al.,2021; Zhang Wen et al.,2022;变质基性岩数据源自Meng En et al.,2014; Yuan Lingling et al.,2015; Wang Xinping et al.,2016; Cheng Changquan et al.,2022
-
(a) —the TAS classification (after Le Bas et al., 1986) ; (b) —the AFM ( (Na2O+K2O) -FeO-MgO) classification (after Irvine and Baragar, 1971) for the meta-mafic rocks; (c) — TFeO/ (TFeO+MgO) vs.SiO2; (d) — (Na2O+K2O-CaO) vs. SiO2 classifications (after Frost et al., 2001) ; data for A-type granitoid from Lan Tingguang et al., 2015; Wang Xinping et al., 2017, 2020a; Liu Jin et al., 2018, 2020; Liu Jianhui et al., 2021; Zhang Wen et al., 2022; data for meta-mafic rocks from Meng En et al., 2014; Yuan Lingling et al., 2015; Wang Xinping et al., 2016; Cheng Changquan et al., 2022
-
2.3 同碰撞及碰撞后花岗质岩石
-
同碰撞花岗质岩石包括I型花岗质岩石和S型花岗岩。I型花岗质岩石包括细粒黑云母二长花岗岩、斜长花岗岩、斑状二长花岗岩及石英闪长岩等,这些花岗质岩石通常具有右倾的稀土配分曲线,富集轻稀土,显示轻微的Eu正异常或无异常,高的Sr/Y及LaN/YbN比值,岩石学及地球化学特征显示为弧型或埃达克质的I型花岗质岩石(如青城子花岗岩)、主要形成于同碰撞造山的加厚地壳背景(路孝平等,2005;Wang Xinping et al.,2017,2020b; Li Jian et al.,2020; Zhao Yan et al.,2021; Liu Jin et al.,2021);S型花岗岩主要为巨斑状—环斑状含石榴子石(矽线石)花岗岩,主要形成于后碰撞造山阶段(路孝平等,2005;杨明春等,2015)。锆石U-Pb年代学数据显示它们主要形成于1.95~1.85 Ga,对应胶-辽-吉古元古代造山变质作用的高压麻粒岩相变质阶段(附表1; Liu Fulai et al.,2017; Liu Jin et al.,2021)。
-
图5 造山前A型花岗质岩石及变质基性岩球粒陨石标准化稀土元素配分图(a、c)及原始地幔标准化微量元素蛛网图(b、d)(标准化值据Sun and McDonough,1989)
-
Fig.5 Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized trace element spider diagrams (b, d) for pre-orogenic A-type granitoids and meta-mafic rocks (normalization values after Sun and McDonough, 1989)
-
数据源自Meng En et al.,2014; Yuan Lingling et al.,2015; Wang Xinping et al.,2016; Cheng Changquan et al.,2022
-
Data from Meng En et al., 2014; Yuan Lingling et al., 2015; Wang Xinping et al., 2016; Cheng Changquan et al., 2022
-
未变形的巨斑状—环斑状花岗岩(包括含石榴子石巨斑状花岗岩、黑云母巨斑状花岗岩及肉红色巨斑状钾长花岗岩等)、斜长花岗岩、碱性正长岩(包括角闪石正长岩及辉石正长岩)、含电气石伟晶花岗岩及石英闪长岩等,在胶-辽-吉古元古代构造带中主要分布在吉林集安、辽宁宽甸八河川镇—牛毛坞镇和桓仁东下四平西街—芦家堡子一带、辽宁盖州卧龙泉镇—矿洞沟镇一带及胶北地体内,在朝鲜半岛亦有分布(蔡剑辉等,2002;路孝平等,2005;杨进辉等,2007;Liu Jianhui et al.,2014;杨红等,2017;Li Youlian et al.,2017; Liu Fulai et al.,2017; Zhang Xiaohui et al.,2021; Mu Maosong et al.,2022;及其参考文献),侵入古元古代变质火山-沉积岩系,它们通常具有高的重稀土含量,显示了明显的Eu负异常,亏损Sr、Ti及高场强元素Nb、Ta等,并且具有高的岩浆形成温度,显示出A、S或I型花岗岩的岩石及地球化学特征,主要形成于碰撞造山后造山带垮塌或非造山高温低压的伸展构造背景,源自古元古代花岗质岩石、变质火山-沉积岩系、基性岩或地幔的部分熔融。锆石U-Pb年代学研究显示它们主要形成于1.85~1.80 Ga(附表1),对应胶-辽-吉古元古代变质作用的中低压麻粒岩相—角闪岩相阶段(Liu Fulai et al.,2017)。
-
3 变质火山-沉积岩系
-
胶-辽-吉古元古代构造带内发育有巨厚的变质火山-沉积岩系,包括胶北的粉子山群和荆山群、辽东的北辽河群和南辽河群、吉南的老岭群和集安群、北朝鲜的摩天岭群及西南延伸方向安徽蚌埠一带的五河群(Zhao Guochun et al.,2012)。其原岩为一套玄武岩和英安岩-流纹岩所构成的双峰式火山岩、灰岩、白云岩和陆源碎屑沉积,沉积环境为稳定的被动陆缘(张秋生等,1988),并经历了绿片岩相—麻粒岩相的变质作用(刘福来等,2015)。传统上,胶-辽-吉古元古代构造带被进一步划分为北带和南带,其中胶北的粉子山群、辽东的北辽河群及吉南的老岭群为北带,胶北的荆山群、辽东的南辽河群及吉南的集安群为南带(Zhao Guochun et al.,2005;刘福来等,2015)。近年来,大量的碎屑锆石U-Pb年代学研究显示,北带与南带的地层胶北的粉子山群与荆山群(图8a、b)、辽东南的北辽河群与南辽河群(图8c、d)、吉南的老岭群与集安群(图8e、f),及安徽蚌埠的五河群(图8g)和北朝鲜的摩天岭群(图8h)均具有类似的碎屑锆石U-Pb年龄组分,指示无论北带还是南带均主要源自太古宙大陆基底岩石及古元古代花岗质岩石。根据碎屑锆石U-Pb年代学(图8a~h;Luo Yan et al.,2004,2006; Li Sanzhong et al.,2005; Lu Xiaoping et al.,2006; Wan Yusheng et al.,2006; 刘福来等,2015;王舫等,2017;Wang Fang et al.,2017,2020; Liu Chaohui et al.,2018; Zhang Wen et al.,2018;Ye Lina et al.,2021; 及其参考文献)及地层内英安岩-流纹岩等中酸性火山岩的锆石U-Pb年代学研究结果(附表1),表明这些变质沉积-火山岩系的原岩沉积时限为2.20~1.95 Ga,而变质时代为1.95~1.80 Ga。
-
图6 造山前A型花岗岩判别图(据Whalen et al.,1987)
-
Fig.6 Discrimination diagrams of A-type granite for Paleoproterozoic pre-orogenic A-type granitoids (after Whalen et al., 1987)
-
FG—分异的长英质花岗岩;OTG—未分异的M、I及S型花岗岩;数据源自Lan Tingguang et al.,2015; Wang Xinping et al.,2017,2020a; Liu Jin et al.,2018,2020; Liu Jianhui et al.,2021; Zhang Wen et al.,2022
-
FG—fractionated felsic granites; OTG—unfractionated M-, I-, and S-type granites; data from Lan Tingguang et al., 2015; Wang Xinping et al., 2017, 2020a; Liu Jin et al., 2018, 2020; Liu Jianhui et al., 2021; Zhang Wen et al., 2022
-
4 变质作用及演化
-
有关胶-辽-吉带的变质作用及变质演化,早期(传统)的研究认为,位于该带南部的荆山群、南辽河群及集安群具有逆时针变质P-T演化轨迹,而北部的粉子山群,北辽河群和老岭群则表现为顺时针的变质P-T演化轨迹,并且认为胶北地区的荆山群和粉子山群变质作用较强,可达高角闪岩相到中—低压麻粒岩相,而南、北辽河群,集安群和老岭群变质作用相对较弱,为绿片岩相—低角闪岩相,局部可达高角闪岩相(卢良兆等,1996; 贺高品和叶慧文,1998a,1998b)。近年来,随着胶-辽-吉古元古代构造带变质作用研究的深入,新的研究显示,不仅胶北地区存在具有顺时针变质P-T演化轨迹的中压及高压泥质麻粒岩(图9a; 王舫等,2010;Tam et al.,2012a,2012b; Zou Yi et al.,2017,2019)和高压基性麻粒岩(图9b;刘文军等,1998;王舫等,2010;Tam et al.,2012c; 刘平华等,2013;Liu Pinghua et al.,2017),而且在南辽河群和集安群中也发现了具有顺时针变质P-T演化轨迹的泥质麻粒岩(图9a; Cai Jia et al.,2017,2020b; Liu Pinghua et al.,2019)和基性麻粒岩(图9a;刘福来等,2015),在安徽蚌埠发现了古元古代高压-超高温基性麻粒岩(图9b;Cai Jia et al.,2020b)。并且变质锆石及独居石U-Pb年代学研究显示,从构造带西南延伸的蚌埠地区(图9c)、到胶北地体(图9d)、辽东南地区(图9e)及构造带东北端的吉南(图9f)地区具有统一的1.95~1.80 Ga变质作用时间,其中1.95~1.85 Ga为高压麻粒岩相变质阶段,而1.85~1.80 Ga为中低压麻粒岩相变质阶段。这些最新的变质作用及演化研究进一步确定了胶-辽-吉古元古代构造带经历了古元古代地壳增厚造山到造山带垮塌、地壳减薄的造山作用过程。
-
图7 造山前古元古代花岗质岩石及变质基性岩锆石Hf同位素成分
-
Fig.7 Comprehensive zircon Hf isotope composition for pre-orogenic granitoids and meta-mafic rocks
-
(a、b)—造山前花岗质岩石的锆石 U-Pb年龄-εHf(t)值及两阶段Hf模式年龄(数据来自Liu Jianhui et al.,2014,2021; Lan Tingguang et al.,2015; 宋运红等,2016;陈井胜等,2017;Wang Chengcheng et al.,2017; Wang Xinping et al.,2017; Wang Chaoyang et al.,2018; Bi Junhui et al.,2018; Zhu Kai et al.,2019; Dong Yu et al.,2019; Liu Jin et al.,2020,2021; Zhang Wen et al.,2022);(c、d)—变质基性岩的锆石 U-Pb年龄-εHf(t)值及单阶段Hf模式年龄(数据源自Meng En et al.,2014; Wang Xinping et al.,2016; Liu Jianhui et al.,2021);CHUR—球粒陨石均一储库
-
(a, b) —U-Pb ages vs. εHf (t) values and two-stage Hf model ages for pre-orogenic granitoids (data from Liu Jianhui et al., 2014, 2021; Lan Tingguang et al., 2015; Song Yunhong et al., 2016; Chen Jingsheng et al., 2017; Wang Chengcheng et al., 2017; Wang Xinping et al., 2017; Wang Chaoyang et al., 2018; Bi Junhui et al., 2018; Zhu Kai et al., 2019; Dong Yu et al., 2019; Liu Jin et al., 2020, 2021; Zhang Wen et al., 2022) ; (c, d) —U-Pb ages vs.εHf (t) values and single-stage Hf model ages for meta-mafic rocks (data from Meng En et al., 2014; Wang Xinping et al., 2016; Liu Jianhui et al., 2021) ; CHUR—chondritic uniform reservoir
-
图8 胶-辽-吉古元古代构造带不同变质沉积地层的碎屑锆石U-Pb年龄谱(数据源自刘福来等,2015; Liu Chaohui et al.,2018; Zhang Wen et al.,2018; 及其参考文献)
-
Fig.8 Detrital zircon U-Pb age spectra of different metamorphic sedimentary strata in the Paleoproterozoic Jiao-Liao-Ji tectonic belt (data from Liu Fulai et al., 2015; Liu Chaohui et al., 2018; Zhang Wen et al., 2018; and references therein)
-
5 讨论与结论
-
5.1 2.2~2.0 Ga地幔物质上涌驱动的陆内伸展
-
胶-辽-吉古元古代构造带内广泛分布的造山前A型花岗岩、变质基性侵入岩、由大量的变质流纹岩-英安岩及变质玄武岩组成的双峰式火山岩建造、巨厚的变质火山-沉积岩系、构造带两侧龙岗地块与狼林地块统一的早前寒武纪变质基底及演化历史、地球物理及构造分析均指示早期具有拉张性质的构造变形作用等地质地球物理证据,表明胶-辽-吉古元古代构造带在早期经历了大陆的伸展变形作用或裂谷作用。有关大陆伸展变形,包括主动和被动伸展变形作用,存在岩石圈拉伸及/或地幔上涌(如地幔柱或热点;McKenzie,1978; Jarvis et al.,1980; Olsen,1995; Li Zhengxiang et al.,1999; Li Xianhua et al.,2002)、俯冲板片的回卷及俯冲后撤(Schellart,2005; Schellart et al.,2005)、块体的逃逸或走滑断裂作用(Molnar et al.,1975)及下地壳拆沉(Burchfiel et al.,1985; Kay et al.,1993; Rey et al.,2001)等四种流行并被广泛接受的地球动力学模式。一些学者根据具有所谓“弧岩浆”地球化学性质的造山前高钾钙碱性高分异“I型”花岗质岩石、变质基性侵入岩及火山岩,提出俯冲板片的回卷及俯冲后撤驱动的弧后伸展模式(Xu Wang et al.,2019; Hoernle et al.,2020;及其参考文献)。但是,古元古代早期地球是否存在现代型板块构造仍是目前地球科学领域的一大科学挑战,而且当时岩石圈的成分、结构及热状态与现代岩石圈存在明显的差异,进而也会导致当时板块构造作用的不同(翟明国,2012;Zheng Yongfei et al.,2020; Zhai Mingguo et al.,2020)。就华北克拉通而言,现代板块构造可能直到~0.7 Ga才开始启动(Zhai Mingguo et al.,2020)。尤其值得注意的是,整个胶-辽-吉古元古代构造带一直没有发现真正意义上类似于现代板块洋-陆俯冲作用有关的岩石-构造组合(如残留洋壳、俯冲增生杂岩(楔)、双变质带、与板片俯冲前进或后退有关的岩浆作用时空变化、弧背构造及沉积、多期弧后伸展及沉积作用、以及大型走滑断裂等)。“弧岩浆”的地球化学性质可能主要继承了源区太古代TTG岩石或基性岩浆上升过程受大陆岩石圈地幔和地壳的同化混染作用(Liu Jianhui et al.,2021)。此外,带内巨厚的变质火山-沉积岩系具有稳定的被动陆缘沉积环境(张秋生等,1988),“南带”和 “北带”变质沉积地层具有统一的地层层序及类似的物源(如统一的锆石U-Pb成分)(图8),这些都难以用弧后伸展模式解释。另外一些学者则提出岩石圈的拆沉及随后软流圈的上涌可能导致了东部陆块沿胶-辽-吉古元古代构造带陆内伸展(裂谷作用)和造山前A型花岗岩的形成(Liu Jin et al.,2020)。但是,这种模式导致的软流圈上涌有限,很难造成胶-辽-吉古元古代构造带规模的陆内裂谷作用。
-
图9 胶-辽-吉古元古代构造带中压—高压泥质麻粒岩(a)及基性麻粒岩(b)的变质P-T演化及不同地区的变质年龄(c~f)(据Cai Jia et al.,2020a,2020b; 及其参考文献)
-
Fig.9 Summary of the metamorphic P-T paths for medium pressure (MP) -high pressure (HP) pelitic granulites (a) and mafic granulites (b) , and metamorphic zircon U-Pb ages (c~f) for different regions in the Paleoproterozoic Jiao-Liao-Ji tectonic belt (after Cai Jia et al., 2020a, 2020b; and references therein)
-
1—辽宁南辽河石榴角闪岩(Liu Pinghua et al.,2017);2—辽宁南辽河泥质麻粒岩(Liu Pinghua et al.,2019);3—胶北高压基性麻粒岩(Liu Pinghua et al.,2013);4—胶北高压泥质麻粒岩(Zou Yi et al.,2017);5—胶北高压泥质麻粒岩(Tam et al.,2012a);6—胶北高压基性麻粒岩(Tam et al.,2012c);7—胶北高压泥质麻粒岩(王舫等,2010);8—胶北中压泥质麻粒岩(Tam et al.,2012b);9—吉南中压Opx-Crd-Grt泥质麻粒岩(Cai Jia et al.,2017);10—吉南高压Sil-Crd-Grt泥质麻粒岩(Cai Jia et al.,2020a);11—安徽蚌埠高温—超高温基性麻粒岩(Cai Jia et al.,2020b);Ky—蓝晶石;And—红柱石;Sil—矽线石;Crd—堇青石;Grt—石榴子石;Qz—石英;Cpx—单斜辉石;Opx—斜方辉石
-
1—garnet amphibolite from southern Liaohe, Liaoning (Liu Pinghua et al., 2017) ; 2—pelitic granulite from southern Liaohe, Liaoning (Liu Pinghua et al., 2019) ; 3—HP mafic granulite from Jiaobei terrane (Liu Pinghua et al., 2013) ; 4—HP pelitic granulite from Jiaobei terrane (Zou Yi et al., 2017) ; 5—HP pelitic granulite from Jiaobei terrane (Tam et al., 2012a) ; 6—HP mafic granulite from Jiaobei terrane (Tam et al., 2012c) ; 7—HP pelitic granulite from Jiaobei terrane (Wang Fang et al., 2010) ; 8—MP pelitic granulite from Jiaobei terrane (Tam et al., 2012b) ; 9—MP Opx-Crd-Grt pelitic granulite from southern Jilin (Cai Jia et al., 2017) ; 10—HP Sil-Crd-Grt pelitic granulites from southern Jilin (Cai Jia et al., 2020a) ; 11—high temperature-ultrahigh temperature mafic granulite from Bengbu area, Anhui (Cai Jia et al., 2020b) ; Ky—kyanite; And—andalusite; Sil—sillimanite; Crd—cordierite; Grt—garnet; Qz—quartz; Cpx—clinopyroxene; Opx—orthopyroxene
-
考虑到下地壳的加热在降低大陆岩石圈伸展所需的岩石圈强度和厚度方面起着至关重要的作用。而地幔柱(热点)上升或弧后区域含俯冲板片流体岩浆的上涌能够形成异常高温和相对低密度的软流圈上涌地幔,并能提供长期的导热和浮力(Morgan,1971; Loper,1985; Duncan et al.,1991; Olsen,1995)。同时考虑到胶-辽-吉古元古代构造带同时形成的高温A型花岗质岩石和源自地幔的基性岩石以及高温(HT)—超高温(UHT)变质作用所指示的高地温梯度(Zou Yi et al.,2019; Cai Jia et al.,2020b)。我们建议与地幔柱(热点)上升形成的异常高温和相对低密度软流圈上涌是东部陆块沿胶-辽-吉古元古代构造带在约2.2~2.0 Ga发生陆内伸展最可能的动力学机制。
-
5.2 重力驱动的板块汇聚造山作用
-
胶-辽-吉古元古代构造带具有顺时针变质P-T演化轨迹的中压—高压泥质麻粒岩及高温—超高温基性麻粒岩的厘定(图9a、b),指示胶-辽-吉古元古代构造带经历了与板块汇聚有关的从地壳增厚到地壳减薄的造山作用过程。由于早期板块构造的动力学机制与现代板块构造可能存在显著不同(Zhai Mingguo et al.,2020)。因此,确定胶-辽-吉古元古代构造带板块汇聚、地壳增厚造山的驱动力对于理解早期板块构造的动力学机制具有重要的意义。带内同时出现的高压及高温—超高温麻粒岩不仅暗示地壳的增厚作用,而且也证实带内具有高的地温梯度。东部陆块在太古宙末伴随着大量TTG岩石的形成会形成大量麻粒岩相—榴辉岩相下地壳残留体(图10a),由于华北克拉通东部陆块在新太古宙末形成了稳定的克拉通岩石圈地幔,能够确保其麻粒岩相—榴辉岩相的高密度下地壳能够稳定保留。东部陆块岩石圈受异常高温和相对低密度软流圈上涌所驱动,在2.2~2.0 Ga沿胶-辽-吉古元古代构造带发生伸展,伸展停止后,不仅岩石圈冷却密度增加会发生热沉降,而且保留下来的高密度榴辉岩化下地壳连同岩石圈地幔受重力(负浮力)驱动能够沉入高温和相对低密度的软流圈地幔,并驱动两侧的龙岗地块和狼林地块发生汇聚,导致胶-辽-吉古元古代构造带发生地壳增厚造山作用,带内岩石发生中压—高压及高温—超高温麻粒岩相变质作用。这种受板块自身重力(负浮力)驱动的板块俯冲(下沉)并拖拽板块运动已被地球物理观测、板块运动的力学分析及动力学模拟所证实(Isacks et al.,1968; Anderson et al.,2001; Stern et al.,2007; 陈凌等,2020),并被普遍接受和理解的重要板块构造活动,在板块构造中发挥了重要的作用。加之胶-辽-吉古元古代构造带内并没有洋-陆俯冲作用导致地壳增厚的岩石-构造组合。因此,我们提出东部陆块高密度麻粒岩相—榴辉岩相下地壳连同岩石圈地幔,在沿胶-辽-吉带发生伸展变形后,受重力(负浮力)作用,相对热的、低密度的软流圈发生下沉(俯冲)(图10c),并驱动动两侧的龙岗地块和狼林地块发生汇聚造山作用。之后,随着造山带根部的移除,软流圈上涌,造山带发生垮塌和造山后伸展(图10d)。
-
5.3 动力学演化
-
综合胶-辽-吉古元古代构造带的构造-岩浆-变质及变质火山-沉积序列已有研究,建立了胶-辽-吉古元古代构造带的起源及动力学演化模式:① 华北克拉通东部陆块新太古代末巨量TTG岩石形成的同时,在下地壳形成巨量高密度的麻粒岩相—榴辉岩相残留物质,新太古代末已形成的稳定克拉通岩石圈地幔使这些高密度的麻粒岩相—榴辉岩相残留物质能够稳定保留(图10a)。② 在2.2~2.0 Ga期间,受地幔柱(热点)驱动,热的相对低密度的软流圈上涌,东部陆块沿胶-辽-吉构造带发生陆内伸展变形(陆内裂谷作用),破裂形成北部的龙岗地块和南部的狼林地块,并导致TTG岩石、基性下地壳及同位素亏损的软流圈地幔发生部分熔融,形成造山前A型花岗质岩石、I型花岗质岩石、基性及超基性侵入岩和双峰式火山岩系(图10b)。③ 在1.95~1.85 Ga,高密度的麻粒岩相—榴辉岩相下地壳连同岩石圈地幔,受重力作用(负浮力)驱动,发生俯冲(下沉)进入热的、低密度的软流圈地幔,带动龙岗地块和狼林地块沿胶-辽-吉带发生汇聚造山作用,导致地壳增厚和同碰撞S型花岗岩、埃达克质I型花岗岩、中压—高压及高温—超高温麻粒岩的形成(图10c)。④ 在1.85~1.80 Ga,造山带发生去根作用,软流圈上涌,导致造山带的垮塌、快速剥露和造山后伸展,广泛的造山后岩浆作用和具有逆时针变质 P-T演化的变质作用(Zou Yi et al.,2018;图10d)。
-
图10 胶-辽-吉古元古代构造带构造及动力演化图
-
Fig.10 Schematic tectonic and geodynamic evolution of the Paleoproterozoic Jiao-Liao-Ji belt
-
(a)—巨量的高密度麻粒岩相—榴辉岩相下地壳残留随着太古宙末巨量TTG岩石的形成而产生;(b)—在2.2~2.0 Ga,热的、相对低密度的软流圈地幔(热点)上涌驱动动东部陆块沿胶-辽-吉带发生陆内伸展,分裂成北部的龙岗地块与南部的狼林地块;(c)—在1.95~1.85 Ga,高密度下地壳连同岩石圈地幔受重力(负浮力)驱动俯冲(下沉)进入热而低密度的软流圈,带动两侧的龙岗地块与狼林地块汇聚挤压造山,造成地壳加厚及顺时针变质P-T演化轨迹的中压—高压麻粒岩相和高温—超高温麻粒岩相的变质作用;(d)—在<1.8 Ga(1.85~1.80 Ga),造山带去根,软流圈上涌,造山带垮塌及造山后伸展
-
(a) —voluminous high-density granulite-eclogite facies residual was generated in the lower crust along with formation of voluminous Archean TTGs in the Eastern block, and was preserved by the stable craton lithospheric mantle formed at the end of Archean; (b) —at ca.2.2~2.0 Ga, intracontinental extension driven by upwelling of hot and relatively low-density asthenospheric mantle (hotspot) along the Jiao-Liao-Ji belt took place, resulting in the Eastern block was broken into the northern Longgang block and southern Nangrim block; (c) —at ca.1.95~1.85 Ga, plate-convergent compressed orogenic processes led by gravity (negative buoyancy) -driven sinking (subduction) of highdensity lower crust (lithosphere) , which causes crustal thickening and formation of medium pressure (MP) -high-pressure (HP) and hightemperature (HT) ultrahightemperature (UHT) granulites with clockwise pressure-temperature-time (P-T-t) paths; (d) —at <1.8 Ga (1.85~1.80 Ga) , the orogenic belt collapse caused by the delamination of the orogenic root, and subsequent hot asthenospheric upwelling resulted in rapid exhumation and postorogenic extension of the orogenic belt
-
致谢:感谢任纪舜院士对本人开展太平洋构造域1∶500万大地构造图编制及大地构造研究所给予的支持、帮助、鼓励和指导!并向任先生的严谨治学态度和在大地构造领域的卓越贡献致敬!祝任先生福如东海,寿比南山!对两位审稿人给予的修改建议表示衷心的感谢!
-
附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202501090?st=article_issue
-
参考文献
-
Anderson D L. 2001. Top-down tectonics. Science, 293: 2016~2018.
-
Bai Jin, Dai Fengyan. 1996. The early Precambrian crustal evolution of China. Journal of Southeast Asian Earth Sciences, 13(3~5): 205~214.
-
Bai Jin, Huang Guangxue, Wang Huichu, Guo Jinjing, Yan Yaoyang, Dai Fengyan, Xu Wenzhen, Wang Guanfu. 1996. The Precambrian Crustal Evolution of China. Beijing: Geological Publishing House (in Chinese with English abstract).
-
Bi Junhui, Ge Wenchun, Xing Dehe, Yang Hao, Dong Yu, Tian Dexin, Chen Huijun. 2018. Palaeoproterozoic meta-rhyolite and meta-dacite of the Liaohe Group, Jiao-Liao-Ji Belt, North China craton: Petrogenesis and implications for tectonic setting. Precambrian Research, 314: 306~324.
-
Bi Junhui, Xing Dehe, Ge Wenchun, Yang Hao, Dong Yu. 2018. Age and tectonic setting of meta-acid volcanic rocks from the North Liaohe Group in the Liaodong area: Paleoproterozoic intracontinental rift or active continental margin? Earth Science Frontiers, 25: 295~309 (in Chinese with English abstract).
-
Burchfiel B C, Royden L H. 1985. North-south extension within the convergent Himalayan region. Geology, 13(10): 679~682.
-
Cai Jia, Liu Fulai, Liu Pinghua, Wang Fang, Meng En, Wang Wei, Yang Hong, Ji Lei, Liu Lishuang. 2017. Discovery of granulite-facies metamorphic rocks in the Ji'an area, northeastern Jiao-Liao-Ji Belt, North China craton: Metamorphic P-T evolution and geological implications. Precambrian Research, 303: 626~640.
-
Cai Jia, Liu Fulai, Liu Pinghua, Wang Fang. 2020a. Metamorphic P-T evolution and tectonic implications of pelitic granulites in the Ji'an area, northeastern Jiao-Liao-Ji belt, North China craton. Journal of Asian Earth Sciences, 191: 104197.
-
Cai Jia, Liu Fulai, Liu Chaohui. 2020b. A unique Paleoproterozoic HP-UHT metamorphic event recorded by the Bengbu mafic granulites in the southwestern Jiao-Liao-Ji belt, North China craton. Gondwana Research, 80: 244~274.
-
Cai Jianhui, Yan Guohan, Mu Baolei, Xu Baoliang, Shao Hongxiang, Xu Ronghua. 2002. U-Pb and Sm-Nd isotopic ages of an alkaline syenite complex body in Liangtun-Kuangdongguo, Gai County, Liaoning Province, China and their geological significance. Acta Petrologica Sinica, 18(3): 349~354 (in Chinese with English abstract).
-
Chen Hui, Liu Jianhui, Ding Zhengjiang, Sun Jingbo, Jin Wei. 2022. The exhumation and cooling history in the southern Liaodong Peninsula since Late Mesozoic. Acta Geologica Sinica, 96(4): 1163~1181 (in Chinese with English abstract).
-
Chen Jingsheng, Xing Dehe, Liu Miao, Li Bin, Yang Hao, Tian Dexin, Yang Fan, Wang Yan. 2017. Zircon U-Pb chronology and geological significance of felsic volcanic rocks in the Liaohe Group from the Liaoyang area, Liaoning Province. Acta Petrologica Sinica, 33(9): 2792~2810 (in Chinese with English abstract).
-
Chen Ling, Wang Xu, Liang Xiaofeng, Wan Bo, Liu Lijun. 2020. Subduction tectonics vs. plume tectonics—Discussion on driving forces for plate motion. Science China Earth Sciences, 63(3): 315~328.
-
Cheng Changquan, Zhang Jian, Liu Jin, Zhao Chen, Yin Changqing, Qian Jiahui, Gao Peng, Liu Xiaoguang, Chen Ying. 2022. Geochemistry and petrogenesis of ca. 2. 1 Ga meta-mafic rocks in the central Jiao-Liao-Ji Belt, North China Craton: A consequence of intracontinental rifting or subduction? Precambrian Research, 370: 106553.
-
Cheng Shaobo, Liu Zhenjiang, Wang Qingfei, Feng Bo, Wei Xingliang, Liu Bizheng, Qin Lianyuan, Zhao Baoju, Shui Peng, Xu Lei, Wang Jianping. 2017. SHRIMP zircon U-Pb dating and Hf isotope analyses of the muniushan monzogranite, Guocheng, Jiaobei terrane, China: Implications for the tectonic evolution of the Jiao-Liao-Ji Belt, North China craton. Precambrian Research, 301: 36~48.
-
Dong Yu, Bi Junhui, Xing Dehe, Ge Wenchun, Yang Hao, Hao Yujie, Ji Zheng, Jing Yan. 2019. Geochronology and geochemistry of Liaohe Group and Liaoji granitoid in the Jiao-Liao-Ji Belt, North China craton: Implications for petrogenesis and tectonic evolution. Precambrian Research, 332: 105399.
-
Duncan R A, Richards M A. 1991. Hotspots, mantle plumes, flood basalts, and true polar wander. Reviews of Geophysics, 29(1): 31~50.
-
Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641~644.
-
Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033~2048.
-
Gao Bosen, Dong Yongsheng, Li Fuqiang, Wang Pengsen, Gan Yicheng, Chen Musen, Tian Zhonghua. 2017. Petrogenesis of the lieryu formation of the South Liaohe Group in the Huanghuadian area, Liaodong Peninsula. Acta Petrologica Sinica, 33(9): 2725~2742 (in Chinese with English abstract).
-
Guo Sushu, Li Shuguang. 2009. SHRIMP zircon U-Pb ages for the Paleoproterozoic metamorphic-magmatic events in the southeast margin of the North China craton. Science in China Series D: Earth Sciences, 52(8): 1039~1045.
-
Hao Defeng, Li Sanzhong, Zhao Guochun, Sun Min, Han Zongzhu, Zhao Guangtao. 2004. Origin and its constraint to tectonic evolution of Paleoproterozoic granitoids in the eastern Liaoning and Jilin Province, North China. Acta Petrologica Sinica, 20(6): 108~115 (in Chinese with English abstract).
-
He Gaopin, Ye Huiwen. 1998. Two types of Early Proterozoic metamorphism in the eastern Liaoning to southern Jilin and their tectonic implication. Acta Petrologica Sinica, 14: 152~162 (in Chinese with English abstract).
-
Hoernle K, Schaefer B, Li Sanzhong, Hauff F, Li Xiyao, Garbe-Schönberg D, Zhang Ruixin, Liu Yiming. 2020. 2. 8~1. 7 Ga history of the Jiao-Liao-Ji belt of the North China craton from the geochronology and geochemistry of mafic Liaohe meta-igneous rocks. Gondwana Research, 85: 55~75.
-
Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523~548.
-
Isacks B, Molnar P. 1969. Mantle earthquake mechanisms and the sinking of the lithosphere. Nature, 223: 1121~1124.
-
Jarvis G T, McKenzie D P. 1980. Sedimentary basin formation with finite extension rates. Earth and Planetary Science Letters, 48(1): 42~52.
-
Kay R W, Kay S M. 1993. Delamination and delamination magmatism. Tectonophysics, 219(1~3): 177~189.
-
Lan Tingguang, Fan Hongrui Yang Kuifeng, Cai Yachun, Wen Bojie, Zhang Wen. 2015. Geochronology, mineralogy and geochemistry of alkali-feldspar granite and albite granite association from the Changyi area of Jiao-Liao-Ji Belt: Implications for Paleoproterozoic rifting of eastern North China craton. Precambrian Research, 266: 86~107.
-
Le Bas M J, Le Maitre R W, Streckeisen B. 1986. A chemical classification of volcanic rocks based on the total alkali-silicic diagram. Journal of Petrology, 27: 745~750.
-
Li Jian, Liu Hanlun, Wang Keyong, Cai Wenyan. 2020. Paleoproterozoic adakitic rocks in Qingchengzi District, northeastern Jiao-Liao-Ji Belt: Implications for petrogenesis and tectonism. Minerals, 10: 684.
-
Li Sanzhong, Hao Defeng, Han Zongzhu, Zhao Guochun, Sun Min. 2003. Paleoproterozoic deep processes and tectono-thermal evolution in Jiao-Liao massif. Acta Geologica Sinica, 77(3): 328~340 (in Chinese with English abstract).
-
Li Sanzhong, Zhao Guochun, Sun Min, Han Zongzhu, Luo Yan, Hao Defeng, Xia Xiaoping. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the eastern block of the North China craton. Journal of Asian Earth Sciences, 24(5): 659~674.
-
Li Sanzhong, Zhao Guochun. 2007. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern block of the North China craton. Precambrian Research, 158(1~2): 1~16.
-
Li Sanzhong, Zhao Guochun, Santosh M, Liu Xin, Dai Liming, Suo Yanhui, Tam P Y, Song Mingchun, Wang Peicheng. 2012. Paleoproterozoic structural evolution of the southern segment of the Jiao-Liao-Ji belt, North China craton. Precambrian Research, 200: 59~73.
-
Li Xianhua, Li Zhengxiang, Zhou Hanwen, Liu Ying, Kinny P D. 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia. Precambrian Research, 113: 135~154.
-
Li Youlian, Zhang Huafeng, Guo Jinghui, Li Chaofeng. 2017. Petrogenesis of the Huili Paleoproterozoic leucogranite in the Jiaobei terrane of the North China craton: A highly fractionated albite granite forced by K-feldspar fractionation. Chemical Geology, 450: 165~182.
-
Li Zhengxiang, Li Xianhua, Kinny P D, Wang Jian. 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth and Planetary Science Letters, 173: 171~181.
-
Liu Chaohui, Zhao Guochun, Liu Fulai, Cai Jia. 2018. The southwestern extension of the Jiao-Liao-Ji belt in the North China craton: Geochronological and geochemical evidence from the Wuhe Group in the Bengbu area. Lithos, 304: 258~279.
-
Liu Dunyi, Nutman A P, Compston W, Wu Jiashan, Shen Qihan. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339~342.
-
Liu Dunyi, Wilde S A, Wan Yusheng, Wu Jiashan, Zhou Hongying, Dong Chunyan. 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China craton. American Journal of Science, 308: 200~231.
-
Liu Fulai, Liu Pinghua, Wang Fang, Liu Chaohui, Cai Jia. 2015. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China craton. Acta Petrologica Sinica, 31(10): 2816~2846 (in Chinese with English abstract).
-
Liu Fulai, Liu Chaohui, Itano K, Iizuka T, Cai Jia, Wang Fang. 2017. Geochemistry, U-Pb dating, and Lu-Hf isotopes of zircon and monazite of porphyritic granites within the Jiao-Liao-Ji orogenic belt: Implications for petrogenesis and tectonic setting. Precambrian Research, 300: 78~106.
-
Liu Jianhui, Liu Fulai, Ding Zhengjiang, Liu Pinghua, Guo Chunli, Wang Fang. 2014. Geochronology, petrogenesis and tectonic implications of Paleoproterozoic granitoid rocks in the Jiaobei terrane, North China craton. Precambrian Research, 255: 685~698.
-
Liu Jianhui, Wang Xiangjian, Chen Hui. 2021. Intracontinental extension and geodynamic evolution of the Paleoproterozoic Jiao-Liao-Ji belt, North China craton: Insights from coeval A-type granitic and mafic magmatism in eastern Liaoning Province. GSA Bulletin, 133(7~8): 1765~1792.
-
Liu Jin, Zhang Jian, Liu Zhenghong, Yin Changqing, Zhao Chen, Li Zhuang, Yang Zhongjie, Dou Shiyong. 2018. Geochemical and geochronological study on the Paleoproterozoic rock assemblage of the Xiuyan region: New constraints on an integrated rift-and-collision tectonic process involving the evolution of the Jiao-Liao-Ji Belt, North China craton. Precambrian Research, 310: 179~197.
-
Liu Jin, Zhang Jian, Yin Changqing, Cheng Changquan, Liu Xiaoguang, Zhao Chen, Chen Ying, Wang Xiao. 2020. Synchronous A-type and adakitic granitic magmatism atca. 2. 2 Ga in the Jiao-Liao-Ji belt, North China craton: Implications for rifting triggered by lithospheric delamination. Precambrian Research, 342: 105629.
-
Liu Jin, Zhang Jian, Liu Zhenghong, Yin Changqing, Xu Zhongyuan, Cheng Changquan, Zhao Chen, Wang Xiao. 2021. Late Paleoproterozoic crustal thickening of the Jiao-Liao-Ji belt, North China craton: Insights from ca. 1. 95~1. 88 Ga syn-collisional adakitic granites. Precambrian Research, 355: 106120.
-
Liu Junlai, Chen Xiaoyu, Zhang Jian, Zhou Baojun, Fan Wenkui, Yan Jiaxin. 2022a. Gneiss domes and stratified middle to lower crustal flow in continental mobile belt. Acta Geologica Sinica, 96(9): 3158~3181 (in Chinese with English abstract).
-
Liu Junlai, Ji Lei, Ni Jinlong, Chen Xiaoyu. 2022b. Dynamics of the Early Cretaceous lithospheric thinning and destruction of the North China craton as the consequence of Paleo-Pacific type active continental margin. Acta Geologica Sinica, 96(10): 3360~3380 (in Chinese with English abstract).
-
Liu Junlai, Liu Yongjiang, Chen Hua, Sha Deming, Wang Huichu. 1997. The inner zone of the Liaoji paleorift: Its early structural styles and structural evolution. Journal of Asian Earth Sciences, 15: 19~31.
-
Liu Junlai, Cui Yinchun, Guan Huimei. 2002a. Magmatic core complex in the Liaoning-Jilin-Korea Paleoproterozoic fold belt and its tectonic significance. Geological Bulletin of China, 21 (z1): 202~206 (in Chinese with English abstract).
-
Liu Junlai, Guan Huimei, Cui Yingchun. 2002b. Structural zoning and tectonic evolution of Paleoproterozoic fold belt in Liaoji. North China Geology, 25(S1): 214~220(in Chinese with English abstract).
-
Liu Junlai, Davis G A, Lin Zhiyong, Wu Fuyuan. 2005. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407(1~2): 65~80.
-
Liu Junlai, Shen Liang, Ji Mo, Guan Huimei, Zhang Zhaochong, Zhao Zhidan. 2013. The Liaonan/Wanfu metamorphic core complexes in the Liaodong Peninsula: Two stages of exhumation and constraints on the destruction of the North China craton. Tectonics, 32(5): 1121~1141.
-
Liu Pinghua, Liu Fulai, Liu Chaohui, Wang Fang, Liu Jianhui, Yang Hong, Cai Jia, Shi Jianrong. 2013. Petrogenesis, P-T-t path, and tectonic significance of high-pressure mafic granulites from the Jiaobei terrane, North China craton. Precambrian Research, 233: 237~258.
-
Liu Pinghua, Liu Fulai, Wang Fang, Liu Jianhui, Cai Jia. 2013. Petrological and geochronological preliminary study of the Xiliu -2. 1 Ga meta-gabbro from the Jiaobei terrane, the southern segment of the Jiao-Liao-Ji Belt in the North China craton. Acta Petrologica Sinica, 29(7): 2371~2390 (in Chinese with English abstract).
-
Liu Pinghua, Liu Fulai, Cai Jia, Wang Fang, Liu Chaohui, Liu Jianhui, Yang Hong, Shi Jianrong, Liu Lishuang. 2017. Discovery and geological significance of high-pressure mafic granulites in the Pingdu-Anqiu area of the Jiaobei terrane, the Jiao-Liao-Ji belt, the North China craton. Precambrian Research, 303: 445~469.
-
Liu Pinghua, Cai Jia, Zou Lei. 2017. Metamorphic P-T-t path and its geological implication of the Sanjiazai garnet amphibolites from the northern Liaodong Peninsula, Jiao-Liao-Ji belt: Constraints on phase equilibria and zircon U-Pb dating. Acta Petrologica Sinica, 33: 2649~2674(in Chinese with English abstract).
-
Liu Pinghua, Liu Fulai, Tian Zhonghua, Cai Jia, Ji Lei, Wang Fang. 2019. Petrological and geochronological evidence for Paleoproterozoic granulite-facies metamorphism of the South Liaohe Group in the Jiao-Liao-Ji Belt, North China craton. Precambrian Research, 327: 121~143.
-
Liu Wenjun, Zhai Mingguo. 1998. Metamorphism of the high-pressure basic granulite in Laixi, eastern Shandong, China. Acta Petrologica Sinica, 14: 449~459 (in Chinese with English abstract).
-
Loper D E. 1985. A simple model of whole-mantle convection. Journal of Geophysical Research: Solid Earth, 90(B2): 1809~1836.
-
Lu Liangzhao, Xu Xuechun, Liu Fulai. 1996. Early Precambrian Khondalite Series in North China. Changchun: Changchun Publishing House.
-
Lu Xiaoping, Wu Fuyuan, Zhang Yanbin, Zhao Chengbi, Guo Chunli. 2004a. Emplacement age and tectonic setting of the Paleoproterozoic Liaoji granites in Tonghua area, southern Jilin Province. Acta Petrologica Sinica , 20(3): 381~392 (in Chinese with English abstract).
-
Lu Xiaoping, Wu Fuyuan, Lin Jinqian, Sun Deyou, Zhang Yanbin, Guo Chunli. 2004b. Geochronological successions of the Early Precambrain granitic magmatism in southern Liaodong Peninsula and its constraints on tectonic evolution of the North Chinacraton. Chinese Journal of Geology, 39: 123~138 (in Chinese with English abstract).
-
Lu Xiaoping, Wu Fuyuan, Guo Jinghui, Yin Changjian. 2005. Late Paleoproterozoic granitic magmatism and crustal evolution in the Tonghua region, northeast China. Acta Petrologica Sinica, 21(3): 721~736 (in Chinese with English abstract).
-
Lu Xiaoping, Wu Fuyuan, Guo Jinghui, Wilde S A, Yang Jinhui, Liu Xiaoming, Zhang Xiaoou. 2006. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China craton. Precambrian Research, 146(3~4): 138~164.
-
Luo Yan, Sun Min, Zhao Guochun, Li Sanzhong, Xu Ping, Ye Kai, Xia Xiaoping. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern block of the North China craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134(3~4): 349~371.
-
Luo Yan, Sun Min, Zhao Guochun, Ayers J C, Li Sanzhong, Xia Xiaoping, Zhang Jiheng. 2008. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Group: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China craton. Precambrian Research, 163: 279~306.
-
McKenzie D. 1978. Some remarks on the development of sedimentary basins: Earth and Planetary Science Letters, 40: 25~32.
-
Meng En, Liu Fulai, Liu Pinghua, Liu Chaohui, Yang Hong, Wang Fang, Shi Jianrong, Cai Jia. 2014. Petrogenesis and tectonic significance of Paleoproterozoic meta-mafic rocks from central Liaodong Peninsula, Northeast China: Evidence from zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry. Precambrian Research, 247: 92~109.
-
Molnar P, Tapponnier P. 1975. Cenozoictectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189(4201): 419~426.
-
Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42~43.
-
Mu Maosong, Yang Debin, Yang Haotian, Quan Yikang, Yan Xiangyu, Hao Leran, Wang Anqi. 2022. Petrogenesis and tectonic implications of the Paleoproterozoic Gaoliduntai plagiogranites in the Jiao-Liao-Ji Belt, North China craton. Precambrian Research, 368: 106465.
-
Olsen K H. 1995. Continental rifts: Evolution, structure, tectonics. Tectonophysics, 271(3~4): 333~334.
-
Peng Chong, Xue Linfu, Zhu Ming, Chai Yuan, Liu Wenyu. 2016. The location and evolution of the tectonic boundary between the Paleoproterozoic Jiao-Liao-Ji Belt and the Longgang block, Northeast China. Precambrian Research, 272: 18~38.
-
Peng Chong, Pan Baozhi, Xue Linfu, Ma Yanni, Liu Wenyu, Li Tonglin, Liu Haiyan, Zhu Kai, Xu Chunhui. 2020. Location of the tectonic boundary between the Paleoproterozoic Jiao-Liao-Ji belt and the Archean Longgang block in the Lianshanguan area, northeastern China. Precambrian Research, 344: 105762.
-
Peng Qiming, Palmer M R. 1995. The Palaeoproterozoic boron deposits in eastern Liaoning, China: A metamorphosed evaporite. Precambrian Research, 72(3~4): 185~197.
-
Ren Jishun, Liu Jianhui, Zhu Junbin. 2024. Mesozoic superposed orogenic system in eastern China. Earth Science Frontiers, 31(1): 142~153 (in Chinese with English abstract).
-
Ren Yunwei, Wang Huichu, Kang Jianli, Chu Hang, Tian Hui. 2017. Paleoproterozoic magmatic events in the Hupiyu area in Yingkou, Liaoning Province and their geological significance. Acta Geologica Sinica, 91(11): 2456~2472 (in Chinese with English abstract).
-
Rey P, Vanderhaeghe O, Teyssier C. 2001. Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics, 342: 435~449.
-
Schellart W P. 2005. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge. Earth and Planetary Science Letters, 231(3~4): 197~219.
-
Schellart W P, Lister G S. 2005. The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia. Journal of the Geological Society, 162(6): 959~972.
-
Song Biao, Nutman A P, Liu Dunyi, Wu Jiashan. 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78: 79~94.
-
Song Yunhong, Yang Fengchao, Yan Guolei, Wei Minghui, Shi Shaoshan. 2016. SHRIMP U-Pb ages and Hf isotopic compositions of Paleoproterozoic granites from the eastern part of Liaoning Province and their tectonic significance. Acta Geologica Sinica, 90(10): 2620~2636 (in Chinese with English abstract).
-
Stern R J. 2007. When and how did plate tectonics begin? Theoretical and empirical considerations. Chinese Science Bulletin, 52(5): 578~591.
-
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
-
Tam P Y, Zhao Guochun, Zhou Xiwen, Sun Min, Guo Jinghui, Li Sanzhong, Yin Changqing, Wu Meiling, He Yanhong. 2012a. Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China craton. Gondwana Research, 22(1): 104~117.
-
Tam P Y, Zhao Guochun, Sun Min, Li Sanzhong, Iizuka Y, Ma G S K, Yin Changqing, He Yanhong, Wu Meiling. 2012b. Metamorphic P-T path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China craton. Precambrian Research, 220~221: 177~191.
-
Tam P Y, Zhao Guochun, Sun Min, Li Sanzhong, Wu Meiling, YinChangqing. 2012c. Petrology and metamorphic P-T path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China craton. Lithos, 155: 94~109.
-
Tian Ruicong, Li Dapeng, Hou Jianhua, Zhu Decheng, Li Junjian, Tian Jiepeng, Zhang Pengpeng, Guo Ruipeng, Huang Yongbo. 2017. Zircon U-Pb dating, Hf isotope composition and tectono-magmatic evolutionary significance the Paleoproterozoic monzogranite in Changyi area, eastern Shandong. Acta Geologica Sinica, 91(12): 2710~2726 (in Chinese with English abstract).
-
Tian Zhonghua, Liu Fulai, Windley B F, Liu Pinghua, Wang Fang, Liu Chaohui, Wang Wei, Cai Jia, Xiao Wenjiao. 2017. Polyphase structural deformation of low- to medium-grade metamorphic rocks of the Liaohe Group in the Jiao-Liao-Ji Orogenic Belt, North China craton: Correlations with tectonic evolution. Precambrian Research, 303: 641~659.
-
Wan Yusheng, Song Biao, Wu Jiashan, Liu Dunyi, Zhang Zhongqing. 1999. Geochemical and Nd and Sr isotopic compositions of 3. 8 Ga trondhjemitic rocks from the Anshan area and their significance. Acta Geologica Sinica, 73(1): 25~36 (in Chinese with English abstract).
-
Wan Yusheng, Song Biao, Yang Chun, Liu Dunyi. 2005. Zircon SHRIMP U-Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance. Acta Geologica Sinica, 79(1): 78~87 (in Chinese with English abstract).
-
Wan Yusheng, Song Biao, Liu Dunyi, Li Huimin, Yang Chun, Zhang Qiaoda, Yang Chonghui, Geng Yuansheng, Shen Qihan. 2001. Geochronology and geochemistry of 3. 8~2. 5 Ga ancient rock belt in the Dongshan Scenic Park, Anshan area. Acta Geologica Sinica, 75(3): 363~370 (in Chinese with English abstract).
-
Wan Yusheng, Song Biao, Liu Dunyi, Wilde S A, Wu Jiashan, Shi Yuruo, Yin Xiaoyan, Zhou Hongying. 2006. SHRIMP U-Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China craton: Evidence for a major Late Paleoproterozoic tectonothermal event. Precambrian Research, 149: 249~271.
-
Wan Yusheng, Dong Chunyan, Xie Hangqiang, Simon A. Wilde, Liu Shoujie, Li Pengchuan, Ma Mingzhu, Li Yuan, Wang Yuqing, Wang Kunli, Liu Dunyi. 2023. Hadean to early Mesoarchean rocks and zircons in the North China craton: A review. Earth-Science Reviews, 243: 104489.
-
Wang Chaoyang, Meng En, Li Yanguang, Li Zhuang, Yang Hong, Cai Jia, Ji Lei. 2018. Petrogenesis and tectonic significance of Paleoproterozoic granitic rocks of the southeastern Liaodong Peninsula, Northeast China. Geological Journal, 53(5): 2118~2142.
-
Wang Chengcheng, Liu Yican, Zhang Pingang, Zhao Guochun, Wang Andong, Song Biao. 2017. Zircon U-Pb geochronology and geochemistry of two types of Paleoproterozoic granitoids from the southeastern margin of the North China craton: Constraints on petrogenesis and tectonic significance. Precambrian Research, 303: 268~290.
-
Wang Fang, Liu Fulai, Liu Pinghua, Liu Jianhui. 2010. Metamorphic evolution of Early Precambrian khondalite series in North Shandong Province. Acta Petrologica Sinica, 26(7): 2057~2072 (in Chinese with English abstract).
-
Wang Fang, Liu Jianhui, Liu Chaohui. 2017. Detrital zircon U-Pb geochronology of metasedimentary rocks from the Li'eryu Formation of the South Liaohe Group in Sanjiazi area, the South Liaoning Province. Acta Petrologica Sinica, 33(9): 2785~2791 (in Chinese with English abstract).
-
Wang Fang, Liu Fulai, Liu Pinghua, Cai Jia, Schertl H P, Ji Lei, Liu Lishuang, Tian Zhonghua. 2017. In situ zircon U-Pb dating and whole-rock geochemistry of metasedimentary rocks from South Liaohe Group, Jiao-Liao-Ji orogenic belt: Constraints on the depositional and metamorphic ages, and implications for tectonic setting. Precambrian Research, 303: 764~780.
-
Wang Fang, Liu Fulai, SchertlH P, Xu Wang, Liu Pinghua, Tian Zhonghua. 2020. Detrital zircon U-Pb geochronology and Hf isotopes of the Liaohe Group, Jiao-Liao-Ji Belt: Implications for the Paleoproterozoic tectonic evolution. Precambrian Research, 340: 105633.
-
Wang Huichu, Lu Songnian, Chu Hang, XiangZhenqun, Zhang Changjie, Liu Huan. 2011. Zircon U-Pb age and tectonic setting of meta-basalts of Liaohe Group in Helan area, Liaoyang, Liaoning Province. Journal of Jilin University (Earth Science Edition), 41(5): 1322~1334+1361 (in Chinese with English abstract).
-
Wang Xiangjian, Liu Jianhui, Ji Lei. 2017. Zircon U-Pb chronology, geochemistry and their petrogenesis of Paleoproterozoic monzogranitic gneisses in Kuandian area, eastern Liaoning Province, Jiao-Liao-Ji belt, North China craton. Acta Petrologica Sinica, 33: 2689~2707 (in Chinese with English abstract).
-
Wang Xinping, Peng Peng, Wang Chong, Yang Shuyan. 2016. Petrogenesis of the 2115 Ma Haicheng mafic sills from the eastern North China craton: Implications for an intra-continental rifting. Gondwana Research, 39: 347~364.
-
Wang Xinping, Peng Peng, Wang Chong, Yang Shuyan, Söderlund U, Su Xiangdong. 2017. Nature of three episodes of Paleoproterozoic magmatism (2180 Ma, 2115 Ma and 1890 Ma) in the Liaoji belt, North China with implications for tectonic evolution. Precambrian Research, 298: 252~267.
-
Wang Xinping, Oh C W, Peng Peng, Zhai Mingguo, Wang Xiaohan, Lee B Y. 2020a. Distribution pattern of age and geochemistry of 2. 18~2. 14 Ga I- and A-type granites and their implication for the tectonics of the Liao-Ji belt in the North China craton. Lithos, 364~365: 105518.
-
Wang Xinping, Oh C W, Peng Peng, Zhao Lei, Zhai Mingguo, Lee S H. 2020b. Petrogenesis of ~2. 1 Ga mafic and granitic magmatism and tectonic implication of Jiaobei terrane in North China craton. Lithos, 378~379: 105806.
-
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407~419.
-
Wu Fuyuan, Yang Jinhui, Wilde S A, Zhang Xiaoou. 2005. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1~2): 127~156.
-
Wu Fuyuan, Li Qiuli, Yang Zhenghe, Jin Zhengnan, Han Longyuan. 2016. Crustal growth and evolution of the Rangnim Massif, northern Korean Peninsula. Acta Petrologica Sinica, 32(10): 2933~2947 (in Chinese with English abstract).
-
Wu Jiashan, Geng Yuansheng, Shen Qihan. 1998. Archaean Geology Characteristics and Tectonic Evolution of Sino-Korea Paleo-continent. Beijing: Geological Publishing House (in Chinese).
-
Xu Wang, Liu Fulai. 2019. Geochronological and geochemical insights into the tectonic evolution of the Paleoproterozoic Jiao-Liao-Ji belt, Sino-Korean craton. Earth-Science Reviews, 193: 162~198.
-
Xu Zhihe, Sun Fengyue, Xin Wei, Sun Nianren, Li Fuwen, Niu Junping, Li Liang, Li Guangxiang. 2019. Formation and evolution of Paleoproterozoic Orogenic Belt in southern Jilin, Jiao-Liao-Ji Belt, North China craton: Constraints from geophysics. Precambrian Research, 333: 105433.
-
Yang Debin, Xu Wenliang, Pei Fuping, Wang Qinghai. 2009. Petrogenesis of the Paleoproterozoic K-feldspar granites in Bengbu uplift: Constraints from petro-geochemistry, zircon U-Pb dating and Hf isotope. Earth Science, 34(1): 148~164 (in Chinese with English abstract).
-
Yang Hong, Wang Wei, Liu Jianhui. 2017. Zircon U-Pb dating and its geological significance of granitic pegmatites from the Kuandian and Sanjiazi area in eastern Liaoning Province. Acta Petrologica Sinica, 33(9): 2675~2688 (in Chinese with English abstract).
-
Yang Jinhui, Wu Fuyuan, Xie Liewen, Liu Xiaoming. 2007. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula, east North China craton: Constraints from in-situ zircon U-Pb ages and Hf isotopes. Acta Petrologica Sinica, 23(2): 263~276 (in Chinese with English abstract).
-
Yang Mingchun, Chen Bin, Yan Cong. 2015. Petrogenesis of Paleoproterozoic gneissic granites from Jiao-Liao-Ji Belt of North China craton and their tectonic implications. Journal of Earth Sciences and Environment, 37(5): 31~51 (in Chinese with English abstract).
-
Yang Yuwei, Yu Chao, Wang Guangwei, Su Te, Yang Xinyu, Zhang Tianyuan. 2020. Chronology, geochemistry and zircon Hf isotopes of the Paleoproterozoic alkali feldspar granite from the Heigou area in the eastern Liaoning Province: Constraints on the tectonic evolution of the Liao-Ji orogenic belt. Acta Geologica Sinica, 94(8): 2212~2226 (in Chinese with English abstract).
-
Yang Zhensheng, Li Shuguang, Yu Baoxiang, Gao Dehua, Gao Chengye. 1988. Structural deformation and mineralization in the Early Proterozoic Liaojitite suite, eastern Liaoning Province, China. Precambrian Research, 39(1~2): 31~38.
-
Yang Zhensheng, Liu Junlai. 1989. Nappe tectonics in the Proterozoic complexes in Liaodong Peninsula, China: An example of fold-nappe from Qingchengzi. Journal of Jilin University (Earth Science Edition), 19(2): 121~129 (in Chinese with English abstract).
-
Yang Zhensheng, Li Sanzhong, Liu Yongjiang. 1995. Uplift bedding-delamination structure in continental orogeny—A new model of pre-orogenic extensional tectonics. Journal of Jilin University (Earth Science Edition), 4: 361~367 (in Chinese with English abstract).
-
Ye Lina, Sun Fengyue, Wang Li, Zhang Yuting, Liu Jinlong, Yin Yue. 2021. Petrological, whole-rock geochemical, geochronological, and Lu-Hf isotope constraints on the regional tectonic evolution of the Laoling Group in northeastern Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 365: 106407.
-
Yuan Lingling, Zhang Xiaohui, Xue Fuhong, Han Chunming, Chen Haihong, Zhai Mingguo. 2015. Two episodes of Paleoproterozoic mafic intrusions from Liaoning Province, North China craton: Petrogenesis and tectonic implications. Precambrian Research, 264: 119~139.
-
Zhai Mingguo. 2012. Evolution of the North China craton and early plate tectonics. Acta Geologica Sinica, 86(9): 1335~1349 (in Chinese with English abstract).
-
Zhai Mingguo, Peng Peng. 2007. Paleoproterozoic events in North China craton. Acta Petrologica Sinica, 23: 2665~2682 (in Chinese with English abstract).
-
Zhai Mingguo, Santosh M. 2011. The early Precambrian odyssey of the North China craton: A synoptic overview. Gondwana Research, 20(1): 6~25.
-
Zhai Mingguo, Zhang Xiaohui, Zhang Yanbin, Wu Fuyuan, Peng Peng, Li Qiuli, Li Zhong, Guo Jinghui, Li Tiesheng, Zhao Lei, Zhou Ligang, Zhu Xiyan. 2019. The geology of North Korea: An overview. Earth-Science Reviews, 194: 57~96.
-
Zhai Mingguo, Peng Peng. 2020. Origin of early continents and beginning of plate tectonics. Science Bulletin, 65: 970~973.
-
Zhang Jian, Liu Junlai, Yang Chengwei, Zhang Cheng, Yang Hongxiang, Lu Tianjiao, Feng Jia, Zhao Lifu. 2020. Multi-stage Paleoproterozoic structural evolution of the southern Liaodong Orogenic belt: A case study of the Hadabei granite gneiss dome. Precambrian Research, 342: 105691.
-
Zhang Qiusheng, Yang Zhensheng. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula. Beijing: Geological Publishing House (in Chinese with English abstract).
-
Zhang Wen, Liu Fulai, Cai Jia, Liu Chaohui, Liu Jianhui, Liu Pinghua, Liu Lishuang, Wang Fang, Yang Hong. 2018. Geochemistry, zircon U-Pb dating and tectonic implications of the Palaeoproterozoic Ji'an and Laoling groups, northeastern Jiao-Liao-Ji belt, North China craton. Precambrian Research, 314: 264~287.
-
Zhang Wen, Liu Pinghua, Xu Wang, Tian Zhonghua, Zhou Wanpeng, Wang Yilong, Zhang Yujia, Wang Wei. 2022. Petrogenesis and implications of ~2. 1 Ga Jingqishan granites in the Jiaobei terrane, North China craton. Precambrian Research, 369: 106536.
-
Zhang Xiaohui, Wang Haozheng, Piao Xianxu, Yang Zhenghe, Jin Zhengnan. 2016. Basement affinity of the Kwanmo massif, Korean Peninsula: Evidence from zircon U-Pb geochronology and petro-geochemistry of the Undokdong meta-intrusive complex. Acta Petrologica Sinica, 32(10): 2965~2980 (in Chinese with English abstract).
-
Zhang Xiaohui, Zhang Yanbin, Zhai Mingguo, Wu Fuyuan, Hou Quanlin, Yuan Lingling. 2016. Decoding Neoarchaean to Palaeoproterozoic tectonothermal events in the Rangnim Massif, Korean Peninsula: Regional correlation and broader implications. International Geological Review, 59: 16~28.
-
Zhang Xiaohui, Yang Zhili, Zhang Yanbin, Zhai Mingguo, Wu Fuyuan, Peng Peng, Li Qiuli, Hou Quanlin. 2021. Paleoproterozoic Orosirian tectono-thermal events in the Nangrim massif, North Korea: Cratonic and super-continental connection. Lithos, 384~385: 105983.
-
Zhao Guochun, Wilde S A, Cawood P A, Sun Min. 2001. Archean blocks and their boundaries in the North China craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1~2): 45~73.
-
Zhao Guochun, Sun Min, Wilde S A. 2003. Major tectonic units of the North China craton and their Paleoproterozoic assembly. Science in China Series D, 46: 23~28.
-
Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2005. Late Archean to Paleoproterozoic evolution of the North China craton: Key issues revisited. Precambrian Research, 136(2): 177~202.
-
Zhao Guochun, Cao Lin, Wilde S A, Sun Min, Choe W J, Li Sanzhong. 2006. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251(3~4): 365~379.
-
Zhao Guochun, Cawood P A, Li Sanzhong, Wilde S A, Sun Min, Zhang Jian, He Yanhong, Yin Changqing. 2012. Amalgamation of the North China craton: Key issues and discussion. Precambrian Research, 222~223: 55~76.
-
Zhao Lei, Zhang Yanbin, Wu Fuyuan, Li Qiuli, Yang Jinghui, Kim J N, Choi W J. 2016a. Paleoproterozoic high temperature metamorphism and anatexis in the northwestern Korean Peninsula: Constraints from petrology and zircon U-Pb geochronology. Acta Petrologica Sinica, 32(10): 3045~3069 (in Chinese with English abstract).
-
Zhao Lei, Zhang Yanbin, Yang J H, Han R Y, Kim J N. 2016b. Archean rocks at the southeastern margin of the Rangnim massif, northern Korean Peninsula, and their response to Paleoproterozoic tectonothermal event. Acta Petrologica Sinica, 32(10): 2948~2964 (in Chinese with English abstract).
-
Zhao Lei, Zhai Mingguo, Nutman A P, Oh C W, Bennett V C, Zhang Yanbin. 2020. Archean basement components and metamorphic overprints of the Rangnim Massif in the northern part of the Korean Peninsula and tectonic implications for the Sino-Korean craton. Precambrian Research, 344: 105735.
-
Zhao Lei, Zhang Rucheng, Zou Yi, Choe W J, Yang J, Kim J, Zhang Yanbin, Zhai Mingguo. 2024. Paleoproterozoic amphibolite to ultrahigh temperature granulite facies metamorphism of the Rangnim massif in the Northern Korean Peninsula and tectonic implications. Precambrian Research, 414: 107606.
-
Zhao Yan, Lin Shoufa, Zhang Peng, Yang Xueming, Gu Yuchao, Bi Zhongwei, Kou Linlin. 2021. Geochronology and geochemical characteristics of Paleoproterozoic syn-orogenic granitoids and constraints on the geological evolution of the Jiao-Liao-Ji orogenic belt, North China craton. Precambrian Research, 365: 106386.
-
Zheng Yongfei, Zhao Guochun. 2020. Two styles of plate tectonics in Earth's history. Science Bulletin, 65(4): 329~334.
-
Zhou Xiwen, Wei Chunjing, Geng Yuansheng, Zhang Lifei. 2004. Discovery and implications of the high-pressure pelitic granulites from the Jiaobei massif. Chinese Science Bulletin, 49(18): 1942~1948.
-
Zhu Kai, Liu Zhenghong, Xu Zhongyuan, Wang Xing'an, Cui Weilong, Hao Yujie. 2019. Petrogenesis and tectonic implications of two types of Liaoji granitoid in the Jiao-Liao-Ji Belt, North China craton. Precambrian Research, 331: 105369.
-
Zou Yi, Zhai Mingguo, Santosh M, Zhou Ligang, Zhao Lei, Lu Junsheng, Shan Houxiang. 2017. High-pressure pelitic granulites from the Jiao-Liao-Ji belt, North China craton: A complete P-T path and its tectonic implications. Journal of Asian Earth Sciences, 134: 103~121.
-
Zou Yi, Zhai Mingguo, Santosh M, Zhou Ligang, Zhao Lei, Lu Junsheng, Liu Bo, Shan Houxiang. 2018. Contrasting P-T-t paths from a Paleoproterozoic metamorphic orogen: Petrology, phase equilibria, zircon and monazite geochronology of metapelites from the Jiao-Liao-Ji belt, North China craton. Precambrian Research, 311: 74~97.
-
Zou Yi, Zhai Mingguo, Zhou Ligang, Zhao Lei, Lu Junsheng, Wang Yuquan, Shan Houxiang. 2019. Relics of a Paleoproterozoic orogen: New petrological, phase equilibria and geochronological studies on high-pressure pelitic granulites from the Pingdu-Laiyang areas, southwest of the Jiaobei terrane, North China craton. Precambrian Research, 322: 136~159.
-
白瑾, 黄光学, 王惠初, 郭进京, 颜耀阳, 修群业, 戴风岩, 徐文蒸, 王官福. 1996. 中国前寒武纪地壳演化(第2版). 北京: 地质出版社.
-
毕君辉, 邢德和, 葛文春, 杨浩, 董玉. 2018. 辽东地区北辽河群变酸性火山岩形成的时代及构造背景: 古元古代陆内裂谷, 还是活动大陆边缘? 地学前缘, 25(3): 295~309.
-
蔡剑辉, 阎国翰, 牟保磊, 许保良, 邵宏翔, 许荣华. 2002. 辽宁盖县梁屯-矿洞沟碱性正长岩杂岩体的U-Pb和Sm-Nd年龄及其地质意义. 岩石学报, 18(3): 349~354.
-
陈慧, 刘建辉, 丁正江, 孙敬博, 金巍. 2022. 辽南晚中生代以来的剥露冷却历史. 地质学报, 96(4): 1163~1181.
-
陈井胜, 邢德和, 刘淼, 李斌, 杨浩, 田德欣, 杨帆, 汪岩. 2017. 辽宁辽阳地区辽河群酸性火山岩锆石U-Pb年代学及其地质意义. 岩石学报, 33(9): 2792~2810.
-
陈凌, 王旭, 梁晓峰, 万博, 刘丽军. 2020. 俯冲构造vs. 地幔柱构造——板块运动驱动力探讨. 中国科学: 地球科学, 50: 501~514.
-
高铂森, 董永胜, 李富强, 王鹏森, 甘宜成, 陈木森, 田忠华. 2017. 辽东黄花甸地区南辽河群里尔峪组成因研究. 岩石学报, 33(9): 2725~2742.
-
郭素淑, 李曙光. 2009. 华北克拉通东南缘古元古代变质和岩浆事件的锆石SHRIMP U-Pb年龄. 中国科学(D辑: 地球科学), 39(6): 694~699.
-
郝德峰, 李三忠, 赵国春, 孙敏, 韩宗珠, 赵广涛. 2004. 辽吉地区古元古代花岗岩成因及对构造演化的制约. 岩石学报, 20(6): 108~115.
-
贺高品, 叶慧文. 1998a. 辽东-吉南地区早元古代两种类型变质作用及其构造意义. 岩石学报, 14(2): 152~162.
-
贺高品, 叶慧文. 1998b. 辽东-吉南地区早元古代变质地体的组成及主要特征. 长春科技大学学报, 28(2): 121~134.
-
李超, 陈斌, 李壮, 杨川. 2017. 辽东岫岩-宽甸地区古元古代条痕状花岗岩的岩石地球化学特征及其构造意义. 岩石学报, 33(3): 963~977.
-
李三忠, 郝德峰, 韩宗珠, 赵国春, 孙敏. 2003. 胶辽地块古元古代构造-热演化与深部过程. 地质学报, 77(3): 328~340.
-
刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 31(10): 2816~2846.
-
刘俊来, 崔迎春, 关会梅. 2002. 辽吉朝褶皱带古元古宙岩浆核杂岩及其大地构造意义. 地质通报, 21: 202~206.
-
刘俊来, 陈小宇, 张健, 周保军, 樊文魁, 闫佳鑫. 2022a. 大陆地壳活动带片麻岩穹隆构造与分层流变. 地质学报, 96(9): 3158~3181.
-
刘俊来, 季雷, 倪金龙, 陈小宇. 2022b. 早白垩世华北克拉通岩石圈减薄与破坏动力学: 兼论古太平洋型活动大陆边缘. 地质学报, 96(10): 3360~3380.
-
刘平华, 刘福来, 王舫, 刘建辉, 蔡佳. 2013. 胶北西留古元古代~2. 1Ga变辉长岩岩石学与年代学初步研究. 岩石学报, 29(7): 2371~2390.
-
刘平华, 蔡佳, 邹雷. 2017. 辽东半岛北部三家子石榴斜长角闪岩变质演化P-T-t轨迹及其地质意义: 来自相平衡模拟与锆石U-Pb定年的约束. 岩石学报, 33(9): 2649~2674.
-
刘文军, 翟明国. 1998. 胶东莱西地区高压基性麻粒岩的变质作用. 岩石学报, 14(4): 449~459.
-
卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社.
-
路孝平, 吴福元, 张艳斌, 赵成弼, 郭春丽. 2004a. 吉林南部通化地区古元古代辽吉花岗岩的侵位年代与形成构造背景. 岩石学报, 20(3): 381~392.
-
路孝平, 吴福元, 林景仟, 孙德有, 张艳斌, 郭春丽. 2004b. 辽东半岛南部早前寒武纪花岗岩浆作用的年代学格架. 地质科学, 39(1): 123~138.
-
路孝平, 吴福元, 郭敬辉, 殷长建. 2005. 通化地区古元古代晚期花岗质岩浆作用与地壳演化. 岩石学报, 21(3): 721~736.
-
任纪舜, 刘建辉, 朱俊宾. 2024. 中国东部中生代上叠造山系. 地学前缘, 31(1): 142~153.
-
任云伟, 王惠初, 康健丽, 初航, 田辉. 2017. 辽宁营口虎皮峪地区古元古代岩浆事件及地质意义. 地质学报, 91(11): 2456~2472.
-
宋运红, 杨凤超, 闫国磊, 魏明辉, 石绍山. 2016. 辽东地区古元古代化岗岩SHRIMP U-Pb年龄、Hf同位素组成及构造意义. 地质学报, 90(10): 2620~2636.
-
田瑞聪, 李大鹏, 侯建华, 祝德成, 李俊建, 田杰鹏, 郭瑞朋, 黄永波, 张鹏鹏. 2017. 胶东昌邑地区古元古代二长花岗岩锆石U-Pb定年、Hf同位素组成及其构造岩浆演化意义. 地质学报, 91(12): 2710~2726.
-
万渝生, 宋彪. 1999. 鞍山3. 8 Ga奥长花岗质岩石的地球化学和Nd、Sr同位素组成及其意义. 地质学报, 73(1): 25~36.
-
万渝生, 宋彪, 刘敦一, 李惠民, 杨淳, 张巧大, 杨崇辉, 耿元生, 沈其韩. 2001. 鞍山东山风景区3. 8~2. 5 Ga古老岩带的同位素地质年代学和地球化学. 地质学报, 75(3): 363~370.
-
万渝生, 宋彪, 杨淳, 刘敦一. 2005. 辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义. 地质学报, 79(1): 78~87.
-
王舫, 刘福来, 刘平华, 刘建辉. 2010. 胶北地区早前寒武纪孔兹岩系的变质演化. 岩石学报, 26(7): 2057~2072.
-
王舫, 刘建辉, 刘超辉. 2017. 辽南三家子地区南辽河群里尔峪组变沉积岩中碎屑锆石U-Pb年代学研究. 岩石学报, 33(9): 2785~2791.
-
王惠初, 陆松年, 初航, 相振群, 张长捷, 刘欢. 2011. 辽阳河栏地区辽河群中变质基性熔岩的锆石U-Pb年龄与形成构造背景. 吉林大学学报(地球科学版), 41(5): 1322~1334.
-
王祥俭, 刘建辉, 冀磊. 2017. 胶-辽-吉带辽东宽甸地区古元古代二长(正长)花岗质片麻岩的锆石U-Pb年代学、地球化学及成因. 岩石学报, 33(9): 2689~2707.
-
吴福元, 李秋立, 杨正赫, 金正男, 韩龙渊. 2016. 朝鲜北部狼林地块构造归属与地壳形成时代. 岩石学报, 32(10): 2933~2947.
-
伍家善, 耿元生, 沈其韩, 万渝生, 刘敦一, 宋彪. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社.
-
杨德彬, 许文良, 裴福萍, 王清海. 2009. 蚌埠隆起区古元古代钾长花岗岩的成因: 岩石地球化学、锆石U-Pb年代学与Hf同位素的制约. 地球科学——中国地质大学学报, 34(1): 148~164.
-
杨红, 王伟, 刘建辉. 2017. 辽东宽甸和三家子地区花岗伟晶岩的锆石U-Pb年代学及其地质意义. 岩石学报, 33(9): 2675~2688.
-
杨进辉, 吴福元, 罗清华, 钟孙霖, 张艳斌, Wilde S A. 2004. 辽宁丹东地区侏罗纪花岗岩的变形时代: 40Ar/39Ar年代学制约. 岩石学报, 20(5): 216~225.
-
杨进辉, 吴福元, 谢烈文, 柳小明. 2007. 辽东矿洞沟正长岩成因及其构造意义: 锆石原位微区U-Pb年龄和Hf同位素制约. 岩石学报, 23(2): 263~276.
-
杨明春, 陈斌, 闫聪. 2015. 华北克拉通胶-辽-吉带古元古代条痕状花岗岩成因及其构造意义. 地球科学与环境学报, 37(5): 31~51.
-
杨玉伟, 余超, 王广伟, 苏特, 杨新宇, 张天元. 2020. 辽东黑沟地区古元古代碱长花岗岩年代学、地球化学、Hf同位素特征及其对辽吉造山带构造演化的制约. 地质学报, 94(8): 2212~2226.
-
杨振升, 刘俊来. 1989. 辽东早元古宙变质岩系中的一个推覆构造—青城子褶皱推覆构造. 长春地质学院学报, 19(2): 121~129.
-
杨振升, 李三忠, 刘永江. 1995. 大陆造山带中的隆-滑构造: 一种前造山期伸展构造形式. 长春地质学院学报, 25(4): 361~367.
-
翟明国. 2012. 华北克拉通的形成以及早期板块构造. 地质学报, 86(9): 1335~1349.
-
翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665~2682.
-
张秋生, 杨振升. 1988. 辽东半岛早期地壳与矿床. 北京: 地质出版社.
-
张晓晖, 王浩铮, 朴贤旭, 杨正赫, 金正男. 2016. 朝鲜半岛冠帽地块的基底属性: 来自银德洞变质侵入杂岩的锆石U-Pb年代学和岩石地球化学证据. 岩石学报, 32(10): 2965~2980.
-
赵磊, 张艳斌, 吴福元, 李秋立, 杨正赫, 金正男, 崔元正. 2016a. 朝鲜半岛西北部古元古代高温变质-深熔作用: 宏观和微观岩石学以及锆石U-Pb年代学制约. 岩石学报, 32(10): 3045~3069.
-
赵磊, 张艳斌, 杨正赫, 韩龙渊, 金正男. 2016b. 朝鲜狼林地块东南缘太古宙岩石及其对古元古代构造热事件的响应. 岩石学报, 32(10): 2948~2964.
-
摘要
胶-辽-吉古元古代构造带的构造属性及动力学演化长期存在争议。本文通过总结该带构造-岩浆-变质作用及变质火山-沉积岩系的已有研究成果,发现造山前2.2~2.0 Ga花岗质岩石主要为形成于高温低压伸展构造环境的A型花岗岩,部分为源自下地壳基性岩部分熔融形成的I型花岗岩,它们与变质基性侵入岩及变质流纹岩-英安岩和变质玄武岩构成了造山前大陆伸展背景下的双峰式岩浆作用。它们“弧岩浆”属性的地球化学性质主要继承自源区太古宙TTG岩石或基性岩浆上升过程受大陆岩石圈地幔和地壳的同化混染作用。整个胶-辽-吉古元古代构造带没有发现真正意义上类似于现代板块洋-陆俯冲作用有关的岩石-构造组合(如残留洋壳、俯冲增生杂岩(楔)、弧背构造、大型走滑断裂、双变质带及岩浆作用的时空变化等)。龙岗地块和狼林地块具有统一的太古宙克拉通基底及演化历史。“南带”和“北带”的不同变质沉积地层具有类似的物源,沉积环境为稳定的被动陆缘,沉积时代为2.20~1.95 Ga,并经历了1.95~1.80 Ga顺时针变质P-T演化轨迹的中压—高压麻粒岩相和高温—超高温变质作用。综合已有的地质及地球物理证据,构建了胶-辽-吉古元古代构造带的起源及动力学演化模式:① 华北克拉通东部陆块新太古代末巨量TTG岩石形成的同时,在下地壳形成巨量高密度的麻粒岩相—榴辉岩相残留物质,新太古代末已形成的稳定克拉通岩石圈地幔使这些高密度的麻粒岩相—榴辉岩相残留物质能够稳定保留。② 在2.2~2.0 Ga,热的、相对低密度的软流圈热点上涌,东部陆块沿胶-辽-吉构造带发生陆内伸展变形,破裂形成北部的龙岗地块和南部的狼林地块。③ 在1.95~1.85 Ga, 高密度的榴辉岩化下地壳连同岩石圈地幔,受重力(负浮力)作用驱动,俯冲(下沉)进入热的、低密度的软流圈地幔,带动龙岗地块和狼林地块沿胶-辽-吉带发生汇聚造山作用。④ 在1.85~1.80 Ga,造山带去根,软流圈上涌,造山带垮塌及造山后伸展。
Abstract
The origin and geodynamic evolution of the Jiao-Liao-Ji tectonic belt have long been controversial. This article summarizes comprehensive research results on the tectono-magmatic-metamorphic processes and metasedimentary-volcanic successions in this belt. It is found that the 2.2~2.0 Ga pre-orogenic granitoids are mainly A-type, formed in a high-temperature, low-pressure extensional setting. Some are I-type granitoids derived from partial melting of mafic rocks in the lower crust. These pre-orogenic granitoids, along with metamafic intrusive rocks, metarhyolite-dacite, and metabasalt, constitute a bimodal magmatism in a continental extension setting. Their geochemical “arc magma” affinity is mainly inherited from Archean TTG rocks or attributed to crustal and/or continental lithospheric assimilation-contamination during mafic magma upwelling. Litho-tectonic assemblage (residual oceanic crust, subduction accretionary complexes, retroarc structures, large strike-slip faults, paired metamorphic belts, and spatiotemporal variations in magmatic activity) similar to that produced by modern-plate subduction has not been found in the Paleoproterozoic Jiao-Liao-Ji tectonic belt. The Longgang and Nangrim blocks share a coherent Archean basement and evolutionary history. The different metasedimentary strata in the “southern belt” and “northern belt” were deposited on a stable passive continental margin between 2.20 and 1.95 Ga. These strata share a similar provenance and underwent partial medium-pressure (MP)-high-pressure (HP) and high-temperature (HT)-ultrahigh-temperature (UHT) granulite-facies metamorphism with clockwise P-T paths involving isothermal decompression at ca. 1.95~ 1.80 Ga. Based on comprehensive geological and geophysical evidence, we propose the following tectonic model for the origin and geodynamic evolution of the Paleoproterozoic Jiao-Liao-Ji tectonic belt. ① Voluminous high-density granulite-eclogite facies residuals formed in the lower crust alongside the generation of extensive Archean TTGs in the Eastern block. The stable cratonic lithospheric mantle formed at the end of the Archean allowed these high-density granulite-eclogite facies residuals to be stably preserved in the lithosphere. ② During 2.2~2.0 Ga, intracontinental extension driven by upwelling of an asthenospheric hotspot along the Jiao-Liao-Ji belt fractured the Eastern block into the northern Longgang block and southern Nangrim block. ③ At ca. 1.95~1.85 Ga, the negative buoyancy of the high-density eclogitized lower crust and lithospheric mantle triggered their subduction (sinking), forcing convergent orogeny between the Longgang and Nangrim blocks along the Jiao-Liao-Ji belt. ④ At ca. 1.85~1.80 Ga, orogenic belt collapse caused by delamination of the orogenic root, followed by subsequent hot asthenospheric upwelling, resulted in the rapid exhumation and post-orogenic extension of the orogenic belt.
关键词
华北克拉通 ; 胶-辽-吉古元古代构造带 ; 重力驱动的板块汇聚造山 ; 大陆伸展 ; 胶北地体