-
洋壳结构的地质意义至今仍是固体地球科学领域最大的悬疑之一(周怀阳,2017)。成熟洋壳的内部结构可揭示洋壳增生过程和机制(Bécel et al.,2015; Han Shuoshuo et al.,2016; Ding Weiwei et al.,2018; Sauter et al.,2021)。20世纪末以来,随着海洋探测技术的不断提高,海洋洋壳内部结构和增生过程越来越受到科学家的重视,不同扩张速率下的洋壳内部结构变形和增生过程被逐渐揭示,尤其是洋壳内部的下地壳反射体(lower crustal reflector,LCR),这些LCR大部分终止于Moho面,与上地壳有分层,延伸长度较长,倾角约10°~30°,有的倾向洋中脊,有的倾向陆缘,有的相交发育,是洋壳增生形成过程的直接记录者(Ranero et al.,1997; Reston et al.,1999; Hallenborg et al.,2003; Mutter and Carton,2013; Bécel et al.,2015; Han Shuoshuo et al.,2016; Ding Weiwei et al.,2018; Sauter et al.,2021)。
-
目前,国际上对LCR的研究主要集中在洋壳内部的结构变形特征及成因,且在快速至慢速扩张速率下的海盆洋壳中都观察到LCR存在。有学者发现慢速扩张形成的大西洋洋中脊洋壳中,部分反射体似乎贯穿整个洋壳,并与粗糙地形相关,认为其成因是大规模的伸展断层引起(Mutter et al.,1985,1992; White et al.,1990)。快速扩张的太平洋洋壳中观察到了LCR,这些反射与慢速扩张洋壳中形成的反射不同,它们局限于下洋壳(Ranero et al.,1997; Reston et al.,1999; Bécel et al.,2015)。中慢速扩张的洋壳中也观察到了LCR,也大部分发育在下洋壳(Han Shuoshuo et al.,2016; Ding Weiwei et al.,2018; Sauter et al.,2021)。
-
不同扩张速率下形成的LCR分布在海盆的不同区域,倾向不一。有的LCR发育在洋盆扩张脊附近,倾向古洋脊(Kodaira et al.,2014; Ding Weiwei et al.,2018)。有的LCR发育在成熟洋壳的陆向末端和洋陆过渡带中,洋陆过渡带附近区域大量发育倾向陆缘和倾向洋脊相交的反射体,而陆向末端的洋壳区发育少量倾向洋脊反射体,但发育更多的倾向陆缘反射体(Sauter et al.,2021)。有的LCR发育在成熟洋壳的俯冲带前缘,或倾向洋脊(Han Shuoshuo et al.,2016),或倾向俯冲带(Bécel et al.,2015)。
-
LCR的成因也存在争议,部分学者认为是与近轴韧性流、岩性条带、离轴岩浆作用或二者的某种组合有关(Ranero et al.,1997; Reston et al.,1999; Hallenborg et al.,2003)。许多学者认为是与板块重组和地壳底部韧性剪切有关(Mutter et al.,1992; Kodaira et al.,2014; Bécel et al.,2015; Han Shuoshuo et al.,2016; Ding Weiwei et al.,2018)。最新研究认为其成因可能与同岩浆断裂有关(Sauter et al.,2021)。
-
前人对LCR的研究主要集中在太平洋和大西洋上(Mutter et al.,1992; Bécel et al.,2015; Han Shuoshuo et al.,2016; Sauter et al.,2021)。南海作为西太平洋边缘海洋盆的典型代表(图1),洋壳内也发育了独特的LCR,蕴含了洋壳增生的重要信息。前人对南海海盆LCR研究甚少,Ding Weiwei et al.(2018)首次对南海东部次海盆北部C11~C8区域的LCR进行了详细研究,认为LCR的相向发育与洋中脊跃迁有关,推测东部次海盆洋中脊存在两次向南跃迁,海盆南部缺乏资料未开展相关研究。笔者在研究东部次海盆LCR时,发现东部次海盆不仅北部发育LCR,南部也发育LCR,且LCR在海盆南北部的内部结构特征存在明显差异。北部LCR延伸长度较长,贯穿整个下地壳,不仅相向发育,还相交、单侧倾向洋脊或陆缘发育,南部LCR延伸长度较短,仅发育在下地壳底部,主要倾向洋脊。
-
综上可见,前人研究成果使读者对LCR的内部结构特征及成因有了基本认识,但其内部结构变形的多样化,成因机制的复杂性,还有待进一步深入研究。由于资料的局限性,前人研究区域大都局限于洋中脊的一侧,鲜见横跨海盆对LCR开展全面研究,以探究其全貌。南海海底扩张过程非常复杂多变,海盆北宽南窄的不对称结构的成因机制一直是南海研究的热点(孙珍等,2021; 丁伟巍,2021; 丁航航等,2021),通过研究LCR这一直接的洋壳形成记录者,将是打开洋壳增生过程的一把钥匙。因此,本文基于横跨东部次海盆南北向的高分辨率深反射地震剖面,刻画LCR在东部次海盆南北两侧的结构特征,剖析其内部变形,圈定其分布范围,初步探讨其发育成因,以期了解东部次海盆洋壳增生过程。该研究对深化南海海底扩张过程和构造演化认识具有重要科学意义,促进对全球中慢速扩张边缘海洋壳增生过程的认识。
-
1 区域地质背景
-
南海是西太平洋最大的边缘海,是我国走向深海大洋战略的突破口(汪品先,2012)。它几乎经历了一个完整的威尔逊旋回,从晚白垩纪末到古近纪的大陆裂谷、早渐新世末至中中新世的海底扩张、早中新世末南沙地块与婆罗洲的碰撞及东部中中新世早期向菲律宾海板块下的俯冲,具有独特的演化历史,其成因和演化模式一直是地球科学关注的热点(Taylor and Hayes,1983; Briais et al.,1993; 姚伯初等,1996; Sun Zhen et al.,2006; 李家彪等,2011; 徐义刚等,2012; Li Chunfeng et al.,2012,2014; Barckhausen et al.,2014; Sibuet et al.,2016; Ding Weiwei et al.,2018;孙卫东等,2018;余梦明等,2018;李学杰等,2020)。
-
根据地质与地球物理特征,南海海盆可分为西北次海盆、东部次海盆和西南次海盆。东部次海盆作为南海的重要组成部分,是南海初始扩张、多幕次洋脊向南跃迁、扩张方向多次变化、扩张后期岩浆活动活跃的场所,是研究南海扩张过程和新生代构造演化的关键部位(Li Chunfeng et al.,2012; Ding Weiwei et al.,2018,2020;林间等,2019; Sun Zhen et al.,2019; 丁巍伟,2021)。东部次海盆呈不规则长方形,长轴方向为南北向,南北长约800 km,东西宽约500 km,海盆底部为深海平原,水深约3000~4300 m,在古洋中脊区域发育众多不同规模的海山。它背靠北部陆坡,南接礼乐地块,东部被马尼拉海沟所限,西以中南-礼乐断裂为界,与西北次海盆、中沙地块和西南次海盆相连(图1)。东部次海盆从渐新世至中中新世经历了多期次海底扩张(Taylor &Hayes,1983; Briais et al.,1993; 李家彪等,2011; Li Chunfeng et al.,2014; Sibuet et al.,2016)。根据IODP349航次(Li Chunfeng et al.,2015a; Zhang Guoliang et al.,2018)、IODP367/368/368X 航次的钻探和研究结果(Sun Zhen et al.,2018; Larsen et al.,2018; Wang Pinxian et al.,2019; Ding Weiwei et al.,2020; Chen Lingxuan et al.,2023; Nie Yunfan et al.,2023; Zhang Jiazheng et al.,2023),结合深拖磁异常认识(Li Chunfeng et al.,2015a),认为南海初始扩张时间约32~34 Ma,东部次海盆结束扩张时间约15 Ma(Koppers,2014; Li Chunfeng et al.,2015b)。扩张脊存在多次向南跃迁(Li Chunfeng et al.,2014; Ding Weiwei et al.,2018),并伴随扩张方向多次变化(Sun Zhen et al.,2019),从而导致了海盆扩张和深部结构的非对称性(丁巍伟等,2021; 丁航航等,2021)。海盆岩浆活动大都发育在扩张期后(阎贫等,2005; Jiang Tao et al.,2019;林间等,2019; Zhao Yanghui et al.,2019)。珍贝-黄岩海山两侧为典型的慢速扩张洋壳,海山下增厚的地壳主要受岩浆活动影响较大(Zhao Minghui et al.,2018)。
-
图1 南海地形(据杨胜雄等,2015)、构造及地震剖面位置
-
Fig.1 The bathymetric map (after Yang Shengxiong et al., 2015) , structure of the South China Sea and the location of seismic profiles
-
橙色线为本研究所用地震剖面,黑色实线为研究区调查的地震剖面,红色粗线为中南-礼乐断裂带位置(徐子英等,2019,2021),红色圆点为IODP349/367/368/368X及ODP184航次钻井,绿色实线为Ding Weiwei et al.(2018)测线,红色虚线为古扩张脊位置(Li Chunfeng et al.,2014),紫色虚线为残余扩张脊位置,蓝色细线为磁异常线(Li Chunfeng et al.,2014)
-
Orange lines show the location of seismic profile used in this study, black lines display the seismic profile survey in this study area, solid red lines are the location of the Zhongnan-Liyue fault zone (Xu Ziying et al., 2019, 2021) , the red dots are IODP349/367/368/368X and ODP184, solid green line is the seismic profile of Ding Weiwei et al. (2018) , dashed red line shows the fossil spreading ridge (Li Chunfeng et al., 2014) , and dashed purple line shows the extinct spreading ridge, thin blue lines are the interpreted magnetic anomalies (Li Chunfeng et al., 2014)
-
2 数据来源和处理
-
文中深反射多道地震资料来自于广州海洋地质调查局2008~2015年采集的船测数据,地震数据采集船为探宝号,接收道数480道,道间距12.5 m,炮间距37.5 m,记录长度9~12 s,覆盖次数80次,采样率为2 ms,拖缆长度为6 km。为了获得较好的深部结构成像效果,地震资料处理采取了一系列技术,包括振幅恢复、叠前噪音压制、多次波压制、反褶积和子波处理、速度精细分析、剩余静校正、叠前时间偏移、叠后去噪、滤波处理等。
-
3 东部次海盆南北部下地壳倾斜反射体结构特征
-
3.1 东部次海盆北部下地壳倾斜反射体结构特征
-
本文通过2条由陆缘(北西)向海盆(南东)方向、一条东西向和一条北东向共4条典型深反射地震剖面,对东部次海盆北部的下地壳倾斜反射体结构特征进行详细剖析。
-
L1和L2地震剖面由陆缘端向洋脊端延伸贯穿海盆北部,L1地震剖面上显示上地壳无明显倾斜反射体,而下地壳发育较明显的倾斜反射体,由北向南延伸长约80 km,倾斜反射体振幅较强,主要倾向洋脊,部分倾向陆缘,倾斜反射体延伸长约15 km,倾角约19°~30°。在60 km位置(C8南侧),下地壳发育相向倾斜反射体。剖面60 km位置以北洋壳基底起伏较大,基底断裂发育,断裂断穿基底,断距达0.3~0.4 s(双程走时,下同),越靠近古扩张脊,地形相对较平坦。古扩张脊附近下地壳倾斜反射体主要单侧倾向洋脊,没发育相向倾斜反射体。下地壳倾斜反射区,Moho反射面振幅较强,埋深存在约0.5 s的抬升,从9.0 s左右抬升至8.5 s左右,部分下地壳倾斜强振幅处, Moho面存在间隙中断。在古扩张脊附近,Moho面埋深基本保持在8.5 s左右,靠近宪北海山,Moho面埋深下降至9.0 s左右(图2a1)。总体上,L1地震剖面西北侧洋壳厚度在1.9~2.0 s左右。下地壳倾斜强反射区,洋壳厚度在2.1~2.3 s左右,古扩张脊下洋壳厚约2.5 s,近宪北海山区洋壳的厚度增至2.8~2.9 s左右(图2a)。
-
L2地震剖面上显示上地壳发育少量稀疏的倾斜反射体,下地壳发育较明显密集的倾斜反射体,倾斜反射体振幅较强。下地壳倾斜反射体由近陆缘端洋壳一致发育至海盆古洋脊北侧约20 km,发育范围长约150 km。靠近古洋脊侧,以倾向洋脊反射体为优势;靠近陆缘端,以倾向陆缘反射体为优势。近古洋脊侧,倾斜反射体延伸较长,约20 km,倾角约20°~30°。剖面显示下地壳发育多个相向反射体,尤其是在C10和140 km位置的相向反射体最为明显,在140 km位置发育的下地壳发射体范围更大,延伸长约30 km。部分下地壳倾斜强振幅处, Moho面存在间隙中断。洋壳基底起伏较大,尤其是80 km以北,基底断裂发育,断裂断穿基底,断距达0.3~0.4 s,近陆缘侧,部分断裂断穿至下地壳,甚至断穿至Moho面(图2b1)。近陆缘侧洋壳区,Moho埋深起伏较大,由约15 km位置处的8.8 s,抬升至32 km处的8.3 s,抬升约0.5 s,随后向洋脊延伸Moho面基本保持在8.5 s左右。洋壳厚度由近陆缘端向海盆端逐渐增厚,洋壳厚度在32 km处厚度最薄,厚约1.3 s,随着向海盆延伸,由1.75 s逐渐增厚至 2.1 s(图2b1)。
-
L3地震剖面由中沙海岭(SW向)向玳瑁海山(NE向)斜穿东部次海盆,地震剖面上发育明显的上、下地壳倾斜反射体,发育范围延伸长约70 km,上下倾斜反射体交接部位发育有近水平反射体,上下地壳具有明显分层现象,反射体主要发育在古扩张脊的北部,远离古扩张脊约20 km。上地壳反射体(upper crustal reflectors,UCR)振幅相对较弱,近古扩张脊反射体倾向洋脊;远离古扩张脊,反射体相交发育,陆倾与洋脊倾都有,倾斜长度约8 km。下地壳倾斜反射体振幅非常强,主要倾向海盆,远离古扩张脊,局部发育相交反射体;倾斜反射体倾角为10°~24°不等,倾斜长度约13~22 km不等。地壳倾斜反射体发育区,Moho面埋深同样存在约0.5 s的抬升,从9.0 s左右抬升至8.5 s左右并趋于稳定,Moho面振幅强,相对连续,局部被下地壳倾斜反射体切割,存在间隙中断发育。靠近玳瑁海山,Moho面埋深下降至9.0 s左右。基底相对较平坦,古扩张脊区稍微有隆起(图3b)。
-
图2 东部次海盆北部L1和L2测线下地壳倾斜反射体(简称LCR)地震剖面特征(红色实线为断裂,粉色实线为Moho面反射,蓝色实线为倾向洋脊下地壳反射体,黑色实线为倾向陆缘下地壳反射体,绿色实线为近水平反射体,下同)
-
Fig.2 The seismic profile characteristics of Lower crustal dipping reflections (LCR) in the survey line L1 and L2 in the northern part of the East sub-basin (red lines show faults, pink lines show Moho reflections, blue lines indicate oceanward dipping reflections, black ones indicate continentward dipping reflections, green ones show nearly horizontal reflections, the same below)
-
总体上,古扩张脊区洋壳厚约3.0 s。地壳倾斜强反射区,洋壳厚度减薄至2.0~2.2 s左右。近玳瑁海山区洋壳增厚至2.9 s左右(图3a)。
-
L4地震剖面是东西向自中沙海岭横跨东部次海盆,地壳存在明显的上下地壳倾斜反射体,倾斜反射体倾角约为15°,反射体发育范围延伸长约70 km。近中沙海岭洋壳区,倾斜反射体贯穿整个洋壳;海盆区,倾斜反射体倾向东侧,主要发育下地壳倾斜反射体,在其顶部发育短小近水平反射体。Moho面自西向东由中沙海岭洋陆过渡带的9.0 s以下抬升至海盆的8.5 s并趋于稳定,Moho面振幅相对弱,连续性差,存在间断,局部被壳内反射体切割,地壳倾斜反射区存在Moho面埋深抬升约0.5 s。该区基底相对平坦,近中沙海岭洋壳区疑似发育有基底深大断裂,该断裂可能断穿至下地壳(图4b)。
-
横向上,海盆地壳结构厚度总体比较均一,靠近中沙地块海岭区,洋壳厚约2.8 s。地壳倾斜强反射区,洋壳厚度减薄至2.2~2.3 s左右(图4a)。
-
3.2 东部次海盆南部下地壳倾斜反射体结构特征
-
海盆南部下地壳倾斜反射体振幅很强,呈短小簇状发育,倾斜长度约5~8 km;倾斜方向板直,角度约达28°;倾斜反射体靠近Moho反射界面发育,倾斜反射体主要倾向洋脊,少量陆倾,还发育少量相交倾斜体。上地壳倾斜反射体不发育,下地壳反射体顶部发育有短小近水平的反射体,上下地壳分层较明显(图5a1、b1)。
-
图3 东部次海盆北部L3测线地壳倾斜反射体地震剖面特征(UCR为上地壳反射体,下同)
-
Fig.3 The seismic profile characteristics of oceanic crustal dipping reflections in the survey line L3 in the northern part of the East sub-basin (UCR is upper crustal reflectors, the same below)
-
图4 东部次海盆北部L4测线下地壳倾斜反射体地震剖面特征
-
Fig.4 The seismic profile characteristics of Lower crustal dipping reflections in the survey line L4 in the northern part of the East sub-basin
-
剖面L5倾斜反射体发育区下的Moho面埋深起伏大,呈波浪状,振幅强,由海盆(NW)至陆缘端(SE)存在三次明显抬升。Moho面第一次抬升由海盆区的~8.5 s抬升至~8 s,后在岩浆侵入区下降至~9.2 s第二次抬升由~9.2 s抬升至地壳的最薄处(发育有深大断裂)的~8 s,再下降至~8.8 s第三次抬升由~8.8 s抬升至洋陆过渡带的~8.2 s,最后再下降至~9.0 s。倾斜强反射区下Moho面埋深存在~1.2 s抬升,地壳最薄区厚度约1.1 s(图5a1)。剖面L6倾斜反射体发育区下的Moho面埋深起伏呈V型,由成熟洋壳区的8.4 s左右下降至洋壳超减薄区的9.0 s,再逐渐抬升至8.2 s(图5b1)。
-
该区域基底起伏较大,基底深大断裂非常发育,断裂从基底切穿至上地壳,呈翘倾发育,断距较大,控制了T6界面(晚渐新世顶界面,约23.8 Ma)以下地层的发育,即控制早期坳陷的发育。T6界面以上小断裂非常发育,但主要呈继承性发育,对后期沉积控制作用不强,由此推测该区早期构造活动较活跃。
-
该区域的岩浆也非常发育,岩浆侵入至早期地层,有的侵入至T6界面,岩浆大量侵入区下Moho面存在明显下降并有错断,基底深大断裂发育区,岩浆侵入体也较发育,Moho面存在明显抬升,洋壳存在明显减薄(图5a1~5b1)。推测洋壳拉伸减薄过程中,岩浆伴随深大断裂侵入发育。
-
近陆缘端洋壳区,洋壳厚约2.8 s。进入海盆下地壳倾斜强反射区,洋壳平均厚度减薄至1.7~1.5 s左右,但洋壳最厚处约2.9 s左右,位于岩浆侵入发育区。洋壳最薄处约1.1 s左右,位于基底深大断裂发育区(图5a、b)。
-
4 讨论
-
4.1 东部次海盆南、北部下地壳倾斜反射体结构对比
-
通过精细剖析东部次海盆南、北部下地壳倾斜反射体的内部构造变形特征,发现南北部下地壳倾斜反射体的结构特征存在明显差异,分布范围大小不一。
-
海盆北部下地壳倾斜反射体振幅强且倾斜长度长,倾斜角度相对平缓,发育范围大,基底相对平整。下地壳倾斜反射区下Moho面有0.5 s抬升,Moho面埋深总体起伏不大,振幅较强,发育较连续,但部分下地壳倾斜强反射区下,Moho面存在间断或模糊不清(图2~4)。平面上,北部倾斜反射体范围较大,从近陆缘端洋壳(C11)一直延伸至宪北海山(C6c)以北,延伸长约150 km。剖面显示整个地壳内都发育有倾斜反射体。
-
海盆南部下地壳倾斜反射体振幅强但倾斜长度短,倾斜角度陡直,发育范围局限,基底起伏大。基底深大断裂和岩浆侵入较发育,断层切穿至上地壳。下地壳倾斜反射区下Moho面埋深起伏大,上下存在~1.1 s抬升,岩浆侵入区下Moho面有快速下降且存在明显错断(图5)。平面上,南部倾斜反射体范围有限,大体分布在以C8~C9为中心的区域,远离珍贝-黄岩残余洋中脊,南北向长约70 km。地震剖面显示,倾斜反射体在上地壳不发育,主要集中在下地壳底部,近Moho反射界面发育。
-
综上可知,东部次海盆下地壳倾斜反射体倾斜体长度北长南短、倾斜角度北缓南陡,倾斜反射体平面和垂向范围北大南小,北部下地壳倾斜反射体从陆缘端洋壳一直延伸至古扩张脊都有发育,南部下地壳倾斜反射体远离珍贝-黄岩残余扩张脊发育,主要发育在近陆缘端的洋壳内。
-
4.2 东部次海盆南、北部下地壳倾斜反射区洋壳结构特征
-
海盆北部下地壳倾斜反射区洋壳厚度整体比较均匀,平均厚约2.0~2.3 s,为正常洋壳厚度。在一些地方,地壳比正常的洋壳厚度要厚,在近中沙地块海岭区和玳瑁宪北海山区洋壳较厚,约2.8~2.9 s,古扩张脊区约2.5~3.0 s。平坦的基底和洋壳厚度均表明该区域形成于岩浆丰富的扩张中心。在古扩张脊附近区域,地壳结构横向上厚度基本相同,但纵向上厚度存在差异,推测该古扩张脊扩张方向为南北向。海盆南部下地壳倾斜反射区洋壳厚度存在明显差异,平均厚约1.5~1.7 s,洋壳最厚处约2.9 s,最薄处约1.1 s,向海盆残留洋脊方向延伸,洋壳平均厚约1.7 s,因此该区域为减薄的洋壳区。该区岩浆较发育,根据岩浆侵入岩体对T6地层界面有牵引,推测该区晚期岩浆的侵入时间至少发育在23.8 Ma之后。根据基底和Moho面起伏较大,基底深大断裂发育,推测该区洋壳结构受岩浆-构造作用共同控制,但构造作用控制更强烈。
-
海盆北部洋壳内发育上下地壳倾斜反射体,上下地壳分层非常明显,下地壳倾斜反射体延伸长、振幅强(图2~4),推测北部下地壳发生强烈的塑性变形。南部只发育下地壳倾斜反射体,上下地壳分层没有北部明显,下地壳倾斜反射体倾斜长度短小,发育范围局限,下地壳顶部发育有短小水平状岩席(图5a1、5b1),推测南部下地壳塑性变形相对微弱。综上,推测海盆南北部洋壳增生过程具有非均一性。
-
图5 东部次海盆南部L5和L6测线下地壳倾斜反射体地震剖面特征(深红色虚线为地幔岩浆侵入体)
-
Fig.5 The seismic profile characteristics of Lower crustal dipping reflections in the survey line L5 and L6 in the southern part of the East sub-basin (the deep red dashed line indicates the intrusion of mantle magma)
-
4.3 东部次海盆下地壳倾斜反射初步成因
-
Ding Weiwei et al.(2018)显示了东部次海盆北部C11~C8区域发育相向倾斜的下地壳反射体,认为其成因可能与以间隙熔体为特征的壳幔之间的剪切带有关。笔者发现,在海盆C8~C6c区域既存在相向发育的下地壳倾斜强反射体,也存在向陆倾斜反射体(图2、3),且倾斜体强反射区下,Moho面连续性存有间断或模糊不清,局部被倾斜反射体断穿至上地幔,上地幔内部反射体可能与深部熔融体侵入有关(Sauter et al.,2021)。该区洋壳厚度正常,岩浆供应充足,下地壳表现强烈的韧性变形。因此推测相向或单向下地壳倾斜反射成因,可能与扩张作用下上地幔物质减压熔融,壳幔过渡带发生韧性剪切,熔融的岩浆沿壳幔过渡带间隙侵入有关。
-
靠近古扩张脊区域,基底发育相对平坦,下地壳倾斜反射体存在明显相交现象,陆倾和洋脊倾的反射体都较发育。近陆缘端,上地壳倾斜反射体也发育,且上下地壳倾斜反射体呈明显相交,反射体贯穿整个地壳,从基底一直延伸至下地壳。至海盆端,主要发育下地壳倾斜反射体相交现象。Moho面近水平发育,局部存在断穿或模糊。地壳内发育深大断裂,从基底一直切穿至下地壳(图4),该区也是中南-礼乐断裂带向南延伸的地方,因此推测该深大断裂可能为中南-礼乐断裂的发育位置(徐子英等,2021)。
-
该区相交的下地壳倾斜反射体成像与Sauter et al.(2021)在恩德比海盆观察到的下地壳反射体现象比较相似,他认为这种相交倾斜反射体的成因可能与同岩浆断裂有关,故推测该区倾斜反射体的形成与同岩浆断裂有关。但该区陆缘端,即靠近中南-礼乐断裂带区域,发育贯穿整个地壳的相交倾斜反射体。我们推测该深大断裂可能引起海水下渗入地壳,导致上下地壳物质发生强烈蚀变,物质成分的矿化,可能引起速度和密度的差异。一方面疏通了上下地壳倾斜反射体,另一方面增强了上下地壳倾斜反射率。同时洋中脊下地壳内部存在水热循环(Roger Searle,2013; Vithana et al.,2019),同岩浆断裂区也存在热液循环(Sauter et al.,2021),且该区域热流值相对较高(约143.4 mW/m2)(徐行等,2018),推测该区域地壳可能存在较强的水热循环。因此,相交的上下地壳倾斜反射体成因可能与同岩浆断裂区深大断裂引起的水热循环有关。
-
南部下地壳倾斜反射区,基底粗糙,基底深大断裂和岩浆侵入体发育, Moho面埋深起伏大。岩浆侵入发育区,Moho面有明显下降和断错或局部连续间断,存在上地幔岩浆融熔体上隆现象(图5a1~5b1),推测海盆在持续扩张过程中,上地幔发生破裂,上地幔顶部物质减压熔融,形成大量岩浆侵入至下地壳乃至上地壳,造成该区岩浆较发育,地壳增厚(约2.9 s)。且下地壳倾斜反射体近Moho面发育甚至部分切穿Moho面,因此,推测该区下地壳倾斜反射体成因与壳幔过渡区物质熔融形成的岩浆间隙侵入有关。同时,强振幅倾斜反射区之上,基底深大断裂发育,断层下切至上地壳。地壳厚度减薄至最薄约1.1 s,且岩浆侵入体伴随发育,故推测该区倾斜反射体成因可能还与基底深大断裂有关。因此,南部倾斜反射体成因可能受壳幔边界岩浆的间隙侵入和基底深大断裂的共同影响。
-
5 结论
-
通过对深反射地震剖面的精细解译及剖析,系统厘定了东部次海盆下地壳倾斜反射体的分布范围、内部结构变形特征,初步探讨了其发育成因,得出如下主要认识:
-
(1)东部次海盆南北部都发育下地壳倾斜反射体,分布范围北大南小。北部倾斜反射体南北向长约150 km,从近陆缘端洋壳(C11)一直发育至古扩张脊(C6c)北侧20 km位置处。地震剖面显示整个上下洋壳都较发育,下地壳反射体最为明显。南部倾斜反射体南北向长约70 km,远离珍贝-黄岩残余扩张脊发育,主要发育在近陆缘端的洋壳内,平面上分布在洋壳C8~C9为中心的上下区域;地震剖面显示局限发育在下洋壳近Moho面位置。
-
(2)东部次海盆南北部下地壳倾斜反射体内部结构既有共性也存有差异。共性是下地壳倾斜反射体振幅较强,反射体根部大部分终止于Moho面,少量断穿Moho面。下地壳倾斜强反射区存在局部间断或模糊不清甚至被断穿。差异性是北部下地壳倾斜体倾斜长度长,长约15~22 km,倾角平缓。南部下地壳倾斜反射体倾斜长度短小,约5~8 km,倾角陡直。
-
(3)东部次海盆南北部的下地壳倾斜反射体内部结构不同,其成因存在差异。北部古扩张脊区的相交倾斜反射体形成可能受同岩浆断裂、深大断裂及水热循环共同控制。其他下地壳倾斜反射体成因可能与地壳和地幔之间的韧性剪切,导致壳幔过渡区岩浆间隙侵入有关。南部的下地壳倾斜反射体成因可能受壳幔边界岩浆的间隙侵入和基底深大断裂共同影响。
-
(4)东部次海盆下地壳倾斜反射体区洋壳厚度北厚南薄,北部洋壳厚度由近陆缘端的超减薄向减薄,并逐渐过渡至海盆区的正常厚度洋壳。南部反射体发育局限在近陆缘端超减薄型洋壳内两侧,成熟海盆区不发育地壳发射体。综合下地壳倾斜反射体结构特征的南北差异,推测东部次海盆的洋壳增生过程是非对称性和非均一的。
-
致谢:非常感谢在成文过程中得到了中国科学院南海海洋研究所徐敏研究员和杨小秋研究员的宝贵建议。感谢审稿专家提出的宝贵建议及编辑部老师耐心指导修改!谨以此文庆祝任纪舜院士90华诞以及他为大地构造事业作出的杰出贡献。
-
参考文献
-
Barckhausen U, Engels M, Franke D, Ladage S, Pubellier M. 2014. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58: 599~611.
-
Bécel A, Shillington D J, Nedimović M R, Webb S C, Kuehn H. 2015. Origin of dipping structures in fast-spreading oceanic lower crust offshore Alaska imaged by multichannel seismic data. Earth and Planetary Science Letters, 424: 26~37.
-
Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299~6328.
-
Chen Lingxuan, Tian Liyan, Hu Siyu, Gong Xiaohan, Dong Yanhui, Gao Jinwei, Ding Weiwei, Wu Tao, Liu Hongling. 2023. Seafloor hydrothermal circulation at a rifted margin of the South China Sea: Insights from basement epidote veins in IODP Hole U1502B. Lithos, 444~445: 107102.
-
Ding Hanghang, Ding Weiwei, Zhang Fan, Wu Zhaocai, Yin Shaoru, Fang Yinxia. 2021. Asymmetric deep structure of the South China Sea basin and its controlling factors. Earth Science, 26(2): 929~941(in Chinese with English abstract).
-
Ding Weiwei. 2021. Continental margin dynamics of South China Sea: From continental break-up to seafloor spreading. Earth Science, 46(3): 790~800 (in Chinese with English abstract).
-
Ding Weiwei, Sun Zhen, Dadd K, Fang Yinxia, Li Jiabiao. 2018. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes. Earth & Planetary Science Letters, 488: 115~125.
-
Ding Weiwei, Sun Zhen, Mohn G, Nirrengarten M, Tugend J, Manatschal G, Li Jiabiao. 2020. Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367 & 368 drilling results. Earth and Planetary Science Letters, 531: https: //doi. org/10. 1016/j. epsl. 2019. 115932.
-
Hallenborg E, Harding A J, Kent G M. 2003. Seismic structure of 15 Ma oceanic crust formed at an ultrafast spreading East Pacific rise: Evidence for kilometer-scale fracturing from dipping reflectors. Journal of Geophysical Research: Solid Earth, 108: https: //doi. org/10. 1029/2003JB002400.
-
Han Shuoshuo, Carbotte S M, Canales J P, Nedimović M R, Carton H, Gibson J C, Horning G W. 2016. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: New constraints on the distribution of faulting and evolution of the crust prior to subduction. Journal of Geophysical Research (Solid Earth), 121: 1849~1872.
-
Jiang Tao, Gao Hongfang, He Jingke, Tian Dongmei. 2019. Post-spreading volcanism in the central South China Sea: Insights from zircon U-Pb dating on volcaniclastic breccia and seismic features. Marine Geophysical Research, 40: 185~198.
-
Kodaira S, Gou Fujie, Yamashita M, Sato T, Takahashi T, Takahashi N. 2014. Seismological evidence of mantle flow driving plate motions at a palaeo-spreading centre. Nature Geoscience, 7: 371~375.
-
Koppers A. 2014. On the 40Ar/39Ar dating of low-potassium ocean crust basalt from IODP Expedition 349, South China Sea. American Geophysical Union, Fall Meeting 2014, San Francisco.
-
Larsen H C, Mohn G, Nirrengarten M, Sun Z, Stock J, Jian Z, Klaus A, Alvarez-Zarikian C A, Boaga J, Bowden S A, Briais A, Chen Y, Cukur D, Dadd K, Ding W, Dorais M, Ferré E C, Ferreira F, Furusawa A, Gewecke A, Hinojosa J, Höfig T W, Hsiung K H, Huang B, Huang E, Huang X L, Jiang S, Jin H, Johnson B G, Kurzawski R M, Lei C, Li B, Li L, Li Y, Lin J, Luna A J, Lupi C, McCarthy A, Ningthoujam L, Osono N, Peate D W, Persaud P, Qiu N, Robinson C, Satolli S, Sauermilch I, Schindlbeck J C, Skinner S, Straub S, Su X, Su C, Tian L, van der Zwan F M, Wan S, Wu H, Xiang R, Yadav R, Yi L, Yu P S, Zhang C, Zhang J, Zhang Y, Zhao N, Zhong G, Zhong L. 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11: 782~789.
-
Li Chunfeng, Song Taoran. 2012. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin. Chinese Science Bulletin, 57: 1879~1895.
-
Li Chunfeng, Xu Xing, Lin Jian, Sun Zhen, Zhu Jian, Yao Yongjian. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15: 4958~4983.
-
Li Chunfeng, Li Jiabiao, Ding Weiwei, Franke D, Yao Yongjian. 2015a. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research: Solid Earth, 120(3): 1377~1399.
-
Li Chunfeng, Lin Jian, Kulhanek D K and the Expedition 349 Scientists. 2015b. Proceedings of the International Ocean Discovery Program Volume 349 publications. iodp. org. doi: 10. 14379/iodp. proc. 349. 101. 2015.
-
Li Jiabiao, Ding Weiwei, Gao Jinyao, Wu Ziyin, Zhang Jie. 2011. Cenozoic evolution model of the sea-floor spreading in South China Sea: New constraints from high resolution geophysical data. Chinese Journal of Geophysics, 54(12): 3004~3015 (in Chinese with English abstract).
-
Li Xuejie, Wang Zhe, Yao Yongjian, Gao Hongfang, Zhu Song, Xu Ziying. 2020. The formation and evolution of the South China Sea. Geology in China, 47(5): 1310~1322 (in Chinese with English abstract).
-
Lin Jian, Li Jiabiao, Xu Yigang, Sun Zhen, Xia Shaohong, Huang Xiaolong, Xie Xilong, Li Chunfeng, Ding Weiwei, Zhou Zhiyuan, Zhang Fan, Luo Yiming. 2019. Ocean drilling and major advances in marine geological and geophysical research of the South China Sea. Haiyang Xuebao, 41(10): 125~140 (in Chinese with English abstract).
-
Mutter J C, Group N A T S. 1985. Multichannel seismic images of the oceanic crust's internal structure: Evidence for a magma chamber beneath the Mesozoic Mid-Atlantic Ridge. Geology, 13: 629~632.
-
Mutter J C, Karson J A. 1992. Structural processes at slow-spreading ridges. Science, 257: 627~634.
-
Mutter J C, Carton H D. 2013. The Mohorovicic discontinuity in ocean basins: Some observations from seismic data. Tectonophysics, 609: 314~330.
-
Nie Yunfeng, Wu Huaichun, Satolli S, Ferré E C, Shi Meinan, Fang Qiang, Xu Ye, Zhang Shihong, Li Haiyan, Yang Tianshui. 2023. Late Miocene to present paleoclimatic and paleoenvironmental evolution of the South China Sea recorded in the magneto-cyclostratigraphy of IODP Site U1505. Paleoceanography and Paleoclimatology, 38: e2022PA004547. https: //doi. org/10. 1029/2022PA004547.
-
Ranero C R, Reston T J. 1997. Reflective oceanic crust formed at a fast-spreading center in the Pacific. Geology, 25: 499~502.
-
Reston T J, Ranero C R, Belykh I. 1999. The structure of Cretaceous oceanic crust of the NW Pacific: Constraints on processes at fast spreading centers. Journal of Geophysical Research Solid Earth, 104: 629~644.
-
Roger Searle. 2013. Mid-ocean Ridges. New York: Cambridge University Press.
-
Sauter D, Werner P, Ceuleneer G, Manatschal G, Rospabé M, Tugend J, Gillard M, Autin J, Ulrich M. 2021. Sub-axial deformation in oceanic lower crust: Insights from seismic reflection profiles in the Enderby basin and comparison with the Oman ophiolite. Earth and Planetary Science Letters, 554: 116698.
-
Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98~119.
-
Sun Weidong, Lin Qiuting, Zhang Lipeng, Liao Renqiang, Li Chongying. 2018. The formation of the South China Sea resulted from the closure of the Neo-Tethys: A perspective from regional geology. Acta Petrologica Sinica, 34(12): 3467~3478 (in Chinese with English abstract).
-
Sun Zhen, Zhou Di, Zhong Zhihong, Xia Bin, Qiu Xuelin, Zeng Zuoxun, Jiang Jianqun. 2006. Research on the dynamics of the South China Sea opening: Evidence from analogue modeling. Science in China (Series D): Earth Sciences, 49(10): 1053~1069.
-
Sun Zhen, Jian Zhimin, Stock J M, Larsen H C, Klaus A, Alvarez Zarikian C A, the Expedition 367/368 Scientists. 2018. Expedition 367/368 summary. https: //doi. org/10. 14379/iodp. proc. 367368. 2018.
-
Sun Zhen, Ding Weiwei, Zhao Xixi, Qiu Ning, Lin Jian, Li Chunfeng. 2019. The latest spreading periods of the South China Sea: New constraints from macrostructure analysis of IODP Expedition 349 cores and geophysical data. Journal of Geophysical Research: Solid Earth, 124: 9980~9998.
-
Sun Zhen, Li Fucheng, Lin Jian, Sun Longtao, Pang Xiong, Zheng Jinyun. 2021. The rifting-breakup process of the passive continental margin and its relationship with magmatism: The attribution of the South China Sea. Earth Science, 46(3): 770~789(in Chinese with English abstract).
-
Taylor B, Hayes D E. 1983. Origin and history of the South China Sea basin. The tectonic and geologic evolution of Southeast Asian Seas and Islands: Part 2, 27: 23~56. https: //doi. org/10. 1029/GM027p0023.
-
Vithana M V P, Xu Ming, Zhao Xu, Zhang Maochuan, Luo Yiming. 2019. Geological and geophysical signatures of the East Pacific Rise 8°~10°N. Solid Earth Sciences, 4: 66~83.
-
Wang Pinxian. 2012. Tracing the life history of a marginal Sea-On the “South China Sea Deep” Research Program. Chinese Science Bulletin, 57, doi: 10. 1007/s11434-012-5087-1(in Chinese with English abstract).
-
Wang Pinxian, Huang Chi-Yue, Lin Jian, Jian Zhimin, Sun Zhen, Zhao Minghui. 2019. The South China Sea is not a mini-Atlantic: Plate-edge rifting vs intra-plate rifting. National Science Review, 6: 902~913.
-
White R S, Detrick R S, Mutter J C, Buhl P, Minsull T, Morris E. 1990. New seismic images of oceanic crustal structure. Geology, 18: 462~465.
-
Xu Xing, Wang Xianqing, Peng Deng, Yao Yongjian, Yao Bochu, Wan Zhifeng. 2018. Characteristics and research of heat flow in the Northwest sub-basin and its adjacent areas of the South China Sea. Earth Science, 43(10): 3391~3398(in Chinese with English abstract).
-
Xu Yigang, Wei Jingxian, Qiu Huaning, Zhang Huihuang, Huang Xiaolong. 2012. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: Preliminary results and a research design. Chinese Science Bulletin, 57, doi: 10. 1007/s11434-011-4921-1(in Chinese with English abstract).
-
Xu Ziying, Wang Jun, Gao Hongfang, Sun Guihua, Sun Meijing, Nie Xin, Zhu Rongwei. 2019. Research progress on the Zhongnan-Liyue fault zone in the South China Sea basin. Journal of Tropical Oceanography, 38(2): 86~94 (in Chinese with English abstract).
-
Xu Ziying, Wang Jun, Yao Yongjian, Tang Jianglang, Gao Hongfang, Li Xuejie. 2021. The temporal-spatial distribution and deep structure of the Zhongnan-Liyue fault zone in the north of the South China Sea basin. Earth Science, 46(3): 942~955 (in Chinese with English abstract).
-
Yan Pin, Liu Hailing. 2005. Temporal and spatial distributions of Meso-Cenozoic igneous rocks over South China Sea. Journal of Tropical Oceanography, 24(2): 33~41 (in Chinese with English abstract).
-
Yang Shengxiong, Qiu Yan, Zhu Benduo. 2015. Atlas of Geology and Geophysics of the South China Sea. Tianjin: China Navigation Publications (in Chinese with English abstract).
-
Yao Bochu. 1996. Tectonic evolution of the South China Sea in Cenozoic. Marine Geology & Quaternary Geology, 16(2): 1~13 (in Chinese with English abstract).
-
Yu Mengming. 2018. Geochemical constrains on the opening and closing of the South China Sea. Doctoral dissertation of Chinese Academy of Sciences (in Chinese with English abstract).
-
Zhang Guoliang, Luo Qing, ZhaoJian, Jackson M G, Guo Lishuang, Zhong Lifeng. 2018. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth and Planetary Science Letters, 489: 145~155.
-
Zhang Jiazheng, Zhao Minghui, Ding Weiwei, Ranero C R, Sallares V, Gao Jinwei, Zhang Cuimei, Qiu Xuelin. 2023. New insights into the rift-to-drift process of the northern South China Sea margin constrained by a three-dimensional wide-angle seismic velocity model. Journal of Geophysical Research: Solid Earth, 128: e2022JB026171. https: //doi. org/10. 1029/2022JB026171.
-
Zhao Minghui, He Enyuan, Sibuet J C, Sun Longtao, Qiu Xuelin, Tan Pingchuan, Wang Jian. 2018. Post seafloor spreading volcanism in the central East South China Sea and its formation through an extremely thin oceanic crust. Geochemistry, Geophysics, Geosystems, 19: 621~641.
-
Zhao Yanghui, Ding Weiwei, Yin Shaoru, Li Jiabiao, Zhang Jie, Ding Hanghang. 2019. Asymmetric post-spreading magmatism in the South China Sea: Based on the quantification of the volume and its spatiotemporal distribution of the seamounts. International Geology Review, 62: 955~969.
-
Zhou Huaiyang. 2017. Fundamental questions of ocean crust and the dream for Mohole. Advances in Earh Science, 32(12): 1245~1252 (in Chinese with English abstract).
-
丁航航, 丁巍伟, 张帆, 吴招才, 殷绍如, 方银霞. 2021. 南海海盆区深部结构的不对称性及控制因素. 地球科学, 46(3): 929~941.
-
丁巍伟. 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790~800.
-
李家彪, 丁巍伟, 高金耀, 吴自银, 张洁. 2011. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12): 3004~3015.
-
李学杰, 王哲, 姚永坚, 高红芳, 祝嵩, 徐子英. 2020. 南海成因及其演化模式探讨. 中国地质, 47(5): 1310~1322.
-
林间, 李家彪, 徐义刚, 孙珍, 夏少红, 黄小龙, 解习农, 李春峰, 丁巍伟, 周志远, 张帆, 罗怡鸣. 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125~140.
-
孙卫东, 林秋婷, 张丽鹏, 廖仁强, 李聪颖. 2018. 跳出南海看南海-新特提斯洋闭合与南海的形成演化. 岩石学报, 34(12): 3467~3478.
-
孙珍, 李付成, 林间, 孙龙涛, 庞雄, 郑金云. 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770~789.
-
汪品先. 2012. 追踪边缘海的生命史: “南海深部计划”的科学目标. 科学通报, 57: 1807~1826.
-
徐行, 王先庆, 彭登, 姚永坚, 姚伯初, 万志峰. 2018.南海西北次海盆及其邻区的地热流特征与研究.地球科学, 43(10): 3391~3398.
-
徐义刚, 魏静娴, 邱华宁, 张辉煌, 黄小龙. 2012. 用火山岩制约南海的形成演化: 初步认识与研究设想. 科学通报, 57: 1863~1878.
-
徐子英, 汪俊, 姚永坚, 唐江浪, 高红芳, 李学杰. 2021. 中南-礼乐断裂带在南海海盆北部的时空展布与深部结构. 地球科学, 46(3): 942~955.
-
徐子英, 汪俊, 高红芳, 孙桂华, 孙美静, 聂鑫, 朱荣伟. 2019. 南海海盆中南-礼乐断裂带研究进展. 热带海洋学报, 38(2): 86~94.
-
阎贫, 刘海龄. 2005. 南海及其周缘中新生代火山活动时空特征与南海的形成模式. 热带海洋学报, 24(2): 33~41.
-
杨胜雄, 邱燕, 朱本铎. 2015. 南海地质地球物理图系. 天津: 中国航海图书出版社.
-
姚伯初. 1996. 南海海盆新生代的构造演化史. 海洋地质与第四纪地质, 16(2) : 1~13.
-
余梦明. 2018. 南海的形成与消亡: 南海及其周缘新生代火成岩之地球化学限定. 中国科学院大学博士学位论文.
-
周怀阳. 2017. 洋壳的基本问题与人类的莫霍钻梦想. 地球科学进展, 32(12): 1245~1252.
-
摘要
南海东部次海盆洋壳内发育了大量强振幅的壳内倾斜反射体,它记录了海盆洋壳增生过程,深入研究海盆下地壳倾斜反射体的结构及成因,对认识南海海盆扩张过程具有重要意义。本文基于深反射多道地震剖面,刻画了东部次海盆下地壳倾斜反射体的结构特征及内部变形,初步探讨了其发育成因。研究表明,东部次海盆南、北部都发育强振幅的下地壳倾斜反射体,倾斜反射体大部分终止于Moho反射界面,但南北部倾斜反射体的分布范围、结构特征及成因存在明显差异。东部次海盆下地壳倾斜反射体倾斜长度北长南短,北长约15~22 km,南长约5~8 km;分布范围北大南小,北部南北向长约150 km,南部南北向长约70 km。下地壳倾斜反射区的Moho面埋深起伏差异明显北小南大,北为0.5 s,南有1.2 s。基底北部平坦南部起伏大,洋壳厚度北部厚南部薄,推测东部次海盆洋壳增生过程是非对称性和非均一的。东部次海盆下地壳倾斜反射体的成因可能与同岩浆断裂、水热循环、壳幔过渡区岩浆间隙侵入和基底深大断裂密切相关。
Abstract
Numerous high-amplitude dipping reflections in the lower oceanic crust are developed in the East sub-basin (ESB) of the South China Sea (SCS), recording the process of oceanic crust accretion. Understanding the structure and genesis of these dipping reflections is crucial for comprehending the spreading process of the SCS. Based on multi-channel seismic profiles, this paper describes the structural features and internal deformation of these lower crustal dipping reflections (LCRs) in the ESB and discusses their genesis. Our results reveal high-amplitude LCRs in both the southern and northern parts of the ESB. Most reflectors terminate at the Moho reflection, but significant differences exist in their distribution range, structural features, and genesis between the two regions. The northern LCRs are longer (approximately 15~22 km) and wider (approximately 150 km north-south extent) than their southern counterparts (approximately 5~8 km long, approximately 70 km north-south extent). The depth of the Moho surface in the lower crust inclined reflection area shows obvious differences between north and south. The northern part displays a shallower Moho (approximately 0.5 s), compared to the southern part (approximately 1.2 s). Further, the basement topography is flat in the north and rougher in the south. This suggests that the oceanic crust is thicker in the northern LCR area and thinner in the south, indicating an asymmetrical and heterogeneous process of oceanic crust accretion in the ESB. The genesis of the ESB's LCR may be closely related to syn-magmatic faults, hydrothermal cycles, magmatic interstitial intrusion in the crust-mantle transition zone, and deep basement faults.