-
增生型造山带与其记录的复杂的造山作用是地球科学经久不衰的研究主题(Şengör et al.,1993,2022;李继亮,2004;Cawood et al.,2009;Zhu Rixiang et al.,2021;肖文交等,2022)。中亚造山带(图1a)是全球最大的显生宙增生造山带,蕴含着造山带演化过程、增生造山作用方式、大陆生长机制等前沿地球科学理论的关键信息(Şengör et al.,1993;Jahn et al.,2000;Windley et al.,2007;Xiao Wenjiao et al.,2018;肖文交等,2019;李舢等,2023)。
-
新疆北部东准噶尔造山带(简称东准噶尔),北连阿尔泰造山带,南接天山造山带(图1b),占据中亚造山带的关键构造位置,该区域古生代以来的构造演化是显生宙亚洲大陆向南增长和古亚洲洋演化的重要阶段(Coleman,1989;肖序常和汤耀庆,1991;Hu Aiqin et al.,2000;Windley et al.,2007;Xiao Wenjiao et al.,2008;Han Yigui and Zhao Guochun,2018;Xu Qinqin et al.,2020),对解剖中亚造山带时空演化与造山作用方式具有重要意义。然而,相关学者对东准噶尔造山带构造演化的研究多集中于古生代以来大地构造格局的恢复和构造演化模型的建立(肖序常等,1992;何国琦等,1994;舒良树等,2001;李锦轶等,2009;Long Xiaoping et al.,2012;Xu Qinqin et al.,2013,2020;Zhang Yuanyuan et al.,2013;Li Di et al.,2015;Xiao Wenjiao et al.,2015;Xu Xingwang et al.,2015;Liang Pei et al.,2016;Liu Xijun et al.,2017; Li Pengfei et al.,2021),对构造-热演化历史的解剖相对薄弱。
-
卡拉麦里山是东准噶尔造山带的重要构造地貌单元(图1b),对其隆升-剥露过程开展研究是揭示东准噶尔造山带构造-热演化历史的重要窗口。目前,虽有学者初步揭示了东准噶尔主要存在中三叠世—早侏罗世(240~180 Ma)、晚侏罗世—晚白垩世(160~80 Ma)、晚白垩世—古新世(100~60 Ma)、中新世(25~23 Ma)以来4个阶段的快速隆升-剥露作用(李玮,2007;李丽等,2008;宋继叶等,2019;Wu Zhaojian et al.,2021;He Zhiyuan et al.,2022),但是前人揭示出的隆升-剥露阶段以中—新生代为主,缺少晚古生代剥露作用的刻画。而且,由于区内构造背景的复杂性,关于多期热事件的构造意义仍有待进一步探索。
-
图1 中亚造山带构造简图(a)(据Şengör and Natal'in,1996;Jahn et al.,2000修改)和新疆北部地区构造简图(b)(据Chen and Jahn,2004;Xiao Wenjiao et al.,2008修改)
-
Fig.1 Tectonic outline of the Central Asian Orogenic Belt (a) (modified from Şengör and Natal'in, 1996; Jahn et al., 2000) and simplified tectonic map of northern Xinjiang (b) (modified from Chen and Jahn, 2004; Xiao Wenjiao et al., 2008)
-
AOB—阿尔曼太蛇绿岩带;KOB—卡拉麦里蛇绿岩带;EF—额尔齐斯断裂;KF—卡拉麦里断裂
-
AOB—Armantai ophiolite belt; KOB—Kalamaili ophiolite belt; EF—Erqis fault; KF—Kalamaili fault
-
磷灰石裂变径迹、锆石和磷灰石(U-Th)/He等低温热年代学方法是目前应用较为成熟、有效的研究造山带隆升-剥露过程的方法(Wolf et al.,1998;Herman et al.,2013;李广伟,2021)。锆石(U-Th)/He的部分滞留带为160~200℃(Reiners,2005);磷灰石(U-Th)/He的部分滞留带为40~75℃(Farley,2000);磷灰石裂变径迹的部分退火带为60~110℃(Gleadow et al.,1986)。因为封闭温度的差异,所以它们可记录不同时期的冷却事件。由于前人针对东准噶尔构造-热历史的研究主要集中于卡拉麦里山北侧与南侧的西段地区,采集样品以中—酸性岩体与中生代沉积岩为主,所采用的低温热年代学手段均为裂变径迹,缺乏更低温系统的热演化历史研究。因此,本文主要针对卡拉麦里山南侧东段地区,选取晚古生代—中生代沉积岩,综合利用锆石(U-Th)/He(ZHe)、磷灰石裂变径迹(AFT)与磷灰石(U-Th-Sm)/He(AHe)低温热年代学方法,分析卡拉麦里地区的隆升-剥露过程,并结合前人研究成果,探讨东准噶尔造山带的热演化历史及动力学机制,以期为中亚造山带时空演化过程的解析提供新的依据。
-
1 地质背景与样品采集
-
1.1 地质背景
-
北疆地区准噶尔地体位于中亚造山带的南缘(图1a),通常被划分为西准噶尔造山带(简称西准噶尔)、准噶尔盆地和东准噶尔造山带3个大地构造单元(Chen and Jahn,2004;Xiao Wenjiao et al.,2008)(图1b)。东准噶尔造山带主要由古亚洲洋俯冲-消减过程中形成的都拉特-巴依塔格岛弧、阿尔曼泰蛇绿岩带、野马泉岛弧、卡拉麦里蛇绿岩带以及将军庙增生杂岩组成(Feng et al.,1989;Xiao Wenjiao et al.,2015,2018)(图1b)。北部的都拉特-巴依塔格岛弧主要由泥盆纪—石炭纪火山岩和沉积岩组成(李锦轶等,1990;Zhang Zhaochong et al.,2009)。阿尔曼泰蛇绿岩主体年龄为503~420 Ma(Jian Ping et al.,2005;Xiao Wenjiao et al.,2009;张元元和郭召杰,2010;Zeng Lingjun et al.,2015;刘亚然等,2016;Luo Jun et al.,2017)。野马泉岛弧主要由奥陶纪—石炭纪火山岩、火山碎屑岩(Long Xiaoping et al.,2012;Li Wei et al.,2013;Du Qingxiang et al.,2018)以及石炭纪—二叠纪(350~268 Ma;Hu Aiqin et al.,2000;Chen and Jahn,2004;韩宝福等,2006;苏玉平等,2008;杨高学等,2010;Yang Gaoxue et al.,2011;聂晓勇等,2016;熊双才等,2019;张征峰等,2021;陶威等,2022)花岗岩类组成。卡拉麦里蛇绿岩主要沿NWW向展布的卡拉麦里断裂带出露,呈构造块体形式出现在强烈变形的火山-沉积岩基质中。关于卡拉麦里蛇绿岩带的形成时代,目前有早古生代和晚古代两种不同观点。早期的研究揭示出卡拉麦里蛇绿岩的硅质岩中含有中—晚奥陶世牙形虫化石(黄汲清等,1990),这与该带斜长花岗岩的早期SHRIMP锆石U-Pb年龄(497 Ma;Jian Ping et al.,2005)相互印证。舒良树和王玉净(2003)根据蛇绿岩上部红色硅质岩中的放射虫,将卡拉麦里蛇绿岩带的形成年龄厘定为晚泥盆世—早石炭世,这一时代已得到后续相继报道的蛇绿岩中的斜长花岗岩和基性岩年龄(417~330 Ma;唐红峰等,2007;汪帮耀等,2009;黄岗等,2012;方爱民等,2015;Xu Xingwang et al.,2015;Liu Xijun et al.,2017)的支持。将军庙增生杂岩,主要由泥盆纪、石炭纪以及二叠纪岛弧逐渐增生形成(Xiao Wenjiao et al.,2004,2009)。
-
研究区位于东准噶尔造山带的卡拉麦里山东段(图1b、图2),区内古生代—中生代地层均有出露(图2),岩石类型以碎屑岩和火山碎屑岩为主。区内的侵入岩从基性岩到酸性岩,均有发育,岩体侵位于晚石炭世—早二叠世。
-
区内最老的地层为中志留统白山包组(S2b),为一套陆源碎屑岩和细火山碎屑岩沉积(新疆维吾尔自治区地质调查院,2003❶),含图瓦贝化石(张梓歆等,1983;蔡雄飞等,2015;赵磊等,2019;Xu Qinqin et al.,2020)。上志留统—下泥盆统红柳沟组(S3D1h)为灰岩、凝灰砂岩夹安山玢岩建造,含放射虫化石(新疆维吾尔自治区地质调查院,2003❶)。研究区出露的泥盆系为卡拉麦里组,为一套碎屑岩、凝灰质碎屑岩夹火山碎屑岩沉积(新疆维吾尔自治区地质矿产勘探开发局,2010❷)。区内石炭系分布最广泛,下石炭统以卡拉麦里断裂带为界,北侧出露南明水组(C1n),南侧出露松喀尔苏组(C1s)(图2)。南明水组(C1n)为粉砂岩、凝灰砂岩夹凝灰岩建造(李锦轶等,1989);松喀尔苏组(C1s)为砂岩、砾岩夹煤线建造(新疆地质局区测大队,1966❸)。上石炭统包括巴塔玛依内山组(C2b)、弧形梁组(C2h)、石钱滩组(C2s)与六棵树组(C2l),多出露于卡拉麦里断裂带南侧,北侧仅出露巴塔玛依内山组(图2)。巴塔玛依内山组(C2b)以明显的角度不整合覆盖在下石炭统之上,为一套多期次陆相喷发的火山岩地层(新疆地质局区测大队,1966❸)。弧形梁组(C2h)岩性主要为细砾岩、钙质砂岩夹泥岩、灰岩;石钱滩组(C2s)岩性主要为砾岩、砂岩、灰岩夹碳质泥岩;六棵树组(C2l)主要为一套粗砂岩、细砂岩夹安山玢岩建造(新疆维吾尔自治区地质矿产勘探开发局,2010❷)。二叠系广泛出露于卡拉麦里断裂南侧,包括下—中二叠统胜利沟组(P1-2s)、上二叠统将军庙组(P3j)。胜利沟组(P1-2s)为紫红色砾岩夹砂岩、泥质粉砂岩、碳质页岩,不整合覆盖于上石炭统之上(图2);将军庙组(P3j)为黄色砾岩夹砂岩、粉砂岩、碳质泥岩及煤线(新疆维吾尔自治区地质矿产勘探开发局,2010❷)。
-
上二叠统—下三叠统仓房沟群(P3T1C)为一套陆相碎屑岩;下三叠统尖山沟组(T1j)为红色砾岩夹紫红色泥质粉砂岩及砂质泥岩;中—上三叠统小泉沟群(T2-3X)与尖山沟组相伴出露,为一套砂砾岩、泥质粉砂岩夹泥岩建造(新疆维吾尔自治区地质矿产勘探开发局,2010❷)。侏罗系在卡拉麦里断裂南北两侧皆有出露,北侧仅发育中—上侏罗统,南侧发育齐全(图2)。下侏罗统八道湾组(J1b)为长石石英砂岩、粉砂岩夹煤线建造;三工河组(J1s)为一套湖沼相碎屑岩沉积;中侏罗统西山窑组(J2x)与三工河组相伴出露,为泥质粉砂岩、砂岩夹煤层建造;中—上侏罗统石树沟群(J2-3S)为一套河流相碎屑岩沉积(新疆维吾尔自治区地质矿产勘探开发局,2010❷)。白垩系仅在研究区东部小面积出露,为下白垩统吐谷鲁群(K1T),由一套铁质钙质砂岩夹铁质泥质粉砂岩组成(新疆地质局区测大队,1966❸)。
-
图2 卡拉麦里东段地质图(据新疆维吾尔自治区地质矿产勘探开发局,2010❷修改)
-
Fig.2 Geological map of the eastern part of the Kalamaili area (modified from Geological and Mineral Exploration and Development Bureau, Xinjiang Uygur Autonomous Region, 2010❷)
-
1.2 样品采集
-
本次研究在卡拉麦里山东段南侧双井子地区石炭纪—侏罗纪地层中采集了4件新鲜、未变质的沉积岩样品开展ZHe、AFT与AHe分析。4件样品KLML18-11、 KLML18-12、KLML18-13、KLML18-14分别采自下三叠统三尖山沟组(T1j)、上石炭统石钱滩组(C2s)、上二叠统将军庙组(P3j)和中—上侏罗统石树沟群(J2-3S),采样位置见图2,样品详细信息见表1。
-
2 分析方法
-
2.1 锆石(U-Th)/He测年
-
锆石(U-Th)/He测年在中国地质科学院地质研究所铀-钍-氦年代学实验室完成。首先将从岩石样品中分选出的锆石颗粒放在双目体式镜下进一步挑选出大小均匀、晶形较好、无包裹体的颗粒。然后,将挑选好的晶体进行拍照,并测量其长、宽、高及锥体的长度,根据测量结果计算α校正系数(FT; Farley et al.,1996),然后将样品装入铌囊中。He气提取和分析在AlphachronⅡ 氦同位素质谱仪上进行。采用970 nm二极管激光器(Diode Laser)加热提取He气,加热温度约为1300℃,加热持续10 min。样品中释放的4He与3He混合,通过四极杆质谱测定4He/3He值;3He的量通过4He标准气体标定,最终计算可得到样品中的4He 含量,4He 的测量精度优于1%。样品4He 含量分析之后,将其放置于高压釜中多次消解后,通过电感耦合等离子质谱仪(ICP-MS)分析U、Th 含量。详细的分析流程请参考孙敬博等(2017)。
-
2.2 磷灰石(U-Th-Sm)/He测年
-
磷灰石(U-Th-Sm)/He测年在墨尔本大学的热年代学实验室完成。首先将从岩石样品中分选出的磷灰石颗粒放在Olympus SZX12双目镜下进行挑选,选择表面明亮、晶形发育好、无裂缝、大小均一的颗粒。然后,将挑选出的磷灰石颗粒浸泡在乙醇中,在偏振光下剔除有矿物包裹体的晶体。将挑选好的晶体进行拍照,并测量晶体尺寸,根据测量结果计算α校正系数(FT; Farley et al.,1996)后,将样品装入酸处理过的小型铂囊中。采用820 nm Coherent Quattro FAP半导体二极管激光器加热提取He气,加热温度约为900℃,时间5 min。样品中的4He含量采用同位素稀释法使用3He的峰值来测定,3He的量通过由Balzers QMS 200-Prisma四极杆质谱测定的4He标准气体标定,4He 的测量不确定度大约为6.2%(±1σ)。4He 含量分析之后,将磷灰石样品从激光腔中取出,向铂囊中加入HNO3使其完全溶解后,使用Agilent 7700x电感耦合等离子体质谱仪(ICP-MS)分析238U、235U、232Th与147Sm含量,校正的标准样品为BHVO-1、泥浆罐磷灰石、BCR-2。U、Th、Sm含量的测量精度优于1%。(U-Th-Sm)/He年龄根据Farley et al.(1996)的方法计算并进行α系数校正。另外,Durango磷灰石标样(McDowell et al.,2005)也作为每批样品分析的内标,监测测试分析的准确性。
-
2.3 磷灰石裂变径迹测年
-
磷灰石裂变径迹分析在墨尔本大学的热年代学实验室完成,实验采用激光剥蚀-电感耦合等离子质谱法(LA-ICP-MS)进行。首先,野外采集的岩石样品经过破碎、过筛、淘洗、重液分离等标准的矿物分选流程后,再于双目镜下挑选出磷灰石。然后在显微镜下挑选出合适的磷灰石颗粒,用环氧树脂将磷灰石颗粒镶嵌在石英玻璃基座上,在Struers Rotopol自动抛光机上用金刚石进行抛光,在20℃下用5 mol/L HNO3蚀刻20 s。抛光和蚀刻后的基座通过喷射涂层镀上一层薄的Au膜(大约10 nm),以增强抛光表面反射率(Gleadow et al.,2009)。制备好的磷灰石样品通过配有扫描台与AVT Oscar 3.3 MP CCD数码相机的Zeiss Axio Imager M2m显微镜以及内部开发的TrackWorks软件系统进行裂变径迹观察与统计。所有测量都是在测试系统使用的100倍物镜所捕获的数字图像上进行的,径迹统计的数字图像有效放大倍数约为2000倍,长度测量约为8000倍。自发裂变轨迹使用重合映射程序(Gleadow et al.,2009)自动计算,必要时进行手动校正。所有蚀刻坑直径(Dpar)的平均值(Donelick et al.,2005)也自动确定。使用连接New Wave UP-213激光剥蚀系统(LA)的Agilent 7700X型等离子质谱仪(ICP-MS)进行铀含量测量。每个磷灰石颗粒在以Ar为载气的高纯He环境下进行1~2次激光剥蚀,剥蚀深度约为8 μm,光斑直径为30 μm,脉冲频率为20 Hz,能量密度为2.3 J/cm2。通过测定磷灰石颗粒、标准玻璃(NIST612)、内部标样(均质、重结晶泥浆罐碳酸磷灰石)以及磷灰石标准样品(Durango)(McDowell et al.,2005)的238U/43Ca比值,计算得到磷灰石样品的铀含量。裂变径迹年龄通过Hasebe et al.(2004)推荐的基于主要常数的绝对校准方法进行计算,使用RadialPlotter软件计算中心年龄(Vermeesch,2009)。
-
3 分析结果与模拟
-
3.1 锆石(U-Th)/He年龄
-
本次采集的4件样品全部进行了ZHe测年,每件样品均测试了5个颗粒,分析结果见表2。样品KLML18-11(T1)的单颗粒ZHe年龄比较集中(图3a、b),年龄范围为327.2±7.1~307.6±7.1 Ma,加权平均值为317.6±3.3 Ma,大于地层沉积年龄(T1)。样品KLML18-12(C2)的单颗粒ZHe年龄范围为360.5±8.0~296.6±6.6 Ma,年龄变化相对较大,可能是受到锆石颗粒同位素分布不均匀、辐射损伤、颗粒的大小、含He的流体包裹体等的影响;其中4个颗粒的ZHe年龄相对集中(图3a、b),加权平均值为311.2±7.4 Ma,接近地层沉积年龄(C2)。样品KLML18-13(P3)的单颗粒ZHe年龄范围为325.8±7.5~276.7±6.2 Ma,5个ZHe年龄明显呈现2个组分(图3a、b),分别为325.8±7.5~325.2±7.1 Ma和279.6±6.8~276.7±6.2 Ma,均大于地层沉积年龄(P3),说明该样品的ZHe系统没有发生热重置,不同的年龄组分可能反映了沉积物源不同的热事件。因此,本文分别计算2组年龄的加权平均值,结果分别为325.5±5.2 Ma与278.5±3.6 Ma。样品KLML18-14(J2-3)的单颗粒ZHe年龄范围为264.1±6.5~222.2±5.2 Ma,加权平均值为245.5±7.0 Ma,大于地层沉积年龄(J2-3)。
-
注:a eU代表有效铀浓度(U×10-6+0.235×Th×10-6)(Flowers et al.,2009);b FT代表α校正系数(Farley et al.,1996);c 加权平均年龄采用逆方差加权法计算,下同;d未参加平均年龄计算颗粒;e 样品KLML18-13颗粒1、2、5的加权平均年龄;f 样品KLML18-13颗粒3、4的加权平均年龄。
-
3.2 磷灰石(U-Th-Sm)/He年龄
-
本文采集的4件样品只有KLML18-12(C2)挑选出了数量足够的磷灰石,进行了AHe分析,测试结果见表3。4个磷灰石颗粒的(U-Th-Sm)/He年龄范围为160.5±10.0~107.5±6.7 Ma,年龄变化相对较大(图3c、d),可能是在某些磷灰石中存在如锆石等U含量高的包体,而它们在磷灰石的溶解过程中,并不能发生溶解,从而导致获得较老的年龄。4个颗粒的AHe年龄加权平均值为130.0±11.0 Ma,远小于地层沉积年龄(C2)。
-
3.3 磷灰石裂变径迹(AFT)年龄
-
样品KLML18-12(C2)的磷灰石裂变径迹测试分析结果见表4和图4。该样品共获得29个单颗粒年龄,年龄范围为471.5±87.9~181.8±65.9 Ma(图4a),使用LA-ICP-MS进行裂变径迹测年时,磷灰石颗粒U含量的不均匀性以及化学成分的差异,可能导致AFT单颗粒年龄偏分散(Hasebe et al.,2004)。样品的P(χ2)检验值大于5%(表4),表明单颗粒年龄属于同组年龄(Green,1981),样品的年龄可以反映其经历的构造热事件。该样品的平均裂变径迹长度为13.84 μm,显示为较窄的单峰分布(图4b),暗示样品快速通过部分退火带(Gleadow et al.,1986)。由于ZHe和AFT分别具有不同的封闭温度,正常情况下,地质体应该首先通过ZHe 封闭系统,因此对于同一样品,ZHe年龄应大于AFT年龄。然而,样品KLML18-12(C2)部分单颗粒AFT年龄大于最老单颗粒ZHe年龄,这与样品的实际冷却过程不符,笔者将AFT年龄大于ZHe年龄的部分单颗粒(9个)(图4a)删除后,获得样品的中值年龄为285.0±12.0 Ma(表4,图4c),小于地层沉积年龄(C2)。
-
图3 卡拉麦里东段样品单颗粒ZHe和AHe年龄与有效U浓度(eU)(a、c)、颗粒半径(b、d)的关系
-
Fig.3 Single zircon grain (U-Th-Sm) /He and apatite (U-Th-Sm) /He ages in relation to eU concentrations (a, c) and grain radius (b, d) of samples from the eastern part of the Kalamaili area
-
注:a FT代表α校正系数(Farley et al.,1996);b eU代表有效铀浓度(U×10-6+0.235×Th×10-6)(Flowers et al.,2009);c 加权平均年龄采用逆方差加权法计算。
-
注:Ns为自发径迹数;ρs为自发径迹密度;Dpar为平行于晶体c轴径迹蚀刻坑的平均直径;P(χ2)为检验单颗粒年龄正态分布的置信度量值;N为统计径迹条数;L为平均径迹长度;se为标准误差。
-
3.4 热史模拟
-
3.4.1 数据分析
-
针对获得的低温热年代学数据,笔者应用以下3点要求对样品的年龄进行了筛选:① 锆石(U-Th)/He、磷灰石裂变径迹以及磷灰石(U-Th-Sm)/He分别具有不同的封闭温度,正常情况下地质体应该首先通过ZHe封闭系统,因此在同一样品中,ZHe年龄应大于AFT与AHe年龄。然而,样品KLML-12(C2)部分单颗粒AFT年龄却大于ZHe 年龄,笔者将这些颗粒删除(图4a、图5);② 某些样品的部分单颗粒年龄较为集中,在这种情况下取其加权平均值,对于单颗粒年龄分散的样品,选取其中相对集中的年龄,取其加权平均值(表2);③ 样品KLML-13(P3)单颗粒ZHe年龄明显分为2组,各取其加权平均值(表2)。
-
图4 卡拉麦里东段样品KLML-12磷灰石裂变径迹年龄雷达图(a、c)和径迹长度分布图(b)
-
Fig.4 Radial plots (a, c) and track length distribution (b) of apatite fission track of the sample KLML-12 from the eastern part of the Kalamaili area
-
图4a为实验获得的29个磷灰石单颗粒年龄图,图中椭圆虚线圈标注的是AFT年龄与ZHe年龄不匹配(AFT年龄大于ZHe年龄)的9个单颗粒,剔除不匹配年龄后,得到图4c(n=20);MTL—平均径迹长度;SD—标准差
-
Fig.4a shows the AFT age radial plot of 29 grains, where the 9 grains whose AFT age is not matched with the ZHe age (AFT age>ZHe age) are outlined with dashed ellipse; Fig.4c shows the AFT age radial plot of 20 grains after removing the 9 mismatched ages; MTL—mean track lengths; SD—standard deviation
-
图5 卡拉麦里东段样品KLML18-12年龄筛选
-
Fig.5 Filtering ages of the sample KLML18-12 from the eastern part of the Kalamaili area
-
3.4.2 热历史模拟
-
本文使用HeFTy1.9.3软件(Ketcham et al.,2007)对所有样品经历的时间-温度历史进行了反演模拟(图6)。其中,AFT模拟采用多元动力学退火模型(Ketcham et al.,2007),AHe模拟选择辐射损伤积累和退火模型(RDAAM)(Flowers et al.,2009),ZHe模拟选择辐射损伤与退火模型(Guenthner et al.,2013)。设置的两个初始时间-温度限制分别为:① ZHe单颗粒最老年龄的温度为160~200℃;② 现代地表温度为0~20℃。在模拟的过程中,根据初步结果进行反复试验,并对时间-温度限制进行调整,直到获取最多的冷却路径和最高的拟合度。样品KLML18-11(T1)、KLML18-13(P3)和KLML18-14(J2-3)仅得到了ZHe数据,因此只进行锆石(U-Th)/He体系的模拟;样品KLML18-13(P3)的5个单颗粒ZHe年龄明显呈现出两个峰值(图3a、b),考虑到该样品的岩性和沉积时代,这两个年龄峰值可能反映了物源区不同的热事件,因此模拟也分2组进行;KLML18-12(C2)同时得到了ZHe、AFT和AHe数据,因此进行磷灰石裂变径迹、锆石和磷灰石(U-Th)/He联合热模拟(图6)。
-
除了样品KLML18-12(C2),其他样品都得到了较好的热历史模拟结果(拟合度大于0.5)(图6)。样品KLML18-11(T1)、KLML18-14(J2-3)显示了单一期次的快速冷却作用,冷却时限分别为320~300 Ma(图6a)、250~230 Ma(图6e)。样品KLML18-13(P3)显示了2个期次的快速冷却作用,冷却时限分别为330~310 Ma(图6c)、285~260 Ma(图6d)。虽然样品KLML18-12(C2)只获得5条较好的冷却路径,但是热历史模拟结果也具有一定参考意义,该样品显示了2个期次的快速冷却作用,冷却时限分别为320~290 Ma、135~115 Ma(图6b)。
-
4 讨论
-
锆石(U-Th)/He测年数据结果显示,样品KLML18-11(T1)、KLML18-13(P3)、KLML18-14(J2-3)的所有单颗粒ZHe年龄(表2、图3)均大于其地层沉积时代,表明晚二叠世、早三叠世、中—晚侏罗世地层沉积期间,埋藏深度并没有达到锆石部分滞留带,锆石(U-Th)/He系统没有发生热重置,因此ZHe年龄反映了沉积物源的热历史。
-
图6 卡拉麦里东段样品热史模拟结果(a~e)
-
Fig.6 Thermal modeling results (a~e) of samples from the eastern part of the Kalamaili area
-
APRZ—磷灰石部分滞留带;APAZ—磷灰石部分退火带;ZPRZ—锆石部分滞留带;TL—径迹长度
-
APRZ—apatite partial retention zone; APAZ—apatite partial annealing zone; ZPRZ—zircon partial retention zone; TL—track length
-
样品KLML18-12(C2)的ZHe和AFT年龄分别为311.2±7.4 Ma和285.0±12.0 Ma,与其地层沉积时代类似,反映了较小的延迟年龄,表明样品可能在晚石炭世—早二叠世(310~285 Ma)快速通过ZHe的部分滞留带与AFT的部分退火带到达地表而被剥蚀。若以平均地温梯度为20℃/km(Reiners and Brandon,2006)计算,晚石炭世—早二叠世剥蚀速率约为190 m/Ma。考虑到上述剥露过程,该样品也应该在晚石炭世—早二叠世快速通过了磷灰石(U-Th)/He系统的部分滞留带,如果是这样,该样品应该具有与AFT年龄相似的AHe年龄,然而样品的AHe年龄为130.0±11.0 Ma,远小于AFT和ZHe年龄,表明样品在晚石炭世沉积以后可能经历了埋藏作用,导致其AHe系统发生了重置,并且在早白垩世重新计时。然而,针对上述热历史,本文并没有得到较好的反演结果(TL与AHe的拟合度小于0.5)。磷灰石裂变径迹长度的拟合度(0.21)偏小,原因可能与较多的径迹长度有关(Vermeesch and Tian,2014)。尽管如此,样品反演结果中较多的可接受冷却路径(1005条)以及少量的较好路径(5条)(图6b)为样品的热历史提供了一定的参考。
-
3件样品(KLML18-11、KLML18-12、KLML18-13)的ZHe年龄都显示了晚石炭世的年龄组分,同时样品热模拟加权平均冷却路径汇总结果(图7)表明,卡拉麦里地区在330~320 Ma开始发生显著的冷却事件,冷却作用一直持续到早二叠世(大约290 Ma)。区域上,Yin et al.(1998)根据40Ar/39Ar热年代学研究,分别在北天山、中天山、南天山识别出295 Ma、314~310 Ma、318~305 Ma的冷却事件。孙敬博等(2015)根据黑云母40Ar/39Ar以及(U-Th)/He热年代学研究,认为东天山经历了330~296 Ma的快速冷却阶段。Yin Jiyuan et al.(2018a,2018b)通过钾长石与黑云母40Ar/39Ar热年代学研究,分别在中天山、西准噶尔识别出310~270 Ma、307~277 Ma的冷却事件。Wang Yannan et al.(2018)和Yin Jiyuan et al.(2023)通过AFT与(U-Th)/He热年代学,在北天山识别出晚石炭世—早二叠世(330~280 Ma)的快速冷却事件。由此可见,准噶尔盆地周缘普遍存在晚石炭世—早二叠世的冷却事件(图8)。关于这期冷却事件的动力机制,前人研究认为可能与中亚造山带南缘一系列的岛弧和增生楔碰撞拼贴有关(Charvet et al.,2011;Wang Yannan et al.,2018;Yin Jiyuan et al.,2023)。笔者认为,东准噶尔330~290 Ma的冷却事件可能与北侧额尔齐斯-斋桑洋在晚石炭世的闭合(韩宝福等,2010;Safonova,2014;Kuibida et al.,2016;Li Pengfei et al.,2017)有关。
-
图7 卡拉麦里东段样品热模拟加权平均冷却路径总结
-
Fig.7 Compilation of the weighted mean cooling paths of total samples from the eastern part of the Kalamaili area
-
APRZ—磷灰石部分滞留带;APAZ—磷灰石部分退火带;ZPRZ—锆石部分滞留带
-
APRZ—apatite partial retention zone; APAZ—apatite partial annealing zone; ZPRZ—zircon partial retention zone
-
样品KLML18-13(P3)的ZHe年龄与热史反演模拟结果显示,卡拉麦里地区在早二叠世晚期—中二叠世(285~260 Ma)期间经历过快速的冷却作用(图6、7)。区域上,Li Pengfei et al.(2015,2017)通过变形分析与40Ar/39Ar年代学研究,揭示出阿尔泰南缘经历了270~265 Ma的冷却作用,认为该期冷却事件与额尔齐斯带286~253 Ma的压扭变形有关。Gillespie et al.(2020)根据AFT热史模拟结合前人发表的(U-Th)/He数据,揭示出西准噶尔地区在早—中二叠世(285~260 Ma)经历了快速的冷却作用,认为该期冷却事件与额尔齐斯带和阿尔泰(Briggs et al.,2007;Li Pengfei et al.,2015)以及天山地区(Laurent-Charvet et al.,2003;Jolivet et al.,2010)等中亚范围内普遍经历的剥露作用以及走滑构造变形相对应。综合来看,早二叠世晚期—中二叠世的快速冷却事件在准噶尔盆地周缘均有记录(图8)。笔者认为,东准噶尔285~260 Ma的冷却事件可能与包括卡拉麦里构造带在内的中亚造山带南缘普遍经历的晚古生代的右行走滑变形有关(赵磊等,2012;Zhang Jin et al.,2022)。
-
样品KLML18-14(J2-3)的ZHe年龄与热史反演模拟结果显示,卡拉麦里地区在三叠纪(250~230 Ma)期间经历过快速的冷却作用(图6、7)。He Zhiyuan et al.(2022)通过AFT数据热史模拟在卡拉麦里北侧的都拉特-巴依塔格弧识别出三叠纪的热事件,认为该期冷却剥露作用与早三叠世以来羌塘与昆仑-柴达木的增生有关。Yin Jiyuan et al.(2018a,2018b)根据(U-Th)/He年龄与热史反演模拟,分别在中天山、西准噶尔识别出245~210 Ma、241~232 Ma的快速冷却事件,并且认为三叠纪的冷却事件与羌塘地块和昆仑-柴达木地块的碰撞有关。关于东准噶尔三叠纪(250~230 Ma)的快速冷却作用,笔者也倾向于与羌塘地块和昆仑-柴达木地块碰撞的远程效应有关。
-
图8 本文与前人晚古生代—中生代隆升剥露阶段统计
-
Fig.8 Compilation of late Paleozoic-Mesozoic exhumation episodes from previous studies and this study
-
数据来源:(1)Yin et al.(1998);(2)李玮(2007);(3)孙敬博等(2015);(4)Li Pengfei et al.(2015);(5)Wang Yannan et al.(2018);(6)Yin Jiyuan et al.(2018a);(7)Yin Jiyuan et al.(2018b);(8)Gillespie et al.(2020);(9)Wu Zhaojian et al.(2021);(10)He Zhiyuan et al.(2022);(11)Yin Jiyuan et al.(2023)
-
Data sources: (1) Yin et al. (1998) ; (2) Li Wei (2007) ; (3) Sun Jingbo et al. (2015) ; (4) Li Pengfei et al. (2015) ; (5) Wang Yannan et al. (2018) ; (6) Yin Jiyuan et al. (2018a) ; (7) Yin Jiyuan et al. (2018b) ; (8) Gillespie et al. (2020) ; (9) Wu Zhaojian et al. (2021) ; (10) He Zhiyuan et al. (2022) ; (11) Yin Jiyuan et al. (2023)
-
样品KLML18-12(C2)的AHe年龄与热史反演模拟结果显示,卡拉麦里地区在早白垩世(135~115 Ma)期间经历过快速的冷却作用(图6、7)。李玮(2007)通过对卡拉麦里山北侧奥克什山岩体的锆石与磷灰石裂变径迹分析,揭示了准噶尔盆地东北缘造山带经历了晚侏罗世—白垩纪(160~80 Ma)较快冷却隆升,认为该期冷却事件与蒙古-鄂霍茨克洋闭合而导致的华北地块与西伯利亚板块在侏罗纪—早白垩世的拼合有关。Wu Zhaojian et al.(2021)通过地震反射剖面解释与磷灰石裂变径迹分析,认为准噶尔盆地早白垩世经历了中等程度的变形与隆升事件。He Zhiyuan et al.(2022)通过AFT数据热史模拟,在东准噶尔与东天山地区识别出白垩纪中等—快速的冷却事件,并认为早白垩世的冷却事件可能与特提斯板块俯冲引起的上部板块的收缩有关,而中、晚白垩世的冷却则可能与拉萨-羌塘地块和科希斯坦-德拉斯弧碰撞引起的压缩有关。已有研究表明,早白垩世的快速隆升剥露作用在西准噶尔地区(Yin Jiyuan et al.,2018b)、中天山与北天山(Yin Jiyuan et al.,2018a,2023)同样存在。西准噶尔与中天山地区早白垩世的隆升剥露被认为是与150~120 Ma(Kapp et al.,2007)拉萨块体与羌塘块体的碰撞有关(Yin Jiyuan et al.,2018a,2018b),而北天山地区白垩世的隆升剥露被认为是与准噶尔盆地中生代旋转导致的走滑变形有关(Yin Jiyuan et al.,2023)。关于东准噶尔早白垩世的冷却作用,笔者倾向于是北侧蒙古-鄂霍茨克洋的关闭和南侧羌塘地块与拉萨地块碰撞的联合作用的结果。
-
5 结论
-
(1)ZHe、AFT、AHe年龄与热历史反演结果显示,东准噶尔经历了晚石炭世—早二叠世(330~290 Ma)、早二叠世晚期—中二叠世(285~260 Ma)、三叠纪(250~230 Ma)、早白垩世(135~115 Ma)4期快速的剥露。
-
(2)第1期(330~290 Ma)剥露推测与额尔齐斯-斋桑洋在晚石炭世的闭合有关;第2期(285~260 Ma)剥露推测与晚古生代卡拉麦里构造带的右行走滑变形有关;第3期(250~230 Ma)剥露推测与羌塘地块和昆仑-柴达木地块碰撞的远程效应有关;第4期(135~115 Ma)剥露推测是北侧蒙古-鄂霍茨克洋的关闭和南侧羌塘地块与拉萨地块碰撞的联合作用的结果。
-
致谢:仅以此文祝贺探寻中国大地构造真实面目的任纪舜院士90华诞!评审专家对本文提出了诸多宝贵意见和建议,野外工作得到中国地质科学院地质研究所研究生杨亚琦、刘建华同学的帮助,样品测试过程中得到中国地质科学院地质研究所铀-钍-氦年代学实验室孙敬博博士、墨尔本大学(U-Th)/He实验室Barry Kohn教授以及南京大学地球科学与工程学院李广伟教授的帮助,在此一并表示衷心感谢!
-
注释
-
❶ 新疆维吾尔自治区地质调查院.2003. 新疆东准噶尔卡拉麦里地区巴斯克阔彦得幅、905.0高地幅、六棵树幅1∶50000区域地质调查报告.
-
❷ 新疆维吾尔自治区地质矿产勘探开发局.2010. 新疆维吾尔自治区1∶250000北山煤窑(L46C004001)建造构造图.
-
❸ 新疆地质局区测大队.1966. 库普幅1∶200000区测地质调查报告.
-
参考文献
-
Briggs S M, Yin A, Manning C E, Chen Zhengle, Wang Xiaofeng, Grove M. 2007. Late Paleozoic tectonic history of the Ertix fault in the Chinese Altai and its implications for the development of the central Asian orogenic system. Geological Society of America Bulletin, 119(7~8): 944~960.
-
Cai Xiongfei, Wang Fuming, Liao Qunan, Fan Guangming. 2015. Recent progress in Silurian-Devonian biostratigraphy in the southern margin of Kalamaili collision zone, east Junggar, Xinjiang. Resources Survey and Environment, 36(4): 244~251 (in Chinese with English abstract).
-
Cawood P A, Kröner A, Collins W J, Kusky T M, Mooney W D, Windley B F. 2009. Accretionary orogens through Earth history. In: Cawood P A, Kröner A, eds. Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications 318, 1~36.
-
Charvet J, Shu Liangshu, Laurent-Charvet S, Wang Bo, Faure M, Cluzel D. Chen Yan, De Jong K. 2011. Paleozoic tectonic evolution of the Tianshan belt, NW China. Science China, 54(2): 166~184.
-
Chen B, Jahn B M. 2004. Genesis of post collisional granitoids and basement nature of the Junggar terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Science, 23(5): 691~703.
-
Coleman R G. 1989. Continental growth of Northwest China. Tectonics, 8(3): 621~635.
-
Donelick R A, O'Sullivan P B, Ketcham R A. 2005. Apatite fission track analysis. Reviews in Mineralogy and Geochemistry, 58(1): 49~94.
-
Du Qingxiang, Han Zuozhen, Shen Xiaoli, Han Chao, Song Zhigang, Gao Lihua, Liu Hui, Zhong Wenjian. 2018. Zircon U-Pb geochronology and geochemistry of the post-collisional volcanic rocks in eastern Xinjiang Province, NW China: Implications for the tectonic evolution of the Junggar terrane. International Geology Review, 60(3): 339~364.
-
Fang Aimin, Wang Shigang, Zhang Junmin, Zang Mei, Fang Jiahu, Hu Jianmin. 2015. The U-Pb ages of zircons from the gabbro in the Kalamaili ophiolite, North Xinjiang and its tectonic significances. Chinese Journal of Geology, 50(1): 140~154 (in Chinese with English abstract).
-
Farley K A. 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research, 105(B2): 2903~2914.
-
Farley K A, Wolf R A, Silver L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60(21): 4223~4229.
-
Feng Y, Coleman R G, Tilton G, Xiao X. 1989. Tectonic evolution of the West Junggar Region, Xinjiang, China. Tectonics, 8(4): 729~752.
-
Flowers R M, Ketcham R A, Shuster D L, Farley K A. 2009. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73(8): 2347~2365.
-
Gillespie J, Glorie S, Jepson G, Xiao Wenjiao, Collins A S. 2020. Late Paleozoic exhumation of the West Junggar Mountains, NW China. Journal of Geophysical Research: Solid Earth, 125: e2019JB018013.
-
Gleadow A J W, Duddy I R, Green P F. 1986. Confined track lengths in apatite—A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 4: 91~100.
-
Gleadow A J W, Gleadow S J, Belton D X, Kohn B P, Krochmal M S, Brown R W. 2009. Coincidence mapping a key strategy for automated counting in fission track dating. In: Ventura B, Lisker F, Glasmacher U A, eds. Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models. Geological Society, London, Special Publications, 324: 25~36.
-
Green P F. 1981. A new look at statistics in fission-track dating. Nuclear Tracks, 5(1~2): 77~86.
-
Guenthner W R, Reiners P W, Ketcham R A, Nasdala L, Giester G. 2013. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. American Journal of Science, 313(3): 145~198.
-
Han Baofu, Ji Jianqing, Song Biao, Chen Lihui, Zhang Lei. 2006. Late Paleozoic vertical growth of continental crust around the Junggarbasin, Xinjiang, China (Part I): Timing of post-collisional plutonism. Acta Petrologica Sinica, 22(5): 1077~1086 (in Chinese with English abstract).
-
Han Baofu, Guo Zhaojie, He Guoqi. 2010. Timing of major suture zones in North Xinjiang, China: Constraints from stitching plutons. Acta Petrologica Sinica, 26(8): 2233~2246 (in Chinese with English abstract).
-
Han Yigui, Zhao Guochun. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129~152.
-
Hasebe N, Barberand J, Jarvis K, Carter A, Hurford A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS. Chemical Geology, 207(3~4): 135~145.
-
He Guoqi, Li Maosong, Liu Dequan, Tang Yanling, Zhou Ruhong. 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumqi: Xinjiang People's Publication House (in Chinese with English abstract).
-
He Zhiyuan, Wang Bo, Glorie S, Su Wenbo, Ni Xinghua, Jepson G, Liu Jiashuo, Zhong Linglin, Gillespie J, De Grave J. 2022. Mesozoic building of the Eastern Tianshan and East Junggar (NW China) revealed by low-temperature thermochronology. Gondwana Research, 103: 37~53.
-
Herman F, Seward D, Valla P G, Carter A, Kohn B, Willett S D, Ehlers T A. 2013. Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504: 423~426.
-
Hu Aiqin, Jahn B M, Zhang Guoxin, Chen Yibing, Zhang Qianfeng. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics, 328(1~2): 15~51.
-
Huang Gang, Niu Guangzhi, Wang Xinlu, Guo Jun, Yu Feng. 2012. Formation and emplacement age of Karamaili ophiolite: LA-ICP-MS zircon U-Pb age evidence from the diabase and tuff in eastern Junggar, Xinjiang. Geological Bulletin of China, 31(8): 1267~1278 (in Chinese with English abstract).
-
Huang Jiqing, Jiang Chunfa, Wang Zuoxun. 1990. On the opening-closing tectonics and accordion movement of plate in Xinjiang and adjacent regions. In: The Editorial Committee of Geoscience of Xinjiang of Project 305, ed. Xinjiang Geology 1. Beijing: Geological Publishing House, 3~16 (in Chinese with English abstract).
-
Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1~2): 181~193.
-
Jian Ping, Liu Dunyi, Shi Yuruo, Zhang Fuqin. 2005. SHRIMP dating of SSZ ophiolites from northern Xinjiang Province, China: Implications for generation of oceanic crust in the central Asian orogenic belt. In: Sklyarov E V, ed. Structural and Tectonic Correlation Across the Central Asian Orogenic Collage: Northeastern Segment. Guidebook and Abstract Volume of the Siberian Workshop, IGCP-480, 246~251.
-
Jolivet M, Dominguez S, Charreau J, Chen Y, Li Yongan, Wang Qingchen. 2010. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation. Tectonics, 29: TC6019, C6019, doi: 10. 1029/2010TC002712.
-
Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding Lin. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7~8): 917~933.
-
Ketcham R A, Carter A, Donlick R A, Barbarand J, Hurford A J. 2007. Improved modeling of fission-track annealing in apatite. American Mineralogist, 92(5~6): 799~810.
-
Kuibida M, Safonova I Y, Yermolov P V, Vladimirov A G, Kruk N N, Yamamoto S. 2016. Tonalites and plagiogranites of the Char suture-shear zone in east Kazakhstan: Implications for the Kazakhstan-Siberia collision. Geoscience Frontiers, 7(1): 141~150.
-
Laurent-Charvet S, Charvet J, Monié P, Shu Liangshu. 2003. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data. Tectonics, 22(2): 1009, doi: 10. 1029/2001TC901047.
-
Li Di, He Dengfa, Santosh M, Ma Delong, Tang Jieyun. 2015. Tectonic framework of the northern Junggarbasin part I: The eastern Luliang uplift and its link with the East Junggar terrane. Gondwana Research, 27(3): 1089~1109.
-
Li Guangwei. 2021. A brief review of key issues in tectonic geomorphology and low temperature thermochronology applications. Acta Geologica Sinica, 95(1): 214~226 (in Chinese with English abstract).
-
Li Jiliang. 2004. Basic characteristics of accretion-type orogens. Geological Bulletin of China, 23(9~10): 947~951 (in Chinese with English abstract).
-
Li Jinyi, Zhu Baoqing, Feng Yimin. 1989. Confirmation of the unconformable relationships between the Nanmingshui Formation and ophiolites and their significance. Regional Geology of China, (3): 250~255 (in Chinese with English abstract).
-
Li Jinyi, Xiao Xuchang, Tang Yaoqing, Zhao Min, Zhu Baoqing, Feng Yimin. 1990. Main characteristics of Late Paleozoic plate tectonics in the southern part of east Junggar, Xinjiang. Geological Review, 36(4): 305~316 (in Chinese with English abstract).
-
Li Jinyi, Zhang Jin, Yang Tiannan, Li Yaping, Sun Guihau, Zhu Zhixin, Wang Lijia. 2009. Crustal tectonic zoning and tectonic evolution in southern north Asian orogenic belt and its adjacent areas. Journal of Jilin University (Earth Science Edition), 39: 584~605 (in Chinese with English abstract).
-
Li Li, Chen Zhengle, Qi Wanxiu, Wang Shixin, Wu Yiping, Gong Hongliang, Wei Xinchang, Yang Yi, Li Xuezhi. 2008. Apatite fission track evidence for uplifting-exhumation processes of mountains surrounding the Junggar basin. Acta Petrologica Sinica, 24(5): 1011~1020 (in Chinese with Englisha bstract).
-
Li Pengfei, Yuan Chao, Sun Min, Long Xiaoping, Cai Keda. 2015. Thermochronological constraints on the late Paleozoic tectonic evolution of the southern Chinese Altai. Journal of Asian Earth Sciences, 113: 51~60.
-
Li Pengfei, Sun Min, Rosenbaum G, Jourdan F, Li Sanzhong, Cai Keda. 2017. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt. Geological Society of America Bulletin, 129(5~6): 547~569.
-
Li Pengfei, Sun Min, Yuan Chao, Jourdan F, Hu Wanwan, Jiang Yingde. 2021. Late Paleozoic tectonic transition from subduction to collision in the Chinese Altai and Tianshan (Central Asia): New geochronological constraints. American Journal of Science, 321(1~2): 178~205.
-
Li Shan, Wang Tao, Xiao Wenjiao, Hou Quanlin. 2023. Tectono-magmatic evolution from accretion to collision in the southern marginof the Central Asian Orogenic Belt. Acta Petrologica Sinica, 39(5): 1261~1275 (in Chinese with English abstract).
-
Li Wei. 2007. The mechanic and tectonic evolution of Mesozoic basins in northwestern Junggar Orogenic Belt. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).
-
Li Wei, Liu Yiqun, Dong Yunpeng, Zhou Xiaohu, Liu Xiaoming, Li Hong, Fan Tingting, Zhou Dingwu, Xu Xueyi, Chen Junlu. 2013. The geochemical characteristics, geochronology and tectonic significance of the Carboniferous volcanic rocks of the Santanghu area in north eastern Xinjiang, China. Science China Earth Sciences, 56(8): 1318~1333.
-
Liang Pei, Chen Huayong, Hollings P, Wu Chao, Xiao Bing, Bao Zhiwei, Xu Deru. 2016. Geochronology and geochemistry of igneous rocks from the Laoshankou district, North Xinjiang: Implications for the Late Paleozoic tectonic evolution and metallogenesis of East Junggar. Lithos, 266~267: 115~132.
-
Liu Xijun, Xiao Wenjiao, Xu Jifeng, Castillo P R, Shi Yu. 2017. Geochemical signature and rock associations of ocean ridge-subduction: Evidence from the Karamaili Paleo-Asian ophiolite in east Junggar NW China. Gondwana Research, 48: 34~49.
-
Liu Yaran, Jian Ping, Zhang Wei, Shi Yuruo, Wang Yizhao, Zhang Lüqiao, Liu Dunyi. 2016. Zircon SHRIMP U-Pb dating and O isotope of the Beitashan ophiolitic mélange in the East Junggar, Xinjiang, and its geological significance. Acta Petrologica Sinica, 32(2): 537~554 (in Chinese with English abstract).
-
Long Xiaoping, Yuan Chao, Sun Min, Safonova I, Xiao Wenjiao, Wang Yujing. 2012. Geochemistry and U-Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction-accretion processes in the southern Central Asian Orogenic Belt. Gondwana Research, 21(2~3): 637~653.
-
Luo Jun, Xiao Wenjiao, Wakabayashi J, Han Chunming, Zhang Ji'en, Wan Bo, Ao Songjian, Zhang Zhiyong, Tian Zhonghua, Song Dongfang, Chen Yichao. 2017. The Zhaheba ophiolite complex ineastern Junggar (NW China): Long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids. Gondwana Research, 43: 17~40.
-
McDowell F W, McIntosh W C, Farley K A. 2005. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard. Chemical Geology, 214: 249~263.
-
Nie Xiaoyong, Liu Jiajun, Su Dayong, Zhang Xiangyun. 2016. Zircon U-Pb age of the east Qingshui plagiogranite in Kalamaili belt of Xinjiang and its geological implications. Geology in China, 43(5): 1729~1736 (in Chinese with English abstract).
-
Reiners P W. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151~179.
-
Reiners P W, Brandon M T. 2006. Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34: 419~466.
-
Safonova I. 2014. The Russian-Kazakh Altai orogen: An overview and main debatable issues. Geoscience Frontiers, 5: 537~552.
-
Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364(6435): 299~307.
-
Şengör A M C, Natal'in B A. 1996. Paleotectonics of Asia: Fragments of a synthesis. In: Yin A, Harrison T M, eds. The Tectonic Evolution of Asia. New York: Cambridge University Press, 486~640.
-
Şengör A M C, Sunal G, Natal'in B A, van der Voo R. 2022. The Altaids: A review of twenty-five years of knowledge accumulation. Earth-Science Reviews, 228: 104013.
-
Shu Liangshu, Lu Huafu, Yin Donghao, Ma Ruishi, Charvet J, Laurent-Charvet S. 2001. Late Paleozoic continental accretionary tectonics in northern Xinjiang. Xinjiang Geology, 19(1): 59~63 (in Chinese with English abstract).
-
Shu Liangshu, Wang Yujing. 2003. Late Devonian-Early Carboniferous radiolarian fossils from siliceous rocks of the Calomel ophiolite, Xinjiang. Geological Review, 49(4): 408~412 (in Chinese with English abstract).
-
Song Jiye, Qin Mingkuan, Cai Yuqi, Guo Qiang, He Zhongbo, Liu Zhangyue1, Cao Xu, Chen Zhiguo. 2019. Uplift-denudation of orogenic belts control on the formation of sandstone type uranium (U) deposits in eastern Junggar, Northwest China: Implications from apatite fission track (AFT). Earth Science, 44(11): 3910~3925 (in Chinese with English abstract).
-
Su Yuping, Tang Hongfeng, Cong Feng. 2008. Zircon U-Pb age and petrogenesis of the Huangyangshan alkaline granite body in East Junggar, Xinjiang. Acta Mineralogica Sinica, 28(2): 117~126 (in Chinese with English abstract).
-
Sun Jingbo, Sun Tengfei, Chen Wen, Yu Shun, Yin Jiyuan, Li Cha, Zhang Yan, Liu Xinyu. 2015. Thermo-tectonic evolution history of Hongyuntan area, eastern Tianshan, Xinjiang: Constrained from Ar-Ar and(U-Th)/He dating. Acta Petrologica Sinica, 31(12): 3732~3742 (in Chinese with English abstract).
-
Sun Jingbo, Chen Wen, Yu Shun, Shen Ze, Tian Yuntao. 2017. Study on zircon (U-Th)/He dating technique. Acta Petrologica Sinica, 33(6): 1947~1956 (in Chinese with English abstract).
-
Tang Hongfeng, Qu Wenjun, Su Yuping, Hou Guangshun, Du Andao, Cong Feng. 2007. Genetic connection of Sareshike tin deposit with the alkaline A-type granites of Sabei body in Xinjiang: Constraint from isotopic ages. Acta Petrologica Sinica, 23(8): 1989~1997 (in Chinese with English abstract).
-
Tao Wei, Guo Ling, Zhou Ningchao, Li Yang, Wang Xing, Chen Tao, Bai Jianke. 2022. Zircon U-Pb age, geochemical characteristics and tectonic significance of the Baske granodiorite in East Junggar. Geological Review, 68(2): 488~506 (in Chinese with English abstract).
-
Vermeesch P. 2009. RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiation Measurements, 44: 409~410.
-
Vermeesch P, Tian Y T. 2014. Thermal history modelling: HeFTy vs. QTQt. Earth-Science Reviews, 139: 279~290.
-
Wang Bangyao, Jiang Changyi, Li Yongjun, Wu Hongen, Xia Zhaode, Lu Ronghui. 2009. Geochemistry and tectonic implications of Karamaili ophiolite in east Junggar of Xinjiang. Journal of Mineralogy and Petrology, 29(3): 74~82 (in Chinese with English abstract).
-
Wang Yannan, Cai Keda, Sun Min, Xiao Wenjiao, De Grave J, Wan Bo, Bao Zihe. 2018. Tracking the multi-stage exhumation history of the western Chinese Tianshan by apatite fission track (AFT) dating: Implications for the preservation of epithermal deposits in the ancient orogenic belt. Ore Geology Reviews, 100: 111~132.
-
Windley B F, Alexelev D, Xiao Wenjiao, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31~47.
-
Wolf R A, Farley K A, Kass D M. 1998. A sensitivity analysis of the apatite (U-Th)/He thermochronometer. Chemical Geology, 148: 105~114.
-
Wu Zhaojian, Han Xiaozhong, Ji Hui, Cai Yifeng, Xue Lie, Sun Saijun. 2021. Mesozoic-Cenozoic tectonic events of eastern Junggarbasin, NW China and their significance for uranium mineralization: Insights from seismic profiling and AFT dating analysis. Ore Geology Reviews, 139: 104488.
-
Xiao Wenjiao, Windley B F, Badarch G, Sun Shu, Li Jililang, Qin Kezhang, Wang Zhihong. 2004. Paleozoic accretionary and convergent tectonics of the southern Altaids: Implications for the lateral growth of Central Asia. Journal of the Geological Society, 161(3): 339~342.
-
Xiao Wenjiao, Han Chunming, Yuan Chao, Sun Min, Lin Shoufa, Chen Hanlin, Li Zilong, Li Jililang, Sun Shu. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis ofnorthern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2~4): 102~117.
-
Xiao Wenjiao, Windley B F, Yuan Chao, Sun Min, Han Chunming, Lin Shoufa, Chen Hanlin, Yan Quanren, Liu Dunyi, Qin Kezhang, Li Jiliang, Sun Shu. 2009. Paleozoic multiple subduction-accretion processes of the southern Altaids. American Journal of Science, 309(3): 221~270.
-
Xiao Wenjiao, Windley B F, Sun Shu, Li Jiliang, Huang Baochun, Han Chunming, Yuan Chao, Sun Min, Chen Hanlin. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477~507.
-
Xiao Wenjiao, Windley B F, Han Chunming, Liu Wei, Wan Bo, Zhang Ji'en, Ao Songjian, Zhang Zhiyong, Song Dongfang. 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Science Reviews, 186: 94~128.
-
Xiao Wenjiao, Song Dongfang, Windley B F, Li Jiliang, Han Chunming, Wan Bo, Zhang Ji'en, Ao Songjian, Zhang Zhiyong. 2019. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt. Science China Earth Sciences, 49(10): 1512~1545 (in Chinese with English abstract).
-
Xiao Wenjiao, Song Dongfang, Mao Qigui, Wan Bo, Zhang Ji'en, Ao Songjian, Zhang Zhiyong. 2022. How to determine the time limits of accretionary orogenesis? Earth Science, 47(10): 3770~3771(in Chinese).
-
Xiao Xuchang, Tang Yaoqing. 1991. Tectonic Evolution of the Southern Margin of the Paleo-Asian Composite Megasuture. Beijing: Science Press (in Chinese).
-
Xiao Xuchang, Tang Yaoqing, Feng Yimin, Zhu Baoqing, Li Jinyi, Zhao Min. 1992. Tectonic Evolution of the Northern Xinjiang and Its Adjacent Regions. Beijing: Geological Publishing House (in Chinese with English abstract).
-
Xiong Shuangcai, Zhang Zhengfeng, Li Guang, Liu Runze, Hua Xudeng, Zhao Fuzhuang, Zhou Pengfei, Li Guanlu. 2019. Zircon U-Pb dating, geochemistry and geological significance of alkaline granite in Laoyemiao area, East Junggar. Geological Review, 65(1): 221~231 (in Chinese with English abstract).
-
Xu Qinqin, Ji Jianqing, Zhao Lei, Gong Junfeng, Zhou Jing, He Guoqi, Zhong Dalai, Wang Jinduo, Griffiths L. 2013. Tectonic evolution and continental crust growth of northern Xinjiang in northwestern China: Remnant ocean model. Earth-Science Reviews, 126: 178~205.
-
Xu Qinqin, Zhao Lei, Niu Baogui, Zheng Rongguo, Yang Yaqi, Liu Jianhua. 2020. Early Paleozoic arc magmatism in the Kalamaili orogenic belt, northern Xinjiang, NW China: Implications for the tectonic evolution of the East Junggar terrane. Journal of Asian Earth Sciences, 194: 104072.
-
Xu Xingwang, Jiang Neng, Li Xianhua, Wu Chu, Qu Xun, Zhou Gang, Dong Lianhui. 2015. Spatial-temporal framework for the closure of the Junggar Ocean in central Asia: New SIMS zircon U-Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, East Junggar. Journal of Asian Earth Sciences, 111: 470~491.
-
Yang Gaoxue, Li Yongjun, Si Guohui, Wu Hongen, Jin Zhao, Zhang Yongzhi. 2010. LA-ICP-MS U-Pb zircon dating of the Beilekuduke granite in the Kalamaili area, East Junggar, Xinjiang, China and its geological implication. Geotectonica et Metallogenia, 34(1): 133~138 (in Chinese with English abstract).
-
Yang Gaoxue, Li Yongjun, Wu Hongen, Zhong Xing, Yang Baokai, Yan Cunxing, Yan Jing, Si Guohui. 2011. Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China. Journal of Asian Earth Sciences, 40(3): 722~736.
-
Yin A, Nie S, Craig P, Harrison T M, Ryerson F J, Qian Xianglin, Yang Geng. 1998. Late Cenozoic tectonic evolution of the southern Chinese Tien Shan. Tectonics, 17(1): 1~27.
-
Yin Jiyuan, Chen Wen, Hodges K V, Xiao Wenjiao, Cai Keda, Yuan Chao, Sun Min, Liu Liping, van Soest M C. 2018a. The thermal evolution of Chinese central Tianshan and its implications: Insights from multi-method chronometry. Tectonophysics, 722: 536~548.
-
Yin Jiyuan, Chen Wen, Xiao Wenjiao, Long Xiaoping, Tao Ni, Liu Liping, Yuan Chao, Sun Min. 2018b. Tracking the multiple-stage exhumation history and magmatic hydrothermal events of the West Junggar region, NW China: Evidence from 40Ar/39Ar and (U-Th)/He thermochronology. Journal of Asian Earth Sciences, 159: 130~141.
-
Yin Jiyuan, Wang Yannna, Hodges K V, Xiao Wenjiao, Thomson S N, Chen Wen, Yuan Chao, Sun Min, Cai Keda, Sun Jingbo. 2023. Episodic long-term exhumation of the Tianshan orogenic belt: New insights from multiple low-temperature thermochronometers. Tectonics, 42: e2022TC007469.
-
Zeng Lingjun, Niu Hecai, Bao Zhiwei, Shan Qiang, Li He, Li Ningbo, Yang Wubin. 2015. Petrogenesis and tectonic significance of the plagiogranites in the Zhaheba ophiolite, Eastern Junggar orogen, Xinjiang, China. Journal of Asian Earth Sciences, 113: 137~150.
-
Zhang Jin, Qu Junfeng, Zhang Beihang, Zhao Heng, Zheng Rongguo, Liu Jianfeng, Hui Jie, Niu Pengfei, Yun Long, Zhao Shuo, Zhang Yiping. 2022. Determination of an intracontinental transform system along the southern Central Asian Orogenic Belt in the latest Paleozoic. American Journal of Science, 322(7): 851~897.
-
Zhang Yuanyuan, Guo Zhaojie. 2010. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection, Acta Petrologica Sinica, 26(2): 421~430 (in Chinese with English abstract).
-
Zhang Yuanyuan, Pe-Poper G, Piper D J W, Guo Zhaojie. 2013. Early Carboniferous collision of the Kalamaili orogenic belt, North Xinjiang, and its implications: Evidence from molasses deposits. Geological Society of America Bulletin, 125(5~6): 932~944.
-
Zhang Zhaochong, Zhou Gang, Kusky T M, Yan Shenghao, Chen Bailin, Zhao Li. 2009. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, northwestern China: Major and trace element characteristics, Sr-Nd isotopic systematics and implications for tectonic evolution. Gondwana Research, 16(2): 201~215.
-
Zhang Zhengfeng, Xiong Shuangcai, Fan Xianglian. 2021. Zircon U-Pb dating, geochemistry and geological significance of Tongshan granite in Mutanyao area, East Junggar. Geological Review, 67(1): 231~241 (in Chinese with English abstract).
-
Zhang Zixin, Rong Jiayu, Di Qiaoling. 1983. Silurian Tuvaella gigantean faunule (brachiopoda) of the Barkol area, northeastern Xinjiang. Acta Palaeontologica Sinica, 22(3): 278~294 (in Chinese with English abstract).
-
Zhao Lei, Ji Jianqing, Xu Qinqin, Gong Junfeng, Tu Jiyao, Wang Jinduo. 2012. Karamaili strike-slipping fault and deformational sequence since Late Paleozoic in the northern Xinjiang. Acta Petrologica Sinica, 28(7): 2257~2268 (in Chinese with English abstract).
-
Zhao Lei, Niu Baogui, Xu Qinqin, Yang Yaqi. 2019. An analysis of Silurian-Carboniferous sedimentary and structural characteristics on both sides of Karamaili ophiolitic belt of Xinjiang and its significance. Geology in China, 46(3): 615~628 (in Chinese with English abstract).
-
Zhu Rixiang, Zhao Guochun, Xiao Wenjiao, Chen Ling, Tang Yanjie. 2021. Origin, accretion, and reworking of continents. Reviews of Geophysics, 59(3): e2019RG000689.
-
蔡雄飞, 王富明, 廖群安, 樊光明. 2015. 新疆东准卡拉麦里碰撞带南缘志留-泥盆系生物地层研究新进展. 资源调查与环境, 36(4): 244~251.
-
方爱民, 王世刚, 张俊敏, 藏梅, 方家虎, 胡健民. 2015. 新疆北部卡拉麦里蛇绿岩中辉长岩的锆石U-Pb年龄及其构造意义. 地质科学, 50(1): 140~154.
-
韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)——后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077~1086.
-
韩宝福, 郭召杰, 何国琦. 2010. “钉合岩体”与新疆北部主要缝合带的形成时限. 岩石学报, 26(8): 2233~2246.
-
何国琦, 李茂松, 刘德权, 唐延龄, 周汝洪. 1994. 中国新疆古生代地壳演化及成矿. 乌鲁木齐: 新疆人民出版社.
-
黄岗, 牛广智, 王新录, 郭俊, 宇峰. 2012. 新疆东准噶尔卡拉麦里蛇绿岩的形成和侵位时限——来自辉绿岩和凝灰岩LA-ICP-MS锆石U-Pb年龄的证据. 地质通报, 31(8): 1267~1278.
-
黄汲清, 姜春发, 王作勋. 1990. 新疆及邻区板块开合构造及手风琴式运动. 见: 305项目新疆地质科学编委会. 新疆地质科学第1辑. 北京: 地质出版社, 3~16.
-
李广伟. 2021. 构造地貌与低温热年代学若干问题探讨. 地质学报, 95(1): 214~226.
-
李继亮. 2004. 增生型造山带的基本特征. 地质通报, 23(9~10): 947~951.
-
李锦轶, 朱宝清, 冯益民. 1989. 南明水组和蛇绿岩之间不整合关系的确认及其意义. 中国区域地质, (3): 250~255.
-
李锦轶, 肖序常, 汤耀庆, 赵民, 朱宝清, 冯益民. 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征. 地质论评, 36(4): 305~316.
-
李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584~605.
-
李丽, 陈正乐, 祁万修, 王世新, 陈宣华, 吴益平, 宫红良, 魏新昌, 杨屹, 李学智. 2008. 准噶尔盆地周缘山脉抬升-剥露过程的FT证据. 岩石学报, 24(5): 1011~1020.
-
李舢, 王涛, 肖文交, 侯泉林. 2023. 中亚造山带东南缘从俯冲-增生到碰撞的构造-岩浆演化记录. 岩石学报, 39(5): 1261~1275.
-
李玮. 2007. 准噶尔西北缘造山带中生代盆地形成机制及构造演化. 中国地质科学院博士学位论文.
-
刘亚然, 简平, 张维, 石玉若, 王义召, 张履桥, 刘敦一. 2016. 新疆东准噶尔北塔山蛇绿混杂岩锆石SHRIMP U-Pb定年、氧同位素及其地质构造意义. 岩石学报, 32(2): 537~554.
-
聂晓勇, 刘家军, 苏大勇, 章享云. 2016. 新疆卡拉麦里清水东斜长花岗岩的锆石U-Pb年龄及地质意义. 中国地质, 43(5): 1729~1736.
-
舒良树, 卢华复, 印栋浩, 马瑞士, 夏飞, 卢汉. 2001. 新疆北部古生代大陆增生构造. 新疆地质, 19(1): 59~63.
-
舒良树, 王玉净. 2003. 新疆卡拉麦里蛇绿岩带中硅质岩的放射虫化石. 地质论评, 49(4): 408~412.
-
宋继叶, 秦明宽, 蔡煜琦, 郭强, 何中波, 刘章月, 曹煦, 陈志国. 2019. 准东构造隆升对砂岩型铀成矿作用的制约: 磷灰石裂变径迹证据. 地球科学, 44(11): 3910~3925.
-
苏玉平, 唐红峰, 丛峰. 2008. 新疆东准噶尔黄羊山碱性花岗岩体的锆石U-Pb年龄和岩石成因. 矿物学报, 28(2): 117~126.
-
孙敬博, 孙腾飞, 陈文, 喻顺, 尹继元, 李超, 张彦, 刘新宇. 2015. 新疆东天山红云滩地区构造-热演化探讨: 来自Ar-Ar和(U-Th)/He热年代学的约束. 岩石学报, 31(12): 3732~3742.
-
孙敬博, 陈文, 喻顺, 沈泽, 田云涛. 2017. 锆石(U-Th)/He定年技术研究. 岩石学报, 33(6): 1947~1956.
-
唐红峰, 屈文俊, 苏玉平, 侯广顺, 杜安道, 丛峰. 2007. 新疆萨惹什克锡矿与萨北碱性A型花岗岩成因关系的年代学制约. 岩石学报, 23(8): 1989~1997.
-
陶威, 郭岭, 周宁超, 李阳, 王星, 陈涛, 白建科. 2022. 东准噶尔巴斯克花岗岩闪长岩锆石U-Pb年龄、地球化学特征及其构造意义. 地质论评, 68(2): 488~506.
-
汪帮耀, 姜常义, 李永军, 吴宏恩, 夏昭德, 卢荣辉. 2009. 新疆东准噶尔卡拉麦里蛇绿岩的地球化学特征及大地构造意义. 矿物岩石, 29(3): 74~82.
-
肖文交, 宋东方, Windley B F, 李继亮, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学(地球科学), 49(10): 1512~1545.
-
肖文交, 宋东方, 毛启贵, 万博, 张继恩, 敖松坚, 张志勇. 2022. 如何有效厘定增生造山作用时限? 地球科学, 47(10): 3770~3771.
-
肖序常, 汤耀庆. 1991. 古中亚复合巨型缝合带南缘构造演化. 北京: 科学出版社.
-
肖序常, 汤耀庆, 冯益民, 朱宝清, 李锦轶, 赵民. 1992. 新疆北部及其邻区大地构造. 北京: 地质出版社.
-
熊双才, 张征峰, 李广, 刘润泽, 华叙登, 赵富庄, 周鹏飞, 李关禄. 2019. 东准噶尔老爷庙地区碱性花岗岩锆石U-Pb定年、地球化学及其地质意义. 地质论评, 65(1): 221~231.
-
杨高学, 李永军, 司国辉, 吴宏恩, 金朝, 张永智. 2010. 东准卡拉麦里地区贝勒库都克岩体锆石LA-ICPMS U-Pb测年及地质意义. 大地构造与成矿学, 34(1): 133~138.
-
张元元, 郭召杰. 2010. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究. 岩石学报, 26(2): 421~430.
-
张征峰, 熊双才, 范香莲. 2021. 东准噶尔木炭窑地区同造山花岗岩锆石U-Pb定年、地球化学及地质意义. 地质论评, 67(1): 231~241.
-
张梓歆, 戎嘉余, 邸巧玲. 1983. 新疆巴里坤地区志留纪的大型图瓦贝化石. 古生物学报, 22(3): 278~294.
-
赵磊, 季建清, 徐芹芹, 龚俊峰, 涂继耀, 王金铎. 2012. 新疆北部卡拉麦里晚古生代走滑构造及其叠加变形序次. 岩石学报, 28(7): 2257~2268.
-
赵磊, 牛宝贵, 徐芹芹, 杨亚琦. 2019. 新疆东准噶尔卡拉麦里蛇绿岩带两侧志留系—石炭系沉积和构造特征分析及其意义. 中国地质, 46(3): 615~628.
-
摘要
东准噶尔造山带(简称东准噶尔)是中亚造山带的重要组成部分,是造山带时空演化与造山作用方式研究的天然实验室。自古生代以来,东准噶尔经历了多阶段的构造演化,前人的研究多集中于古生代大地构造格局的恢复和构造演化模型的建立,对构造-热演化历史的解剖相对薄弱,尤其缺少晚古生代剥露历史的刻画。卡拉麦里山是东准噶尔造山带的重要构造地貌单元,揭示其隆升-剥露过程对于认识东准噶尔造山带的构造-热演化历史具有重要的意义。本文对卡拉麦里山东段的4件沉积岩样品进行了锆石(U-Th)/He、磷灰石裂变径迹与磷灰石(U-Th-Sm)/He低温热年代学分析,获得了该区晚古生代—中生代的隆升-剥露信息。热历史反演结果表明,东准噶尔经历了晚石炭世—早二叠世(330~290 Ma)、早二叠世晚期—中二叠世(285~260 Ma)、三叠纪(250~230 Ma)、早白垩世(135~115 Ma)4期快速剥露。第1期(330~290 Ma)剥露推测与额尔齐斯-斋桑洋在晚石炭世的闭合有关;第2期(285~260 Ma)剥露推测与晚古生代卡拉麦里构造带的右行走滑变形有关;第3期(250~230 Ma)剥露推测与羌塘地块和昆仑-柴达木地块碰撞的远程效应有关;第4期(135~115 Ma)剥露推测是北侧蒙古-鄂霍茨克洋的关闭和南侧羌塘地块与拉萨地块碰撞的联合作用的结果。
Abstract
The East Junggar orogenic belt, a significant segment of the Central Asian orogenic belt, represents an excellent natural laboratory for investigating the spatiotemporal evolution and the orogenic patterns of crustal deformation. This region has undergone complex, multistage evolution since the late Paleozoic, with extensive research focusing on reconstructing its Paleozoic tectonic framework and establishing tectonic evolution models. However, studies on the tectono-thermal evolution of the region remain insufficient, particularly regarding constraints on late Paleozoic exhumation. The Kalamaili Mountain, a prominent tectonic and geomorphological unit in the East Junggar orogenic belt, holds crucial information about the region's uplift and exhumation history. Investigating its tectono-thermal evolution can provide valuable insights into the broader tectonic processes of the East Junggar. This study presents new zircon (U-Th)/He, apatite (U-Th-Sm)/He, and apatite fission track data from four sedimentary rocks collected from the eastern part of the Kalamaili Mountain. These thermochronological data are used to constrain the late Paleozoic-Mesozoic uplift and exhumation history of the region. Thermal history modeling reveals four distinct episodes of rapid exhumation in the East Junggar, including the Late Carboniferous-Early Permian (330~290 Ma), late Early Permian-Middle Permian (285~260 Ma), Triassic (250~230 Ma) and the Early Cretaceous (135~115 Ma). The first episode may be linked to the closure of the Irtysh-Zaisan in the Late Carboniferous. The second episodeis likely associated with dextral strike-slip deformation of the Kalamaili tectonic belt in the late Paleozoic. The third episode may be interpreted as a response to the distal effects of the collision between the Qiangtang and Kunlun-Qaidam blocks. The last episode is regarded to be the result of the closure of the Mongol-Okhotsk Ocean in the north and the collision between the Qiangtang and Lhasa blocks in the south.
关键词
磷灰石裂变径迹 ; 锆石与磷灰石(U-Th)/He ; 剥露 ; 晚古生代 ; 东准噶尔