-
天然气水合物俗称“可燃冰”,多以固态等形式赋存于陆架边缘海底沉积物中。常压下1 m3的水合物可释放出0.8 m3的水和164 m3的天然气,具有能量密度高、燃烧无污染等特点。据初步估算,全球水合物蕴藏的天然气资源总量约为2.1×1016 m3,相当于全球已探明传统化石能源碳总量的两倍(Sloan and Koh,2007),推动其规模化商业开发对保障国家能源安全、促进低碳绿色发展具有重要意义。
-
2002年起,美国、加拿大、日本等国家针对砂质储层水合物以降压开采为主要手段,先后实施了5次试采,存在单井日产气量低、稳产时间短等共性问题,均未实现预期目标(Moridis et al.,2005; Numasawa,2008; Schoderbek et al.,2013; Terao et al.,2014; Oyama and Masutani et al.,2017)。中国南海天然气水合物资源潜力巨大,储层以泥质粉砂为主,具有未成岩、渗透率低、胶结性差等特点,处在天然气水合物资源“金字塔”底部,与砂质储层相比开采难度更大。通过开展理论研究与模拟实验,并创新试采关键技术,中国于2017年、2020年在南海神狐海域完成了探索性试采和试验性试采工作,加快了产业化前进的步伐(Li Jinfa et al.,2018; Ye Jianliang et al.,2020)(表1)。
-
通过剖析中国南海北部泥质粉砂型水合物试采全过程发现:试采储层-井筒所构成的试采系统内物理化学状态极其复杂,系统持续失温,引起水合物再次生成,导致储层渗流通道、生产井筒发生堵塞,流动保障困难,缺乏多元温压调控与安全流动机制,严重制约水合物分解产气效率。
-
总体上看来,国内外学者在天然气水合物系统成藏、试采工程技术等领域研究取得了一系列创新性成果(Wu Nengyou et al.,2017; Bian Hang et al.,2020; Ning Fulong et al.,2020; Qin Xuwen et al.,2020a; Wei Na et al.,2020; Zhang Wei et al.,2020)。在开采理论方面,基于实验与数值模拟,开展了天然气水合物相变习性、多相渗流、热流耦合等多方面富有成效的研究工作(Mahabadi and Jang,2007; Tang Liangguang et al.,2007; Dai Sheng and Seol,2014; Liu Tao and Liu Xuewei,2018; Ma Shuai et al.,2019; Cai Jianchao et al.,2020; Li Shuxia et al.,2020; Wei Changfu et al.,2020; Lu Cheng et al.,2021a,2021b,2022a,2022b,2023; Sun Jinsheng et al.,2021; Bian Hang et al.,2023a; Mahmood et al.,2023; Li Yaobin et al.,2024),但针对中国南海北部泥质粉砂型天然气水合物试采机制研究尚属起步阶段,尤其是基于降压法实现规模化开采所面临的补热、保稳、增渗三方面瓶颈问题研究甚少,仍需聚焦储层实际情况,持续探索开采机理。
-
本文针对南海北部泥质粉砂天然气水合物降压开采涉及的相变习性演化、有效渗透率变化、热流耦合模式、试采系统温度场调控、矿场尺度增温防冰等五个关键问题,综述了笔者团队近年来取得的最新研究成果,并对未来研究的发展方向进行了展望。
-
1 天然气水合物相变习性演化研究
-
天然气水合物相变指水合物-分解气-水之间的相态转变,是储层产气的基础。相变受多参量多机制共同作用,在机理和效应上仍存在较大争议,特别是针对泥质粉砂水合物的研究尚未形成统一的认识,是当前研究的重点和未来发展方向之一。
-
基于降压开采法,结合计算机断层扫描和数字岩芯技术,开展泥质粉砂水合物相变临界温压条件、裂隙充填型水合物习性演化、不同矿物组分构成对水合物相变影响等研究。研究表明,泥质粉砂水合物相平衡曲线与纯水-甲烷体系相比,明显向左偏移,分解温度更低、分解焓更大,易形成二次水合物;利用改进后的相平衡预测模型,可精准预测南海水合物分解的临界温度压力基点(Geng Lantao et al.,2021)。多孔介质水合物相变是始终处于动态平衡状态,其形成与分解同时存在,裂隙内的连片状、簇状水合物优先分解,储层渗流能力可得到大幅提升,最终转化为难以分解的孤立状;其中,连续片状水合物是决定含裂隙水合物渗透率的主控因素(Bian Hang et al.,2022)(图1)。水合物通常以微裂缝填充和颗粒置换的形式存在于富含砂的黏土质淤泥中;其中,富含黏土的黏土质淤泥沉积物中,生物化石(有孔虫)为水合物聚集提供了潜在空间,水合物的相变滞后效应比富含石英的沉积物更显著,有孔虫内部这种滞后效应比基质中更为严重;在水合物分解过程中形成了分散的孔隙填充水合物,对连续的气体产量产生不利影响(Bian Hang et al.,2023b)(图2)。
-
2 泥质粉砂水合物有效渗透率研究
-
天然气水合物分解区渗流是指水合物分解后的气、水、孤立-分散状水合物等多相态物质在储层中的流动,是产气的关键。当前针对泥质粉砂水合物从分解前缘至生产井筒区域内的渗流规律研究相对薄弱,是当前及未来研究亟需突破的重点方向。
-
基于低场核磁共振技术、分子动力学模拟和自主研发的矿场尺度水合物逆相变装置等,开展泥质粉砂水合物饱和渗透率变化关系、泥质粉砂多孔介质内“水锁”形成机制、二次水合物形成主控因素等多个内容的研究。研究表明,基于降压法开采,泥质粉砂水合物有效渗透率演变趋势介于现有不同的拟合模型之间,单一模型均难以准确表征水合物饱和度与储层有效渗透率间的动态关系;受复杂孔隙结构与气水分布影响,沉积物中存在多种模式的水合物习性,其有效渗透率的动态演化是由多机制、多因素共同控制的极为复杂的过程(Zhang Qian et al.,2022)(图3)。泥质粉砂多孔介质内对于不同水饱和度存在水膜的最大厚度,水气界面的表面张力与水壁界面的吸附之间的竞争控制了水锁的发展;含水饱和度越高“水锁”形成时间越早,“水锁”一旦形成,甲烷流量几乎呈线性下降,水气界面的表面积持续减小,气相极难突破水膜在细小喉道中发生有效渗流,分解气有效流动能力急剧降低(Zheng Chao et al.,2023)(图4)。节流膨胀效应对储层水合物二次形成的位置、时间等特征有着重要影响:降压初期,井壁处节流膨胀效应强烈,“温度漏斗”在井壁处斜率最大,井周5 m范围内易形成二次水合物;压差越大,水合物二次形成范围越向井壁集中,甚至产生冰堵,有效渗透率急剧降低(Ma Chao et al.,2022)(图5)。中国第一轮海域水合物试采使用垂直井连续降压60天,分解气量占累积产气量的85%;若持续强降压试采,压降漏斗传导将受到限制,水合物分解前缘位置处将形成大范围二次水合物,受有效渗透率降低影响,水合物分解产气速率将持续下降(Qin Xuwen et al.,2020b)。
-
图1 不同压力诱导下的水合物形成状态(据Bian Hang et al.,2022)
-
Fig.1 Hydrate formation under different pressure-induced conditions (after Bian Hang et al., 2022)
-
图2 试采矿体泥质粉砂储层中有孔虫的三维分布(据Bian Hang et al.,2023b)
-
Fig.2 Three-dimensional distribution of foraminifera in clayey silts reservoirs of the trial ore body (after Bian Hang et al., 2023b)
-
图3 不同模型计算的水合物饱和度与渗透率/初始渗透率的关系图(据Zhang Qian et al.,2022)
-
Fig.3 Hydrate saturation vs. permeability/initial permeability calculated by different models (after Zhang Qian et al., 2022)
-
图4 泥质粉砂多孔介质内“水锁”形成过程(据Zheng Chao et al.,2023)
-
Fig.4 The formation process of “water lock” in the porous medium of clayey silts (after Zheng Chao et al., 2023)
-
3 天然气水合物热流耦合模式研究
-
天然气水合物储层热补给、显热、潜热和渗流是制约水合物能够长时、有效分解的关键要素,当一个过程受多种因素影响时,不同因素之间的相对强度往往对该过程产生重要影响。热量和流动性之间的相对强度发生变化时,存在不同的水合物分解优势模式。基于此,天然气水合物热流耦合模式的研究尤为重要。
-
基于实验模拟、南海水合物储层特性以及日本首次水合物试采监测数据,利用自主研发的天然气水合物多物理场耦合数值模拟器,针对水合物传热-流动控制模式对储层多物理场与产气变化相互作用开展研究。研究表明,基于反映水合物分解综合驱动力的“相态平衡距”法,证实储层初始温度越高开采的连续性越强;在无外部热源补给情况下,较高的产气速率,易造成孔隙压力上升,叠加分解热消耗,导致储层温度下降,分解速率减缓直至停止分解;提出了计算生产过程中水合物分解消耗总热量的热力学方法,通过计算得到日本第一轮储层显热贡献占总热供应95%以上,证实了储层显热是水合物分解焓的主要来源(Li Shouding et al.,2022)(图6)。证实了南海水合物泥质粉砂储层存在启动压力梯度,渗流方式呈现出非达西行为,且流速和压力梯度之间的关系是非线性的;启动压力梯度的存在对气体开采具有显著影响,梯度越大“压力漏斗”与“温度漏斗”半径越小,但“温度漏斗”的深度呈现先升高后减小的变化趋势,底水锥进程度降低,压力传递受限,对产量提升具有明显的抑制作用(Lu Cheng et al.,2022c)(图7)。水合物分解所消耗的热量不仅来自热边界补充的热量,还来自显热和潜热;来自热边界的热量功率总是大于等于零,显热和潜热在水合物分解阶段大于零,但在温度恢复阶段小于零,甲烷水合物完全分解后,温度可逐渐恢复到初始状态;根据不同热导率和渗透率的水合物分解情况,天然气水合物存在三种不同的分解控制模式:流动模式下的分解速率主要受地层渗流阻力影响;传热模式下的分解速率受热量供应影响显著;热流耦合模式下,渗透率与供热量的提高都会对产气量的提升产生积极作用。其中,南海泥质粉砂水合物储层主要处于传热控制模式,建立有效的储层-井筒试采系统多元温压调控与安全流动机制,将有助于提高我国南海天然气水合物的产气效率(Zhang Zhaobin et al.,2023)(图8)。
-
图5 地层压力、水合物平衡压力随时间分布以及分解区储层温度和压力的分布(a~c)(据马超等,2022)
-
Fig.5 Formation pressure, hydrate equilibrium pressure distribution over time and distribution of reservoir temperature and pressure in the decomposition zone (a~c) (after Ma Chao et al., 2022)
-
图6 储层显热、热对流和热传导对水合物离解的贡献(据Li Shouding et al.,2022)
-
Fig.6 Contribution of sensible heat, heat convection and heat conduction to hydrate dissociation (after Li Shouding et al., 2022)
-
4 天然气水合物温度场调控研究方法
-
理论与实践证实,采用降压法开展海域天然气水合物试采是相对经济有效的,试采中水合物相变、气-液两相渗流与流动是在储层和井筒两个不同物理域共同构成的复杂试采系统内发生的,揭示水合物储层温度场改造与不同储层特性下的试采井筒参数变化机理,建立试采系统多手段温压调控机制,是当前亟需突破的重点方向。
-
针对天然气水合物降压法规模化开采面临的“储层-井筒”试采系统补热、井周储层保稳与增渗三方面瓶颈问题,创新建立了“天然气水合物原位补热降压充填开采方法”和“磁流体防冰防二次水合物材料与技术”(李守定等,2020)(图9)。研究表明,基于“天然气水合物原位补热降压充填开采方法”,将氧化钙基覆膜材料注入天然气水合物储层,氧化钙基覆膜材料与储层中的水在一定时间范围内反应放出大量热量,能够充分补充天然气水合物分解所需的热量;同时,氧化钙基材料与水反应后生成的固态氢氧化钙,体积膨胀,孔隙增大,既能够填充了天然气水合物分解后留下的空隙,又提高了储层的渗透性,具有潜在的原位致缝增渗的作用,该方法能够有效解决降压法规模化开采面临的储层-井筒“补热”、井周地层“保稳”与“增渗”问题(徐涛等,2021; Xu Tao et al.,2021)。磁性纳米颗粒具有抑冰和抑制水合物生成的双重功能,同时又能在交变磁场中实现一定距离的定向加热,磁流体在磁场的作用下能够形成液-液界面,这种液-液界面降低了冰在管壁上的黏附力,使得水的结冰温度降低,同样,磁流体形成的光滑液-液界面也能降低水合物的黏附力,抑制水合物的形成,随着磁流体浓度的提高,抑制水合物成核的时间会显著变长;储层改造物理模拟实验表明,与石英砂相比,经过磁流体改造后的石英砂形成甲烷水合物的速度明显变慢,在交变磁场的作用下,升温除冰效果明显(图10)。
-
图7 不同压力梯度下水合物开采压降漏斗(a)和温降漏斗演化图(b)(据Lu Cheng et al.,2022c)
-
Fig.7 Evolution of hydrate mining pressure drop funnel (a) and temperature drop funnel (b) under different pressure gradients (after Lu Cheng et al., 2022c)
-
图8 水合物分解关键物理场演化结果与全球典型水合物储层分解控制模式分布情况(据Zhang Zhaobin et al.,2023)
-
Fig.8 The evolution results of key physics of hydrate decomposition and the distribution of decomposition control models of typical hydrate reservoirs in the world (after Zhang Zhaobin et al., 2023)
-
(a)—气体出口处的温度随时间的变化;(b)—水合物解离模式与世界各地不同水合物沉积物的参数
-
(a) —the variation of the temperature at the gas outlet with time; (b) —the hydrate dissociation modes with the parameters of different hydrate sediments around the world
-
图9 天然气水合物原位补热降压充填开采方法原理图(a~d)(据李守定等,2020)
-
Fig.9 Schematic diagram of in-situ heating and depressurization filling production method of natural gas hydrate (a~d) (after Li Shouding et al., 2020)
-
图10 磁性纳米颗粒涂层石英砂与磁性纳米颗粒抑制四氢呋喃水合物效果图
-
Fig.10 Effect of magnetic nanoparticle-coated quartz sand and magnetic nanoparticle inhibition of tetrahydrofuran hydrate
-
(a)—磁性纳米颗粒涂层石英砂呈现明显黑色,扫描电镜结果显示石英砂的表面及孔隙内含有一层磁性纳米颗粒膜;(b)—将磁性纳米颗粒涂层的石英砂置于冷台的薄片上,四氢呋喃水溶液在-5℃、-10℃、-15℃、-22℃均保持液体状态,而-23℃时形成不透明的固体,表明四氢味喃水合物已经开始形成
-
(a) —the magnetic nanoparticle coating of quartz sand was obviously black, and the scanning electron microscopy results showed that the surface and pores of the quartz sand contained a layer of magnetic nanoparticle film; (b) —when the magnetic nanoparticle-coated quartz sand was placed on a thin sheet of the cold table, the aqueous solution of tetrahydrofuran remained liquid at-5℃, -10℃, -15℃, and-22℃, while an opaque solid was formed at-23℃, indicating that the tetrahydrofuran hydrate had begun to form
-
5 矿场尺度天然气水合物储层增温防冰井场试验
-
自然资源部青海木里天然气水合物与冻土环境野外科学观测研究站是全球唯一针对天然气水合物开展研究的野外综合科考站,拥有天然气水合物调查井、发现井、试采井十余口,基于矿场尺度井下原位水合物物理模拟试验平台,可为不同类型天然气水合物勘查开发研制的新方法、新技术、新设备试验验证提供支撑。
-
2023年8月至9月,笔者团队针对两轮海域水合物试采中“储层-井筒”持续失温,形成二次水合物,影响产气量提升的难题,打破向井筒内注入高温液体增加水合物储层热量的固有补热思路,基于原位补热降压充填开采理论和自主研发的水合物“储层-井筒”复合生热材料,在自然资源部青海木里天然气水合物与冻土环境野外科学观测研究站井深40~220 m范围内的3套层位,首次完成了温度场改造井场验证试验,并采用了分布式光纤温度传感系统(DTS)连续监测储层井筒内温压演化。试验结果表明:最短改造用时30 min,温度改造最大垂向厚度20 m,最高增温21.3℃,成功验证了井场尺度下水合物试采系统温度场改造方法的可行性(图11)。该结果不仅为建立海域多类型水合物试采系统温压场演化与流动保障机制奠定了坚实基础,也为完善水合物储层渗流能力提升模式提供了重要支撑。
-
6 结论和展望
-
(1)中国南海北部天然气水合物资源勘探开发潜力巨大,储层以泥质粉砂为主,与砂质储层相比开采难度更大。天然气水合物开采产气效率受多因素多机制共同作用,涉及相变习性演化、有效渗透率变化、热流耦合模式、试采系统温度场调控等多方面,降压开采机理复杂。
-
(2)泥质粉砂型水合物相变始终处于动平衡状态,生物化石为水合物聚集提供了潜在空间,储层富含黏土水合物相变滞后效应显著。降压初期,井壁处节流膨胀效应强烈,“温度漏斗”斜率最大,易形成二次水合物,一旦形成“水锁”,气相渗流能力将明显降低。在无外部热源补给情况下,较高的产气速率,易造成水合物分解速率减缓直至停止分解。受传热控制模式影响,与其他储层相比分解消耗热量更多,亟需建立有效的“储层-井筒”试采系统多元温压调控与安全流动机制,以提高产气效率。
-
图11 祁连山木里水合物野外站水合物井内不同层位温度改造试验现场作业与温度场演化图
-
Fig.11 Evolution of temperature field operation and temperature field at different horizons in the hydrate well of muli hydrate field station in Qilian Mountains
-
(3)矿场尺度水合物试采系统温度场改造试验证实,基于原位补热降压充填开采方法能有效实现对储层-井筒的温度场改造,可进一步优化提高储层渗流能力,实现增渗扩产目的。
-
对于南海天然气水合物开采储层相变与渗流机理的研究,未来可侧重于以下几个方面:
-
(1)在南海水合物试采生产动态特征与水合物二次形成响应规律方面,基于前两轮南海水合物降压试采生产数据、试采矿体三维地质模型,需进一步构建精细化试采三维数值模型,建立试采井筒温度、压力、生产数据解释模型,深入分析不同井型、不同降压方式下储层-井筒二次水合物生成演化及分布规律,揭示生产压差与水合物二次形成的响应关系。
-
(2)在南海水合物储层-井筒温压场变化与二次水合物生成耦合机理方面,还需基于气/液/固多相流理论与扩散型及渗漏型水合物储层特点,建立含水合物相变及储层参数变化的井筒多相流动模型,揭示不同储层特性下的试采井筒气液固三相相互作用机理,针对储层/井筒流动特征差异性大的难点,厘清模型求解的主控过程。
-
(3)在南海水合物试采系统多元温压调控与安全流动机制方面,针对南海水合物试采系统温度场调控需求,还需进一步探索储层“增温防冰”方法,提出适用于南海水合物储层的温压联合调控策略,实现储层渗流通道、生产井筒内气液两相流体高效流动,构建以降压稳产为目标的产能与流动保障一体化调控方法。
-
致谢:自然资源部青海木里天然气水合物与冻土环境野外科学观测研究站为本研究提供了试验基地与必要支撑,在此表示感谢!
-
参考文献
-
Bian Hang, Xia Yuxuan, Lu Cheng, Qin Xuwen, Meng Qingbang, Lu Hongfeng. 2020. Pore structure fractal characterization and permeability simulation of natural gas hydrate reservoir based on CT images. Geofluids, 2020: 6934691.
-
Bian Hang, Xu Wenqin, Luo Wanjing, Ma Chao, Zhu Jian, Lu Cheng, Zhou Yingfang. 2022. Evolution of hydrate habit and formation properties evolution during hydrate phase transition in fractured-porous medium. Fuel, 19(12): 1~13.
-
Bian Hang, Qin Xuwen, Wang Zhiyuan, Luo Wanjing, Cheng Lu, Zhou Yingfang. 2023a. Pore-scale investigation of decomposition-methods-dependent fluid flow properties in hydrate-bearing sediments. SPE Journal, 29(1): 138~156.
-
Bian Hang, Xu Wenqin, Sun Jinsheng, Luo Wanjing, Lu Cheng, Zhu Jian, Ma Chao, Zhou Yingfang. 2023b. The impact of mineral compositions on hydrate morphology evolution and phase transition hysteresis in natural clayey silts. Energy, 274: 127303.
-
Cai Jianchao, Xia Yuxuan, Xu Sai, Tian Haitao. 2020. Advances in multiphase seepage characteristics of natural gas hydrate sediments. Chinese Journal of Theoretical and Applied Mechanics, 52(1): 208~223.
-
Chen Lin, Yamada H, Kanda Y, Okajima J, Komiya A, Maruyama S. 2017. Investigation on the dissociation flow of methane hydrate cores: Numerical modeling and experimental verification. Chemical Engineering Science, 163: 31~43.
-
Dai Sheng, Seol Y. 2014. Water permeability in hydrate-bearing sediments: A pore-scale study. Geophysical Research Letters, 41(12): 4176~4184.
-
Geng Lantao, Cai Jin, Lu Cheng, Qin Xuwen, Qi Rongrong, Meng Fanle, Xie Yan, Sha Zhibin, Wang Xiaohui, Sun Changyu. 2021. Phase equilibria of natural gas hydrates in bulk brine and marine sediments from the South China Sea. Journal of Chemical and Engineering Data, 66(11): 4064~4074.
-
Holland M E, Schultheiss P J, Roberts J A. 2019. Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-02, offshore India. Marine and Petroleum Geology, 108: 407~423.
-
Li Jinfa, Ye Jianliang, Qin Xuwen, Qiu Haijun, Wu Nengyou, Lu Hailong, Xie Wenwei, Lu Jingan, Fei Peng, Xu Zhenqiang, Lu Cheng, Kuang Zenggui, Wei Jiangong, Liang Qianyong, Lu Hongfeng, Kou Beibei. 2018. The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1): 5~16.
-
Li Shouding, Li Xiao, Wang Sijing, Sun Yiming. 2020. In-situ heating and depressurization filling mining method for natural gas hydrate. Journal of Engineering Geology, 28(2): 282~293(in Chinese with English abstract).
-
Li Shouding, Sun Yiming, Lu Cheng, Chen Weichang, Liu Shimin, Chen Lin, Li Xiao. 2022. A thermodynamic method for the estimation of free gas proportion in depressurization production of natural gas hydrate. Frontiers in Earth Science, 10: 859111.
-
Li Shuxia, Guo Shangping, Chen Yueming, Zhang Ningtao, Wu Didi. 2020. Advances and recommendations for multi-field characteristics and coupling seepage in natural gas hydrate development. Chinese Journal of Theoretical and Applied Mechanics, 52(3): 828~842.
-
Li Yaobin, Xu Tianfu, Xin Xin, Xia Yingli, Zhu Huixing, Yuan Yilong. 2024. Multi-scale comprehensive study of the dynamic evolution of permeability during hydrate dissociation in clayey silt hydrate-bearing sediments. Advances in Geo-Energy Research, 12(2): 127~140.
-
Liang Lei, Seol Y, Choi J H, Kneafsey T J. 2019. Pore habit of methane hydrate and its evolution in sediment matrix—Laboratory visualization with phase-contrast micro-CT. Marine and Petroleum Geology, 104: 451~467.
-
Liu Tao, Liu Xuewei. 2018. Identifying the morphologies of gas hydrate distribution using P-wave velocity and density: A test from the GMGS2 expedition in the South China Sea. Journal of Geophysics and Engineering, 15(3): 1008~1022.
-
Lu Cheng, Xia Yuxuan, Sun Xiaoxiao, Bian Hang, Qiu Haijun, Lu Hongfeng, Luo Wanjing, Cai Jianchao. 2019. Permeability evolution at various pressure gradients in natural gas hydrate reservoir at the Shenhu area in the South China Sea. Energies, 12(19): 1~13.
-
Lu Cheng, Qin Xuwen, Yu Lu, Geng Lantao, Mao Wenjing, Bian Hang, Meng Fanle. 2021a. The characteristics of gas-water two-phase radial flow in clay-silt sediment and effects on hydrate production. Geofluids, 2021: 6623802.
-
Lu Cheng, Qin Xuwen, Mao Wenjing, Ma Chao, Geng Lantao, Yu Lu, Bian Hang, Meng Fanle, Qi Rongrong. 2021b. Experimental study on the propagation characteristics of hydraulic fracture in clayey-silt sediments. Geofluids, 98(66): 1~13.
-
Lu Cheng, Xie Pengfei, Li Hui, Zhang Xuhui, Lu Xiaobing, Zhang Bin, Zhang Ziqin, Qin Xuwen, Zhang Shuai, Bian Hang. 2022a. Study on the mechanical properties of silty clay sediments with nodular hydrate occurrence. Journal of Marine Science and Engineering, 10(8): 1059.
-
Lu Cheng, Xia Yuxuan, Qin Xuwen, Ma Chao, Bian Hang, Xing Donghui, Lu Hongfeng. 2022b. Micro-and nano-scale pore structure characterization and mineral composition analysis of clayey-silt porous media of natural gas hydrate reservoir in the South China Sea. Geofluids, 37(28): 1~10.
-
Lu Cheng, Qin Xuwen, Ma Chao, Yu Lu, Geng Lantao, Bian Hang, Zhang Keni, Zhou Yingfang. 2022c. Investigation of the impact of threshold pressure gradient on gas production from hydrate deposits. Fuel, 319: 123569.
-
Lu Cheng, Qin Xuwen, Sun Jinsheng, Wang Ren, Cai Jianchao. 2023. Research progress and scientific challenges in the depressurization exploitation mechanism of clayey-silt natural gas hydrates in the northern South China Sea. Advances in Geo-Energy Research, 10(1): 14~20.
-
Ma Chao, Qin Xuwen, Sun Jinsheng, Yu Lu, Li Shengli, Wang Jintang, Mao Wenjing, Bian Hang, Lu Cheng. 2022. Secondary formation of peri-well hydrate in gas hydrate reduction exploitation process. Journal of China University of Petroleum (Natural Science Edition), 46(6): 21~30(in Chinese with English abstract).
-
Ma Shuai, Xue Wentao, Liu Xuewei. 2019. Identifying the occurrence type of gas hydrate via singularity analysis. Journal of Geophysics and Engineering, 16(1): 229~241.
-
Mahabadi N, Jang J. 2014. Relative water and gas permeability for gas production from hydrate-bearing sediments. Geochemistry, Geophysics, Geosystems, 15(6): 2346~2353.
-
Mahmood M N, Guo B. 2023. Gas production from marine gas hydrate reservoirs using geothermal-assisted depressurization method. Advances in Geo-Energy Research, 7(2): 90~98.
-
Moridis G J, Collett T S, Dallimore S, Inoue T, Mroz T. 2005. Analysis and interpretation of the thermal test of gas hydrate dissociation in the JAPEX/JNOC/GSC. Mallik 5L-38 gas hydrate production research well. Bulletin-Geological Survey of Canada, 585: 1~21.
-
Ning Fulong, Liang Jinqiang, Wu Nengyou, Zhu Youhai, Wu Shiguo, Liu Changling, Wei Changfu, Wang Dongdong, Zhang Zhun, Xu Meng, Liu Zhichao, Li Jing, Sun Jiaxin, Ou Wenjia. 2020. Reservoir characteristics of natural gas hydrates in China. Natural Gas Industry, 40(8): 1~24.
-
Numasawa M. 2008. Objectives and operation over view of the JOGMEC/NRCan/Aurora Mallik gas hydrate production test. Proceedings of the 6th International Conference on Gas Hydrates, 1: 6.
-
Oyama A, Masutani S M. 2017. A review of the methane hydrate program in Japan. Energies, 10(10): 1447.
-
Qin Xuwen, Lu Jingan, Lu Hailong, Qiu Haijun, Liang Jinqiang, Kang Dongju, Zhan Linsen, Lu Hongfeng, Kuang Zenggui. 2020a. Coexistence of natural gas hydrate free gas and water in the gas hydrate system in the Shenhu area South China Sea. China Geology, 3(2): 210~220.
-
Qin Xuwen, Liang Qianyong, Ye Jianliang, Yang Lin, Qiu Haijun, Xie Wenwei, Liang Jingqiang, Lu Jin'an, Lu Cheng, Lu Hailong, Ma Baojin, Kuang Zenggui, Wei Jiangong, Lu Hongfeng, Kou Beibei. 2020b. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea. Applied Energy, 278: 115649.
-
Schoderbek D, Farrell H, Howard J, Raterman K, Silpngarmlert S, Martin K, Smith B, Klein P. 2013. ConocoPhillips gas hydrate production test United States. Oil & Natural Gas Technology, 1123878.
-
Sloan E D, Koh C A. 2007. Clathrate Hydrates of Natural Gases. New York: CRC Press.
-
Sun Jinsheng, Cheng Yuanfang, Qin Xuwen, Sun Youhong, Jin Yan, Wang Zhiyuan, Li Shuxia, Lu Cheng, Qu Yuanzhi, Lü Kaihe, Wang Chengwen, Wang Jintang, Wang Ren. 2021. The exploration and production test of gas hydrate and its research progress and exploration prospect in the northern South China Sea. Bulletin of National Natural Science Foundation of China, 35(6): 940~951.
-
Tang Liangguang, Li Xiaosen, Feng Ziping, Li Gang, Fan Shifan. 2007. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs. Energy & Fuels, 21(1): 227~233.
-
Terao Y, Lay K, Yamamoto K. 2014. Design of the surface flow test system for 1st offshore production test of methane hydrate. Offshore Technology Conference-Asia: Kuala Lumpur, 24719: 25~28.
-
Wei Changfu, Yan Rongtao, Tian Huihui, Zhou Jiazuo, Li Wentao, Ma Tiantian, Chen Pan. 2020. Geotechnical status and challenges of natural gas hydrate exploitation. Natural Gas Industry, 40(8): 116~132.
-
Wei Na, Zhou Shouwei, Cui Zhenjun, Zhao Jinzhou, Zhang Liehui, Zhao Jun. 2020. Evaluation of physical parameters and construction of a parameter classification system for natural gas hydratein the northern South China Sea. Natural Gas Industry, 40(8): 59~67.
-
Wu Nengyou, Huang Li, Hu Gaowei, Li Yanlong, Cheng Qiang, Liu Changling. 2017. Geological controlling factors and scientific challenges for offshore gas hydrate exploration. Marine Geology and Quaternary Geology, 37(5): 1~11.
-
Xu Tao, Zhang Zhaobin, Li Shouding, Li Xiao, Lu Cheng. 2021. Three-dimensional numerical simulation study of in-situ heating and depressurization filling mining method of natural gas hydrate. Journal of Engineering Geology, 29(6): 1926~1941(in Chinese with English abstract).
-
Xu Tao, Zhang Zhaobin, Li Shouding, Lu Cheng. 2021. Numerical evaluation of gas hydrate production performance of the depressurization and backfilling with an in situ supplemental heat method. ACS Omega, 6(18): 12274~12286.
-
Ye Jianliang, Qin Xuwen, Xie Wenwei, Lu Hailong, Ma Baojin, Qiu Haijun, Liang Jinqiang, Lu Jingan, Kuang Zenggui, Lu Cheng, Liang Qianyong, Wei Shipeng, Yu Yanjiang, Liu Chunsheng, Li Bin, Shen Kaixiang, Shi Haoxian, Lu Qiuping, Li Jing, Kou Beibei, Song Gang, Bo Li, Zhang Heen, Lu Hongfeng, Ma Chao, Dong Yifei, Bian Hang. 2020. The second natural gas hydrate production test in the South China Sea. China Geology, 3(2): 197~209.
-
Zhang Qian, Qin Xuwen, Zhang Hong, Dong Yanhui, Lu Cheng, Li Shouding, Xiao Luokun, Ma Chao, Bian Hang. 2022. Experimental insights into the in situ formation and dissociation of gas hydrate in sediments of Shenhu South China Sea. Frontiers in Earth Science, 10: 882701.
-
Zhang Wei, Liang Jinqiang, Lu Jingan, Meng Miaomiao, He Yulin, Deng Wei, Feng Junxi. 2020. Characteristics and controlling mechanism of typical leakage gas hydrate reservoir forming system in the Qiongdongnan basin, northern South China Sea. Natural Gas Industry, 40(8): 90~99.
-
Zhang Zhaobin, Xu Tao, Li Shouding, Li Xiao, Maryelin Josefina Bricêno Montilla, Lu Cheng. 2023. Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media. Energy, 265: 126452.
-
Zheng Chao, Guo Guangjun, Qin Xuwen, Dong Yanhui, Lu Cheng, Peng Bo, Tang Wei, Bian Hang. 2023. Molecular simulation studies on the water/methane two-phase flow in a cylindrical silica nanopore: Formation mechanisms of water lock and implications for gas hydrate exploitation. Fuel, 333: 126258.
-
李守定, 李晓, 王思敬, 孙一鸣. 2020. 天然气水合物原位补热降压充填开采方法. 工程地质学报, 28(2): 282~293.
-
马超, 秦绪文, 孙金声, 余路, 李胜利, 王金堂, 毛文静, 边航, 陆程. 2022. 天然气水合物降压开采过程井周水合物的二次形成. 中国石油大学学报(自然科学版), 46(6): 21~30.
-
徐涛, 张召彬, 李守定, 李晓, 陆程. 2021. 天然气水合物原位补热降压充填开采方法三维数值模拟研究. 工程地质学报, 29(6): 1926~1941.
-
摘要
中国南海天然气水合物储层类型以泥质粉砂为主,与其他国家和地区的砂质储层相比开采难度大。本文针对南海北部泥质粉砂天然气水合物降压开采涉及的相变习性演化、有效渗透率变化、热流耦合模式、试采系统温度场调控与矿场尺度增温防冰等关键问题,综述了笔者团队近年来取得的最新研究成果。研究表明,泥质粉砂型水合物相变始终处于动态平衡状态,储层因富含黏土水合物相变滞后效应明显;试采井壁处节流膨胀效应强烈,“温度漏斗”斜率最大,一旦形成“水锁”与生成二次水合物,气相渗流能力将明显降低;在无外部热源补给情况下,较高的产气速率,易造成水合物分解速率减缓直至停止分解,中国南海泥质粉砂水合物分解主要受传热控制模式影响,亟需建立有效的“储层-井筒”试采系统多元温压调控与安全流动机制,提高产气效率;依托自然资源部青海木里天然气水合物与冻土环境野外科学观测研究站,利用原位补热降压充填的水合物开采方法,成功完成矿场尺度水合物试采系统温度场改造试验,进一步优化提高了储层渗流能力,实现了增渗扩产目的。
Abstract
Gas hydrate reservoirs in the South China Sea are mainly composed of clayey silts, presenting exploitation challenges compared to sandy reservoirs. This paper summarizes recent research by our team, focusing on the evolution of phase change behaviors, effective permeability changes, heat flux coupling mode, temperature field regulation within the trial production system, and mine-scale warming and anti-icing involved in the depressurization mining of clayey silt gas hydrates in the northern South China Sea. The results show that the phase transitions in clayey silt hydrate are consistently in dynamic equilibrium, exhibiting a pronounced hysteresis effect due to the high clay content. The throttling expansion effect is strong at the test production wall, resulting in the steepest “temperature funnel” slope. Once a “water lock” forms and secondary hydrate generation occurs, gas-phase seepage capacity significantly decreases. In the absence of external heat source recharge, high initial gas production rates can hinder hydrate decomposition, potentially leading to cessation of decomposition. The decomposition of clayey silt gas hydrates in the South China Sea is mainly affected by heat transfer control mode. Therefore, developing an efficient “reservoir-wellbore” trial production system with multiple temperature and pressure regulation methods and robust flow mechanisms is crucial to improving gas production efficiency. Relying on the Qinghai multi-natural gas hydrate and permafrost environment field scientific observation and research station of the Ministry of Natural Resources, the in-situ heating and pressure reduction filling method was used to successfully complete the temperature field transformation test of a mine-scale hydrate trial production system. This further optimized and improved the seepage capacity of the reservoir and realized the purpose of increasing permeability and expanding production.