-
中国华南位于东亚大陆边缘,中生代古太平洋俯冲诱发了本区巨量岩浆活动,塑造了本区的地质、地理面貌,并伴生巨量的矿产资源(徐夕生等,2024)。已有的研究基本都认同,华南陆缘在晚中生代时期为一安第斯型的陆缘弧,经历了长期的陆缘俯冲增生。古太平洋板块的俯冲速率、角度、方式变化控制着华南陆内岩浆作用的类型、时空分布及其成矿专属性(如Zhou Xinmin et al.,2006;Mao Jingwen et al.,2006;Li Zhengxiang and Li Xianhua,2007;邢光福等,2017;徐夕生等,2024)。然而,古太平洋板块俯冲的直接记录,如蛇绿混杂岩、高压变质岩,除了在中国东北地区有少量出露外,在中国的华南以及东部绝大部分区域均缺失。这一方面是由于华南在中生代位于陆缘弧构造环境,远离海沟;另一方面也是因为新生代陆缘裂解作用所形成的一系列边缘海盆地(如日本海、东海)遮蔽了陆缘俯冲记录与陆内之间的联系。相比之下,周边国家如日本、俄罗斯远东等地区这些地质记录保持相对完整。尤其是西南日本地区,自古生代起就长期位于华南大陆或者冈瓦纳大陆边缘,记录了自古生代以来多阶段的俯冲增生与造山过程(Isozaki et al.,2010;Wakita,2013,2021),理解日本晚中生代地质演化可以帮助我们在更大尺度上理解中国华南乃至整个欧亚东缘该阶段构造演化与古太平洋板块俯冲之间的关系。本文对日本列岛不同构造单元晚中生代地质概况进行了介绍,并对日本晚中生代构造演化及其与中国华南构造演化之间的关系进行了探讨。
-
1 构造单元及前侏罗纪构造演化
-
现代日本列岛是一个具有典型沟(日本海沟-马里亚纳海沟)-弧-盆(日本海)结构的岛弧,夹持在欧亚、菲律宾海、太平洋和北美板块之间,其地质及地理特征受控于始新世以来太平洋-菲律宾海板块俯冲以及伴随的陆缘海(日本海)裂解、弧-弧碰撞等过程(Isozaki et al.,2010;Aoki et al.,2011,及其参考文献)。而中生代日本列岛位于东亚陆缘造山系内,该造山系北起俄罗斯远东-萨哈林岛,向南沿日本列岛—琉球列岛—中国台湾(台东纵谷断裂以西)直至菲律宾巴拉望地区,向西与特提斯造山系一起,共同构成了环绕欧亚大陆的巨型造山系(图1a;任纪舜等,1997)。
-
日本列岛上按棚仓构造线(断裂)(TTL)分成两个部分:以东称东北日本,以西称为西南日本,而西南日本则进一步分为内带与外带,二者之间由一条左型走滑断裂所分隔(中央构造线,MTL)(图1a)。依据物质组成及形成时代不同,内带和外带又可进一步分为若干构造带,如图1b所示,兹将其基底物质组成与前侏罗纪构造演化分述如下。
-
1.1 西南日本内带
-
西南日本内带前侏罗纪构造单元可分为两类(图1b),一类为飞騨-隐岐(Hida-Oki)微陆块,由片麻岩以及片麻状岩浆岩组成,具有陆壳属性;另一部分由古生代—中生代多阶段的俯冲增生杂岩及高压变质岩组成,为西南日本的主体。二者之间由一套古生代、中生代变质岩以及蛇绿岩残块等组成的构造混杂带,即飞騨边缘带(Hida margin belt 或 Hida gaien belt)所分隔。
-
图1 东亚陆缘大地构造简图(a)以及西南日本构造单元分区图(b)(据Enst et al.,2007;Wakita,2021修改)
-
Fig.1 Simplified tectonic frame work of the East Asian continental margin (a) and the subdivision of tectonic units in southwestern Japan (b) (modified from Ernst et al., 2007; Wakita, 2021)
-
(a)中蓝色部分标示出了中生代时期东亚陆缘造山系的位置,该造山系向西南延伸至婆罗洲,并与特提斯造山系相连;TTL—棚仓构造线; MTL—中央构造线
-
In (a) , the blue area marks the location of the East Asian continental margin orogenic belt during the Mesozoic, extending westward to Borneo and connecting with the Tethyan orogenic belt. TTL—Tanakura tectonic line; MTL—Median tectonic line; tectonic units of inner zone of Southwest Japan: HO—Hida-Oki micro-continental block (Pt-Pz) ; HG—Hida garben belt, Paleozoic to Triassic accretionary complex; AK—Akiyoshi belt, accretionary complex and seamount (C-T) ; OY—Oeyama ophiolite (Є-S) ; MZ—Late Carboniferous to Middle Permian Maizuru belt and Yankuno ophiolite; UT—ultra Tamba belt, Permian to Triassic accretionary complex; MT—Mino-Tamba belt, Jurassic accretionary complex; SA—Sagun belt, Paleozic to Triassic high-pressure metamorphic rocks; Ry—Royke belt, Early Cretaceous low-pressure metamorphic rocks and granitoid; tectonic units of outer zone of Southwest Japan: Ks—Kurosegawa belt (Pz-J) ; NCh—North Chichibu belt, Jurassic accretionary complex; SCh—South Chichibu belt, Jurassic to Early Cretaceous accretionary complex; Sb—Early Cretaceous Sambagawa high-pressure metamorphic belt; SHM—Late Cretaceous Shimanto high-pressure metamorphic belt; NSH—North Shimanto belt, Cretaceous accretionary complex; SSh—South Shimanto belt, Eocene to Miocene accretionary complex
-
飞騨-隐岐(Hida-Oki)微陆块的基底由一套多期变质的低P/T变质岩组成,包括花岗质片麻岩、副片麻岩、角闪岩及大理岩等(Horie et al.,2010)。其中副片麻岩早期的麻粒岩相变质年代为中华力西期(350~330 Ma),而晚期角闪岩相变质为印支期(250~220 Ma;Arakawa et al.,2000;Sakoda et al.,2006;Takahashi et al.,2010)。根据副片麻岩碎屑锆石的上交点年龄,飞驒-隐歧微陆块中的这套变质岩原岩时代可能为古元古代(~1.84 Ga,Tsutsumi et al.,2006)。
-
在飞騨-隐岐微陆块之外,西南日本内带其他前侏罗纪地质体主要为与俯冲相关的变质岩-俯冲增生杂岩,主要的俯冲增生期发生于奥陶纪—志留纪、晚石炭世—二叠纪。内带最老的岩石记录为大江山蛇绿岩(Oeyama ophiolite/belt)及共生的高压变质岩(图2;三郡带,Sangun belt),其变质年龄集中在志留纪(约450~410 Ma)(Tsujimori and Itaya,1999),与中国华南地区加里东运动的时代基本一致(任纪舜等,1997;Li Zhengxiang et al.,2010)。与高压变质岩伴生的花岗岩最老可至寒武纪,主体在志留纪(Fujii et al.,2008;Horie et al.,2010;Aoki et al.,2015)。
-
中三叠世拉丁期时,整个日本列岛经历了强烈的印支造山运动,包括夜久野蛇绿混杂岩以及二叠纪增生杂岩(Akiyoshi belt,Ultra-Tamba belt)等晚古生代地层经历强烈褶皱变形,形成了西南日本内带广泛分布的周防带(Suo belt)绿片岩-蓝片岩以及同时代的花岗岩类(Ishiwatari and Ichiyama,2004;Isozaki et al.,2010;Ogasawara et al.,2016),变质年龄峰期为~220 Ma(Nishimura,1998)。随后,中—上三叠统陆相含煤粗碎屑岩广泛角度不整合覆盖于前中生代地质体之上,代表了印支造山的主造山幕(图2)。
-
图2 西南日本前侏罗纪地层序列
-
Fig.2 Pre-Jurassic stratigraphic sequence of southwestern Japan
-
HP—高压变质;LP—低压变质;MP—中压变质;M.C.—变质杂岩
-
HP—high pressure metamorphism; LP—low pressure metamorphism; MP—medium pressure metamorphism; M.C.—metamorphic complex
-
1.2 西南日本外带
-
西南日本外带最显著的特点是自北向南不断变年轻的增生地体,包括三波川带、黑濑川带、秩父带、北四万十带以及南四万十带,表明其长期以来均位于大洋一侧(Isozaki et al.,2010)。这些构造区带彼此间往往以高角度断裂相隔。其中最老的地质体分布于黑濑川带中(Kurosegawa belt,图1b),并可延伸至琉球群岛,是冈瓦纳大陆陆缘造山带的一部分,被后期侏罗纪—早白垩世早期俯冲增生及造山过程所改造,尤其是受白垩纪的大陆边缘走滑或碰撞事件所控制,形成了一系列的透镜体夹杂于中生代的增生杂岩内(Hada et al.,1992;Isozaki,1996,1997b;Kato and Saka,2006;Isozaki et al.,2010;Hara et al.,2013;Charvet,2013)。
-
与西南日本内带以及东北日本的南北上山相似,黑濑川带内基底为一套高压变质岩以及蛇绿混杂岩,代表性的杂岩体包括Miyagadani/Terano/Honjo MC等,主要分布在四国以及九州地区,其岩性包括角闪岩、硅质-泥质片岩、砂质片岩、大理岩以及蛇纹岩组合,原岩应为一套俯冲增生杂岩组合,沉积年龄在寒武纪—早志留世之间,变质年龄从古生代到中生代均有,但其中角闪岩Ar-Ar变质年龄主要集中在450~410 Ma(Maruyama et al.,1984;Yoshikura et al.,1990;Aitchison et al.,1996;Yoshimoto et al.,2013;Yang Qiongyan et al.,2016)。这套变质地层被冰上岩体(Mitaki岩体)所侵入。该岩体由花岗岩、花岗闪长岩、闪长岩所构成,其时代在440 Ma左右(Hada et al.,2001;Aoki et al.,2015,及其参考文献),代表了加里东造山过程的印记。
-
这套地层以及花岗岩之上,角度不整合覆盖一套中志留世直到早中泥盆世未变质的浅海-陆相古生代沉积盖层(Kobayashi and Hamada,1988;Umeda,1998),其顶部含有法门期薄皮鳞木化石,与中国华南以及澳大利亚相似。石炭系在西南日本外带出露不广,主要是下统,为一套浅海地层,其上部含有晚维宪期有孔虫及珊瑚化石,假整合于泥盆纪地层之上(Kido and Sugiyama,2011)。
-
西南日本外带晚石炭世—二叠纪沉积分为两类,一类为中二叠世—晚二叠世的增生杂岩。另一类为弧前的浊流沉积,同样分布于黑濑川带内,与其他地质体包括侏罗纪增生杂岩之间为断层接触(Hada et al.,2001)。晚二叠世之后,受印支运动的影响,整个区域经历隆升及抬升(Cluzel,1992;Isozaki,1997a;Kobayashi,2003),缺失下三叠统,仅有中—上三叠统,其底界为拉丁阶,角度不整合于古生代地层及变质岩之上(Kobayashi,2003),同时形成了西南日本内带广泛分布的周防带(Suo belt)绿片岩-蓝片岩(Ichiyama and Ishiwatari,2004;Ogasawara et al.,2016)。
-
从前述西南日本地层序列中可以看出,西南日本内带和外带在前侏罗纪均经历了加里东、中华力西以及印支三个主要阶段的造山事件,分别对应着冈瓦纳、潘基亚以及欧亚大陆三阶段的聚合过程(Isozaki et al.,2010)。加里东期变质-岩浆事件与中国华南武夷—云开地区的变质-岩浆作用时代基本一致(Li Zhengxiang et al.,2010;Isozaki et al.,2015),同时所发育的花岗岩以及盖层中植物化石证据均暗示西南日本在早古生代时期应该与中国华南一起位于冈瓦纳大陆边缘(Isozaki et al.,2015),考虑到二者的亲缘性,大洋俯冲的远程效应或许是解释中国华南早古生代陆内造山的一种可能动力机制。前侏罗纪影响日本最大的造山事件是印支运动,在日本也被称为“秋吉运动”(Kobayashi,1978)。这一构造事件不仅在西南日本,在东北日本也同样清晰。经历此次运动后,日本绝大部分区域均抬升成陆地,并在外侧重新受到古太平洋板块的俯冲(Maruyama,1997;Isozaki,1997a,1997b)。
-
2 西南日本晚中生代地质
-
2.1 俯冲增生记录
-
由晚三叠世开始,日本进入了古太平洋构造域的控制范围,整个日本均发育一系列俯冲增生杂岩,分布于西南日本内带的美浓-丹巴带(Mino-Tamba belt)以及外带的秩父带(Chichibu belt)—北四万十带(Shimanto belt),时代从侏罗纪持续到白垩纪。这些俯冲增生杂岩通常由玄武岩、灰岩、硅质岩、硅质页岩所组成,混杂在泥质-砂质基质内。其中的大洋地层层序(OPS)记录了大洋从扩展到俯冲以及消亡的过程,其中玄武岩代表了俯冲大洋洋壳(MORB型)最上部或者洋岛海山的残留(OIB型),灰岩则代表洋岛海山之上的岛礁(Sano and Kanmera,1991),硅质岩的原岩为深海环境下的硅质软泥。当俯冲的大洋板块到达海沟并开始俯冲于上覆板块之下时,深海硅质软泥则转变为硅质页岩,其上覆盖一套浊积岩组合,其中多含有来自于弧前或者古老基底的碎屑物质(图3)。因此在俯冲增生杂岩中,碎屑岩的出现往往代表了俯冲增生作用的开始(Isozaki,1997b;Wakita,2012)。
-
2.1.1 美浓-丹巴带
-
美浓-丹巴带横贯西南日本,从九州延伸至东京西侧,绵延约1000 km。该带基质主体为泥质岩,其中硅质岩岩块的时代从石炭纪持续到侏罗纪,玄武岩岩块主体在二叠纪。根据基质以及砂泥岩中的放射虫及牙形虫等化石定年,主要增生时代在早—中侏罗世(图4),部分可达晚侏罗世(Matsuda and Isozaki,1991;Sano et al.,1992;Isozaki et al.,1997b)。该带在空间上可分为多个亚带,表现出明显的向洋年轻的趋势。这套增生杂岩上部,被早白垩世地层高角度不整合覆盖(图4)。在美浓地区,该带内的砂岩单元中含有粗的砾岩,代表水下河道沉积,其中的砾石包括石英岩卵石、花岗岩以及矽线石片麻岩卵石,矽线石片麻岩锆石U-Pb定年结果约为2000~1500 Ma(Nutman et al.,2006)。杂砂岩的古流向指示这些卵石可能是来源于北面的大陆基底(Barber,1982),暗示美浓-丹巴带在侏罗纪直接毗邻古老的大陆。由于受到构造-岩浆活动的影响,该带的南部在白垩纪中期(约阿尔布期)部分发生高温/低压变质,形成了领家变质带内的副变质岩,变质年龄集中于110~90 Ma(Nakajima,1994)。
-
2.1.2 秩父带
-
秩父带北侧为白垩纪三波川高压变质带,南侧以仏像构造线与白垩纪北四万十带分隔,其中含有早古生代—侏罗纪的构造混杂岩,即前述黑濑川带(图1b)。该带一般可分为南北两个部分,北侧的增生时代为早—中侏罗世托阿尔期—卡洛夫期(约180~165 Ma)(Hara et al.,2013),南带增生时代以往被认为是晚侏罗世牛津期—早白垩世欧特里夫期(Matsuoka,1995),然而近些年的碎屑锆石定年提出该带的增生时代可能持续到巴雷姆期(~130 Ma,Aoki et al.,2012;Tominaga and Hara,2021)。事实上,不仅在秩父带,对东北日本北北上山、北海道等地区的增生杂岩碎屑锆石定年工作也表明其增生时代上限可能均为早白垩世(Ueda et al.,2018;Boschman et al.,2021)。此外,在南秩父带中,存在一套蛇绿岩,即Mikabu蛇绿岩,沿秩父带的北缘分布于四国岛内,横跨数百千米,其时代为157~154 Ma(Tominaga and Hara,2021),代表了滞留于海沟处的洋岛海山地体。
-
图3 大洋地层层序演化示意图(据Wakita,2012)
-
Fig.3 Schematic diagram of the evolution of oceanic plate stratigraphic sequences (after Wakita, 2012)
-
图4 西南日本晚中生代俯冲增生杂岩地层序列
-
Fig.4 Stratigraphic sequence of the Late Mesozoic subduction-accretion complex in southwestern Japan
-
RY-MC—领家带变质岩;SA-MC—三波川带变质岩;SH-MC—四万十变质岩;HT-LP—高温低压变质;HP—高压变质;俯冲增生杂岩内大洋地层层序据Isozaki(1997b),Hara et al.(2017),Boschman et al.(2021),Uchino and Suzuki(2020)以及Tominaga and Hara(2021)
-
RY-MC—Ryoke metamorphic complex; SA-MC—Sambagawa metamorphic complex; SH-MC—Shimanto metamorphic complex; HT-LP—high temperature-low pressure metamorphism; HP—high pressure metamorphism; the oceanic stratigraphic sequence within the subduction-accretion complex is based on Isozaki (1997b) , Hara et al. (2017) , Boschman et al. (2021) , Uchino and Suzuki (2020) , Tominaga and Hara (2021)
-
与内带不同的是,秩父带在白垩纪中期经历了蓝片岩-榴辉岩相高压变质,形成了著名的三波川变质带(Aoki et al.,2009)。三波川带的变质时代、构造演化过程争议较大(Okamoto et al.,2004; Aoki et al.,2007,2009;Endo et al.,2009; Knittel et al.,2024,Wu et al.,2024,及其参考文献),早期的蓝片岩-榴辉岩相变质峰期可能发生于约120~110 Ma;而晚期伴随着高压变质岩折返所发生的绿帘石-角闪岩相变质发生于约110~85 Ma(Itaya et al.,2011;Knittel et al.,2024),该带可能是多期俯冲增生与高压变质叠加所形成,类似于台湾的大南澳带,进一步对该带的构造演化过程进行解剖将是揭示古太平洋俯冲带前缘白垩纪构造演化的关键所在。
-
2.1.3 北四万十带
-
北四万十增生杂岩带位于南秩父带南侧,二者之间以仏像构造线(Butsuzo Tectonic Line: BTL)为界。该带主要由硅质岩、硅质页岩以及泥岩组成,硅质岩-硅质页岩的时代集中在早白垩世早期,部分可达晚侏罗世;而泥岩所代表的俯冲增生时代则开始于早白垩世末期(~110 Ma),持续到白垩纪末期(Hara et al.,2017;Hara and Hara,2019)。
-
20世纪,日本地质学家并未发现与北四万十增生杂岩相对应的变质单元。而近二十年来,日本地质界最大的进展之一就是根据变质岩的碎屑锆石定年工作,在三波川高压变质带中,新识别出了白垩纪末期的四万十变质亚带(图1b)。该亚带原岩即为北四万十带增生杂岩,蓝片岩-榴辉岩相变质年龄约为75~65 Ma,此次造山事件被称为“四万十造山(Shimanto Orogeny)”(Aoki et al.,2007,2011,2012;Hara and Kurihara,2010),与传统所说的日本内带“广岛变动”(Hiroshima Disturbance)时代一致。但关于此次造山事件及变质作用与狭义的三波川变质带的关系尚在争论之中(Endo et al.,2024)。
-
上述侏罗纪—早白垩世早期的这些增生杂岩普遍具有明显的分带性及向洋一侧逐渐年轻的特点,表明其在海沟处堆积时并非连续增生,而是阶段性(episodic)增长并伴随着海沟的阶段性向洋跃迁(Isozaki,1997a)。海沟的后撤既可以受增生楔的逐渐增长控制,也可能受到大洋上洋岛海山、微陆块等地体向大陆边缘的拼贴而导致(Safonova et al.,2015;Tominaga and Hara,2021)。
-
2.2 晚中生代沉积-火山地层
-
侏罗纪—白垩纪沉积地层在西南日本出露较少,侏罗系主体为浅海相,而白垩系全为陆相。根据区域地层角度不整合关系可分为4个旋回(图5):
-
第一旋回为早侏罗世,以九州地区的豐浦群、飞驒地区的来马群以及南北上山的桥浦群为代表,其岩性以砂泥岩夹砾岩为主,角度不整合于前侏罗纪变质基底或者晚三叠世陆相磨拉石建造之上。根据碎屑锆石及古生物定年,这套地层底界约在190~180 Ma(Ohta,2004;Yamada and Ohno,2005)。
-
第二旋回为中侏罗世—早白垩世初期瓦兰今期,此套地层在西南日本发育不连续,岩性以浅海相砂泥岩及砂砾岩为主,与下部下侏罗统角度不整合或者假整合接触,相当于我国华南漳平组或者华北髫髻山组—土城子组沉积期(黄迪颖,2019)。
-
第三旋回为早白垩世欧特里夫期—阿尔布期(约130~110 Ma),这套地层分布广泛,在内带及外带均有出露,普遍高角度不整合于褶皱的侏罗纪俯冲增生杂岩或者侏罗纪—早白垩世初期海相地层之上(Okada and Sakai,1993;Horiuchi et al.,2009)。代表性地层如关门群(Kwanmon Group)、手取群(Tetori Group)等,研究程度相对较高。其岩性以砂砾岩及泥岩为主,夹火山岩,底部常含有底砾岩。早期这些地层部分被认为可延伸至上侏罗统,而近些年的锆石U-Pb定年及化石证据均表明这些碎屑岩的底界应该在瓦兰今阶(~132 Ma)(Imaoka et al.,1993;Kusuhashi et al.,2006,2013;Horiuchi et al.,2009;Sano,2015)。切穿手取群顶部的含石榴子石流纹斑岩脉以及角度不整合覆盖于手取群之上的安山岩时代均为109~108 Ma(Sano,2015;Sano and Yabe,2017),这限定了这套地层的时代应该在135~110 Ma,其层位与我国华南的南园组以及华北义县组—孙家湾组相当(席党鹏等,2019)。
-
第四旋回为阿尔布期到古近纪初期(约110~60 Ma)。此阶段内西南日本内带以大规模的火山活动为特征,其间可进一步分为两期。早期为小规模的英安质-安山质火山岩,时代一般早于90 Ma,其层位与中国华南的石帽山群、永康群相当(席党鹏等,2019)。晚期为一套分布面积广泛、岩性单一巨厚的高硅酸性火山-陆相粗碎屑岩,即浓飞流纹岩(Nohi rhyolite),出露体积>2200 km3,其年龄集中在80~68 Ma(Koido,1991;Wakaki and Tanaka,2005;Sato et al.,2016)。同时在中央构造线西侧的外和泉地区形成了一套巨厚的弧前类复理石砂泥岩,称为和泉群(Izumi Group)(图5),时代为坎潘期—马斯特里赫特期(Noda and Sato,2018),角度不整合于三波川带内变质岩之上。而在这些晚白垩世火山-沉积地层之上,普遍被古新世末期—始新世沉积地层角度不整合覆盖。
-
2.3 岩浆侵入活动
-
相比我国华南,西南日本晚中生代侵入岩时代明显较新,主要集中于内带,外带未见报道。除了飞驒地块内有少量侏罗纪花岗岩外(Zhao Xilin et al.,2013),其余地区基本未见大于130 Ma的侵入岩(Yamaoka and Wallis,2023)。根据其时代以及分布可划分为三个平行于海沟的带,由南向北依次为领家带(Ryoke)、山阳带(Sanyo)以及山阴带(San-in)(图6),不同带内的岩浆活动在空间及时间上高度重合。
-
总的来说,西南日本的岩浆活动可大致分为三期(图7),第一期为130~100 Ma,主要集中于领家带—山阳带。领家带内该阶段的侵入岩也被称为Old Ryoke granite,为一套片麻状钙碱性花岗闪长岩、英云闪长岩(Sakashima et al.,2003;Takatsuka et al.,2018),常具有埃达克岩的特征。第二期约为100~80 Ma,同样分布于领家带—山阳带,在领家带中此阶段的侵入岩被称为Young Ryoke granite,为钙碱性I型花岗岩,呈块状侵入于第一期岩浆岩之中(Imaoka et al.,2011)。在领家带—山阳带内,这些120~80 Ma的侵入岩形成时代表现出明显的向古太平洋一侧变年轻的趋势(Yuhara et al.,2000)。第三期的侵入岩主要集中在山阴带,在领家带—山阳带内也有分布,其岩性以英云闪长岩-花岗闪长岩-黑云母花岗岩组合为主,伴生有同时代的中基性辉长岩、辉绿岩和闪长岩等。这套花岗岩呈块状,侵入早期地层或者花岗岩内,其时代多在80~65 Ma,与浓飞流纹岩的时代一致,代表了北四万十增生杂岩形成时的岩浆弧(Aoki et al.,2011)。
-
图5 西南日本-中国东部晚中生代沉积-火山地层层序
-
Fig.5 Late Mesozoic sedimentary-volcanic stratigraphic sequences of southwestern Japan and east China
-
中国苏北以及冀北地区地层层序据席党鹏等(2019)以及黄迪颖(2019)
-
The stratigraphic columns of northern Jiangsu and northern Hebei in China are follow the Xi Dangpeng et al.(2019)and Huang Diying et al.(2019)
-
图6 西南日本晚中生代岩浆岩分布图(据Yamaoka and Wallis,2023修改)
-
Fig.6 Distribution map of Late Mesozoic igneous rocks in southwestern Japan (modified from Yamaoka and Wallis, 2023)
-
TTL—棚仓构造线; MTL—中央构造线; ISTL—丝鱼川-静冈构造线
-
TTL—Tanakura tectonic line; MTL—Median tectonic line; ISTL—Itoigawa-Shizuoka tectonic line
-
约60~45 Ma之间,西南日本存在明显的岩浆活动间断,并且在这一间断前后,侵入岩的同位素性质发生明显的亏损(Imaoka et al.,2011;Wu and Wu,2019;Yamaoka and Wallis,2023)。Zhu Bingquan et al.(2004)在对中国广东三水盆地白垩纪末期到早新生代玄武岩的年代学及同位素分析中也发现了相似的变化,这一间断代表了古太平洋板块和现代太平洋板块之间的转换过程。
-
3 俯冲增生记录对古太平洋俯冲过程的制约
-
多阶段的俯冲增生是西南日本主要的地质特征,为理解欧亚大陆边缘多阶段的大洋俯冲过程提供了重要的制约。在西南日本二叠纪—三叠纪的俯冲增生杂岩中,玄武岩的岩块最早可到早古生代,而侏罗纪的俯冲增生杂岩中玄武岩的时代多为晚石炭世,白垩纪俯冲增生杂岩中的玄武岩时代不早于晚侏罗世提塘期,这表明从晚古生代开始俯冲于欧亚大陆之下的大洋板块并非连续演化的同一个大洋(Isozaki,1997b;Wakita,2013)。狭义的古太平洋,即形成侏罗纪—白垩纪俯冲增生杂岩的大洋板块,应当是自石炭纪开始扩展,从早侏罗世开始俯冲,直至白垩纪末期彻底消亡(如Isozaki,1996;Maruyama,1997),其中又可分为两个阶段。侏罗纪—早白垩世早期形成美浓-丹巴带以及秩父带俯冲增生杂岩的大洋被称为伊泽那歧(Izanagi)板块;而早白垩世晚期开始俯冲,在海沟前形成北四万十增生杂岩的大洋被部分学者称为库拉(Kula)板块(Uyeda and Miyashiro, 1974; Maruyama,1997;Osozawa and Yoshida,1997;Aoki et al.,2011;Saito et al.,2014),但也有大量学者将这一阶段的大洋板块也称为伊泽纳歧板块(如Yamaoka and Wallis,2023)。但根据不同增生杂岩中玄武岩的时代,伊泽那歧板块的形成时代至少可以追溯到早二叠世,当其于早侏罗世开始俯冲时,应有约120 Ma的寿命。相反库拉板块的形成时代不超过晚侏罗世,是一个相对年轻的大洋。不论二者如何命名,它们很难被归为同一个连续演化的大洋。在此,我们仍然将早白垩世晚期开始俯冲的大洋称为库拉板块。
-
图7 西南日本中生代侵入岩(a)及火山岩(b)年龄分布图
-
Fig.7 Age spectrum distributions of Mesozoic intrusive rocks (a) and volcanic rocks (b) in southwestern Japan
-
西南日本侵入岩及火山岩数据引自Yamaoka and Wallis(2023),中国华南中生代侵入岩年代学数据引自Cao Xianzhi et al.(2021)
-
Data for intrusive and volcanic rocks in southwestern Japan and in South China are from Yamaoka and Wallis (2023) and Cao Xianzhi et al. (2021) , respectively
-
秩父带以及北四万十带增生杂岩之间约有10~20 Ma的俯冲增生间断,以Maruyama(1997)以及Isozaki et al.(1996,1997b)为代表的学者认为这一间断(约130~110 Ma)代表了伊泽那歧以及库拉板块之间的洋脊沉没于欧亚大陆之下的时代,当俯冲的伊泽那歧板块沉没于欧亚大陆时,海沟前由增生转为剥蚀,随洋壳深入地幔楔中经受高压变质的增生杂岩也在此时发生折返。而部分学者则认为这一间断是由于洋壳上的洋岛海山地体(如Mikabu地体)或者微陆块(如黑濑川、南北上山)在早白垩世时拼贴至海沟处,导致海沟向洋快速跃迁的同时,弧前由增生作用转为以剥蚀为主所致(Otsuki,1992;Wakita et al.,2021)。我们倾向于第一种解释,因为洋岛海山地体的拼贴在西南日本各个俯冲增生时期均有发生,在二叠纪增生杂岩内也同样发育(Safonova et al.,2015),但并未引起如此大规模的区域构造事件或者俯冲增生间断。同时,洋脊俯冲所导致的软流圈上涌,可以较好地解释西南日本110~90 Ma领家带内的高温低压变质(Suzuki and Adachi,1998;Brown,2009;Okudaira et al.,2024)。在白垩纪末期(~60 Ma),当俯冲的库拉板块消亡于欧亚大陆之下后,弧前增生及变质作用停止(Uyeda and Miyashiro,1974;Isozaki et al.,2010;Hara and Kurihara,2010;Saito et al.,2014),四万十变质岩以及三波川变质岩均于此时折返至地表(Aoki et al.,2009,2011;Wakita,2013)。
-
在西南日本外带的增生杂岩内含有上三叠统卡尼阶礁灰岩和洋岛玄武岩(OIB)以及来源于冈瓦纳大陆边缘的微地体(黑濑川),这些岩石组合也同样出现在北北上山以及北海道地区(Sano et al.,2012;Peyrotty et al.,2020),但在内带的美浓-丹巴带内却缺少此套岩石,暗示西南日本内带和外带可能具有不同的古地理位置。下白垩统中的植物化石证据表明,西南日本外带可能具有与中国华南相似的古纬度,而内带则应该更加靠近中国华北地区(Ikeda et al.,2016)。
-
现今西南日本内带和外带以中央构造线为界,但值得注意的是,在二者之间的拉分盆地(外和泉盆地)内所形成的上白垩统和泉群内,角砾岩单元中的碎屑几乎全部是来源于北侧领家带内的变质岩及花岗岩,而缺少其南侧的三波川变质带来源的碎屑物,直到该套地层顶部才出现三波川变质带的碎屑物质(Barber,1982),这指示西南日本外带与内带可能直到白垩纪末期才沿着中央构造线拼合到一起。而根据变质条件来说,构成双变质带的领家带和外带的三波川带也应该相距更远位置(Uyeda and Miyashiro,1974),二者之间可能存在一个小的洋盆(Otosh et al.,1990;Okudaira et al.,2024),但这个边缘海的位置、构造属性尚不清楚。
-
上述这些都表明,在晚中生代,欧亚大陆边缘应该具有如同现今东南亚一般的复杂的弧盆系,而非如同现今西太平洋边界一样是一个相对“干净”的边界。不同构造属性以及位置的地质体在连续的俯冲过程中逐渐汇聚至洋陆边界,形成了日本列岛现今地质面貌的同时,也影响着陆内的构造-岩浆作用以及造山作用。
-
4 西南日本造山作用期次、机制及其对中国华南构造-岩浆活动的指示
-
根据增生杂岩以及沉积地层、岩浆活动特点,西南日本晚中生代的造山事件即燕山运动具有与中国华南乃至整个中国东部相同的阶段性(任纪舜等,1997),可分为三期,分述如下。
-
4.1 早燕山运动
-
早燕山运动有两幕,第一幕发生于~190 Ma,以豐浦群、来马群等海相地层与下部三叠系陆相磨拉石的角度不整合,或以美浓-丹巴带以及北秩父带的初始堆积为代表,指示了古太平洋板块初始俯冲。值得注意的是,在美浓-丹巴带以及秩父带的下—中侏罗统砂岩中,具有明显的190~180 Ma的碎屑锆石年龄峰值(图8;Fujisaki et al.,2014),代表了同期岩浆弧的时代,而这个阶段却是中国华南的岩浆活动相对宁静期(图7)(Zhou Xinmin et al.,2006),表明此阶段的岩浆弧可能靠近大陆外侧。增生杂岩内大量出现的岩浆弧来源碎屑锆石,以及从早侏罗世到中侏罗世末期增生杂岩内来源于印支造山带的碎屑锆石的消失,均暗示此时的弧前剥蚀速率较高,导致目前该阶段的岩浆弧基本消失不见。中国福建沿海地区187 Ma的锦城花岗岩可能代表了这一时间段岩浆弧在沿海地区的残留(Liu Qian et al.,2012)。福建下—中侏罗统碎屑岩中也有大量此阶段的碎屑锆石记录,这个早侏罗世岩浆弧的位置及其演化-剥蚀过程仍待进一步研究。
-
在190~175 Ma之间,西南日本外带的北秩父带以及美浓-丹巴带的主体已形成,暗示了此时伊泽纳歧板块应具有较高的俯冲速率以及较低的角度(Cloos,1993;Lallemand et al.,2005;Clift and Hartley,2007),有利于海沟前增生体的快速生长。此时,中国华南岩浆活动相对较弱,集中于内陆地区,且多具有埃达克岩的特征,如钦杭结合带内的德兴斑岩、银山火山岩,其形成与大洋板块的俯冲密切相关(Wang Guoguang et al.,2015;邢光福等,2017)。这一现象暗示俯冲板片前缘或岩浆前锋在15 Ma的时间内即深入了华南内陆(图9a、b),同样支持早侏罗世伊泽纳歧板块较高的俯冲速率。
-
早燕山运动第二幕发生在中侏罗世晚期约165~160 Ma,西南日本豐浦群、来马群以及东北日本桥浦群沉积之后,或者北秩父带增生杂岩沉积之后,相当于中国的武夷地区梨山组与漳平组之间的角度不整合,以及冀北地区髫髻山组与下部海房沟组之间的角度不整合(黄迪颖,2019;董树文等,2019),这也是中国的华南或者东部早燕山运动的主造山幕(任纪舜等,1997)。由于西南日本此次构造事件并不显著,因此对中侏罗世发生的此次构造运动研究较少。但我们注意到,在西南日本外侧来自于冈瓦纳大陆的微陆块,即黑濑川带分隔了北秩父带和南秩父带,呈构造推覆体的形式逆冲于北秩父带之上。类似的,在东北日本,南北上山微陆块同样卷入北北上山俯冲增生杂岩内。Sewell et al.(2016)在中国香港地区的研究也发现,在164~161 Ma有一期明显的变质-变形作用以及推覆构造,碎屑锆石的分析表明该期事件可能是古太平洋板块上外来陆块与大陆边缘碰撞拼贴的结果。这些现象暗示微陆块在海沟处的拼贴-碰撞可能导致了中侏罗世时期海沟向洋跃迁以及俯冲带的重组(图9b)(Charvet,2013),并导致了内陆地区强烈的挤压应力。在中国的华南雪峰山脉、南岭地区以及云开山脉内,导致应力场由NE-WS向的挤压调整为NW-SE向的挤压,产生了一系列向NW突出的弧形褶皱带和推覆构造等(Zhang Yueqiao et al.,2009;Xu Xianbing et al.,2016)。对东南沿海地区侏罗纪云母片岩以及片麻状花岗岩的Ar-Ar定年以及上述这些褶皱带的构造分析均表明,NW-SE向挤压大致是从中侏罗世开始(Shi Wei et al.,2015;Xu Xianbing et al.,2016)。
-
图8 西南日本外带北秩父带(a)、南秩父带(b)、北四万十带(c)增生杂岩碎屑锆石年龄频谱分布图
-
Fig.8 Detrital zircon age spectrum distributions from accretionary complexes in North Chichibu belt (a) , South Chichibu belt (b) and North Shimanto belt in the outer zone of southwestern Japan
-
俯冲增生杂岩碎屑锆石数据来自Aoki et al.(2012),Knittel et al.(2020),Sui and Takeuchi(2020),内野隆之(2017),Hara et al.(2017); 中国华南河流碎屑锆石数据来自Xu Xisheng et al.(2007),Xu Yonghan et al.(2016);大于350 Ma的数据点未表示
-
Data for detrital zircon from the accretionary complex are sourced from Aoki et al. (2010) , Knittel et al. (2010) , Sui and Takeuchi (2020) , Takayuki (2017) , Hara et al. (2017) ; detrital zircon data from South China river sediments from Xu Xisheng et al. (2007) , Xu Yonghan et al. (2016) ; magmatic zircons older than 350 Ma are not shown
-
图9 晚中生代中国华南及西南日本构造演化示意图
-
Fig.9 Schematic diagram of the Late Mesozoic tectonic evolution of South China and southwestern Japan
-
(a)—早侏罗世时期,伊泽纳歧板块起始俯冲,岩浆弧位于大陆外侧;(b)—早侏罗世—中侏罗世早期,岩浆弧快速移动至内陆地区,形成了中国德兴、银山等I型花岗岩及埃达克岩;随后,黑濑川等微陆块拼贴至海沟处,海沟向洋跃迁的同时,造成了区域明显的挤压应力以及俯冲大洋板块的快速后撤,在内陆地区形成了160 Ma之后大规模的S型花岗质岩浆活动;(c)—早白垩世早期,伊泽纳歧和库拉板块洋脊俯冲于西南日本之下,伊泽纳歧板块逐渐断裂,中国华南内陆经历了快速的伸展以及强烈的火山作用(下火山岩系),并伴生大量A型花岗岩,而此时的岩浆弧可能位于日本领家带—山阳带;(d)—库拉板块大致于110 Ma开始俯冲,造成了陆缘明显的挤压作用,形成了长乐-南澳构造带,并导致了三波川带的折返。此时岩浆弧位于西南日本地区山阳带,内陆则继续处于弧后伸展或裂谷背景
-
(a) —Early Jurassic: subduction of the Izanagi plate begins, forming a volcanic arc offshore; (b) —Early to Middle Jurassic: the volcanic arc migrates inland, generating I-type granites and adakites (e.g., Dexing porphyry, Yinshan volcanic rocks in China) ; micro-continental blocks (e.g., Kurosegawa, South Kitakami) likely accrete at the trench during middle Jurassic, causing rapid roll-back of the oceanic plate, compressive stress inland, and the formation of S-type granites after 160 Ma; (c) —Early Cretaceous: subduction of the Izanagi-Kula ridge beneath southwestern Japan causes gradual sinking of the Izanagi plate; South China experiences rapid extension, intense volcanism (lower volcanic series) , and the emplacement of A-type granites; the magmatic arc of this period located in the Ryoke-Sanyo belt; (d) —around 110 Ma: subduction of the Kula plate induces compressive forces along the continental margin, forming the Changle-Nan'ao tectonic belt; the volcanic arc remains in southwestern Japan, while back-arc extension or rifting continues in South China
-
随后,由于海沟的向洋跃迁,俯冲板片快速后撤(Retreat),上涌的地幔物质使得地壳大规模熔融,在早燕山运动第二幕的挤压造山事件之后,中国华南地区从~160 Ma开始迎来了岩浆活动高峰期(图7)(Zhou Xinmin et al.,2006),岩浆活动普遍发育在武夷山以西地区,岩性以S型花岗岩为主。这些S型花岗岩多形成于区域隆起带内或褶皱核部(图9b),代表了广泛的伸展背景(邢光福等,2017,及其参考文献)。从这一阶段开始,深入内陆的伊泽纳歧板块开始不断后撤,岩浆前锋也随之一路向东迁移(图9b、c),直至白垩纪。
-
4.2 中燕山运动(~135 Ma)
-
中燕山运动发生在手取群、关门群沉积之前,以早白垩世陆相地层与下部俯冲增生杂岩或者海相地层之间的角度不整合为标志,时代约为135 Ma(Kusuhashi et al.,2006,2013;Sano,2015)。此次运动是日本燕山运动的主造山幕,对应于我国东部广泛出露的早白垩世早期火山岩地层,如冀北义县组、土城子组,华南南园组与下部侏罗系之间的角度不整合(席党鹏等,2019)。在这一阶段,从侏罗纪以来的俯冲增生过程发生停滞,暗示此时伊泽纳歧板块与库拉板块的洋脊可能于此时开始逐渐沉没于欧亚大陆之下,而年轻的库拉板块尚未开始俯冲。在这样的背景下,年轻的库拉板块与欧亚大陆之间的碰撞可能导致了西南日本发生明显的褶皱变形与地壳缩短,西南日本整体抬升成陆,并结束海相沉积历史;在中国东部同样导致明显的挤压构造事件(董树文等,2019)。
-
随着俯冲于日本列岛之下的伊泽纳歧板块的不断后撤和逐渐断裂,岩浆弧在约130~120 Ma时迁移至西南日本一带,形成了领家带内的Old Ryoke granite以及东北日本北上山—阿武隈地区的早白垩世(127~113 Ma)埃达克质花岗岩(Takahashi et al.,2016)。而在中国华南内陆则形成了酸性火山岩的大爆发(flare up),以福建南园组为代表的早白垩世下火山岩系覆盖了武夷山以东绝大部分区域,其厚度可达数千米。根据Liu Lei et al.(2012)对华南下火山岩系剖面的精细年代学研究,这套巨厚火山岩主体形成时代应小于15 Ma。据笔者统计,其在华南地区的总喷发体积可达7.8×105 km3,岩性多为流纹-英安质熔结凝灰岩,与墨西哥西马德雷等酸性大火成岩省的岩石类型及喷发规模相当(Bryan,2007)。伴随大规模的酸性火山活动,华南形成一系列NE走向的伸展断陷盆地以及伸展穹隆构造,例如幕府山、莲花山等。据Li Jianhua et al.(2023)统计,这些伸展穹隆构造早阶段的快速冷却/抬升即发生于早白垩世晚期(145~122 Ma)。可见,相比西南日本,中国华南此阶段的酸性岩浆活动显然并非与板块俯冲直接相关,而更加类似于弧后伸展环境(Li Jianhua et al.,2023)。板块断离背景下,软流圈大规模上涌所导致的地壳熔融可能是这套巨厚酸性火山岩形成的主要诱因(图9c)。
-
4.3 晚燕山运动(约110~100 Ma)
-
西南日本晚燕山运动发生于早白垩世晚期(阿尔布期),表现为北四万十增生杂岩的起始俯冲以及手取群等早白垩世地层与上部晚白垩世火山碎屑岩之间的角度不整合。此阶段,库拉板块呈NW向运动,与欧亚大陆成安第斯式的俯冲(Sun Weidong et al.,2007),造成了区域上显著的挤压事件,领家带中早期形成的侵入岩(Old Ryoke granite)于此时发生明显的变形。同时,由于伊泽纳歧-库拉板块之间洋脊俯冲至西南日本之下,上涌的地幔导致弧下异常高的地热梯度,形成了内带的领家带高温低压变质岩(Brown,2009;Endo,2024),并伴生有高镁安山岩形成。
-
在中国华南此阶段构造事件主要表现为早白垩世开始的大规模火山活动的停滞以及上下火山岩系之间的角度不整合(Xu Xisheng et al.,2021;Li Jianhua et al.,2023;朱永胜等,2024),即“闽浙运动”的不整合面(邢光福等,2009)。同时,在沿海地区形成了NE 向的长乐-南澳大型左旋走滑韧性剪切带,新生白云母Ar-Ar以及岩浆锆石变质边的年龄集中在120~100 Ma(舒良树等,2000),与日本领家带内的“Old Ryoke granite”的变质时代基本一致。
-
晚燕山运动后(100~85 Ma),随着库拉板块俯冲以及海沟前的增生,西南日本内带表现为广泛的弧岩浆作用,形成了山阴内80~65 Ma的钙碱性花岗岩,代表了与库拉板块俯冲相关的岩浆弧位置。相比之下,此时中国华南的岩浆活动主要集中于沿海地区,多为A型花岗岩及碱性花岗岩-碱性流纹岩,具有陆缘裂谷的构造属性(王德滋等,1995;Xu Xisheng et al.,2021),与西南日本同阶段的岩浆岩截然不同。可见,俯冲的库拉板块可能并未越过东海地区,华南地区晚白垩世的岩浆活动应该仍受控于软流圈上涌以及地壳伸展过程的控制,与大洋板块的俯冲并无直接因果联系。
-
晚白垩世末期,当库拉板块-太平洋板块的洋脊于~60 Ma沉没于欧亚大陆之下后,现代太平洋板块以NNW向走滑运动为主,未深入欧亚大陆之下,西南日本外带及内带可能在此时才沿着中央构造线拼合至一起。始新世太平洋板块开始呈NWW向重新俯冲于欧亚板块之下。太平洋上的夏威夷岛-帝皇岛链中间的转折精准地限定了太平洋板块西向俯冲的起始时代约在50 Ma(Sharp and Clague,2006;Doubrovine et al.,2012)。始新世地层与晚白垩世地层之间的角度不整合则代表了早喜马拉雅运动的界面,也代表了古太平洋板块俯冲的结束。东亚陆缘从始新世开始进入太平洋板块的影响范围。
-
5 结论及展望
-
(1)俯冲于欧亚大陆之下的古太平洋板块应该是从晚石炭世开始扩展,从早侏罗世开始俯冲,并可划分为多个独立的板块,不同板块之间的洋脊俯冲伴随着海沟前俯冲增生的间断,不存在从二叠纪开始连续俯冲的古太平洋板块。
-
(2)依据构造-地层-岩浆活动特征,西南日本晚中生代由古太平洋板块俯冲所引起的区域构造运动可大致分为三期:早燕山运动(第一幕:早侏罗世早期,~190 Ma;第二幕:中侏罗世晚期,约165~160 Ma)、中燕山运动(早白垩世早期,~135 Ma)以及晚燕山运动(早白垩世晚期,约110~100 Ma),与中国的华南或整个东部燕山期构造演化具有一致的表现形式。大洋板块内微陆块在弧前的拼贴与洋脊的俯冲影响着东亚陆缘阶段性的挤压构造事件。
-
(3)早侏罗世期间,古太平洋板块(伊泽纳歧板块)以低角度快速俯冲至华南内陆,并伴随着岩浆前锋从沿海向内陆的快速迁移,早侏罗世岩浆弧可能位于陆缘一侧并随着快速的俯冲过程所剥蚀殆尽。而从晚侏罗世开始,俯冲的古太平洋板块逐步后撤,在早白垩世晚期到达西南日本地区。
-
(4)白垩纪岩浆弧位于西南日本一带,中国华南主体处于伸展背景,岩浆活动受俯冲板块后撤-断裂背景下地幔大规模上涌的控制。
-
尽管古太平洋板块俯冲导致中国华南或东部晚中生代构造-岩浆事件的观点已经达成共识,但陆缘地质构造演化,尤其是弧前增生楔增长、剥蚀、高压变质-折返等过程与陆内造山-岩浆作用之间的耦合关系却缺乏足够的认识,本文对此进行了粗浅的分析,但仍有诸多问题亟待解决。加强对日本和中国华南晚中生代地质演化的对比研究,跳出华南看华南,将有望进一步推动华南晚中生代构造演化认知的进步。
-
致谢:谨以此文敬贺任纪舜院士90华诞!任纪舜院士对于亚洲大地构造高屋建瓴的论述,是我们相关工作的基础。先生严谨求实、独立创新的治学思想更是我们永远学习的榜样。同时感谢两位审稿人建设性意见。
-
参考文献
-
Aitchison J C, Hada S, Ireland T, Yoshikura S I. 1996. Ages of Silurian radiolarians from the Kurosegawa terrane, southwest Japan constrained by U-Pb SHRIMP data. Journal of Southeast Asian Earth Sciences, 14(1~2): 53~70.
-
Aoki K, Iizuka T, Hirata T, Maruyama S, Terabayashi M. 2007. Tectonic boundary between the Sanbagawa belt and the Shimanto belt in central Shikoku, Japan. The Journal of the Geological Society of Japan, 113(5): 171~183.
-
Aoki K, Kitajima K, Masago H, Nishizawa M, Terabayashi M, Omori S, Maruyama S. 2009. Metamorphic P-T-time history of the Sanbagawa belt in central Shikoku, Japan and implications for retrograde metamorphism during exhumation. Lithos, 113(3-4): 393~407.
-
Aoki K, Maruyama S, Isozaki Y, Otoh S, Yanai S. 2011. Recognition of the Shimanto HP metamorphic belt within the traditional Sanbagawa HP metamorphic belt: New perspectives of the Cretaceous-Paleogene tectonics in Japan. Journal of Asian Earth Sciences, 42(3): 355~369.
-
Aoki K, Isozaki Y, Yamamoto S, Maki K, Yokoyama T, Hirata T. 2012. Tectonic erosion in a Pacific-type orogen: Detrital zircon response to Cretaceous tectonics in Japan. Geology, 40(12): 1087~1090.
-
Aoki K, Isozaki Y, Yamamoto A, Sakata S, Hirata T. 2015. Mid-Paleozoic arc granitoids in SW Japan with Neoproterozoic xenocrysts from South China: New zircon U-Pb ages by LA-ICP-MS. Journal of Asian Earth Sciences, 97: 125~135.
-
Arakawa Y, Saito Y, Amakawa H. 2000. Crustal development of the Hida belt, Japan: Evidence from Nd-Sr isotopic and chemical characteristics of igneous and metamorphic rocks. Tectonophysics, 328(1-2): 183~204.
-
Barber A J. 1982. Interpretations of the tectonic evolution of Southwest Japan. Proceedings of the Geologists' Association, 93(2): 131~145.
-
Boschman L M, van Hinsbergen D J J, Spakman W. 2021. Reconstructing Jurassic-Cretaceous intra-oceanic subduction evolution in the northwestern Panthalassa Ocean using ocean plate stratigraphy from Hokkaido, Japan. Tectonics, 40(8): e2019TC005673.
-
Brown M. 2009. Metamorphic patterns in orogenic systems and the geological record. Geological Society, London, Special Publications, 318(1): 37~74.
-
Bryan S. 2007. Silicic large igneous provinces. Episodes Journal of International Geoscience, 30(1): 20~31.
-
Cao Xianzhi, Flament N, Li Sanzhong, Müller R D. 2021. Spatio-temporal evolution and dynamic origin of Jurassic-Cretaceous magmatism in the South China Block. Earth-Science Reviews, 217: 103605.
-
Charvet J. 2013. Late Paleozoic-Mesozoic tectonic evolution of SW Japan: A review-Reappraisal of the accretionary orogeny and revalidation of the collisional model. Journal of Asian Earth Sciences, 72: 88~101.
-
Clift P D, Hartley A J. 2007. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru. Geology, 35(6): 503~506.
-
Cloos M. 1993. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and seamounts. Geological Society of America Bulletin, 105(6): 715~737.
-
Cluzel D. 1992. Late Palaeozoic to early Mesozoic geodynamic evolution of the Circum-Pacific orogenic belt in South Korea and Southwest Japan. Earth and Planetary Science Letters, 108(4): 289~305.
-
Dong Shuwen, Zhang Yueqiao, Li Hailong, Shi Wei, Xue H M, Li Jianhua, Huang Shiqi, Wang Yongchao. 2019. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”. Science China: Earth Sciences, 61: 1888~1909.
-
Doubrovine P V, Steinberger B, Torsvik T H. 2012. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic and Indian oceans. Journal of Geophysical Research: Solid Earth, 117(B9).
-
Endo S, Wallis S, Hirata T, Anczkiewicz R, Platt J, Thirlwall M, Asahara Y. 2009. Age and early metamorphic history of the Sanbagawa belt: Lu-Hf and P-T constraints from the western Iratsu eclogite. Journal of Metamorphic Geology, 27(5): 371~384.
-
Endo S, Kouketsu Y, Aoya M. 2024. Sanbagawa subduction: What went in, how deep, and how hot did it get?. Elements, 20(2): 77~82.
-
Ernst W G, Tsujimori T, Zhang R, Liou J G. 2007. Permo-Triassic collision, subduction zone metamorphism and tectonic exhumation along the East Asian continental margin. Annual Review of Earth and Planetary Sciences, 35(1): 73~110.
-
Fujii M, Hayasaka Y, Terada K. 2008. SHRIMP zircon and EPMA monazite dating of granitic rocks from the Maizuru terrane, southwest Japan: Correlation with East Asian Paleozoic terranes and geological implications. Island Arc, 17(3): 322~341.
-
Fujisaki W, Isozaki Y, Maki K, Sakata S, Hirata T, Maruyama S. 2014. Age spectra of detrital zircon of the Jurassic clastic rocks of the Mino-Tanba AC belt in SW Japan: Constraints to the provenance of the mid-Mesozoic trench in East Asia. Journal of Asian Earth Sciences, 88: 62~73.
-
Hada S, Sato E, Takeshima H, Kawakami A. 1992. Age of the covering strata in the Kurosegawa Terrane: Dismembered continental fragment in southwest Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 96(1~2): 59~70.
-
Hada S, Ishii K I, Landis C A, Aitchison J, Yoshikura S. 2001. Kurosegawa Terrane in Southwest Japan: Disrupted remnants of a Gondwana-derived terrane. Gondwana Research, 4(1): 27~38.
-
Hara H, Kurihara T. 2010. Tectonic evolution of low-grade metamorphosed rocks of the Cretaceous Shimanto accretionary complex, Central Japan. Tectonophysics, 485(1~4): 52~61.
-
Hara H, Hara K. 2019. Radiolarian and U-Pb zircon dating of Late Cretaceous and Paleogene Shimanto accretionary complexes, Southwest Japan: Temporal variations in provenance and offset across an out-of-sequence thrust. Journal of Asian Earth Sciences, 170: 29~44.
-
Hara H, Kurihara T, Mori H. 2013. Tectono-stratigraphy and low-grade metamorphism of Late Permian and Early Jurassic accretionary complexes within the Kurosegawa belt, Southwest Japan: Implications for mechanisms of crustal displacement within active continental margin. Tectonophysics, 592: 80~93.
-
Hara H, Nakamura Y, Hara K, Kurihara T, Mori H, Iwano H, Hirata T. 2017. Detrital zircon multi-chronology, provenance and low-grade metamorphism of the Cretaceous Shimanto accretionary complex, eastern Shikoku, Southwest Japan: Tectonic evolution in response to igneous activity within a subduction zone. Island Arc, 26(6): e12218.
-
Horie K, Yamashita M, Hayasaka Y, Katoh Y, Tsutsumi Y, Katsube A, Cho M. 2010. Eoarchean-Paleoproterozoic zircon inheritance in Japanese Permo-Triassic granites (Unazuki area, Hida metamorphic complex): Unearthing more old crust and identifying source terrranes. Precambrian Research, 183(1): 145~157.
-
Horiuchi Y, Hisada K I, Lee Y I. 2009. Paleosol profiles in the Shiohama Formation of the Lower Cretaceous Kanmon Group, Southwest Japan and implications for sediment supply frequency. Cretaceous Research, 30(5): 1313~1324.
-
Huang Diyin. 2019. Jurassic integrative stratigraphy and timescale of China. Science China: Earth Sciences, 62: 223~255.
-
Ichiyama Y, Ishiwatari A. 2004. Petrochemical evidence for off-ridge magmatism in a back-arc setting from the Yakuno ophiolite, Japan. Island Arc, 13(1): 157~177.
-
Ikeda T, Harada T, Kouchi Y, Morita S, Yokogawa M, Yamamoto K, Otoh S. 2016. Provenance analysis based on detrital zircon age spectra of the Lower Cretaceous formations in the Ryoseki-Monobe area, outer zone of Southwest Japan. Memoir of the Fukui Prefectural Dinosaur Museum, 15: 33~84.
-
Imaoka T, Nakajima T, Itaya T. 1993. K-Ar ages of hornblendes in andesite and dacite from the Cretaceous Kanmon Group, Southwest Japan. Journal of Mineralogy, Petrology and Economic Geology, 88(5): 265~271.
-
Imaoka T, Kiminami K, Nishida K, Takemoto M, Ikawa T, Itaya T, Iizumi S. 2011. K-Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene-Oligocene thermo-tectonic reactivation. Journal of Asian Earth Sciences, 40(2): 509~533.
-
Ishiwatari A, Ichiyama Y. 2004. Alaskan-type plutons and ultramafic lavas in Far East Russia, Northeast China and Japan. International Geology Review, 46(4): 316~331.
-
Isozaki Y. 1996. Anatomy and genesis of a subduction-related orogen: A new view of geotectonic subdivision and evolution of the Japanese Islands. Island Arc, 5(3): 289~320.
-
Isozaki Y. 1997a. Contrasting two types of orogen in Permo-Triassic Japan: Accretionary versus collisional. Island Arc, 6(1): 2~24.
-
Isozaki Y. 1997b. Jurassic accretion tectonics of Japan. Island Arc, 6(1): 25~51.
-
Isozaki Y, Aoki K, Nakama T, Yanai S. 2010. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research, 18(1): 82~105.
-
Isozaki Y, Ehiro M, Nakahata H, Aoki K, Sakata S, Hirata T. 2015. Cambrian plutonism in Northeast Japan and its significance for the earliest arc-trench system of proto-Japan: New U-Pb zircon ages of the oldest granitoids in the Kitakami and Ou Mountains. Journal of Asian Earth Sciences, 108: 136~149.
-
Itaya T, Tsujimori T, Liou J G. 2011. Evolution of the Sanbagawa and Shimanto high-pressure belts in SW Japan: Insights from K-Ar (Ar-Ar) geochronology. Journal of Asian Earth Sciences, 42(6): 1075~1090.
-
Kato K, Saka Y. 2006. New model for the Early Cretaceous development of SW Japan based on basic rocks of the Chichibu Composite Terrane. Geosciences Journal, 10: 275~289.
-
Kido E, Sugiyama T. 2011. Silurian rugose corals from the Kurosegawa Terrane, Southwest Japan and their paleobiogeographic implications. Bulletin of Geosciences, 86(1): 49~61.
-
Knittel U, Walia M, Suzuki S, Lee Y H, Takesue N, Lee H Y. 2020. U-Pb ages and Hf isotope composition of zircon from the Shimanto accretionary complex: Evidence for heterogeneous sources. Geochemical Journal, 54(5): 277~288.
-
Knittel U, Tokiwa T, Tsutsumi Y, Endo S, Wallis S R. 2024. Geochronology of the Sanbagawa belt: Younger and faster than before. Elements, 20(2): 89~95.
-
Kobayashi F. 2003. Palaeogeographic constraints on the tectonic evolution of the Maizuru Terrane of Southwest Japan to the eastern continental margin of South China during the Permian and Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 195(3~4): 299~317.
-
Kobayashi T. 1978. The Triassic Akiyoshi orogeny in Japan and Southeast Asia. Proceedings of the Japan Academy (Series B), 54(9): 510~515.
-
Kobayashi T, Hamada T. 1988. Present status of studies on Silurian trilobites and cephalopods in Japan. Journal of Geography (Chigaku Zasshi), 97(6): 543~554.
-
Koido Y. 1991. A late Cretaceous-Paleogene cauldron cluster: The Nohi rhyolite, central Japan. Bulletin of Volcanology, 53: 132~146.
-
Kusuhashi N, Matsumoto A, Murakami M, Tagami T, Hirata T, Iizuka T, Matsuoka H. 2006. Zircon U-Pb ages from tuff beds of the upper Mesozoic Tetori Group in the Shokawa district, Gifu Prefecture, central Japan. Island Arc, 15(3): 378~390.
-
Kusuhashi N, Tsutsumi Y, Saegusa H, Horie K, Ikeda T, Yokoyama K, Shiraishi K. 2013. A new early Cretaceous eutherian mammal from the Sasayama Group, Hyogo, Japan. Proceedings of the Royal Society B (Biological Sciences), 280(1759): 20130142.
-
Lallemand S, Heuret A, Boutelier D. 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion and crustal nature in subduction zones. Geochemistry, Geophysics, Geosystems, 6(9).
-
Li Jianhua, Dong Shuwen, Cawood P A, Thybo H, Clift P D, Johnston S T, Zhao Guochun, Zhang Yueqiao. 2023. Cretaceous long-distance lithospheric extension and surface response in South China. Earth-Science Reviews, 104496.
-
Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179~182.
-
Li Zhengxiang, Li Xianhua, Wartho J A, Clark C, Li Wuxian, Zhang Chuanlin, Bao Chaoming. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 122(5~6): 772~793.
-
Liu Lei, Xu Xisheng, Zou Haibo. 2012. Episodic eruptions of the Late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: Petrogenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos, 154: 166~180.
-
Liu Qian, Yu Jinhai, Wang Qin, Su Bin, Zhou Meifu, Xu Hai, Cui Xiang. 2012. Ages and geochemistry of granites in the Pingtan-Dongshan metamorphic belt, Coastal South China: New constraints on Late Mesozoic magmatic evolution. Lithos, 150: 268~286.
-
Mao Jingwen, Xie Guiqing, Li Xiaofeng, Zhang Changqing, Wang Yitian. 2006. Mesozoic large-scale mineralization and multiple lithospheric extensions in South China. Acta Geologica Sinica (English Edition), 80(3): 420~431.
-
Maruyama S. 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Island Arc, 6(1): 91~120.
-
Maruyama S, Banno S, Matsuda T, Nakajima T. 1984. Kurosegawa zone and its bearing on the development of the Japanese Islands. Tectonophysics, 110(1~2): 47~60.
-
Matsuda T, Isozaki Y. 1991. Well-documented travel history of Mesozoic pelagic chert in Japan: From remote ocean to subduction zone. Tectonics, 10(2): 475~499.
-
Matsuoka A. 1995. Jurassic and Lower Cretaceous radiolarian zonation in Japan and in the western Pacific. Island Arc, 4(2): 140~153.
-
Nakajima T. 1994. The Ryoke plutonometamorphic belt: Crustal section of the Cretaceous Eurasian continental margin. Lithos, 33(1~3): 51~66.
-
Nishimura Y. 1998. Geotectonic subdivision and areal extent of the Sangun belt, inner zone of Southwest Japan. Journal of Metamorphic Geology, 16(1): 129~140.
-
Noda A, Sato D. 2018. Submarine slope-fan sedimentation in an ancient forearc related to contemporaneous magmatism: The Upper Cretaceous Izumi Group, southwestern Japan. Island Arc, 27(2): e12240.
-
Nutman A P, Sano Y, Terada K, Hidaka H. 2006. 743±17 Ma granite clast from Jurassic conglomerate, Kamiaso, Mino Terrane, Japan: The case for South China Craton provenance (Korean Gyeonggi Block?). Journal of Asian Earth Sciences, 26(1): 99~104.
-
Ogasawara M, Fukuyama M, Horie K. 2016. SHRIMP U-Pb zircon dating of the Kinshozan quartz diorite from the Kanto Mountains, Japan: Implications for late Paleozoic granitic activity in Japanese Islands. Island Arc, 25(1): 28~42.
-
Ohta T. 2004. Geochemistry of Jurassic to earliest Cretaceous deposits in the Nagato basin, SW Japan: Implication of factor analysis to sorting effects and provenance signatures. Sedimentary Geology, 171(1~4): 159~180.
-
Okada H, Sakai T. 1993. Nature and development of Late Mesozoic and Early Cenozoic sedimentary basins in southwest Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 105(1-2): 3~16.
-
Okamoto K, Shinjoe H, Katayama I, Terada K, Sano Y, Johnson S. 2004. SHRIMP U-Pb zircon dating of quartz-bearing eclogite from the Sanbagawa Belt, south-west Japan: Implications for metamorphic evolution of subducted protolith. Terra Nova, 16(2): 81~89.
-
Okudaira T, Kawakami T, Ikeda T, Skrzypek E. 2024. Inside the Ryoke magmatic arc: Crustal deformation, high-T metamorphism and magmatic pulses. Elements, 20(2): 96~102.
-
Osozawa S, Yoshida T. 1997. Arc-type and intraplate-type ridge basalts formed at the trench-trench-ridge triple junction: Implication for the extensive sub-ridge mantle heterogeneity. Island Arc, 6(2): 197~212.
-
Otoh S, Yamakita S, Yanai S. 1990. Origin of the Chichibu Sea, Japan: Middle Paleozoic to Early Mesozoic plate construction in the northern margin of the Gondwana Continent. Tectonics, 9(3): 423~440.
-
Otsuki K. 1992. Oblique subduction, collision of microcontinents and subduction of oceanic ridge: Their implications on the Cretaceous tectonics of Japan. Island Arc, 1(1): 51~63.
-
Peyrotty G, Ueda H, Peybernes C, Rettori R, Martini R. 2020. Upper Triassic shallow-water carbonates from the Naizawa accretionary complex, Hokkaido (Japan): New insights from Panthalassa. Palaeogeography, Palaeoclimatology, Palaeoecology, 554: 109832.
-
Ren Jishun, Wang Zuoxun, Chen Bingwei, Jiang Chunfa, Niu Baogui, Li Jinyi, Xie Guanglian, He Zhengjun, Liu Zhigang. 1997. A new generation tectonic map of China. Regional Geology of China, 16(3): 225~248 (in Chinese with English abstract).
-
Safonova I, Kojima S, Nakae S, Romer R L, Seltmann R, Sano H, Onoue T. 2015. Oceanic island basalts in accretionary complexes of SW Japan: Tectonic and petrogenetic implications. Journal of Asian Earth Sciences, 113: 508~523.
-
Saito T, Okada Y, Fujisaki W, Sawaki Y, Sakata S, Dohm J, Dohm J, Maruyama S, Hirata T. 2014. Accreted Kula plate fragment at 94 Ma in the Yokonami-melange, Shimanto-belt, Shikoku, Japan. Tectonophysics, 623: 136~146.
-
Sakashima T, Terada K, Takeshita T, Sano Y. 2003. Large-scale displacement along the Median Tectonic Line, Japan: Evidence from SHRIMP zircon U-Pb dating of granites and gneisses from the South Kitakami and paleo-Ryoke belts. Journal of Asian Earth Sciences, 21(9): 1019~1039.
-
Sakoda M, Kano T, Fanning C M, Sakaguchi T. 2006. SHRIMP U-Pb zircon age of the Inishi migmatite around the Kamioka mining area, Hida metamorphic complex, Central Japan. Resource Geology, 56(1): 17~26.
-
Sano H, Kanmera K. 1991. Collapse of ancient oceanic reef complex: What happened during collision of Akiyoshi reef complex?—Sequence of collisional collapse and generation of collapse products. Journal of the Geological Society of Japan, 97(8): 631~644.
-
Sano H, Yamagata T, Horibo K. 1992. Tectonostratigraphy of Mino terrane: Jurassic accretionary complex of southwest Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 96(1~2): 41~57.
-
Sano H, Wada T, Naraoka H. 2012. Late Permian to Early Triassic environmental changes in the Panthalassic Ocean: Record from the seamount-associated deep-marine siliceous rocks, central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 363: 1~10.
-
Sano S I. 2015. New view of the stratigraphy of the Tetori Group in Central Japan. Memoir of the Fukui Prefectural Dinosaur Museum, 14: 25~61.
-
Sano S I, Yabe A. 2017. Fauna and flora of Early Cretaceous Tetori Group in Central Japan: The clues to revealing the evolution of Cretaceous terrestrial ecosystem in East Asia. Palaeoworld, 26(2): 253~267.
-
Sato D, Matsuura H, Yamamoto T. 2016. Timing of the Late Cretaceous ignimbrite flare-up at the eastern margin of the Eurasian Plate: New zircon U-Pb ages from the Aioi-Arima-Koto region of SW Japan. Journal of Volcanology and Geothermal Research, 310: 89~97.
-
Sewell R J, Carter A, Rittner M. 2016. Middle Jurassic collision of an exotic microcontinental fragment: Implications for magmatism across the Southeast China continental margin. Gondwana Research, 38: 304~312.
-
Sharp W D, Clague D A. 2006. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion. Science, 313(5791): 1281~1284.
-
Shi Wei, Dong Shuwen, Zhang Yueqiao, Hang Shiqi. 2015. The typical large-scale superposed folds in the central South China: Implications for Mesozoic intracontinental deformation of the South China Block. Tctonophysics, 664: 50~66.
-
Shu Liangshu, Yu Jinhai, Wang Dezi. 2000. Late Mesozoic granitic magmatism and its relation to metamorphism-ductile deformation in the Changle-Nan'ao fault zone, Fujian Province. Geological Journal of China Universities, 6(3): 368~378 (in Chinese with English abstract).
-
Sui Jia, Takeuchi M. 2020. Sedimentary history and provenance analysis of the Sanbagawa belt in eastern Kii Peninsula, Southwest Japan, based on detrital zircon U-Pb ages. Journal of Asian Earth Sciences, 196: 104342.
-
Sun Weidong, Ding Xing, Hu Yanhua, Li Xianhua. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262(3-4): 533~542.
-
Suzuki K, Adachi M. 1998. Denudation history of the high T/P Ryoke metamorphic belt, southwest Japan: Constraints from CHIME monazite ages of gneisses and granitoids. Journal of Metamorphic Geology, 16(1): 23~37.
-
Takahashi Y, Cho D L, Kee W S. 2010. Timing of mylonitization in the Funatsu shear zone within Hida belt of southwest Japan: Implications for correlation with the shear zones around the Ogcheon belt in the Korean Peninsula. Gondwana Research, 17(1): 102~115.
-
Takahashi Y, Mikoshiba M, Kubo K, Iwano H, Danhara T, Hirata T. 2016. Zircon U-Pb ages of plutonic rocks in the southern Abukuma Mountains: Implications for Cretaceous geotectonic evolution of the Abukuma belt. Island Arc, 25(2): 154~188.
-
Takatsuka K, Kawakami T, Skrzypek E, Sakata S, Obayashi H, Hirata T. 2018. Spatiotemporal evolution of magmatic pulses and regional metamorphism during a Cretaceous flare-up event: Constraints from the Ryoke belt (Mikawa area), central Japan. Lithos, 308: 428~445.
-
Takayuki U. 2017. U-Pb ages of detrital zircon grains from sandstones of the northern Chichibu belt and psammitic schists of the Sambagawa belt in the Toba district (Quadrangle series 1: 50, 000), Shima Peninsula, Mie Prefecture, Southwest Japan. Bulletin of the Geological Survey of Japan, 68(2): 41~56 (In Japanese with English abstract).
-
Tominaga K, Hara H. 2021. Paleogeography of Late Jurassic large igneous province activity in the Paleo-Pacific Ocean: Constraints from the Mikabu greenstones and Chichibu accretionary complex, Kanto Mountains, Central Japan. Gondwana Research, 89: 177~192.
-
Tsujimori T, Itaya T. 1999. Blueschist-facies metamorphism during Paleozoic orogeny in southwestern Japan: Phengite K-Ar ages of blueschist-facies tectonic blocks in a serpentinite melange beneath early Paleozoic Oeyama ophiolite. Island Arc, 8(2): 190~205.
-
Tsutsumi Y, Yokoyama K, Horie K, Terada K, Hidaka H. 2006. SHRIMP U-Pb dating of detrital zircons in paragneiss from Oki-Dogo Island, western Japan. Journal of Mineralogical and Petrological Sciences, 101(6): 289~298.
-
Uchino T, Suzuki N. 2020. Late Jurassic radiolarians from mudstone near the U-Pb dated sandstone of the North Kitakami belt in the northeastern Shimokita Peninsula, Tohoku, Japan. Bulletin of the Geological Survey of Japan, 71(4): 313~330.
-
Ueda H, Kimura S, Saito T, Takano Y, Iizuka N, Orihashi Y. 2018. Material recycling in a sediment-starved trench recorded in the Early Cretaceous Shiriya accretionary complex, Northeast Japan. Island Arc, 27(6): e12272.
-
Umeda M. 1998. Some Late Silurian characteristic radiolarians from the Yokokurayama Group in the Kurosegawa Terrane, Southwest Japan. Earth Science (Chikyu Kagaku), 52(3): 203~209.
-
Uyeda S, Miyashiro A. 1974. Plate tectonics and the Japanese Islands: A synthesis. Geological Society of America Bulletin, 85(7): 1159~1170.
-
Wakaki S, Tanaka T. 2005. Single mineral Rb-Sr isochron dating applied to the Nohi Rhyolite and a quartz porphyry dyke, central Japan. Geochemical Journal, 39(1): 21~28.
-
Wakita K. 2012. Mappable features of mélanges derived from Ocean Plate Stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes in Southwest Japan. Tectonophysics, 568: 74~85.
-
Wakita K. 2013. Geology and tectonics of Japanese islands: A review—The key to understanding the geology of Asia. Journal of Asian earth Sciences, 72: 75~87.
-
Wakita K, Nakagawa T, Sakata M, Tanaka N, Oyama N. 2021. Phanerozoic accretionary history of Japan and the western Pacific margin. Geological Magazine, 158(1): 13~29.
-
Wang Dezi, Zhao Guangtao, Qiu Jiansheng. 1995. The tectonic constraint on the late Mesozoic A-type granitoids in eastern China. Geological Journal of Universities, 1(2): 13~24 (in Chinese with English abstract).
-
Wang Guoguang, Ni Pei, Yao Jing, Wang Xiaolei, Zhao Kuidong, Zhu Renzhi, Xu Yingfeng, Pan Junyi, Li Li, Zhang Yinghong. 2015. The link between subduction-modified lithosphere and the giant Dexing porphyry copper deposit, South China: Constraints from high-Mg adakitic rocks. Ore Geology Reviews, 67: 109~126.
-
Wu J T J, Wu J. 2019. Izanagi-Pacific ridge subduction revealed by a 56 to 46 Ma magmatic gap along the northeast Asian margin. Geology, 47(10): 953~957.
-
Wu J, Wu T J, Yamaoka K. 2024. Linking Pacific plate motions to metamorphism and magmatism in Japan during Cretaceous to Paleogene times. Elements, 20(2): 103~109.
-
Xi Dangpeng, Wan Xiaoqiang, Li Guobiao, Li Gang. 2019. Cretaceous integrative stratigraphy and timescale of China. Science China: Earth Sciences, 62: 256~286.
-
Xing Guangfu, Hong Wentao, Zhang Xuehui, Zhao Xilin, Ban Yizhong, Xiao Fan. 2017. Yanshanian granitic magmatisms and their mineralizations in East China. Acta Petrologica Sinica, 33(5): 1571~1590 (in Chinese with English abstract).
-
Xu Xianbing, Tang Shuai, Lin Shoufa. 2016. Paleostress inversion of fault-slip data from the Jurassic to Cretaceous Huangshan basin and implications for the tectonic evolution of southeastern China. Journal of Geodynamics, 98: 31~52.
-
Xu Xisheng, O'Reilly S Y, Griffin W L, Wang Xiang, Pearson N J, He Zhenyu. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158(1~2): 51~78.
-
Xu Xisheng, Zhao Kai, He Zhenyu, Liu Lei, Hong Wentao. 2021. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model. Lithos, 402: 105728.
-
Xu Xisheng, Huang Zhouchuan, Jiang Dingsheng, Zeng Gang, Dai Liqun. 2024. Remnants and fragments of the subducted paleo-Pacific plate: Constraints from geochemistry and geophysics. Science China Earth Sciences, 67(10): 3041~3061.
-
Xu Yonghang, Wang C Y, Zhao Taiping. 2016. Using detrital zircons from river sands to constrain major tectono-thermal events of the Cathaysia Block, SE China. Journal of Asian Earth Sciences, 124: 1~13.
-
Yamada T, Ohno T. 2005. Revision of the stratigraphy of the Toyora and Toyonishi Groups in the Ouchi-Kikugawa area, Yamaguchi prefecture, West Japan. Journal of the Geological Society of Japan, 111: 389~403.
-
Yamaoka K, Wallis S R. 2023. Clockwise rotation of SW Japan and timing of Izanagi-Pacific ridge subduction revealed by arc migration. Progress in Earth and Planetary Science, 10(1): 62.
-
Yang Qiongyan, Santosh M, Maruyama S, Nakagawa M. 2016. Proto-Japan and tectonic erosion: Evidence from zircon geochronology of blueschist and serpentinite. Lithosphere, 8(4): 386~395.
-
Yoshikura S I, Hada S, Isozaki Y. 1990. Kurosegawa terrane. Pre-Cretaceous Terranes in Japan. Publication of IGCP Project, 224.
-
Yoshimoto A, Osanai Y, Nakano N, Adachi T, Yonemura K, Ishizuka H. 2013. U-Pb detrital zircon dating of pelitic schists and quartzite from the Kurosegawa tectonic zone, Southwest Japan. Journal of Mineralogical and Petrological Sciences, 108(3): 178~183.
-
Yuhara M, Kagami H, Nagao K. 2000. Geochronological characterization and petrogenesis of granitoids in the Ryoke belt, Southwest Japan Arc: Constraints from K-Ar, Rb-Sr and Sm-Nd systematics. Island Arc, 9(1): 64~80.
-
Zhang Yueqiao, Xu Xianbin, Jia Dong, Shu Liangshu. 2009. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic. Earth Science Frontiers, 16: 235~247.
-
Zhao Xilin, Mao Jianren, Ye Haimin, Liu Kai, Takahashi Y. 2013. New SHRIMP U-Pb zircon ages of granitic rocks in the Hida belt, Japan: Implications for tectonic correlation with Jiamushi massif. Island Arc, 22(4): 508~521.
-
Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes Journal of International Geoscience, 29(1): 26~33.
-
Zhu Bingquan, Wang Huifen, Chen Yuwei, Chang Xianyang, Hu Yaoguo, Xie Jin. 2004. Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia. Journal of Asian Earth Sciences, 24(2): 163~175.
-
Zhu Yongsheng, Li Chao, Liu Qun, Jiang Zhi, Zheng Rong, Guo Jun. 2024. Geochemical characteristics of apatite from the Yaocun granite in the eastern Jiangnan Orogen: Insights into magmatic properties. East China Geology, 45(3): 302~317 (in Chinese with English abstract).
-
董树文, 张岳桥, 李海龙, 施炜, 薛怀民, 李建华, 黄始琪, 王永超. 2019. “燕山运动”与东亚大陆晚中生代多板块汇聚构造——纪念“燕山运动”90周年. 中国科学: 地球科学, 49: 913~938.
-
黄迪颖. 2019. 中国侏罗纪综合地层和时间框架. 中国科学: 地球科学, 49: 227~256.
-
任纪舜, 王作勋, 陈炳蔚, 姜春发, 牛宝贵, 李锦轶, 谢广连, 和政军, 刘志刚. 1997. 新一代中国大地构造图. 中国区域地质, 16(3): 225~248.
-
舒良树, 于津海, 王德滋. 2000. 长乐-南澳断裂带晚中生代岩浆活动与变质-变形特征. 高校地质学报, 6(3): 368~378.
-
王德滋, 赵广涛, 邱检生. 1995. 中国东部晚中生代A型花岗岩的构造制约. 高校地质学报, 1(2): 13~24.
-
席党鹏, 万晓樵, 李国彪, 李罡. 2019. 中国白垩纪综合地层和时间框架. 中国科学: 地球科学, 49: 257~288.
-
邢光福, 洪文涛, 张雪辉, 赵希林, 班宜忠, 肖凡. 2017. 华东地区燕山期花岗质岩浆与成矿作用关系研究. 岩石学报, 33(5): 1571~1590.
-
徐夕生, 黄周传, 姜鼎盛, 曾罡, 戴立群. 2024. 古太平洋板块的遗迹和残片——地球化学和地球物理学示踪. 中国科学: 地球科学, 54(10): 3091~3112.
-
朱永胜, 李超, 刘群, 江志, 郑荥, 郭君. 2024. 皖南姚村A型花岗岩磷灰石特征及其对成岩成矿的指示. 华东地质, 45(3): 302~317.
-
内野隆之. 2017. 5 万分の 1 地質図幅 「鳥羽」 地域における秩父累帯北帯の砂岩及び三波川帯の砂質片岩から得られた砕屑性ジルコン U-Pb 年代. 地質調査研究報告, 68(2): 41~56.
-
摘要
西南日本位于欧亚大陆边缘,记录了有关大洋俯冲增生、高压变质、弧岩浆作用等复杂的地质过程,是理解东亚陆缘晚中生代构造演化的关键。本研究通过解析日本晚中生代的构造演化,尤其是俯冲增生杂岩过程与火山-沉积层序,探讨了日本构造演化过程、背景及其与中国华南构造-岩浆事件之间的联系。研究表明,西南日本在晚中生代时期先后受控于侏罗纪—早白垩世的伊泽纳歧板块俯冲与白垩纪库拉板块的俯冲,前者于晚石炭世开始扩展,从早侏罗世开始俯冲于欧亚大陆之下;后者于晚侏罗世开始扩展,早白垩世晚期开始俯冲,晚白垩世末期沉没于欧亚大陆之下。依据区域构造-地层-岩浆活动特征,西南日本晚中生代由古太平洋板块俯冲所引起的区域构造运动可大致分为三期:早燕山运动(约190 Ma、165~160 Ma)、中燕山运动(约135 Ma)以及晚燕山运动(约110~100 Ma),与中国华南或整个中国东部燕山期构造演化具有一致的表现形式。这些构造事件与大洋上微陆块的拼贴以及洋脊俯冲过程密切相关。古太平洋板块俯冲早期阶段,岩浆前锋从大洋一侧迅速西进至内陆地区,从晚侏罗世开始,受到弧前微陆块碰撞的影响开始后撤,直至白垩纪迁移至日本一带。中国华南白垩纪岩浆作用主要受控于板块断离背景下地幔上涌的控制。
Abstract
Southwestern Japan, located on the eastern margin of the Eurasian continent, preserves a complex geological record shaped by oceanic subduction processes, including accretionary complexes, high-pressure metamorphism, and arc magmatism, offering crucial insights into the Late Mesozoic tectonic evolution of the East Asian continental margin. This study analyzes the tectonic evolution of Late Mesozoic Southwestern Japan, focusing on the processes of subduction-accretion complexes and volcanic-sedimentary records, and explores the links between Japan's tectonic evolution and tectono-magmatic processes in South China. The results show that Southwestern Japan experienced sequential subduction regimes during the Late Mesozoic. The Izanagi Plate began expanding in the late Carboniferous, subducted beneath the Eurasian continent from the Early Jurassic to the Early Cretaceous, followed by the subduction of the Kula Plate during the Late Cretaceous, which terminated at the end of the Cretaceous. Based on the characteristics of Mesozoic accretionary complexes, stratigraphy, and magmatic activity, the Late Mesozoic orogeny in Southwestern Japan, induced by Paleo-Pacific Plate subduction, can be subdivided into three phases: the Early Yanshanian (~190 Ma, ~165~160 Ma), the Middle Yanshanian (~135 Ma), and the Late Yanshanian (~110~100 Ma). These phases correspond to the Yanshanian tectonic evolution observed in South China and the entire eastern part of China. These tectonic events are closely linked to the accretion of microcontinents and the process of ridge subduction. In the initial stages of Paleo-Pacific Plate (i.e.Izanagi Plate) subduction, the magmatic front rapidly advanced westward from the oceanic side to inland areas. However, from the Late Jurassic onwards, the magmatic front retreated due to the collision of microcontinents, eventually shifting to the Japan region during the Cretaceous. Cretaceous magmatism in South China was mainly controlled by asthenospheric upwelling caused by slab break-off.
Keywords
Japan ; Late Mesozoic ; Yanshanian ; subduction accretion ; paleo-Pacific ; South China