-
塔里木盆地下古生界碳酸盐岩经历了潜山构造—礁滩相控—岩溶—断控缝洞体的勘探历程(康玉柱,2007; 韩剑发等,2012; 田军等,2021)。在满加尔坳陷西缘鹰山组发现了塔河、富满、顺北等大型油气田(漆立新,2014; 王清华等,2021; 马永生等,2022),以岩溶、断控型储集体为主(云露等,2022),地质储量规模超过30亿t。虽然满加尔坳陷西缘鹰山组油气勘探取得了一系列大发现,但是鹰山组相控领域始终未取得大突破,其中重要原因之一就是对鹰山组沉积格局认识不清楚。另外,针对断控油气藏稳产难的问题,寻找断相双控型油气藏也成为下一步主要勘探目标。因此,加强对鹰山组沉积期台地沉积结构解剖对油气勘探具有重要意义。
-
对于鹰山组沉积模式,主要有镶边台地(赵宗举等,2007; 王成林等,2011; 李映涛等,2013; 杨孝群,2017; Yang Xiaoqun et al.,2021; 郑和荣等,2022; Yang Xiaoqun et al.,2024)、弱镶边台地(高志前等,2006)、缓坡(陈明等,2004; 张友等,2021; 刘艺妮等,2022)、镶边台地和缓坡共存(刘伟等,2009)等多种认识。造成这种争议性比较大的主要原因就是野外、已钻井鹰山组岩性以砂屑灰岩、泥晶灰岩为主,很少能够见到代表台缘带的鲕粒灰岩、生物格架灰岩等岩相组合。近期,随着中石油古探1、庆玉1、奥探1钻井对这套高能相带岩相组合的揭示,证实满加尔坳陷西缘鹰山组具备发育高能相带的地质条件,进一步厘定鹰山组台地沉积格局、寻找高能相带显得尤为必要。
-
通过本次钻井、岩芯、地震资料分析,发现了鹰山组台内、台缘沉积分异特征及其高能相带发育的可靠证据,阐述了规模储集体的发育区带及其油气勘探意义。
-
1 地质背景
-
塔里木盆地位于中国西北的新疆维吾尔自治区的南部,面积达56万km2,下古生界具有“西台东盆”的构造格局。满加尔坳陷是塔里木盆地古生界最大的生烃坳陷,其西缘鹰山组发现了塔河、富满、顺北等大型油气田。塔河油田位于塔北隆起的南斜坡,东接满加尔坳陷,西邻哈拉哈塘凹陷,该油田是一个大型古生代海相碳酸盐岩岩溶型油田,其南部的富满、顺北等大型油气田为超深层断控型油气田。在早—中奥陶世塔里木板块作为独立的板块位于赤道附近(Dong Yunpeng et al.,2021),邻近冈瓦纳大陆西北缘(图1)。板块东部满加尔—库鲁克塔格地区为盆地相沉积,西部发育了大型碳酸盐岩台地(张水昌等,2006)。
-
该盆地西部碳酸盐岩台地区中下奥陶统由下到上依次发育蓬莱坝组、鹰山组、一间房组。蓬莱坝组以白云岩和灰岩互层沉积为主,反映了局限台地沉积环境。鹰山组建组剖面位于柯坪鹰山北坡,岩性为灰、浅灰、褐灰色厚层状泥微晶灰岩,藻凝块球粒泥晶灰岩夹含藻砂屑砾屑灰岩(张师本等,2003)。一间房组可见大量的生物化石发育,局部可见生物礁。本次主要对鹰山组典型钻井、地震资料进行分析。
-
2 沉积相类型及特征
-
2.1 单井相
-
鹰山组岩性以鲕粒灰岩、砂屑灰岩、砾屑灰岩、含生屑灰岩、泥晶灰岩、白云岩等类型为主(图2)。局限台地细晶白云岩发育,常见于鹰山组下段。开阔台地以颗粒灰岩和泥晶灰岩为主。台内滩以亮晶砂屑灰岩为主,砾屑为近距离搬运内碎屑特征。滩间海主要为含砂屑泥晶灰岩。台缘带以亮晶颗粒灰岩,夹藻砂屑、藻黏结生屑灰岩为主,大量亮晶胶结、鲕粒、砂屑等高能沉积。台缘外侧见深灰色粗粉屑泥晶灰岩,可见棘皮动物、腹足类生物化石,海绵骨针生物化石。于奇8井第4回次位于鹰山组四段顶部,岩性以深灰色含砂屑泥晶灰岩为主,为台缘外侧低能沉积。水平缝合线常被黑色有机质和泥质充填,裂缝常被方解石充填。古探1、庆玉1井鹰山组上段可见大量亮晶胶结、鲕粒、砂屑等高能沉积。
-
图1 塔里木盆地中—下奥陶统鹰山组沉积期岩相古地理(据郑和荣等,2022)及岩性柱状图
-
Fig.1 Lithofacies paleogeographic map during deposition of the Middle-Lower Ordovician Yingshan Formation (after Zheng Herong et al., 2022) and the lithologic column diagram, Tarim basin
-
图2 鹰山组典型岩芯及薄片特征
-
Fig.2 Typical core and thin section characteristics of Yingshan Formation
-
(a)—砾屑、砂屑灰岩;(b)—砂屑灰岩,窗格孔发育;(c)—泥晶灰岩,裂缝发育;(d)—亮晶砂屑灰岩;(e)—含生屑泥晶灰岩;(f)—泥晶灰岩,富含硅质骨针
-
(a) —calcarenite; (b) —calcarenite with fenestral structure; (c) —micrite with fractures; (d) —sparry arenaceous limestone; (e) —bioclastic micrite; (f) —micrite, rich in siliceous spicules
-
塔深1井鹰山组岩屑薄片较齐全,样品间距为10 m。在岩屑薄片观察的基础上,并结合测井曲线,划分了该井的沉积相(图3)。鹰山组GR测井曲线表现为两分特征,下部为参差不齐、波动较大的高GR段,反映了沉积岩性变化较快。而上部GR曲线表现为稳定的低值段,反映了沉积岩性、环境的稳定。鹰山组下段的岩性组合表现为大套砂屑、泥晶灰岩夹薄层云岩的特征,表现为局限台地沉积环境。而鹰山组上段则表现为大套砂屑灰岩、泥晶灰岩互层的特征,云岩少见,反映了开阔台地的沉积背景。
-
2.2 连井相
-
于深1-于奇6-轮东1-库南1连井剖面(图4)表明鹰山组下段自西向东岩性组合由粉、细晶白云岩到砂屑灰岩、泥晶灰岩转变,云化程度逐渐降低,代表从局限台地—开阔台地转变沉积环境。
-
顺南蓬1-古隆1-古探1-古城4连井剖面(图5)表明鹰山组下段自西向东岩性组合由粉、细晶白云岩到砂屑灰岩、泥晶灰岩转变,云化程度逐渐降低,代表从局限台地向开阔台地转变沉积环境。古探1井鹰山组以亮晶鲕粒灰岩,夹藻砂屑、藻黏结生屑灰岩为主,发育高能相带。
-
3 地震相类型及特征
-
通过对不同相带10余口典型钻井的井震标定,对不同相带地震相特征进行总结(表1)。局限台地以塔深5、沙88、顺北蓬1井为例,地震相上为同相轴呈现连续的中—强振幅反射特征。云化滩表现为杂乱弱振幅丘状反射,滩间云坪为强振幅连续亚平行反射。开阔台地以于奇6、富东1、顺中1斜为例,地震相上,颗粒滩表现为丘状杂乱弱振幅反射,滩间海为相对中—强振幅、同相轴较连续的平行—亚平行反射特征。台地边缘以古探1、庆玉1为例,常表现为底平顶凸,内部杂乱反射。斜坡以古城4为例,发育在台缘外侧,地震呈顺层中—强振幅连续或亚平行反射,局部丘状杂乱弱振幅反射为风暴滩或者垮塌体。
-
图3 塔深1井中下奥陶统鹰山组沉积相综合柱状图
-
Fig.3 Comprehensive column diagram of sedimentary facies of Middle and Lower Ordovician Yingshan Formation in well Tashen 1
-
4 讨论
-
4.1 台内沉积分异
-
对于鹰山组台内沉积,前人识别了潮缘—半局限潮下和开阔海潮下两种沉积环境以及12种岩相类型(Guo Chuan et al.,2018; Han Jun et al.,2024)。由于多个油气田的发现,大量钻井揭示了鹰山组台内沉积。依据白云岩含量的多少,可以划分为局限台地和开阔台地两种沉积环境,但是对于不同沉积相带的相边界刻画具有较大差异(孙玉景,2016; 郑和荣等,2022)。针对这个问题,本次研究在对钻井、地震资料分析的基础上,提出以上超点的位置作为沉积相边界的依据。台地内过顺北蓬1东西向地震剖面表明,鹰山组下段沉积时西高东低,东部地层向西部上超特征(图6)。南北向的地震剖面,同样可以观察到地层厚的部位向薄的地方上超特征(图7)。以顺北地区鹰山组下段为例,依据这些上超点的追踪,明确了鹰山组台地内自西向东表现为西高东低,东部地层向西上超特征,依据识别出的两排上超点,并结合已钻井井震标定,划分为局限台地、半局限台地、开阔台地三种沉积环境。
-
图4 塔里木盆地北部鹰山组台内-台缘连井剖面
-
Fig.4 Inter-well section of interplatform and platform margin in Yingshan Formation, northern Tarim basin
-
图5 顺南—古城地区鹰山组台内-台缘连井剖面
-
Fig.5 Inter-well section of interplatform and platform margin in Yingshan Formation, Shunnan-Gucheng area
-
4.2 台缘分段特征
-
由于鹰山组台缘带不易识别,所以前人对于其为镶边台地还是缓坡模式一直具有争议(郑和荣等,2022; 刘艺妮等,2022)。随着古探1、庆玉1、奥探1钻井揭示了高能相带,认为鹰山组在台地-盆地转折端发育高能相带,具备发育台缘高能相带的特征。本文依据最新的三维、二维地震反射结构、叠加样式,对台缘带进行了刻画(图8)。
-
塔里木盆地北部台缘带最缓,约8.9°(图8A—A′)。该地区鹰山组台缘带尚未有钻井揭示,于奇8井钻揭含硅质骨针泥晶灰岩,为台缘外侧沉积。顺北—富满地区台缘带较缓,约11.5°(图8B—B′)。庆玉1、奥探1井钻揭大量亮晶胶结鲕粒灰岩、砂屑灰岩等高能沉积。顺南—古城地区地震剖面表明鹰山组台缘带坡度为21.5°,坡度最陡(图8C—C′)。古探1井钻揭亮晶颗粒灰岩,夹藻砂屑、藻黏结生屑灰岩。
-
图6 顺北地区鹰山组东西向地震剖面(拉平T74,显示出古地貌)
-
Fig.6 The east-west seismic section of Yingshan Formation in Shunbei area (flattening T74 to show the ancient geomorphology)
-
图7 顺北地区鹰山组南北向地震剖面
-
Fig.7 North-south seismic profile of Yingshan Formation in Shunbei area
-
碳酸盐岩台地结构一般和构造背景、海平面变化等因素相关。台缘带表现为南部陡,北部缓的特征,这和寒武系台缘具有一定继承性。寒武系台缘分段差异明显,北部台缘为沉积缓坡型台缘,轮古-古城台缘为断控陡坡型台缘(倪新锋等,2015; 曹颖辉等,2018)。
-
4.3 油气地质意义
-
碳酸盐岩台地类型及其台缘带特征对储层的形成及储盖组合配置关系具有重要的控制作用(倪新锋等,2015; 曹颖辉等,2018)。依据钻井、地震资料分析,本次研究厘定了鹰山组“台内东西向三分、台缘南北向坡度变缓”台地沉积结构(图9),明确了顺北地区主干断裂带间局限台地到开阔台地沉积差异。这些差异造成了有利储层和储盖组合的差异分布。
-
针对识别的不同沉积相带,分别统计典型钻井鹰山组白云岩含量及储层特征(图10)。鹰山组下段发育局限台地沉积环境,白云岩含量20%~50%。半局限台地鹰山组白云岩含量5%~20%。由于白云岩抗压实作用强,深层白云岩储层较为发育。开阔台地基本上以灰岩为主,原始孔隙基本上被压实、胶结,基质孔隙欠发育。鹰山组灰岩储层类型大多和走滑断裂、岩溶作用相关(何治亮等,2019;樊太亮等,2023;He Juan,2023)。台缘带发育高能颗粒灰岩,叠加岩溶作用,也可以发育规模储集体。
-
图8 满加尔坳陷西缘鹰山组东西向地震剖面(剖面位置见图1)
-
Fig.8 East-west seismic profile of Yingshan Formation on the western margin of Manjiaer depression (see Fig.1 for the location of the profile)
-
古城地区鹰山组陡坡型加积台缘储层发育,连通性好,盖层相对较差,而草湖地区鹰山组为退积型台缘,储层相对于古城地区欠发育,而盖层发育,储盖配置要优于古城地区。在储层方面,如果鹰山组退积型台缘叠加走滑断裂串珠,储层发育更为有利,因此于奇东台缘丘滩叠加断控串珠是下一步重点的勘探类型。
-
图9 塔里木盆地北部鹰山组沉积相图
-
Fig.9 Sedimentary facies map of Yingshan Formation in northern Tarim basin
-
图10 塔里木盆地中下奥陶统鹰山组不同相带钻井储层特征
-
Fig.10 Characteristics of drilling reservoirs in different facies zones of Yingshan Formation of Middle and Lower Ordovician in Tarim basin
-
5 结论
-
(1)塔里木盆地满加尔坳陷西缘中下奥陶统鹰山组台地沉积分异明显,台内分异表现为西高东低、东部向西上超的特征,代表了局限、半局限、开阔台地沉积环境,台缘分异表现为从南到北坡度减小,台缘丘滩由加积转变为退积为主沉积格局。
-
(2)台地结构造成了规模储集体发育的差异。鹰山组局限台地环境主要分布在顺北西区、古隆地区,白云岩相关储层发育。开阔台地多叠加岩溶、断裂作用,也可以形成良好储层。鹰山组台缘从古城—顺北—草湖坡度减小,台缘丘滩由加积转变为退积为主。鹰山组下段到上段台缘表现为退积特征,鹰下段退积型高能滩体,与上覆鹰上段斜坡相形成良好储盖组合。南部台缘带储层更为发育,而北部台缘带储盖组合配置更优越。
-
参考文献
-
Cao Yinghui, Li Honghui, Yan Lei, Wang Hongjiang, Zhang Junlong, Yang Min, Zhao Yimin. 2018. The sectional evolution characteristics of Cambrian platform margin in Manxi area of Tarim basin and its differences in source-reservoir-cap combination conditions. Natural Gas Geoscience, 29(6): 796~806 (in Chinese with English abstract).
-
Chen Ming, Xu Xiaosong, Wan Fang, Lou Xiongying, Wang Zhengjiang, Fu Heng. 2004. Study on outcrop sequence stratigraphy of the lower-middle Ordovician strata in Keping Tarim basin. Acta Sedimentologica Sinica, 22(1): 110~116 (in Chinese with English abstract).
-
Dong Yunpeng, Sun Shengsi, Santosh M, Zhao Jie, Sun Jiaopeng, He Dengfeng, Shi Xiaohui, Hui Bo, Cheng Chao, Zhang Guowei. 2021. Central China orogenic belt and amalgamation of East Asian continents. Gondwana Research, 100: 131~194.
-
Fan Tailiang, Gao Zhiqian, Wu Jun. 2023. Formation and modification of deep-burial carbonate rocks and orderly distribution of multi-type reservoirs in the Tarim basin. Earth Science Frontiers, 30(4): 1~18 (in Chinese with English abstract).
-
Gao Zhiqian, Fan Tailiang, Jiao Zhifeng, Li Yan. 2006. The structural types and depositional characteristics of carbonate platform in the Cambrian-Ordovician of Tarim basin. Acta Sedimentologica Sinica, (1): 19~27 (in Chinese with English abstract).
-
Guo Chuan, Chen Daizhao, Zhou Xiqiang, Ding Yi, Wei Wenwen, Zhang Gongjing. 2018. Depositional facies and cyclic patterns in a subtidal-dominated ramp during the early-middle ordovician in the western Tarim basin (NW China). Facies, 64(3): 1~29.
-
Han Jianfa, Zhang Haizu, Yu Hongfeng, Ji Yungang, Sun Chonghao, Han Jie, Dong Ruixia. 2012. Hydrocarbon accumulation characteristic and exploration on large marine carbonate condensate field in Tazhong uplift. Acta Petrologica Sinica, 28(3): 769~782 (in Chinese with English abstract).
-
Han Jun, Chen Daizhao, Cao Zicheng, Xiao Chongyang, Huang Cheng, Wang Shi, Chen Jingping, Guo Chuan. 2024. Facies analysis and depositional evolution of lower-middle Ordovician carbonates in the Shuntuoguole low uplift of Tarim basin (NW China). Facies, 70(1): 1~17.
-
He Juan. 2023. Factors controlling the development of carbonate reservoirs of Ordovician Yingshan Formation in the Gucheng area, Tarim basin. Energy Geoscience, 4(3): 100147.
-
He Zhiliang, Yun Lu, You Donghua, Peng Shoutao, Zhang Hong, Wang Kangning, Qian Yixiong, Jiao Cunli, Zhang Jibiao. 2019. Genesis and distribution prediction of the ultra-deep carbonate reservoirs in the transitional zone between the Awati and Manjiaer depressions, Tarim basin. Earth Science Frontiers, 26(1): 13~21 (in Chinese with English abstract).
-
Kang Yuzhu. 2007. Review and revelation of oil/gas discoveries in the Paleozoic marine strata of China. Oil & Gas Geology, 28(5): 570~575 (in Chinese with English abstract).
-
Li Yingtao, Bai Xiaoliang, Su Bingrui, Yuan Xiaoyu, Liu Di. 2013. Sedimentary facies and depositional model of middle-lower Ordovician Yingshan Formation in Tazhong area. Reservoir Evaluation and Development, 3(1): 1~8 (in Chinese with English abstract).
-
Liu Wei, Zhang Xingyang, Gu Jiayu. 2009. Sedimentary environment of lower-middle Ordovician Yingshan Formation in mid-western Tarim basin. Acta Sedimentologica Sinica, 27(3): 435~442 (in Chinese with English abstract).
-
Liu Yini, Hu Mingyi, Zhang San, Zhang Junlong, Gao Da, Xiao Chuantao. 2022. Characteristics and impacts on favorable reservoirs of carbonate ramp microfacies: A case study of the middle-lower Ordovician in Gucheng area, Tarim basin, NW China. Petroleum Exploration and Development, 49(1): 93~105 (in Chinese with English abstract).
-
Ma Yongsheng, Cai Xunyu, Yun Lu, Li Zongjie, Li Huili, Deng Shang, Zhao Peirong. 2022. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim basin, NW China. Petroleum Exploration and Development, 49(1): 1~17 (in Chinese with English abstract).
-
Ni Xinfeng, Shen Anjiang, Chen Yongquan, Guan Baozhu, Yu Guang, Yan Wei, Xiong Ran, Li Weiling, Huang Lili. 2015. Cambrian carbonate platform types, platform margin segmentation characteristics and exploration enlightenment in Tarim basin. Natural Gas Geoscience, 26(7): 1245~1255 (in Chinese with English abstract).
-
Qi Lixin. 2014. Exploration practice and prospects of giant carbonate field in the lower Paleozoic of Tarim basin. Oil & Gas Geology, 35(6): 771~779 (in Chinese with English abstract).
-
Sun Yujing. 2016. Lithofacies and paleogeography of middle and lower Ordovician Yingshan Formation in Tarim basin. Master's thesis of Southwest Petroleum University (in Chinese with English abstract).
-
Tian Jun, Wang Qinghua, Yang Haijun, Li Yong. 2021. Petroleum exploration history and enlightenment in Tarim basin. Xinjiang Petroleum Geology, 42(3): 272~282 (in Chinese with English abstract).
-
Wang Chenglin, Wu Guanghui, Cui Wenjuan, Tang Zijun, Zhou Bo, Qu Tailai, Gao Li. 2011. Characteristics and distribution of intra-platform beach of the lower-middle Ordovician Yingshan Formation carbonate in Tarim basin. Acta Sedimentologica Sinica, 29(6): 1048~1057 (in Chinese with English abstract).
-
Wang Qinghua, Yang Haijun, Wang Rujun, Li Shiyin, Deng Xingliang, Li Yong, Chang Lunjie, Wan Xiaoguo, Zhang Yintao. 2021. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim basin. China Petroleum Exploration, 26(4): 58~71 (in Chinese with English abstract).
-
Yang Xiaoqun. 2017. The high frequency sequence framework and interstratum karst reservoirs development mechanism of Lower-Middle Ordovician in Tabei area, Tarim basin. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
-
Yang Xiaoqun, Li Zhong, Fan Tailiang, Gao Zhiqian, Tang Shuai. 2021. Carbon isotope (δ13C carb) stratigraphy of the early-middle Ordovician (Tremadocian-Darriwilian) carbonate platform in the Tarim basin, NW China: Implications for global correlations. Geological Magazine, 158(3): 487~508.
-
Yang Xiaoqun, Peng Shoutao, Fan Tailiang, Gao Zhiqian, Wang Shi. 2024. Facies and geochemical characteristics of the middle-lower Ordovician Yingshan Formation in the Tarim basin, NW China: Implications for the high-frequency sequence stratigraphy in shallow-water carbonate platform. Energy Exploration & Exploitation, 42(3): 1178~1198.
-
Yun Lu, Zhu Xiuxiang. 2022. A new trap type: Fault-controlled fracture-vuggy trap. Oil & Gas Geology, 43(1): 34~42 (in Chinese with English abstract).
-
Zhang Shiben, Ni Yunan, Gong Fuhua, Lu Huinan, Huang Zhibin, Lin Huanling. 2003. Guide to Stratigraphic Survey in the Periphery of Tarim Basin. Beijing: Petroleum Industry Press (in Chinese).
-
Zhang Shuichang, Wang Ruiliang, Jin Zhijun, Zhang Baomin, Wang Darui, Bian Liceng. 2006. The relationship between the Cambrian-Ordovician high-TOC source rock development and paleoenvironment variations in the Tarim basin, western China: Carbon and oxygen isotope evidence. Acta Geologica Sinica, 80(3): 459~466 (in Chinese with English abstract).
-
Zhang You, Li Qiang, Zheng Xingping, Li Yule, Shen Anjiang, Zhu Mao, Xiong Ran, Zhu Kedan, Wang Xiandong, Qi Jingshun, Zhang Junlong, Shao Guanming, She Min, Song Xu, Sun Haihang. 2021. Types, evolution and favorable reservoir facies belts in the Cambrian-Ordovician platform in Gucheng-Xiaotang area, eastern Tarim basin. Acta Petrolei Sinica, 42(4): 447~465 (in Chinese with English abstract).
-
Zhao Zongju, Zhou Xinyuan, Wang Zhaoming, Shen Anjiang. 2007. Distribution of marginal facies and main controlling factors of reservoirs in the Ordovician, the Tarim basin. Oil & Gas Geology, 28(6): 738~744 (in Chinese with English abstract).
-
Zheng Herong, Tian Jingchun, Hu Zongquan, Zhang Xiang, Zhao Yongqiang, Meng Wanbin. 2022. Lithofacies palaeogeographic evolution and sedimentary model of the Ordovician in the Tarim basin. Oil & Gas Geology, 43(4): 733~745 (in Chinese with English abstract).
-
曹颖辉, 李洪辉, 闫磊, 王洪江, 张君龙, 杨敏, 赵一民. 2018. 塔里木盆地满西地区寒武系台缘带分段演化特征及其对生储盖组合的影响. 天然气地球科学, 29(6): 796~806.
-
陈明, 许效松, 万方, 楼雄鹰, 汪正江, 傅恒. 2004. 塔里木盆地柯坪地区中下奥陶统碳酸盐岩露头层序地层学研究. 沉积学报, 22(1): 110~116.
-
樊太亮, 高志前, 吴俊. 2023. 塔里木盆地深层碳酸盐岩建造-改造作用与多类型储层有序性分布. 地学前缘, 30(4): 1~18.
-
高志前, 樊太亮, 焦志峰, 李岩. 2006. 塔里木盆地寒武—奥陶系碳酸盐岩台地样式及其沉积响应特征. 沉积学报, (1): 19~27.
-
韩剑发, 张海祖, 于红枫, 吉云刚, 孙崇浩, 韩杰, 董瑞霞. 2012. 塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探. 岩石学报, 28(3): 769~782.
-
何治亮, 云露, 尤东华, 彭守涛, 张宏, 王康宁, 钱一雄, 焦存礼, 张继标. 2019. 塔里木盆地阿-满过渡带超深层碳酸盐岩储层成因与分布预测. 地学前缘, 26(1): 13~21.
-
康玉柱. 2007. 中国古生代海相油气田发现的回顾与启示. 石油与天然气地质, 28(5): 570~575.
-
李映涛, 白晓亮, 苏炳睿, 袁晓宇, 刘迪. 2013. 塔中地区中—下奥陶统鹰山组沉积相及沉积模式. 油气藏评价与开发, 3(1): 1~8.
-
刘伟, 张兴阳, 顾家裕. 2009. 塔里木盆地台盆区中西部中下奥陶统鹰山组沉积环境研究. 沉积学报, 27(3): 435~442.
-
刘艺妮, 胡明毅, 张三, 张君龙, 高达, 肖传桃. 2022. 碳酸盐缓坡沉积微相特征及其对储集层发育的制约——以塔里木盆地古城地区中—下奥陶统为例. 石油勘探与开发, 49(1): 93~105.
-
马永生, 蔡勋育, 云露, 李宗杰, 李慧莉, 邓尚, 赵培荣. 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发, 49(1): 1~17.
-
倪新锋, 沈安江, 陈永权, 关宝珠, 俞广, 严威, 熊冉, 李维岭, 黄理力. 2015. 塔里木盆地寒武系碳酸盐岩台地类型、台缘分段特征及勘探启示. 天然气地球科学, 26(7): 1245~1255.
-
漆立新. 2014. 塔里木盆地下古生界碳酸盐岩大油气田勘探实践与展望. 石油与天然气地质, 35(6): 771~779.
-
孙玉景. 2016. 塔里木盆地台盆区中下奥陶统鹰山组岩相古地理研究. 西南石油大学硕士学位论文.
-
田军, 王清华, 杨海军, 李勇. 2021. 塔里木盆地油气勘探历程与启示. 新疆石油地质, 42(3): 272~282.
-
王成林, 邬光辉, 崔文娟, 唐子军, 周波, 屈泰来, 高力. 2011. 塔里木盆地奥陶系鹰山组台内滩的特征与分布. 沉积学报, 29(6): 1048~1057.
-
王清华, 杨海军, 汪如军, 李世银, 邓兴梁, 李勇, 昌伦杰, 万效国, 张银涛. 2021. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新. 中国石油勘探, 26(4): 58~71.
-
杨孝群. 2017. 塔里木盆地塔北地区奥陶系碳酸盐岩高精度层序格架及内幕岩溶储层发育机制. 中国地质大学(北京)博士学位论文.
-
云露, 朱秀香. 2022. 一种新型圈闭: 断控缝洞型圈闭. 石油与天然气地质, 43(1): 34~42.
-
张师本, 倪寓南, 龚福华, 卢辉楠, 黄智斌, 林焕令. 2003. 塔里木盆地周缘地层考察指南. 北京: 石油工业出版社.
-
张水昌, R L Wang, 金之钧, 张宝民, 王大锐, 边立曾. 2006. 塔里木盆地寒武纪—奥陶纪优质烃源岩沉积与古环境变化的关系: 碳氧同位素新证据. 地质学报, 80(3): 459~466.
-
张友, 李强, 郑兴平, 厉玉乐, 沈安江, 朱茂, 熊冉, 朱可丹, 王显东, 齐井顺, 张君龙, 邵冠铭, 佘敏, 宋叙, 孙海航. 2021. 塔里木盆地东部古城—肖塘地区寒武纪—奥陶纪台地类型、演化过程及有利储集相带. 石油学报, 42(4): 447~465.
-
赵宗举, 周新源, 王招明, 沈安江. 2007. 塔里木盆地奥陶系边缘相分布及储层主控因素. 石油与天然气地质, 28(6): 738~744.
-
郑和荣, 田景春, 胡宗全, 张翔, 赵永强, 孟万斌. 2022. 塔里木盆地奥陶系岩相古地理演化及沉积模式. 石油与天然气地质, 43(4): 733~745.
-
摘要
塔里木盆地满加尔坳陷西缘中下奥陶统鹰山组已经发现了塔河、富满、顺北等岩溶、断控型大型油气田,是塔里木盆地油气勘探的主要层系。针对相控领域迟迟未见突破、台地沉积结构不明确的问题,本次研究依据最新钻井、连片地震资料,开展沉积相、台地结构解剖和油气地质意义分析工作。从连井相-地震相对比分析,明确了满加尔坳陷西缘由东向西奥陶系沉积相变化快,碳酸盐岩台地分异性强。鹰山组下段为盆地—斜坡—台缘—开阔台地—局限台地沉积格局;到鹰山组上段随着海平面上升,台地边缘逐渐向西迁移退缩,发展成盆地—斜坡—台缘—宽缓开阔台地。台地边缘表现为南北差异:从南到北台缘斜坡带坡度减小,台缘带由南部加积结构转变为北部退积结构。这种台地结构的差异造成了与相带有关的碳酸盐岩规模储集体的差异分布,鹰山组台缘丘滩从古城到草湖西部由加积转变为退积为主,造成古城地区发育垂向叠加的礁滩相储层,厚度较大;北部由于鹰山组下段到上段台缘表现为退积特征,形成鹰下段高能丘滩储集体与上覆鹰上段斜坡相形成良好储盖组合,这种结构处于满加尔坳陷烃源岩运移方向,对于形成大型原生岩性圈闭油气聚集区带具有重要意义。
Abstract
Large karst and fault-controlled oil and gas fields, such as Tahe, Fuman, and Shunbei, have been discovered in the middle and lower Ordovician Yingshan Formation in the western Manjiaer depression. This formation is the primary target for oil and gas exploration in the Tarim basin. However, the lack of breakthroughs in facies-controlled fields and the ambiguity surrounding platform sedimentary structures have hindered further exploration. This study analyzes sedimentary facies, platform structure, and oil and gas geological significance based on the latest drilling and contiguous seismic data. Analysis of interwell and seismic facies reveals a rapid east-west transition in Ordovician sediments and strong differentiation of the carbonate platform. The lower part of the Yingshan Formation exhibits a sedimentary pattern transitioning from basin-slope-open platform-restricted platform to basin-slope-open platform. As sea level rose in the upper part of Yingshan Formation, the platform margin gradually regressed westward, developing into a basin-slop-wide and slowly evolving open platform. The platform margin displays a north-south difference: the gradient decreases from south to north, and the platform margin transitions from an accretion structure in the south to a regressive structure in the north. This difference in platform structure results in the varied distribution of carbonate reservoir groups related to specific facies zones. From Gucheng westward to Caohu, the Yingshan Formation platform margin shifts from accretion to retrogradation, resulting in the development of thick, vertically superimposed reef-flat reservoirs. In the north, the retrograde characteristics of the platform margin in both the lower and upper Yingshan Formation members result in a favorable reservoir-cap combination: high-energy mound reservoirs in the lower Yingshan Member and slope facies in the upper Yingshan Member formed a good reservoir-cap combination. This structure lies in the migration direction of source rocks in the Manjiaer depression, making it highly significant for the formation of large-scale hydrocarbon accumulations in primary lithology traps.