-
扬子陆块新元古代的构造演化过程及其与Rodinia(罗迪尼亚)超大陆的关系长期存在争论(Li Zhengxiang et al.,2002; Zhou Meifu et al.,2006; Dong Yunpeng et al.,2011,2024; Chen Fenglin et al.,2024),一个重要原因是对一些古老沉积岩系(变形变质较强)的序列演化及沉积时限的认识(耿元生等,2007; 张传林等,2022)。前人主要是根据野外地质关系及其变形变质程度限制其时代,虽然也有一些年代学数据的约束,然而受测试方法和技术所限,其测试数据的准确性和可信度不高。例如,冷家溪群及其相当地层长期被认为是格林威尔碰撞造山带的重要组成部分,但是大量的研究证明其形成时代明显晚于典型的格林威尔造山期(Wang Xiaolei et al.,2007; Zhao Junhong et al.,2011; 田洋等,2021),因此有学者认为扬子陆块可能不处于Rodinia超大陆的内部,而在其边缘(Zhao Junhong et al.,2017; Wu Peng et al.,2023)。由此可见,地层时代的准确限定是古地理重建和沉积盆地形成演化研究的重要前提(宁括步等,2024; Xiong Guoqing et al.,2024)。
-
扬子陆块西北缘米仓山地区出露了大量与Rodinia超大陆聚合-裂解相关的沉积记录和岩浆活动,是该时期地质研究的重要载体(图1)。已通过研究证实扬子陆块在820~780 Ma之后是Rodinia超大陆裂解的重要组成部分(Wang Jian and Li Zhengxiang,2003; Ling Wenli et al.,2003; Zheng Yongfei et al.,2008; Li Xianhua et al.,2008; Lan Zhongwu et al.,2015; 邓奇等,2023),但是820 Ma之前扬子陆块与Rodinia超大陆聚合有关的演化过程存在较大争议。目前该地区新元古代早期的构造演化过程和动力学机制主要是基于岩浆岩的研究而建立(Ling Wenli et al.,2003; Dong Yunpeng et al.,2012; Luo Biji et al.,2018; Ao Wenhao et al.,2019; Berkana et al.,2022; Wu Peng et al.,2023),而该时期的沉积学研究则相对薄弱,特别是沉积序列演化与盆地分析。
-
图1 研究区构造位置(a)和旺苍-南江地区前寒武纪地质简图及主要调查剖面(b)
-
Fig.1 Tectonic position of the study area (a) and simplified geological map showing distribution of the Precambrian rocks and locations of the main survey sections in the Wangcang-Nanjiang area (b)
-
火地垭群和正源-英萃变质火山-沉积岩系(原后岩河群或大田角组)是扬子陆块西北缘米仓山地区前寒武纪发育的重要地层单元。火地垭群传统上被认为是中元古代地层(四川省地质矿产局,1997; 何政伟等,1997; Ling Wenli et al.,2003; Berkana et al.,2022),其变质变形较浅,沉积序列保存相对完整,记录了沉积时期重要的沉积-构造演化信息,是深入探索扬子陆块参与Rodinia超大陆聚散过程的重要窗口。邓奇等(2024)通过碎屑锆石研究,将火地垭群沉积时限的上限限定在~835 Ma,证实了火地垭群为新元古代早期的产物,但是其沉积序列及其所代表的沉积盆地演化过程尚不清楚。正源-英萃的变质火山-沉积岩系曾被认为与火地垭群的上两组相当,但由于变形强、变质程度较深,后长期被认为是太古宙—古元古代的基底岩系(四川省地质矿产局,1997; 何政伟等,1997; Ling Wenli et al.,2003; Li Junyong et al.,2021),因此其时代归属对于厘清扬子陆块西北缘前寒武纪构造演化意义重大。
-
鉴于此,本文选择火地垭群麻窝子组和上两组的代表性剖面,开展火地垭群沉积序列的综合调查与对比研究,厘定其沉积序列;对正源-英萃变质火山-沉积岩系进行锆石U-Pb年代学研究,约束其沉积时限及物源,以期准确揭示扬子陆块西北缘新元古代早期的沉积-构造演化过程及其与Rodinia超大陆聚散的耦合关系,为重建扬子陆块新元古代构造古地理格局提供新的资料。
-
1 地质背景
-
本文研究的米仓山地区位于多个构造带交汇连接的重要部位,向西为龙门山推覆构造带和松潘-甘孜造山带、向北为汉南古隆起和秦岭造山带、向东为大巴山推覆构造带、向南为四川盆地(图1a),区内出露的元古宙地层单元主要有火地垭群、震旦系和正源-英萃变质火山-沉积岩系(图1b)。
-
扬子陆块西北缘米仓山地区元古宙地层序列的系统性研究,始于20世纪60年代1∶20万区域地质调查工作,自下而上划分出铁船山组、麻窝子组和上两组(包括正源-英萃变质火山-沉积岩系),并统称为火地垭群(四川省地质局第二区域地质测量队,1965)❶。随着调查研究的不断深入,将火地垭群自下而上演变为后河组、麻窝子组、上两组和铁船山组(唐海清,1984)(表1)。受多期构造-热事件的影响,地层被断裂、岩脉频繁穿插、切割,出露多不连续,导致其形成时代认识上的分歧和对比的混乱。火地垭群的麻窝子组和上两组均曾被划分出多个岩性段,并将其定义为一套由碳酸盐岩、碎屑岩频繁交替的巨厚而复杂的沉积岩系,其时代、内部上两组和麻窝子组及与正源-英萃变质火山-沉积岩系(原后河岩群或大田角组)的关系均有争论,经历了一系列复杂的变革(四川省地质矿产局,1991,1997; 李庭柱和张仪娴,1995; 何政伟等,1997; 陕西省地质矿产局,1998; Berkana et al.,2022)(表1)。
-
火地垭群现指新元古界铁船山组(其流纹岩年龄为817±5 Ma;Ling Wenli et al.,2003)之下、古元古界后河杂岩(Wu Yuanbao et al.,2012; 邓奇等,2017,2020)之上的一套中浅变质岩系,与上覆铁船山组、下伏后河杂岩均为不整合接触,时代为新元古代早期(邓奇等,2024)。火地垭群纵向上包括下部麻窝子组和上部上两组。其中麻窝子组主要为(石墨)大理岩、白云岩、灰岩、钙质板岩、砂质板岩、碳质板岩、绢云板岩、钙质砾岩、云母片岩、火山岩及火山碎屑岩等;上两组以绢云板岩、砂质板岩、碳质板岩、绢云千枚岩、石英片岩、变砂岩、变砾岩及白云质灰岩为主。上两组上部普遍保存不好,主要见于南江县西北部的上两、新民和旺苍县北部的水磨等地。
-
1960年四川达州地质队将分布于旺苍县正源—英萃一带的变质火山-沉积岩系命名为大田角组。四川省地质局第二区域地质测量队(1965)❶认为大田角组深变质岩是经历了后期岩浆活动而变形变质的产物,与邻近中低变质的上两组是同期异相关系,并将其归入火地垭群上两组。四川省地质矿产局(1991)将其对比于川西的康定群,认为该深变质岩系是扬子陆块太古宙—古元古代结晶基底的一部分。成都理工学院区调三队(1995)❷在米仓山地区开展1∶5万区域地质填图时,将该套岩系称为后河岩群,自下而上进一步划分为河口岩组和汪家坪岩组,与火地垭群麻窝子组断层接触。基于斜长角闪岩Pb-Pb法等时线2638 Ma的年龄、以及侵入该群辉长闪长岩Sm-Nd等时线2003±45 Ma的年龄,将后河岩群(正源-英萃变质火山-沉积岩系)的时代限定在太古宙—古元古代(何政伟等,1997)。其中河口岩组的岩性主要为斜长变粒岩、斜长角闪(片)岩、斜长片麻岩、变英安岩、变流纹岩和变玄武岩等;汪家坪岩组的岩性主要为斜长变粒岩、二云石英片岩、黑云石英片岩、变英安岩、变玄武岩等。随后,正源-英萃这套深变质火山-沉积岩系为太古宙—古元古代的认识得到广泛采纳和应用(四川省地质矿产局,1991,1997; 何政伟等,1997; Ling Wenli et al.,2003; Li Junyong et al.,2021)(表1)。
-
2 样品描述与测试方法
-
为进一步厘清火地垭群的沉积序列及其演化、确定正源-英萃火山-沉积岩系的形成时限,本次优选了南江上两—光明、南江杨坝—新民、旺苍水磨—大河坝和旺苍学堂村汪家坪等典型剖面(图1b),即对火地垭群麻窝子组和上两组的原建组剖面,及正源-英萃变质岩系进行了详细的剖面调查,并采集了相关样品。
-
其中杨坝—新民剖面出露地层主体为麻窝子组,由于变形较强,地层可能重复较多。水磨—大河坝剖面主要出露麻窝子组上段和上两组。上两—光明剖面出露地层主要为麻窝子组中—上部和上两组,但由于频繁断层和岩脉穿插与切割,露头连续性较差,麻窝子组大理岩常见有不均一的硅化和矽卡岩化。
-
正源-英萃火山-沉积岩系样品WJP-1,采自旺苍英萃镇学堂村汪家坪,层位为1∶5万国华幅定义的原“后河岩群”的汪家坪岩组(成都理工学院区调三队,1995)❷,坐标为:N32°24′1.80″,E106°24′06.84″。岩性为二云石英片岩,为细粒状、鳞片状变晶结构(图2a、b)。岩石中矿物主要为石英、黑云母和白云母,少量斜长石、石榴子石和不透明矿物。其中石英多为他形粒状,约占58%;黑云母为片状呈定向排列,约占25%;白云母为片状或鳞片状,多具有港湾状边界,部分切割黑云母,约占7%。次要矿物为石榴子石、斜长石和矽线石。其中石榴子石为半自形粒状,单偏光下无色、正高突起、无解理,正交偏光下全消光,内部可见有石英包裹体。该样品出现富铝变质矿物石榴子石及矽线石,推测原岩成分富铝;有大量黑云母及白云母出现,推测其属于泥质岩系列。
-
正源-英萃火山-沉积岩系样品WJP-2,采自WJP-1以北300 m处,层位同样为原“后河岩群”的汪家坪岩组,坐标为:N32°24′14.40″,E106°24′6.84″。岩性为含矽线石的黑云母石英片岩,为细粒状、鳞片状变晶结构(图2c、d)。岩石主要矿物成分为石英、黑云母和矽线石,及少量斜长石、白云母、石榴子石等。其中石英多为他形粒状,约占53%;黑云母为定向排列片状,约占30%;矽线石为针柱状或毛发状,单偏光下无色、正高突起,正交偏光下干涉色可达二级蓝,平行消光,多分布在黑云母边部,含量约为6%。次要矿物为斜长石、白云母和石榴子石。该样品出现黑云母和富铝变质矿物(石榴子石及矽线石),推测其原岩应为泥质岩。
-
图2 米仓山地区正源-英萃火山-沉积岩系显微照片
-
Fig.2 Photomicrographs of the Zhengyuan-Yingcui volcanic-sedimentary rocks in the Micangshan area
-
(a)、(b)—样品WJP-1,二云石英片岩;(c)、(d)—样品WJP-2,黑云母石英片岩;Qtz—石英;Pl—斜长石;Sil—矽线石;Bt—黑云母;Grt—石榴子石;+为正交偏光;-为单偏光
-
(a) , (b) —sample WJP-1, two-mica quartz schist; (c) , (d) —sample WJP-2, biotite quartz schist; Qtz—quartz; Pl—plagioclase; Sil—sillimanite; Bt—biotite; Grt—garnet; +—cross-polarized light; -—plane-polarized light
-
岩石样品经破碎、淘洗、重液分离和电磁分离后,在双目镜下挑选晶形完好、具有代表性的锆石颗粒粘在树脂台上,打磨抛光,制成样靶,然后对锆石进行反射光、透射光显微照相和阴极发光(CL)图像分析,确定锆石的内部结构和成因,以选取最佳的待测锆石部位(余明刚等,2022)。其中,锆石挑选在河北廊坊宇能岩石矿物分选技术服务有限公司完成,锆石制靶、CL显微照相在武汉上谱分析科技有限责任公司完成。
-
锆石U-Pb同位素定年及其微量元素含量测试在武汉上谱分析科技有限责任公司利用LA-ICP-MS完成。详细的仪器参数和分析流程见Zong Keqing et al.(2017)。GeolasPro激光剥蚀系统由COMPexPro 102 ArF193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置(Hu Zhaochu et al.,2015)。本次分析的激光束斑为32 μm。锆石U-Pb同位素定年及其微量元素含量测定采用锆石标准91500和玻璃标准物质NIST610作外标分别进行同位素和微量元素分馏校正。每个时间分析数据包括大约20~30 s空白信号和50 s样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Pb同位素比值和年龄计算)采用软件ICPMS DataCal(Liu Yongsheng et al.,2010)完成。
-
3 分析结果
-
样品WJP-1的锆石多为柱状或短柱状,部分表面发育裂纹;粒度较小,长轴一般为60~100 μm,长宽比以1.5∶1~2.5∶1为主。阴极发光图像(CL)中,绝大部分锆石显示明显的岩浆成因振荡环带。大部分锆石具有核-边结构,核部一般可见岩浆振荡环带,边部较窄,多为海绵状、斑杂状(图3a)。
-
对样品WJP-1的54颗锆石进行了54个分析点的U-Pb同位素年龄测定,分析结果列于附表1。所有分析点均给出了有效年龄(谐和度≥90%)(图4a),Th和U的含量分别为44×10-6~443×10-6和51×10-6~474×10-6,Th/U值为0.45~1.83,也支持它们为岩浆结晶的产物。54个有效年龄介于923~823 Ma,集中分布于843~823 Ma和862~847 Ma两个区间;相对概率峰值约为832 Ma和853 Ma(图4b)。最年轻一组锆石206Pb/238U年龄的加权平均值为832±3 Ma(MSWD=0.57,n=26)(图4a)。
-
样品WJP-2的锆石主要为短柱状、粒状,长度为50~100 μm,长宽比以1∶1~2∶1为主。阴极发光图像(CL)中,绝大部分锆石的岩浆成因振荡环带结构明显,部分锆石边缘发育溶蚀现象(图3b)。
-
对样品WJP-2的48颗锆石进行了48个分析点的U-Pb同位素年龄测定,分析结果列于附表1。所有48个分析点的Th/U比值介于0.25~1.44,支持岩浆成因。除1.1、3.1、17.1、26.1、41.1测点的谐和度小于90%外,其余43个测点的谐和度均大于90%,为有效年龄(图4c)。43个有效年龄介于947~821 Ma,集中分布于846~821 Ma、865~850 Ma和897~878 Ma三个区间;相对概率峰值约为835 Ma、855 Ma和895 Ma(图4d)。最年轻的年龄组由20个测点组成,其206Pb/238U年龄加权平均值为833±4 Ma(MSWD=0.51,n=20)(图4c)。
-
可以看出,两个样品的年龄谱系特征较为相似,将两个样品的有效年龄数据合到一起,形成了3个年龄峰值,分别约为833 Ma、857 Ma和898 Ma(图4f)。最年轻一组锆石206Pb/238U年龄的加权平均值为833±2 Ma(MSWD=0.54,n=46)(图4e),代表了本次采样层位的最大沉积年龄。
-
4 讨论
-
4.1 正源-英萃变质火山-沉积岩系的时限及物源
-
正源-英萃这套变质火山-沉积岩系由于变质程度较深,一直以来被认为是太古宙—古元古代的产物(四川省地质矿产局,1991,1997; 何政伟等,1997; Ling Wenli et al.,2003; Li Junyong et al.,2021)。Berkana et al.(2022)对这套变质火山-沉积岩系开展了年代学和岩石地球化学分析。结果显示,变质火山岩主要形成于865~860 Ma,并于815 Ma左右经历了角闪岩相变质作用,并非前人认为的太古宙—古元古代的结晶基底。
-
图3 米仓山地区正源-英萃火山-沉积岩系石英片岩样品WJP-1和WJP-2代表性锆石CL图像
-
Fig.3 Cathodoluminescence (CL) images of typical zircon grains of quartz schist samples WJP-1 and WJP-2 from the Zhengyuan-Yingcui volcanic-sedimentary rocks in the Micangshan area
-
本次对这套变质火山-沉积岩中的二云石英片岩(WJP-1)和黑云母石英片岩(WJP-2)的碎屑锆石进行了同位素U-Pb年龄测定。这两个碎屑岩样品一共获得了97个有效数据,最年轻一组锆石206Pb/238U年龄的加权平均值为833±2 Ma(MSWD=0.54,n=46)(图4e),代表了本次采样层位的最大沉积年龄。本次样品的锆石有如下特征:最年轻一组锆石多为自形、棱角较为分明,与同沉积火山灰喷发形成的锆石特征一致;而其他组锆石都有不同程度的磨圆,具碎屑锆石的特征(图3)。因此最年轻一组锆石~833 Ma的年龄近似可以代表石英片岩原岩的沉积年龄。结合变质火山岩865~860 Ma的年龄(Berkana et al,2022),可暂时将正源-英萃变质火山-沉积岩系的沉积时限厘定为865~830 Ma。邓奇等(2024)对旺苍水磨地区火地垭群进行了LA-ICP-MS锆石U-Pb定年研究,将旺苍地区火地垭群的沉积上限限定为~835 Ma,因此,正源-英萃变质火山-沉积岩系和火地垭群应是同期异相的产物,均为新元古代早期的沉积记录。
-
碎屑锆石年龄谱是进行沉积物源示踪的有效方法之一,通过与已知年龄的地质体进行对比,可以为沉积物源提供约束(Wang Xiaolei et al.,2007; 田洋等,2021; 杨世文等,2022)。对正源-英萃变质沉积岩2件样品碎屑锆石U-Pb年龄的分析得出,其年龄介于947~821 Ma,集中分布于846~821 Ma、865~847 Ma和897~876 Ma三个区间,主要峰值约为833 Ma和857 Ma(图4)。研究区及周缘广泛发育上述年龄段的岩体,而正源-英萃变质火山-沉积岩系又是该区域出露的最老地层单元,因此可以认为物源主要来自周围的岩体。846~821 Ma区间的岩体如南郑西河829±5 Ma花岗岩,光雾山838±17 Ma花岗岩(Dong Yunpeng et al.,2012)等;865~847 Ma区间的岩体如南郑天平河~860 Ma花岗质岩(凌文黎等,2006; Luo Biji et al.,2018),旺苍英萃865~860 Ma变质火山岩(Berkana et al.,2022)等;897~876 Ma区间的岩体如南郑887±7 Ma黑云母花岗岩(Ao Wenhao et al.,2019)、879±6 Ma辉长岩(Luo Biji et al.,2018),略阳三岔子905±8 Ma斜长花岗岩(Wu Peng et al.,2019)等(表2),可以看出东部的南郑地区是物源的主要供给区。值得注意的是,本次样品还显示了923±9 Ma和947± 9 Ma的年龄记录,目前只有西北部的略阳地区有相似年龄岩体的报道,加上上述~900 Ma的略阳斜长花岗岩,可以推断出正源-英萃变质沉积岩的物源也应该来自西北。邓奇等(2024)通过研究认为,旺苍—南江地区火地垭群的上两组形成于弧后盆地,并接收来自西北和东(南)部的双向物源,与本次正源-英萃变质沉积岩的物源方向一致。
-
图4 米仓山地区正源-英萃火山-沉积岩系石英片岩样品WJP-1和WJP-2的碎屑锆石U-Pb定年结果(虚线为谐和度小于90%的分析点)
-
Fig.4 Zircon U-Pb dating results of quartz schist samples WJP-1 and WJP-2 from the Zhengyuan-Yingcui volcanic-sedimentary rocks in the Micangshan area (the dashed lines represent analysis points with concordance less than 90%)
-
4.2 火地垭群的沉积序列重建
-
如前所述,由于受后期构造-热事件的影响,地层被切割错断,出露多不连续,导致地层划分与对比的混乱,《陕西省岩石地层》和《四川省岩石地层》中定义的火地垭群即有差异。《四川省岩石地层》(四川省地质矿产局,1997)将火地垭群定义为一套浅变质碳酸盐岩、火山碎屑岩、绢云板岩、石英板岩等,厚度大于5000 m。其中麻窝子组以变质碳酸盐岩为主,间夹少量变碎屑岩和火山碎屑岩;上两组为一套中浅变质细碎屑岩、变火山岩及火山碎屑岩,间夹碳酸盐岩。《陕西省岩石地层》(陕西省地质矿产局,1998)将火地垭群麻窝子组定义为暗色—深灰色白云质大理岩夹白云质板岩、片岩及变质砾岩等,多韵律互层,厚度大于1000 m;上两组定义为深灰色绢云母石英板岩,夹大理岩、白云质灰岩、白云岩等,不等厚互层,厚880~1600 m。概括来说,即麻窝子组以变质碳酸盐岩为主,上两组以变质碎屑岩为主,但又是碳酸盐岩、碎屑岩韵律互层;至于两者的接触关系,前人研究也未能达成共识,因此,野外两个组容易混淆。
-
为进一步厘定火地垭群的沉积序列及其纵向演化过程,我们对南江上两—光明(图5a)、杨坝—新民(图5b)和旺苍水磨—大河坝等典型剖面开展了详细的沉积学及其对比研究,发现火地垭群变形较强,断层切割和岩脉穿插频繁,局部地层为叠瓦状逆冲断片,但有一个基本规律是:从东往西,碳酸盐岩逐渐减少、碎屑岩和火山岩逐渐增多。同时,在碳酸盐岩向碎屑岩转变附近,发育明显的重力流沉积(具有粒序层理的复成分砾岩,砾石主要为浅色白云质大理岩、白云岩和深色硅质岩,并显示出一定的定向性)(图5a3)。从盆地动力学分析,该套复成分砾岩可能是盆地动力学转换的重要沉积记录。因此,本文将该套复成分砾岩作为麻窝子组与上两组的分层标志。
-
图5 南江地区上两—光明(a)和杨坝—新民(b)剖面的火地垭群沉积序列
-
Fig.5 The depositional sequence of Huodiya Group from the sections Shangliang—Guangming (a) and Yangba—Xinmin (b) in the Nanjiang region
-
(a1)—上两组上段变质粉砂岩;(a2)—上两组下段黑色碳质板岩;(a3)—上两组底部灰质复成分砾岩,粒序层理;(a4)—麻窝子组上段块状大理岩;(b1)—上两组下段石英片岩;(b2)—麻窝子组上段灰岩-钙质板岩;(b3)—麻窝子组上段钙质板岩,变形层理;(b4)—观音崖组与火地垭群接触关系;Pt3m1—麻窝子组下段;Pt3m2—麻窝子组上段;Pt3s1—上两组下段;Pt3s2—上两组上段;Z1g—观音崖组;Z2dy—灯影组
-
(a1) —metasiltstone from the upper section of the Shangliang Formation; (a2) —carbonaceous slate from the lower section of the Shangliang Formation; (a3) —calcareous polymictic conglomerate developing graded bedding from the bottom of the Shangliang Formation; (a4) —massive marble from the upper section of the Mawozi Formation; (b1) —quartz schist from the lower section of the Shangliang Formation; (b2) —limestone and carbonaceous slate from the upper section of the Mawozi Formation; (b3) —calcareous slate developing deformed bedding from the upper section of the Mawozi Formation; (b4) —contact relationship of the Guanyinya Formation and Huodiya Group; Pt3m1—lower section of the Mawozi Formation; Pt3m2—upper section of the Mawozi Formation; Pt3s1—lower section of the Shangliang Formation; Pt3s2—upper section of the Shangliang Formation; Z1g—Guanyinya Formation; Z2dy—Dengying Formation
-
该套复成分砾岩之下的麻窝子组,沉积序列自下而上为变质砂岩夹泥质板岩、火山碎屑岩,砂质板岩,碳质板岩,中—薄层大理岩化灰岩夹钙质板岩(图5b),厚层、块状大理岩(图5a4),反映出盆地开启、扩张与碳酸盐台地或缓坡建设的过程。而底部包含该套砾岩的上两组,其沉积序列自下而上则转换为厚层、块状变质砾岩、含砾砂岩、砂岩,砂质板岩,碳质板岩,砂质板岩夹绢云千枚岩,中—薄层细粒岩屑砂岩,中—厚层含砾砂岩(图5a1、a2),显示出沉积盆地经历了挠曲沉降至快速充填的过程。
-
因此,从沉积岩石组合反演盆地动力学的角度分析,火地垭群大体上经历了三个演化阶段:盆地开启、盆地扩张、挠曲沉降与快速充填,相应地发育了三套岩石组合:① 变质火山岩、火山碎屑岩、变质砂岩夹砂质板岩/千枚岩;② 泥质/白云质灰岩、大理岩夹钙质板岩/千枚岩;③ 浊积岩夹碳质板岩、砂质板岩夹绢云千枚岩、变质岩屑砂岩及含砾砂岩。前两个阶段及其对应的岩石组合为麻窝子组,第三个阶段及其对应的岩石组合为上两组。
-
4.3 扬子陆块西北缘新元古代早期的盆地演化
-
前人研究表明,扬子陆块西北缘新元古代早期的沉积地层主要有碧口群(Yan Quanren et al.,2004; 叶霖等,2009; Wang Wei et al.,2012a)和三花石群(Ling Wenli et al.,2003; 徐学义等,2009),它们均形成与弧相关的环境(Xiao Long et al.,2007; Wang Wei et al.,2012a),加上本次研究明确为新元古代早期与弧盆有关的火地垭群及正源-英萃变质火山-沉积岩系。由此可见,新元古代早期的西北缘,应该是活动大陆边缘环境,而上述地层序列可能是同一弧盆中不同构造部位的沉积响应。基于这一认识,我们初步厘定了扬子陆块西北缘新元古代早期的构造演化过程,可能经历了如下三个阶段(图6):
-
(1)1000~900 Ma,洋壳俯冲与弧盆发育:Wu Peng et al.(2023)通过扬子陆块西北缘早新元古代岩浆作用记录系统分析认为,在1000~900 Ma期间,整个扬子陆块西北缘的构造环境以外围的洋-洋俯冲体系为主,形成洋内弧并拼贴增生到大陆的边缘。大陆弧岩浆作用在扬子陆块西北缘的开启时间在900 Ma左右,随着大陆弧岩浆作用的进一步发展及俯冲作用的不断加强,扬子陆块西北缘的弧后盆地开启。
-
(2)900~860 Ma,弧后扩张与碳酸盐缓坡/台地建设:弧后盆地的开启,必然伴随着陆块边缘的构造伸展与火山活动,沉积了火山岩、火山碎屑岩、砂岩夹泥岩,这是麻窝子组下段发育火山岩或火山碎屑岩的主要动力学机制。随后,由于弧盆扩张与海侵上超,构造-火山活动减弱,陆缘碎屑补给相对匮乏,为碳酸盐岩的沉积创造了条件,因此,麻窝子组沉积中晚期发育了碳酸盐台地,形成了麻窝子组中上部相对稳定的碳酸盐岩沉积(图6a)。
-
(3)860~820 Ma,弧盆挠曲沉降与快速充填:随着洋壳的持续俯冲和板片回卷(Luo Biji et al.,2018; Ao Wenhao et al.,2019; Wu Peng et al.,2023),扬子陆块西北缘的新元古代弧盆发生挠曲沉降,即在靠近岛弧的一侧沉积了正源-英萃火山-沉积岩系(图6b)。剧烈的构造活动,触发了海底重力流的发育,形成了钙质复成分砾岩楔状体。同时由于快速的构造挠曲,短暂的海平面上升叠加了海底热液活动影响,为上两组早期碳质页岩的发育创造了条件。
-
至上两组沉积晚期,弧盆逐渐收缩,陆壳发生再造与隆升,为弧盆提供了充沛的物源(图6b),形成了上两组上部厚层、块状的砂岩。随即,弧盆被快速充填消亡。
-
区域上,米仓山地区的火地垭群及正源-英萃变质火山-沉积岩系可与邻近的碧口群、三花石群(Ling Wenli et al.,2003; Wang Wei et al.,2012a),及黔东梵净山群、湘西冷家溪群或桂北四堡群等(Wang Xiaolei et al.,2007; Zhou Jincheng et al.,2009; Wang Wei et al.,2012b)对比,它们皆是Rodinia超大陆汇聚在扬子陆块周缘的沉积响应。
-
图6 扬子陆块西北缘新元古代早期的弧盆演化及其动力学过程(据Li Junyong et al.,2018; Wu Peng et al.,2023)
-
Fig.6 The arc basin evolution and its dynamic processes during the early Neoproterozoic period in the northwestern Yangtze Block (after Li Junyong et al., 2018; Wu Peng et al., 2023)
-
5 结论
-
(1)正源-英萃变质火山-沉积岩系形成于新元古代早期,而非太古宙—古元古代基底,接受来自西北和东(南)部的双向物源供给,与火地垭群为同期异相地层。
-
(2)火地垭群是一套由碎屑岩-碳酸盐岩-碎屑岩夹火山岩构成的复杂的沉积岩石组合,沉积序列及其他研究成果综合分析显示盆地经历了三个演化阶段:① 洋壳俯冲与弧盆开启;② 弧后扩展与碳酸盐缓坡/台地建设;③ 盆地挠曲沉降与快速充填。
-
(3)火地垭群和正源-英萃变质火山-沉积岩系应是同一盆地不同部位的沉积产物,均为Rodinia超大陆汇聚过程在扬子陆块西北缘的沉积响应。
-
附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202411091?st=article_issue
-
注释
-
❶ 四川省地质局第二区域地质测量队.1965.1∶20万南江幅区域地质测量报告.
-
❷ 成都理工学院区调三队.1995.1∶5万国华幅地质图说明书.
-
参考文献
-
Ao Wenhao, Zhao Yan, Zhang Yukun, Zhai Mingguo, Zhang Hong, Zhang Ruiying, Wang Qian, Sun Yong. 2019. The Neoproterozoic magmatism in the northern margin of the Yangtze Block: Insights from Neoproterozoic (950~706 Ma) gabbroic-granitoid rocks of the Hannan complex. Precambrian Research, 333: 105442.
-
Berkana W, Wu Hui, Ling Wenli, Kusky T, Ding Xiaoying. 2022. Neoproterozoic metavolcanic suites in the Micangshan terrane and their implications for the tectonic evolution of the NW Yangtze block, South China. Precambrian Research, 368: 106476.
-
Bureau of Geology and Mineral Resources of Shaanxi Province. 1998. Stratigraphy (Lithostratic) of Shaanxi Province. Wuhan: China University of Geosciences Press (in Chinese).
-
Bureau of Geology and Mineral Resources of Sichuan Province. 1991. Regional Geological Chronicles of Sichuan Province. Beijing: Geological Publishing House (in Chinese with English abstract).
-
Bureau of Geology and Mineral Resources of Sichuan Province. 1997. Stratigraphy (Lithostratic) of Sichuan Province. Wuhan: China University of Geosciences Press (in Chinese).
-
Chen Fenglin, Wang Jian, Cui Xiaozhuang, Lin Shoufa, Ren Guangming, Deng Qi, Huang Mingda, Li Kuizhou, Shen Lijun. 2024. A latest Mesoproterozoic arc-back-arc system in the southwestern Yangtze Block, South China: Implications for paleogeographic configuration of the Rodinia supercontinent. Precambrian Research, 409: 107432.
-
Deng Qi, Wang Zhengjiang, Wang Jian, Cui Xiaozhuang, Ma Long, Xiong Xiaohui. 2017. Discovery of the Baiyu ~1. 79 Ga A-type granite in the Beiba area of the northwestern margin of Yangtze Block: Constraints on tectonic evolution of South China. Acta Geologica Sinica, 91(7): 1454~1466 (in Chinese with English abstract).
-
Deng Qi, Wang Zhengjiang, Ren Guangming, Cui Xiaozhuang, Cao Huawen, Ning Kuobu, Ren Fei. 2020. Identification of the ~2. 09 Ga and ~1. 76 Ga granitoids in the northwestern Yangtze Block: Records of the assembly and break-up of Columbia supercontinent. Earth Science, 45(9): 3295~3312 (in Chinese with English abstract).
-
Deng Qi, Cui Xiaozhuang, Wang Zhengjiang, Xiong Guoqing, Ren Guangming, Ning Kuobu. 2023. New understanding of the tectonic evolution of the northern margin of Yangtze Block: Constraints from the geochronology and geochemistry of the Huashan Group. Sedimentary Geology and Tethyan Geology, 43(1): 212~225 (in Chinese with English abstract).
-
Deng Qi, Wang Zhengjiang, Ning Kuobu, Cui Xiaozhuang, Xiong Guoqing, Ren Guangming, Ren Fei. 2024. Depositional age, provenance and tectonic significance of the Huodiya Group in the Wangcang area, northwestern margin of the Yangtze Block: Constraints from detral zircon U-Pb geochronology. Acta Sedimentologica Sinica. https: //doi. org/10. 14027/j. issn. 1000-0550. 2024. 014 (in Chinese with English abstract).
-
Dong Yunpeng, Liu Xiaoming, Santosh M, Zhang Xiaoning, Chen Qing, Yang Chen, Yang Zhao. 2011. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan massif. Precambrian Research, 189(1-2): 66~90.
-
Dong Yunpeng, Liu Xiaoming, Santosh M, Chen Qing, Zhang Xiaoning, Li Wei, He Dengfeng, Zhang Guowei. 2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: Constraints from zircon U-Pb geochronology and geochemistry. Precambrian Research, 196-197: 247~274.
-
Dong Yunpeng, Hui Bo, Sun Shengsi, He Dengfeng, Sun Jiaopeng, Zhang Feifei, Cheng Chao, Yang Zhao, Shi Xiaohui, Zang Rutao, Long Xiaoping, Zhang Guowei. 2024. Neoproterozoic tectonic evolution and proto-basin of the Yangtze Block, China. Earth-Science Reviews, 249: 104669.
-
Geng Yuansheng, Yang Chonghui, Wang Xinshe, Ren Liudong, Du Lilin, Zhou Xiwen. 2007. Age of crystalline basement in western margin of Yangtze terrane. Geological Journal of China Universities, 13(3): 429~441 (in Chinese with English abstract).
-
He Zhengwei, Liu Yuanchao, Wei Xiangui, Xiao Yuanfu, Ma Runze, Wu Dechao. 1997. Isotopic geochronology of basement metamorphic rock series in the Micangshan area along the northern margin of Yangtze Craton, China. Mineralogy and Petrology, 17(Suppl. 1): 83~87 (in Chinese with English abstract).
-
Hu Zhaochu, Zhang Wen, Liu Yongsheng, Gao Shan, Li Ming, Zong Keqing, Chen Haihong, Hu Shenghong. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Analytical Chemistry, 87(2): 1152~1157.
-
Lai Shaocong, Li Yongfei, Qin Jiangfeng. 2007. Geochemistry and LA-ICP-MS zircon U-Pb dating of the Dongjiahe ophiolite complex from the western Bikou terrane. Science in China Series D: Earth Sciences, 50(Suppl. 2): 30~313.
-
Lan Zhongwu, Li Xianhua, Zhu Maoyan, Zhang Qirui, Li Qiuli. 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb zircon age constraints and regional and global significance. Precambrian Research, 263: 123~141.
-
Li Junyong, Wang Xiaolei, Gu Zhidong. 2018. Early Neoproterozoic arc magmatism of the Tongmuliang Group on the northwestern margin of the Yangtze Block: Implications for Rodinia assembly. Precambrian Research, 309: 181~197.
-
Li Junyong, Wang Xiaolei, Wang Di, Du Dehong, Yu Jinhai, Gu Zhidong, Huang Yu, Li Linsen. 2021. Pre-Neoproterozoic continental growth of the Yangtze Block: From continental rifting to subduction-accretion. Precambrian Research, 355: 106081.
-
Li Tingzhu, Zhang Yixian. 1995. The Houhe Group of the Micangshan area and its characters. Journal of Stratigraphy, 19(2): 149~155 (in Chinese with English abstract).
-
Li Xianhua, Li Wuxian, Li Zhengxiang, Liu Ying. 2008. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102: 341~357.
-
Li Zhengxiang, Li Xianhua, Zhou Hanwen, Kinny P D. 2002. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 30(2): 163~166.
-
Ling Wenli, Gao Shan, Zhang Benren, Li Huimin, Liu Ying, Cheng Jianping. 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: Implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Research, 122: 111~140.
-
Ling Wenli, Gao Shan, Cheng Jianping, Jiang Linsheng, Yuan Honglin, Hu Zhaochu. 2006. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: Constraint from the ELA-ICPMS U-Pb geochronology of zircons from the Huangling and Hannan complexes. Acta Petrologica Sinica, 22(2): 387~396 (in Chinese with English abstract).
-
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.
-
Luo Biji, Liu Rong, Zhang Hongfei, Zhao Junhong, Yang He, Xu Wangchun, Guo Liang, Zhang Liqi, Tao Lu, Pan Fabin, Wang Wei, Gao Zhong, Shao Hui. 2018. Neoproterozoic continental back-arc rift development in the northwestern Yangtze Block: Evidence from the Hannan intrusive magmatism. Gondwana Research, 59: 27~42.
-
Ping Xianqing, Zheng Jianping, Xiong Qing, Zhang Zhihai, Xia Bing. 2014. Zircon U-Pb ages and Hf isotope characteristics of the granitic plutons in Bikou terrane, northwestern Yangtze Block, and their geological significance. Journal of Jilin University (Earth Science Edition), 44(4): 1200~1218 (in Chinese with English abstract).
-
Tang Haiqing. 1984. Late Precambrian strata in the Beiba area of the southern Shaanxi. Northwestern Geology, 17(1): 57~69.
-
Tian Yang, Jin Wei, Wang Jing, Ke Xianzhong, Long Wenguo. 2021. Provenance and tectonic setting of Lengjiaxi Group in the Central Jiangnan Orogen: A case study of Huanghudong Formation, Yueyang area. Earth Science, 46(4): 1328~1348 (in Chinese with English abstract).
-
Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122: 141~158.
-
Wang Wei, Liu Shuwen, Feng Yonggang, Li Qiugen, Wu Fenghui, Wang Zongqi, Wang Ruiting, Yang Pengtao. 2012a. Chronology, petrogenesis and tectonic setting of the Neoproterozoic Tongchang dioritic pluton at the northwestern margin of the Yangtze Block: Constraints from geochemistry and zircon U-Pb-Hf isotopic systematics. Gondwana Research, 22: 699~716.
-
Wang Wei, Zhou Meifu, Yan Danping, Li Jianwei. 2012b. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China. Precambrian Research, 192-195: 107~124.
-
Wang Xiaolei, Zhou Jincheng, Griffin W L, Wang Rucheng, Qiu Jiansheng, O'Reilly S Y, Xu Xisheng, Liu Xiaoming, Zhang Guilin. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrain Research, 15(9): 117~131.
-
Wu Peng, Zhang Shaobing, Zheng Yongfei, Fu Bin, Liang Ting. 2019. Amalgamation of South China into Rodinia during the Grenvillian accretionary orogeny: Geochemical evidence from Early Neoproterozoic igneous rocks in the northern margin of the South China Block. Precambrian Research, 321: 221~243.
-
Wu Peng, Zhang Shaobing, Zheng Yongfei, Fu Bin, Li Qiuli, Yang Yueheng, Hu Zhaochu, Liang Ting. 2021. The accretion history of the South China Block at its northwest margin in Mianlue zone. Precambrian Research, 352: 106006.
-
Wu Peng, Zhang Shaobing, Li Zhenxin, Wu Yuanbao, Zheng Yongfei. 2023. Secular change in the nature of mantle and tectonic evolution of northwestern margin of the Yangtze Block during Neoproterozoic: Constraints from the mafic intrusions and associated granitoids of the Hannan and Xiaomoling complexes. Precambrian Research, 393: 107094.
-
Wu Yuanbao, Gao Shan, Zhang Hongfei, Zheng Jianping, Liu Xiaochi, Wang Hao, Gong Hujun, Zhou Lian, Yuan Honglin. 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the northwestern Yangtze Block and its geological implications. Precambrian Research, 200-203: 26~37.
-
Xiao Long, Zhang Hongfei, Ni Pingze, Xiang Hua, Liu Xiaoming. 2007. LA-ICP-MS U-Pb zircon geochronology of early Neoproterozoic mafic-intermediat intrusions from NW margin of the Yangtze Block, South China: Implication for tectonic evolution. Precambrian Research, 154: 221~235.
-
Xiong Guoqing, Deng Qi, Zheng Xi, Dan Yong, Li Xiaogang, Peng Zhoujun. 2024. Geochemistry and geochronology of early Triassic tephra from SW China: Implications for biological evolution and tectonics. International Geology Review, 66(16): 2843~2868.
-
Xu Tong, Pei Xianzhi, Liu Chengjun, Chen Youxin, Li Ruibao, Li Zuochen, Pei Lei. 2016. Geochemical features and zircon LA-ICP-MS U-Pb ages of the Neoproterozoic Zhangergou metamorphic andesitic rocks in the Mianxian-Lüeyang area of South Qinling Orogen: Evidence for amalgamation of Rodinia supercontinent. Geological Review, 62(2): 433~449 (in Chinese with English abstract).
-
Xu Xueyi, Xia Linqi, Chen Junlu, Ma Zhongping, Li Xiangmin, Xia Zuchun, Wang Hongliang. 2009. Zircon U-Pb dating and geochemical study of volcanic rocks from Sunjiahe Formation of Xixiang Group in northern margin of Yangtze Plate. Acta Petrologica Sinica, 25(12): 3309~3326 (in Chinese with English abstract).
-
Yan Quanren, Hanson A D, Wang Zongqi, Druschke P A, Yan Zhen, Wang Tao, Liu Dunyi, Song Biao, Jian Ping, Zhou Hui, Jiang Chunfa. 2004. Neoproterozoic subduction and rifting on the northern margin of the Yangtze Plate, China: Implications for Rodinia reconstruction. International Geology Review, 46: 817~832.
-
Yang Shiwen, Lou Fasheng, Zhang Fangrong, Zhou Chunhua, Xia Ming, Ling Lianhai, Feng Zenghui. 2022. Detrital zircon U-Pb geochronology of the Xunwu Formation in Cathaysia Block and its geological significance. Journal of East China University of Technology (Natural Science), 45(3): 207~222 (in Chinese with English abstract).
-
Ye Lin, Cheng Zengtao, Lu Lina, Gao Wei, Pan Ziping. 2009. Petrological geochronology and zircon SHRIMP U-Pb of Tongchang diorites, Mianluening area, southern Shanxi Province, China. Acta Petrologica Sinica, 25(11): 2866~2876 (in Chinese with English abstract).
-
You Jun, Zhang Xiaoming, Yang Yunjun, Han Xu, Hu Yi, Yu Hengbin. 2018. Zircon U-Pb geochronology and geochemistry of Baiquesi-Shiwengzi bimodal intrusive rocks in Lueyang, and their significance. Mineral Exploration, 9(12): 2365~2377 (in Chinese with English abstract).
-
Yu Minggang, Hong Wentao, Liu Kai, Duan Zheng, Chu Pingli, Chen Rong. 2022. Geochronology, petrogenesis and tectonic setting of Middle Jurassic volcanic rocks from Yinshan deposit in Dexing, Jiangxi Province. East China Geology, 43(4): 428~447 (in Chinese with English abstract).
-
Zhang Chuanlin, Ma Huadong, Li Huaikun, Zhu Bingyu, Qiu Lin, Wang Wei. 2022. Paleoproterozoic in Quruqtagh terrane in northern Tarim. East China Geology, 43(2): 133~140 (in Chinese with English abstract).
-
Zhao Junhong, Zhou Meifu, Yan Danping, Zheng Jianping, Li Jianwei. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39(4): 299~302.
-
Zhao Junhong, Asimow P D, Zhou Meifu, Zhang Jian, Yan Danping, Zheng Jianping. 2017. An Andean-type arc system in Rodinia constrained by the Neoproterozoic Shimian ophiolite in South China. Precambrian Research, 296: 93~111.
-
Zheng Yongfei, Wu Rongxin, Wu Yuanbao, Zhang Shaobing, Yuan Honglin, Wu Fuyuan. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research, 163: 351~383.
-
Zhou Jincheng, Wang Xiaolei, Qiu Jiansheng. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from north-eastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Research, 170: 27~42.
-
Zhou Jiulong, Li Xianhua, Tang Guoqiang, Gao Bingyu, Bao Zhian, Ling Xiaoxiao, Wu Liguang, Lu Kai, Zhu Yusheng, Liao Xin. 2018. Ca. 890 Ma magmatism in the northwest Yangtze block, South China: SIMS U-Pb dating, in-situ Hf-O isotopes, and tectonic implications. Journal of Asian Earth Sciences, 151: 101~111.
-
Zhou Meifu, Ma Yuxiao, Yan Danping, Xia Xiaoping, Zhao Junhong, Sun Min. 2006. The Yanbian Terrane (southern Sichuan province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Research, 144(1/2): 19~38.
-
Zong Keqing, Klemd R, Yuan Yu, He Zhenyu, Guo Jingliang, Shi Xiaoli, Liu Yongsheng, Hu Zhaochu, Zhang Zeming. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32~48.
-
邓奇, 汪正江, 王剑, 崔晓庄, 马龙, 熊小辉. 2017. 扬子地块西北缘碑坝地区白玉~1. 79 Ga A型花岗岩的发现及其对构造演化的制约. 地质学报, 91(7): 1454~1466.
-
邓奇, 汪正江, 任光明, 崔晓庄, 曹华文, 宁括步, 任飞. 2020. 扬子地块西北缘~2. 09 Ga和~1. 76 Ga花岗质岩石: Columbia超大陆聚合-裂解的岩浆记录. 地球科学, 45(9): 3295~3312.
-
邓奇, 崔晓庄, 汪正江, 熊国庆, 任光明, 宁括步. 2023. 扬子陆块北缘构造演化新认识: 来自原花山群年代学和地球化学的制约. 沉积与特提斯地质, 43(1): 212~225.
-
邓奇, 汪正江, 宁括步, 崔晓庄, 熊国庆, 任光明, 任飞. 2024. 扬子陆块西北缘旺苍地区火地垭群沉积时代、物源及构造意义——来自碎屑锆石U-Pb年代学的约束. 沉积学报, https: //doi. org/10. 14027/j. issn. 1000-0550. 2024. 014.
-
耿元生, 杨崇辉, 王新社, 任留东, 杜利林, 周喜文. 2007. 扬子地台西缘结晶基底的时代. 高校地质学报, 13(3): 429~441.
-
何政伟, 刘援朝, 魏显贵, 肖渊甫, 马润则, 吴德超. 1997. 扬子克拉通北缘米仓山地区基底变质岩系同位素地质年代学. 矿物岩石, 17(增刊): 83~87.
-
李庭柱, 张仪娴. 1995. 米仓山区“后河群”的时代及岩石特征. 地层学杂志, 19(2): 149~155.
-
凌文黎, 高山, 程建萍, 江麟生, 袁洪林, 胡兆初. 2006. 扬子陆核与陆缘新元古代岩浆事件对比及其构造意义: 来自黄陵和汉南杂岩LA-ICP-MS锆石U-Pb同位素年代学的约束. 岩石学报, 22(2): 387~396.
-
宁括步, 邓奇, 崔晓庄, 汪正江, 任光明, 杨青雄. 2024. 扬子陆块北缘大洪山地区莲沱组底部凝灰岩锆石U-Pb定年及其地层学意义. 地质通报, 43(2-3): 363~375.
-
平先权, 郑建平, 熊庆, 张志海, 夏冰. 2014. 扬子西北缘碧口块体花岗质岩体锆石U-Pb年龄、Hf同位素特征及其地质意义. 吉林大学学报(地球科学版), 44(4): 1200~1218.
-
陕西省地质矿产局. 1998. 陕西省岩石地层. 武汉: 中国地质大学出版社.
-
四川省地质矿产局. 1991. 四川省区域地质志. 北京: 地质出版社.
-
四川省地质矿产局. 1997. 四川省岩石地层. 武汉: 中国地质大学出版社.
-
唐海清. 1984. 陕南碑坝地区晚前寒武纪地层. 西北地质, 17(1): 57~69.
-
田洋, 金巍, 王晶, 柯贤忠, 龙文国. 2021. 江南造山带中段冷家溪群沉积物源及构造背景: 以岳阳地区黄浒洞组为例. 地球科学, 46(4): 1328~1348.
-
徐通, 裴先治, 刘成军, 陈有炘, 李瑞保, 李佐臣, 裴磊. 2016. 南秦岭勉略构造带张儿沟新元古代变安山岩地球化学特征及锆石LA-ICP-MS U-Pb年龄——Rodinia超大陆聚合事件的记录. 地质论评, 62(2): 433~449.
-
徐学义, 夏林圻, 陈隽璐, 马中平, 李向民, 夏祖春, 王洪亮. 2009. 扬子地块北缘西乡群孙家河组火山岩形成时代及元素地球化学研究. 岩石学报, 25(12): 3309~3326.
-
杨世文, 楼法生, 张芳荣, 周春华, 夏明, 凌联海, 冯增会. 2022. 华夏地块寻乌组碎屑锆石U-Pb年代学及其地质意义. 东华理工大学学报(自然科学版), 45(3): 207~222.
-
叶霖, 程增涛, 陆丽娜, 高伟, 潘自平. 2009. 陕南勉略宁地区铜厂闪长岩岩石地球化学及SHRIMP锆石U-Pb同位素年代学. 岩石学报, 25(11): 2866~2876.
-
游军, 张小明, 杨运军, 韩旭, 胡义, 于恒彬. 2018. 略阳白雀寺-石瓮子双峰式侵入岩锆石U-Pb定年、地球化学特征及意义. 矿产勘查, 9(12): 2365~2377.
-
余明刚, 洪文涛, 刘凯, 段政, 褚平利, 陈荣. 2022. 江西德兴银山中侏罗世火山岩年代学、岩石成因及构造背景. 华东地质, 43(4): 428~447.
-
张传林, 马华东, 李怀坤, 朱炳玉, 邱林, 王威. 2022. 塔里木北缘库鲁克塔格地区古元古界——祝贺芮行健先生90华诞. 华东地质, 43(02): 133~140.
-
摘要
米仓山地区的火地垭群和正源-英萃变质火山-沉积岩系(原后河岩群)是扬子陆块西北缘前寒武纪发育的重要地层单元,是研究其形成时期沉积盆地演化过程及其与Rodinia超大陆聚合关系的重要载体,然而其准确的演化时限及构造属性仍存在较大争议。本文选择典型地层剖面对火地垭群开展系统的沉积序列演化研究,对正源-英萃变质火山-沉积岩系开展碎屑锆石U-Pb同位素年代学研究。结果显示,火地垭群是一套由碎屑岩-碳酸盐岩-碎屑岩夹火山岩构成的复杂沉积岩石组合,沉积序列及其他研究成果综合分析表明,盆地经历了三个演化阶段:① 洋壳俯冲与弧盆开启;② 弧后扩展与碳酸盐缓坡/台地建设;③ 盆地挠曲沉降与快速充填。正源-英萃变质火山-沉积岩系形成于新元古代早期,接受来自西北和东(南)部的双向物源供给,与火地垭群为同期异相地层,应是同一盆地不同部位的沉积产物,它们均为Rodinia超大陆汇聚过程在扬子陆块西北缘的沉积响应。
Abstract
The Huodiya Group and the Zhengyuan-Yingcui volcanic-sedimentary rocks (formerly known as the Houhe Group) from the Micangshan area of the northwestern Yangtze Block provide significant records of the mid-Neoproterozoic tectonic evolution related to the assembly of the Rodinia supercontinent. However, their evolutionary history and tectonic characteristics remain uncertain. This paper presents a systematic analysis of sedimentary sequences within typical sections of the Huodiya Group, complemented by detrital zircon U-Pb geochronology of the Zhengyuan-Yingcui volcanic-sedimentary rocks. This integrated approach aims to elucidate their tectonic-sedimentary evolution processes and establish a precise timeframe for these events. Our comprehensive investigations reveal that the Huodiya Group comprises a complex assemblage of sedimentary rocks, characterized by interbedded clastic, carbonatite, and volcanic rocks. The evolution history of the basin can be divided into three stages: (1) subduction of oceanic crust and the formation of an arc-basin system; (2) back-arc extension and the construction of a carbonate ramp/platform; (3) flexural subsidence in the basin and rapid infilling. Detrital zircon analysis indicates that the Zhengyuan-Yingcui volcanic-sedimentary rocks were deposited in the early Neoproterozoic and sourced from both the northwestern and east/southeastern sides of the basin. This finding, coupled with the contemporaneous yet spatially distinct nature of the Zhengyuan-Yingcui volcanic-sedimentary rocks and the Huodiya Group, suggests that they developed in different parts of the basin, which could be the response of the assemblage of the Rodinia supercontinent.