en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

秦帆帆,男,1997年生。博士研究生,主要从事水合物勘探开发数值模拟研究。E-mail: qff1211@cug.edu.cn。

通讯作者:

孙嘉鑫,男,1989年生。博士生导师,副教授,主要从事天然气水合物勘探与开发方面的研究工作。E-mail: jiaxinsun@cug.edu.cn。

参考文献
Boswell R. 2013. Japan completes first offshore methane hydrate production test—Methane successfully produced from deepwater hydrate layers. Center for Natural Gas and Oil, 412(1): 386~7614.
参考文献
Cao Xinxin, Sun Jiaxin, Qin Fanfan, Ning Fulong, Mao Peixiao, Gu Yuhang, Li Yanlong, Zhang Heen, Yu Yanjiang, Wu Nengyou. 2023a. Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area. Energy, 270: 126690. DOI: 10. 1016/j. energy. 2023. 126690.
参考文献
Cong Xiaorong, Wu Nengyou, Su Ming, Yang Rui, Qiao Shaohua, Mao Xiaoping. 2014. New progress and outlook of potential resources volume of natural gas hydrate. Adv New Renewable Energy, 2(6): 462~470 (in Chinese with English abstract).
参考文献
Gu Yuhang, Liu Tianle, Sun Jiaxin, Qin Fanfan, Cao Xinxin, Qin Shunbo, Li Yanlong, Zhang Ling, Ning Fulong, Jiang Guosheng. 2023a. Influence of key geological factors on fluid production behaviors in marine natural gas hydrate reservoirs: A case study. Ocean Engineering, 288: 116023.
参考文献
Gu Yuhang, Sun Jiaxin, Qin Fanfan, Ning Fulong, Cao Xinxin, Liu Tianle, Qin Shunbo, Zhang Ling, Jiang Guosheng. 2023b. Enhancing gas recovery from natural gas hydrate reservoirs in the eastern Nankai Trough: Deep depressurization and underburden sealing. Energy, 262: 125510.
参考文献
Hancock S, Collett T S, Dallimore S R, Satoh T, Inoue T, Huenges E, Henninges J, Weatherill B. 2005. Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. Scientific results from the Mallik 2002 gas hydrate production research well Program, Mackenzie delta, Northwest Territories, Canada. Geological Survey of Canada, CD-ROM.
参考文献
Huang Man, Zhao Zhirui, Su Dongchao, Wu Lianghong, Qin Fanfan, Zhang Meixia, Ning Fulong. 2023. Improving the production performance of low-permeability natural gas hydrate reservoirs by radial water jet slotting and grouting in a horizontal well. Energy & Fuels, 37(11): 7715~7727.
参考文献
Jang J, Waite W F, Stern L A. 2020. Gas hydrate petroleum systems: What constitutes the “seal” ? Interpretation, 8(2): T231~T248.
参考文献
Kurihara M, Sato A, Funatsu K, Ouchi H, Yamamoto K, Numasawa M, Ebinuma T, Narita H, Masuda Y, Dallimore S R. 2010. Analysis of production data for 2007/2008 Mallik gas hydrate production tests in Canada//International oil and gas conference and exhibition in China. Proceedings of the International Oil and Gas Conference and Exhibition in China, Beijing.
参考文献
Li Fengguang, Yuan Qing, Li Tianduo, Li Zhi, Sun Changyu, Chen Guangjin. 2019. A review: Enhanced recovery of natural gas hydrate reservoirs. Chinese Journal of Chemical Engineering, 27(9): 2062~2073.
参考文献
Li Jinfa, Ye Jianliang, Qin Xuwen, Qiu Haijun, Wu Nengyou, Lu Hailong, Xie Wenwei, Lu Jingan, Peng Fei, Xu Zhenqiang, Lu Cheng, Kuang Zenggui, Wei Jiangong, Liang Qianyong, Lu Hongfeng, Kou Beibei. 2018. The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1): 5~16.
参考文献
Li Qingping, Zhou Shouwei, Zhao Jiafei, Song Yongchen, Zhu Junlong. 2022. Research status and prospects of natural gas hydrate exploitation technology. Strategic Study of Chinese Academy of Engineering, 24(3): 214~224 (in Chinese with English abstract).
参考文献
Li Shuxia, Wu Didi, Wang Xiaopu, Hao Yongmao. 2021. Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens. Energy, 232: 120889. DOI: 10. 1016/j. energy. 2021. 120889.
参考文献
Li Wenlong, Gao Deli, Yang Jin. 2019. Challenges and prospect of the drilling and completion technologies used for the natural gas hydrate reservoirs in sea areas. Oil Drilling & Production Technology, 41(6): 681~689(in Chinese with English abstract).
参考文献
Lin Decai, Lu Jingsheng, Liu Jia, Liang Deqing, Li Dongliang, Jin Guangrong, Xia Zhiming, Li Xiaosen. 2023. Numerical study on natural gas hydrate production by hot water injection combined with depressurization. Energy, 282: 128862.
参考文献
Ma Xiaolong, Sun Youhong, Liu Baochang, Guo Wei, Jia Rui, Li Bing, Li Shengli. 2020. Numerical study of depressurization and hot water injection for gas hydrate production in China's first offshore test site. Journal of Natural Gas Science and Engineering, 83: 103530.
参考文献
Ma Xiaolong, Sun Youhong, Guo Wei, Jia Rui, Li Bing. 2021. Numerical simulation of horizontal well hydraulic fracturing technology for gas production from hydrate reservoir. Applied Ocean Research, 112: 102674.
参考文献
Mao Peixiao, Wu Nengyou, Sun Jiaxin, Ning Fulong, Chen Lin, Wan Yizhao, Hu Gaowei, Cao Xinxin. 2021a. Numerical simulations of depressurization-induced gas production from hydrate reservoirs at site GMGS3-W19 with different free gas saturations in the northern South China Sea. Energy Science & Engineering, 9(9): 1416~1439.
参考文献
Mao Peixiao, Wu Nengyou, Sun Jiaxin, Ning Fulong, Chen Lin, Wan Yizhao, Hu Gaowei, Cao Xinxin. 2021b. Numerical simulations of depressurization-induced gas production from hydrate reservoirs at site GMGS3-W19 with different free gas saturations in the northern South China Sea. Energy Science & Engineering, 9(9): 1416~1439.
参考文献
Moridis G J. 2012. TOUGH+HYDRATE v1. 2 User's manual: A code for the simulation of system behavior in hydrate-bearing geologic media. https: //www. osti. gov/biblio/1173164.
参考文献
Moridis G J, Collett T S, Boswell R, Kurihara M, Reagan M T, Koh C, Sloan E D. 2008. Toward production from gas hydrates: Current status, assessment of resources, and model-based evaluation of technology and potential//SPE Unconventional Resources Conference/Gas Technology Symposium. SPE: SPE-114163.
参考文献
Moridis G J, Kowalsky M B, Pruess K. 2007. Depressurization-induced gas production from class 1 hydrate deposits. SPE Reservoir Evaluation & Engineering, 10(5): 458~481.
参考文献
Moridis G J, Reagan M T, Queiruga A F. 2019. Gas hydrate production testing: design process and modeling results. Offshore Technology Conference. OTC: D031S035R005.
参考文献
Ning Fulong, Chen Qiang, Sun Jiaxin, Wu Xiang, Cui Guodong, Mao Peixiao, Li Yanlong, Liu Tianle, Jiang Guosheng, Wu Nengyou. 2022. Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations. Energy, 254: 124220. DOI: 10. 1016/j. energy. 2022. 124220.
参考文献
Pinero E, Marquardt M, Hensen C, Haeckel M, Wallmann K. 2013. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences, 10(2): 959~975.
参考文献
Qin Xuwen, Liang Qianyong, Ye Jianliang, Yang Lin, Qiu Haijun, Xie Wenwei, Liang Jinqiang, Lu Jinan, Lu Cheng, Lu Hailong, Ma Baojin, Kuang Zenggui, Wei Jiangong, Lu Hongfeng, Kou Beibei. 2020. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea. Applied Energy, 278: 115649. DOI: 10. 1016/j. apenergy. 2020. 115649.
参考文献
Schoderbek D, Farrell H, Howard J, Raterman K, Silpngarmlert S, Martin K, Smith B, Klein P. 2013. ConocoPhillips Gas Hydrate Production Test. Houston, TX (United States): ConocoPhillips Co.
参考文献
Sloan E D. 2003. Fundamental principles and applications of natural gas hydrates. Nature, 426(6964): 353~359.
参考文献
Sun Jiaxin, Ning Fulong, Li Shi, Zhang Ke, Liu Tianle, Zhang Ling, Jiang Guosheng, Wu Nengyou. 2015. Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu area by depressurising: The effect of burden permeability. Journal of Unconventional Oil and Gas Resources, 12: 23~33.
参考文献
Sun Jiaxin, Ning Fulong, Liu Tianle, Li Yanlong, Lei Hongwu, Zhang Ling, Cheng Wan, Wang Ren, Cao Xinxin, Jiang Guosheng. 2019. Gas production from a silty hydrate reservoir in the South China Sea using hydraulic fracturing: A numerical simulation. Energy Science & Engineering, 7(4): 1106~1122.
参考文献
Sun Jiaxin, Ning Fulong, Liu Tianle, Liu Changling, Chen Qiang, Li Yanlong, Cao Xinxin, Mao Peixiao, Zhang Ling, Jiang Guosheng. 2021. Numerical analysis of horizontal wellbore state during drilling at the first offshore hydrate production test site in Shenhu area of the South China Sea. Ocean Engineering, 238: 109614.
参考文献
Sun Jiaxin, Zhang Ling, Ning Fulong, Liu Tianle, Fang Bin, Li Yanlong, Liu Changling, Jiang Guosheng. 2021. Research status and prospects of increasing production from gas hydrate reservoirs. Acta Petrolei Sinica, 42(4): 523~540 (in Chinese with English abstract).
参考文献
Sun Jiaxin, Gu Yuhang, Qin Fanfan, Ning Fulong, Li Yanlong, Cao Xinxin, Mao Peixiao, Liu Tianle, Wang Ren, Jiang Guosheng. 2022. Key factors analyses for prediction of accurate gas production rate in hydrate reservoirs during model construction. Journal of Natural Gas Science and Engineering, 102: 104566.
参考文献
Sun Yifei, Cao Bojian, Zhon Jingrong, Kan Jingyu, Li Rui, Niu Jingshuo, Chen Hongnan, Chen Guangjin, Wu Guozhong, Sun Changyu, Chen Daoyi. 2022. Gas production from unsealed hydrate-bearing sediments after reservoir reformation in a large-scale simulator. Fuel, 308: 121957.
参考文献
Sun Zhenfeng, Li Nan, Jia Shuai, Cui Jinlong, Yuan Qing, Sun Changyu, Chen Guangjin. 2019. A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap. Applied Energy, 240: 842~850.
参考文献
Wan Tinghui, Li Zhanzhao, Yu Yanjiang, Liang Qianyong, Lu Hongfeng, Wang Jingli. 2023. Depressurization-induced gas production from hydrate reservoirs in the Shenhu sea area using horizontal well: Numerical simulation on horizontal well section deployment for gas production enhancement. Frontiers in Earth Science, 11: 1137217. DOI: 10. 3389/feart. 2023. 1137217.
参考文献
Wang Xiaochu, Sun Youhong, Li Bing, Zhang Guobiao, Guo Wei, Li Shengli, Jiang Shuhui, Peng Saiyu, Chen Hangkai. 2023. Reservoir stimulation of marine natural gas hydrate—A review. Energy, 263: 126120.
参考文献
Wei Na, Qiao Yi, Fan Shuanshi, Cai Meng, Li Haitao, Zhou Shouwei, Zhao Jinzhou, Zhang Liehui, Richard B C. 2023. Analysis of flow field characteristics of sand removal hydrocyclone applicable to solid fluidization exploitation of natural gas hydrate. PLOSONE, 18(12): e0295147.
参考文献
Wei Shuxian, Liu Siyuan, Cao Shoufu, Zhou Sainan, Chen Yong, Wang Zhaojie, Lu Xiaoqing. 2021. Theoretical investigation of the fusion process of mono-cages to tri-cages with CH4/C2H6 guest molecules in sI hydrates. Molecules, 26(23): 7071. DOI: 10. 3390/molecules26237071.
参考文献
Wu Nengyou, Li Yanlong, Wan Yizhao, Sun Jianye, Huang Li, Mao Peixiao. 2021. Prospect of marine natural gas hydrate stimulation theory and technology system. Natural Gas Industry B, 8(2): 173~187.
参考文献
Xin Xin, Wang Haibin, Luo Jiannan, Yu Han, Yuan Yilong, Xia Yingli, Zhu Huixing, Chen Qiang. 2020. Simulation-optimization coupling model for the depressuri-zation production of marine natural gas hydrate in horizontal wells based on machine learning method. Natural Gas Industry, 40(8): 149~158(in Chinese with English abstract).
参考文献
Yamamoto K, Dallimore S. 2008. Aurora-JOGMEC-NRCan Mallik 2006-2008. Gas Hydrate Research Project progress. Fire in the Ice, 304: 285~4541.
参考文献
Yamamoto K, Wang X X, Tamaki M, Suzuki K. 2019. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir. RSC Advances, 9(45): 25987~26013.
参考文献
Ye Hongyu, Wu Xuezhen, Li Dayong, Jiang Yujing. 2022. Numerical simulation of productivity improvement of natural gas hydrate with various well types: Influence of branch parameters. Journal of Natural Gas Science and Engineering, 103: 104630. DOI: 10. 1016/j. jngse. 2022. 104630.
参考文献
Ye Jianliang, Qin Xuwen, Xie Wenwei, Lu Hailong, Ma Baojin, Qiu Haijun, Liang Jinqiang, Lu Jing'an, Kuang Zenggui, Lu Cheng, Liang Qianyong, Wei Shipeng, Yu Yanjiang, Liu Chunsheng, Li Bin, Shen Kaixiang, Shi Haoxian, Lu Qiuping, Li Jing, Kou Beibei, Song Gang, Li Bo, Zhang He'en, Lu Hongfeng, Ma Chao, Dong Yifei, Bian Hang. 2020. Main progress of the second gas hydrate trial production in the South China Sea. Geology in China, 47(3): 557~568(in Chinese with English abstract).
参考文献
Zhan Linsen, Kang Dongju, Lu Hailong, Jingan Lu. 2022. Characterization of coexistence of gas hydrate and free gas using sonic logging data in the Shenhu area, South China Sea. Journal of Natural Gas Science and Engineering, 101: 104540. DOI: 10. 1016/j. jngse. 2022. 104540.
参考文献
Zhang Geng, Li Jun, Yang Hongwei, Liu Gonghui, Qin Pang, Wu Tong, Huang Honglin. 2022. Simulation research on solid fluidization exploitation of deepwater superficial layer natural gas hydrate reservoirs based on double-layer continuous pipe. Journal of Natural Gas Science and Engineering, 108: 104828.
参考文献
Zhang Keni, Wu Yushu, Karsten P. 2008. User's guide for TOUGH2-MP—A massively parallel version of the TOUGH2 code. https: //escholarship. org/uc/item/5n3670p8.
参考文献
Zhang Wei. 2013. The application of gas hydrate production methods—A case of ignik sikumi gas hydrate field trial in the north slope of Alaska(USA). Sino-Global Energy/Zhongwai Nengyuan, 18(2): 33~38(in Chinese with English abstract).
参考文献
Zhao Ermeng, Hou Jian, Liu Yongge, Ji Yunkai, Liu Wenbin, Lu Nu, Bai Yajie. 2020. Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea. Energy, 213: 118826. DOI: 10. 1016/j. energy. 2020. 118826.
参考文献
Zhao Qi, Li Xiaosen, Chen Zhaoyang, Xia Zhiming, Xiao Changwen. 2024. Numerical investigation of production characteristics and interlayer interference during co-production of natural gas hydrate and shallow gas reservoir. Applied Energy, 354: 122219.
参考文献
Zhu Daoyi, Peng Shudai, Zhao Shuda, Wei Mingzhen, Bai Baojun. 2021. Comprehensive review of sealant materials for leakage remediation technology in geological CO2 capture and storage process. Energy & Fuels, 35(6): 4711~4742.
参考文献
丛晓荣, 吴能友, 苏明, 杨睿, 乔少华, 毛小平. 2014. 天然气水合物资源量估算研究进展及展望. 新能源进展, 2(6): 462~470.
参考文献
李清平, 周守为, 赵佳飞, 宋永臣, 朱军龙. 2022. 天然气水合物开采技术研究现状与展望. 中国工程科学, 24(3): 214~224.
参考文献
李文龙, 高德利, 杨进. 2019. 海域含天然气水合物地层钻完井面临的挑战及展望. 石油钻采工艺, 41(6): 681~689.
参考文献
孙嘉鑫, 张凌, 宁伏龙, 刘天乐, 方彬, 李彦龙, 刘昌岭, 蒋国盛. 2021. 天然气水合物藏增产研究现状与展望. 石油学报, 42(4): 523~540.
参考文献
辛欣, 王海彬, 罗建男, 于涵, 袁益龙, 夏盈莉, 朱慧星, 陈强. 2020. 基于机器学习方法的海洋天然气水合物水平井降压开采模拟-优化耦合模型. 天然气工业, 40(8): 149~158.
参考文献
叶建良, 秦绪文, 谢文卫, 卢海龙, 马宝金, 邱海峻, 梁金强, 陆敬安, 匡增桂, 陆程, 梁前勇, 魏士鹏, 于彦江, 刘春生, 李彬, 申凯翔, 史浩贤, 卢秋平, 李晶, 寇贝贝, 宋刚, 李博, 张贺恩, 陆红锋, 马超, 董一飞, 边航. 2020. 中国南海天然气水合物第二次试采主要进展. 中国地质, 47(3): 557~568.
参考文献
张炜. 2013. 天然气水合物开采方法的应用——以Ignik Sikumi天然气水合物现场试验工程为例. 中外能源, 18(2): 33~38.
目录contents

    摘要

    中国南海赋存有丰富的水合物资源,且储层周围或下部往往伴生有大量的游离气。迄今为止,南海已发现的大多数水合物储层泥质含量高,渗透率低,降压开采压降难以有效传递,产能束缚严重,例如神狐海域水合物储层两次试采产能均未达到商业开发标准。因此,将水合物气和伴生游离气联合开采逐渐提上日程。在扩大水合物和伴生气储层泄流面积的同时,进一步寻求高效的增产手段是突破开采产能低的关键。储层封堵改造作为一种提高压降传递的有效手段,能够促进水合物分解和伴生气采收,具有良好的应用前景。故而,本文基于中国南海第一次水合物试采站位地质资料,构建了三维非均质开采模型,重点评估了水平井结合储层封堵改造条件下的两气合采产能,并进一步系统研究了封堵层半径、厚度、渗透率比值以及水平井长度对两气合采产能的影响,分析了合采过程中水合物分解气对总产能的最大贡献率(w)。模拟结果表明,水平井辅以储层封堵能有效提高产能,其中水平井长度、封堵层半径和渗透率比值对合采产能影响依次减弱,水平井长度与封堵层直径两个因素之间存在交互影响。此外,伴生气是两气合采过程中的主要气源,储层封堵后井位布设于游离气层较布设于三相层可进一步提高产能。上述研究认识对于提产增效,推动水合物产业化具有重要的工程指导意义。

    Abstract

    The South China Sea hosts abundant gas hydrate resources, often accompanied by significant amounts of free gas deposits distributed around or beneath the hydrate reservoir. However, most discovered hydrate reservoirs in this region have high mud content and low permeability, posing a challenge to effective pressure drop transfer during depressurization and leading to substantial productivity constraints. For example, the production capacity in the Shenhu area does not meet commercial development standards. As a result, there is a growing consideration towards combined production of hydrate gas and associated free gas. While expanding the drainage area of both hydrate and free gas reservoirs is crucial, the key to unlocking their full production potential lies in exploring efficient enhancement methods. Formation sealing, an effective technique for improving pressure drop transfer, can facilitate hydrate dissociation and enhance free gas recovery, showing promising prospects for application. This paper leverages geological data from the first gas hydrate trial production test in the South China Sea to establish a three-dimensional heterogeneous production model. The study focuses on evaluating the co-extraction potential of hydrate and free gas through horizontal wells and formation sealing. It systematically examines the effects of sealed layer radius and thickness, permeability ratio, and horizontal well length. Additionally, the maximum percentage of gas contribution from hydrate dissociation (w) during co-extraction is calculated. Simulation results demonstrate that incorporating formation sealing with horizontal wells significantly enhances production potential. The relative impact of the investigated parameters on production capacity follows a descending order: horizontal well length, sealed layer radius, and permeability ratio. An interactive effect is observed between horizontal well length and sealed layer diameter. Free gas serves as the primary source of gas trapped in the entire co-production process, and deploying horizontal well in the free gas sediments can further increase production potential after formation sealing in burdens compared to well deployment in the three-phase formation. This research offers valuable insights for enhancing production potential and promoting the industrialization of gas hydrates.

  • 天然气水合物(以下简称水合物)是天然气分子和水分子在高压低温条件下形成的一种似冰状笼型化合物(Sloan,2003),主要分布在海洋和冻土区域,全球水合物资源量预计为 1.05×1015 m3丛晓荣等,2014)。单位体积水合物在标准状态下可释放出约160体积的天然气,是一种分布广泛、储量丰富、能量密度高和清洁低碳的非常规能源(Pinero et al.,2013; 孙嘉鑫等,2021)。实现其商业化开发对于保障国家能源安全,落实“双碳”目标具有重要的战略意义(Wei Shuxian et al.,2021)。

  • 截至目前,世界多国先后进行了一系列水合物试采作业,主要包括加拿大(Hancocket et al.,2005; Yamamoto et al.,2008; Kurihara et al.,2010)、美国(Schoderbek et al.,2013; 张炜,2013)、日本(Boswell,2013; Yamamoto et al.,2019)和中国(Li Jinfa et al.,2018; 叶建良等,2020)。其中,中国分别于2017年和2020年对南海区域水合物进行了两次试采作业。在首次试采作业中,中国地质调查局使用直井降压法在南海SHSC-4站位成功进行了探索性试采,开采持续60天,平均日产气量为5.15×103 m3Li Jinfa et al.,2018);第二次试采则采用水平井降压法在SHSC2-6站位进行了试验性试采,连续产气30天以上,平均日产气量为2.87×104 m3,较第一次试采产气速率显著提高(叶建良等,2020)。但是,上述试采产量仍然偏低,还难以达到商业化开发标准(Wu Nengyou et al.,2021)。因此,进行水合物开采提产增效研究有助于推动其产业化。

  • 当前,水合物扩产增效研究主要聚焦在开采方法创新(李清平等,2022)、井型优化(孙嘉鑫等,2021)和储层改造(Wang Xiaochu et al.,2023)三个方面。就开采方法而言,常规的开采方法有降压法、注热法、CO2置换法和注入抑制剂法。现场试验结果表明,降压法因其操作简单,储层渗透率会随着水合物分解逐渐提高,因而是当前水合物开发的主要方式,但由于缺乏非渗透性盖层等原因,导致储层中的压降难以高效传递,不利于高产和稳产。因此,固态流化开采(Li Fengguang et al.,2019; Zhang Geng et al.,2022; Wei Na et al.,2023)、降压联合注热开采(Ma Xiaolong et al.,2020; Lin Decai et al.,2023)等新型开采方式相继被提出,为后续水合物商业化开发提供了一些新思路。在井型优化方面,水平井与多分支井的开采效率要明显优于直井(Ye Hongyu et al.,2022),中国的两次试采结果对比表明,开采井型的调整有助于提高产气效率,水平井开采产能显著优于直井。这是因为相较于直井,水平井能够增加井筒与储层中水合物的接触面积,促进压力传播,扩大水合物分解阵面,同时在与直井具有相近储层接触面的情况下,其开采后期储层温度回升速度更快(Wu Nengyou et al.,2021),但水平井开采效果受井长和布设位置的影响较大。已有研究表明,水平井布设在水合物层中下部时的产量较高(辛欣等,2020)。对于我国南海水合物储层而言,水平井布设在三相层中产量较高,且在300 m的井长范围内,其长度越大,产量越高(Wan Tinghui et al.,2023)。然而,由于水合物储层的盖层密闭性较差,其性质接近于相邻储层,水平井对于气水驱动力的增强也会导致上下盖层中的自由水大量涌入储层和井筒,造成产气速率逐渐降低,产水不断增加,不利于长期稳产。此外,利用多分支井提高水合物储层开采产能同样引起热议。其中,螺旋分支井对水合物储层的开采产能提升效果显著(Mao Peixiao et al.,2021a),但不同分支井筒在长期开发时可能存在井间干扰(Cao Xinxin et al.,2023)。与此同时,在弱固结和浅埋藏水合物储层中分支井的施工难度也相对较高(李文龙等,2019),因此需要综合考虑施工难度、成本和提产效果间的关系。在储层改造方面,主要分为水力压裂、水力割缝、劈裂注浆和盖层封堵等方法(Wang Xiaochu et al.,2023),其中,水力压裂(Sun Jiaxin et al.,2019)和水力割缝(Huang Man et al.,2023)等储层增渗改造方法主要在开采前期提产效果显著(Ning Fulong et al.,2022)。而盖层封堵则是针对水合物储层上下区域缺乏低渗透密封层提出的,因为当盖层密封性较差时,不仅会导致压降垂向传播,造成压力损失,同时外部的自由水也会由盖层大量进入储层和井筒,造成产能下降(Jang et al.,2020)。盖层封堵通过对储层上下部分区域进行密封,人为在垂直方向形成圈闭,从而提高储层中水平方向上的压降传播,促进水合物分解,达到增产的目的(Zhao Ermeng et al.,2020; Gu Yuhang et al.,2023b; Zhao Qi et al.,2024);同时该方法能够减少外部地层水的入侵,适用于储层长期开采(Ning Fulong et al.,2022)。此外,封堵改造仅作用于上覆层和下伏层,与其他储层增渗方法结合性更高,例如,盖层封堵可进一步结合水力压裂技术(Li Shuxia et al.,2021),从而极大提高产能;而封堵盖层除了采用常规的凝胶、水泥、聚合物、纳米颗粒注入技术等(Zhu Daoyi et al.,2021),也可结合CCUS技术,形成CO2水合物盖层(Sun Zhenfeng et al.,2019; Sun Yifei et al.,2022),达到碳封存和水合物增产的双重目标。

  • 综上所述,当使用降压法进行开采时,盖层封堵有望解决水平井开采时盖层水大量涌入的劣势,从而进一步激发水平井的生产潜力。加之,我国南海水合物储层通常伴生大量的游离气,进行水合物分解气和伴生气两气合采能够极大提高产气效率。因此,本文将基于中国南海第一次水合物试采站位地质资料,构建三维非均质合采产能预测模型,对水平井联合不同盖层封堵方式下的增产效果进行评价,同时分析水合物分解气对整个产能的最大贡献占比,厘清上述联合提产方法的增产机理和关键影响因素,得出水平井联合储层封堵技术方案下的最优参数取值,评价其实现商业化开发的可行性,为南海水合物产业化提供理论支撑和工程依据。

  • 1 模型构建

  • 1.1 区域背景

  • 本研究所选区域为中国南海第一次试采SHSC-4站位,其位于南海神狐海域的东南区域(图1)。该站位水深1266 m,海底温度约3.6℃。相关测井结果显示,该区域海底烃类气体中甲烷含量超过99%,同时具备水合物稳定存在的温压条件。储层自上而下由三个区域构成:① 水合物层:深度1495~1530 m,厚度为35 m;② 三相层:深度1530~1545 m,厚度为15 m;③ 游离气层:深度1545~1572 m,厚度27 m。该站位地层岩性为泥质粉砂储层,渗透率相对较低,不利于传热传质,故而使用降压法在短期内较难形成大范围的水合物分解,使得产气量较低。幸运的是,水合物层下伏三相层和游离气层,能够在很大程度上提高产气量,因此,采用水平井设计结合降压法进行水合物分解气和伴生气两气合采有望实现大幅提产,特别是辅以合适的储层改造之后,极有可能达到商业化开发标准(Li Jinfa et al.,2018; Qin Xuwen et al.,2020; Sun Jiaxin et al.,2021)。

  • 图1 中国南海第一次水合物试采区域位置(据Sun Jiaxin et al.,2021

  • Fig.1 Location of the first production test for gas hydrates in the South China Sea (after Sun Jiaxin et al., 2021)

  • 1.2 模型构建

  • 水合物开采涉及复杂的耦合相变行为,且三维非均质开采模型网格数量处理多,因此本研究使用并行版Tough+Hydrate软件进行合采潜力评价。该软件可采用平衡或动力学模型准确描述水合物生成和分解过程,假定流体运移符合达西定律,适用于刻画复杂的地质模型钻采响应行为(Zhang Keni et al.,2008; Moridis,2012)。此外,本研究进一步扩展了该软件的后处理功能,可以准确计算进行两气合采过程中水合物分解气对总产能的最大贡献率。本次模拟研究中,采用水合物分解平衡模型,侧重分析储层合采时的热流化多场耦合响应行为,暂不考虑力学耦合过程,同时假定在整个开采周期内井眼稳定,防砂可靠。

  • 基于上述SHSC-4站位的测井数据,该模型由厚度为77 m的储层和201 m的上下无水合物盖层所构成(图2),其中储层区域由上而下为水合物层(35 m)、三相层(15 m)和游离气层(27 m)。上覆地层和下伏地层厚度取值均为海底至水合物层顶部的距离,以确保水合物储层能够与周围地层进行准确的热交换和压力传递。如图所示,该模型在z轴方向总厚度为479 m,水平方向的区域为1000 m(x)×1000 m(y)。考虑到完整模型网格划分数量较多,为提高计算效率,根据x方向的对称性取模型的一半区域进行研究,故而在水平方向上的实际建模区域为500 m×1000 m。

  • Gu Yuhang et al.(2023a)研究表明,储层非均质性对开采预测结果具有显著影响,因此基于已有认识,对模型在z轴方向进行了非均质划分,即考虑了饱和度、孔隙度和渗透率的非均质分布(Li Jinfa et al.,2018)。其中,三相层游离气饱和度是根据相关预测结果进行取值(Zhan Linsen et al.,2022)。由于缺乏相应的上下盖层数据,因此其孔隙度和渗透率是根据靠近储层区域的平均值进行选取。此外,将模拟区域定义为井网系统内单井的控制范围。故而,可将模型的侧边界视为绝热不渗透边界,将上下边界设定为Dirichlet边界条件,在整个模拟过程中保持温度和压力恒定。文中模型均采用单一水平井降压开采,井眼半径为0.1 m,井底压力为3.0 MPa,水平井布设在三相层中间,这样的井位布设可同时开采水合物分解气和伴生游离气,实现两气合采。模拟周期持续10年,详细参数取值如表1所示。

  • 图2 构建的三维模型示意图

  • Fig.2 Schematic of 3D reservoir model constructed

  • (a)—水合物储层模型;(b)—孔隙度;(c)—渗透率;(d)—饱和度;r—封堵层半径;h—封堵层厚度;a—封堵层渗透率比;L—水平井长度

  • (a) —hydrate reservoir model; (b) —porosity; (c) —permeability; (d) —saturation; r—sealed layer radius; h—sealed layer thickness; a—sealed layer permeability ratio; L—horizontal well length

  • 1.3 区域离散化

  • 研究模型采用笛卡尔坐标系进行网格划分,网格为六面体块状单元。研究区域尺寸为500 m(x)×1000 m(y)×479 m(z),划分为101(x)×85(y)×157(z)=1374535个网格单元,其中15150个网格为非活跃网格。具体剖分过程中,井周区域采用渐变尺寸网格进行剖分,沿z轴方向储层区域均被细化,网格最大间距不超过2 m,不同区域分界处的网格也同样被细化(Sun Jiaxin et al.,2022)。类似地,沿x方向和y方向的井周网格也都采用同样方法进行了加密。为保证网格计算精度,井眼周围每隔5 m布置10个网格。不同区域连接处的网格尺寸细分为0.25 m,模型上下边界处的网格尺寸为0.01 m。

  • 1.4 模型初始化

  • 在模型初始化过程中,三相层和游离气层的存在可能会导致压力和温度异常,从而影响整个模型的计算精度。为了保证模型的正确初始化,本文采用Moridis et al.(2007,2008,2019)提出的方法。该方法将模型划分两个子区域:① A区域由上盖层和水合物层组成,三相层的上边界网格作为该区域的底边界网格;② B区域由三相层、游离气层和下伏地层所组成。

  • 具体初始化过程中,子区域A的上边界被指定为非活跃区域。根据静水压力计算子区域及底部三相层网格的压力,然后使用Tough+Hydrate软件计算其三相共存状态下的温度值。随后,设定三相层网格的状态并固定,利用Tough+Hydrate进行计算,可以建立子区域A的初始压力和温度分布。对于子区域B而言,其初始化要相对复杂,但最终目标是使该区域与子区域A的热通量保持一致。三相层顶部的网格状态已经确定,固定进行压力和温度初始化,通过对下边界的温度进行多次轻微调整,使子区域A和B具有相同的热通量。随后,将两个模型结合进行简单的初始化试算,可得到整个模型的压力和温度分布(Mao Peixiao et al.,2021b),最终的初始化结果如图3所示。

  • 表1 中国南海SHSC-4站位模型参数取值(据Sun Jiaxin et al.,2015; Qin Xuwen et al.,2020; Cao Xinxin et al.,2023)

  • Table1 The model parameters of site SHSC-4 in the South China Sea (after Sun Jiaxin et al., 2015; Qin Xuwen et al., 2020; Cao Xinxin et al., 2023)

  • 注:λI为冰相导热系数;Φ为孔隙度;SA为液相饱和度;SH为水合物相饱和度;SI为冰相饱和度;S*为有效饱和度;SirA为束缚水饱和度;SmxA为饱和条件下液相饱和度;SG为气体饱和度;SirG为束缚气饱和度;krA为液相相对渗透率;krG为气相相对渗透率;nnG为经验参数。

  • 图3 模型初始化结果

  • Fig.3 Initialization results of the model

  • (a)—压力;(b)—温度;(c)—孔隙度;(d)—水合物饱和度;(e)—气饱和度;(f)—渗透率

  • (a) —pressure; (b) —temperature; (c) —porosity; (d) —hydrate saturation; (e) —gas saturation; (f) —permeability

  • 1.5 封堵方案设计

  • 储层封堵效果取决于不同的封堵参数,它们会较大程度上影响水平井降压开采产能。如图2所示,上下盖层中的封堵层分别为两个圆柱区域,其范围大小由封堵层半径(r)和封堵层厚度(h)共同决定,而封堵层渗透率则通过渗透率比值(a)来控制,即盖层初始渗透率与封堵后的渗透率比值。为了揭示储层封堵对水平井降压开采产能的变化规律,本文将重点考虑封堵参数(rha)的影响,同时由于不同的水平井长度(L)也会对储层压降范围产生影响,需要充分考虑水平井长度与封堵因素对合采产能的交互作用。如前所述,水平井位置布设在三相层中部时产能更高(Ma Xiaolong et al.,2021; Wan Tinghui et al.,2023)。因此,在确认井位布设的基础上,笔者根据这四个因素进行了正交试验设计,如表2所示,每个因素对应4个水平数,最终设计出了4因素4水平的正交试验,如表3所示,该正交试验共计16组。

  • 2 模拟结果与分析

  • 准确的开采模型是开展产能预测的重要基础。在前期研究中,笔者团队已经验证了中国南海第一次水合物试采数据,确保了后续模拟结果的可靠性(Cao Xinxin et al.,2023)。因此,本节将直接分析正交试验模拟结果,对比盖层封堵前后的产气产水变化规律,分析两气合采时的气源贡献率,并探讨最优封堵条件下的井位布设。

  • 表2 各因素及其对应水平值

  • Table2 Modelling factors and their corresponding level values

  • 表3 正交试验表

  • Table3 Orthogonal experimental designs

  • 2.1 正交试验结果及分析

  • 图4描述了模拟开采10年周期内上述所有正交试验案例的累计产气和产水结果。其中,灰色虚线为储层未封堵时不同井长下的10年累计产气量;案例A表示储层未封堵情况下井长100 m时的生产结果,该案例将作为正交试验的对照组。如图所示,当未进行盖层封堵时,案例A在10年生产周期内的累计产气量和产水量分别为7.33×106 m3和2.33×105 m3。在盖层采取封堵措施或增大井长后,各案例(不包括案例1)下的累计产气量均较案例A有了不同程度的提高,其中案例15的累计产气量最大,约为3.87×106 m3,提高了4.28倍。有趣的是,案例1的累计产气量为7.28×106 m3,较案例A反而下降了0.72%,这表明该案例采取的封堵层设计失效,甚至不利于产能提升,推测是该方案下封堵层设计虽能促进降压效果,但同时也阻碍了下伏地层热量向上传递,且后者的影响程度更高,故而在长期开采过程中对水合物分解产生了轻微的抑制。此外,不难看出累计产气量根据不同井长呈现出了4个不同的区间值,其中案例4、案例6、案例9和案例15的产气量较高,其井长均为700 m,初步表明水平井长度的增加能够显著提升产量。

  • 图4 模拟开采10年周期内正交试验案例下的累计产气和产水结果

  • Fig.4 Cumulative gas and water production under orthogonal test cases over 10 years

  • 为了深入探究正交试验中4个因素对累计产能的影响显著程度,本文对正交试验结果进一步开展了极差分析。表4给出了该正交试验对模拟开采10年周期内累计产气量的极差分析数据,其中mn表示该因素下对应水平数为nn=1~4)的所有案例累计产气量预测值的平均值,其可以反映该因素下产量随着不同因素取值的变化规律;Rf则是当前该因素下mn中的极差值,它表示不同因素对累计产气量的影响显著程度;误差列为正交试验中的空列,其Rf值表示由不同因素组合排列引起的极差值误差。由表可知,水平井长度、封堵层半径、封堵层渗透率比值和封堵层厚度的Rf值分别为30.03×106 m3、1.64×106 m3、1.41×106 m3和0.66×106 m3,表明对产气量影响的显著程度由高到低依次为水平井长度、封堵层半径、封堵层渗透率比值和封堵层厚度。其中,水平井长度的Rf值明显高于其他因素,根据该因素下mn值变化可以发现,产气量随井长增加显著提高,这主要是由于较长的水平井会增大开采泄流面积,驱动更多的气水进入井筒,从而提高开采产量。相比之下,封堵层半径和渗透率比值对累计产气量的影响较弱一些,两者基本与累计产气量成正相关;而封堵层厚度与产气量成负相关,其Rf值低于误差列,这表明其对累计产气量的影响较小。推测其原因是随着封堵层厚度增加,储层上下边界区域的热量传递形式将从局部封堵层热传导+封堵层外热对流为主的传递形式向以热传导为主的形式进行转变,使得地层下部热量向上传递减少。故而,在长期开采中表现为封堵层厚度与产气量负相关。基于极差分析结果,r(4)h(1)a(4)L(4)为储层封堵联合水平井降压开采时的最优参数组合,即封堵层半径为200 m,厚度0.25 m,渗透率比值为1000,水平井长度为700 m。其中封堵层厚度对于累计产气量的影响较小,取该正交试验中该因素最优水平。

  • 表4 正交试验极差分析结果

  • Table4 Range analysis results of orthogonal tests

  • 注:表中数据均为模拟10年的累计产气量计算结果(×106 ST m3)。

  • 2.2 典型工况下的气水产出演化规律

  • 为了进一步揭示井身长度和盖层封堵对合采响应行为影响的内在机理,本文还对典型储层封堵前后水平井降压开采时的产气和产水情况进行了深入分析(图5),其中案例A和案例B分别表示未封堵条件下井身长度为100 m 和700 m时的模拟工况,案例C表示采用上述正交试验分析得出的最优参数组合工况。如图5所示,案例C具有最高的累计产气量(Vg)和产气速率(Qg),案例B次之,案例A最低。此外,3种情况下的瞬时产气速率演化曲线均呈现出了相同的下降趋势,都是在短期内迅速下降,随后缓慢降低。具体而言,案例A在1年(短期)、5年(中期)和10年(长期)生产周期内的累计产气量分别为2.26×106 m3,5.07×106 m3和7.33×106 m3,对应的瞬时产气速率依次为3024.09 m3/d、1448.03 m3/d和1098.88 m3/d。当水平井长度增至700 m时(案例B),开采1年、5年和10年时的累计产气量分别为1.3×107 m3、2.65×107 m3和3.73×107 m3,较案例A分别提高了4.75、4.24和4.09倍;在产气速率方面,案例B由短期到长期生产时的瞬时产气速率分别可达15373.25 m3/d,6873.98 m3/d和5227.95 m3/d,相应提高了4.08、3.75和3.76倍。对比结果表明,当只增加井身长度时,开采产能会显著提高,但增产效果在短期开采时更明显,在开采后期会有所降低并趋于稳定。这应该是水平井长度增加会显著增大井筒的泄流面积,使得降压范围更广,压降传播区域更大,加速了区域内的水合物分解和下伏伴生气开采,导致产气速率增加;但随着开采地持续进行,井周水合物逐渐分解完毕,同时下方的游离气也绝大部分都进入了井筒,地层水大量涌入,导致产气速率出现下降,后期产气主要依靠井筒末端游离气的采集与井筒上方水合物的分解予以维持(图6)。不难理解,井筒越长,水合物分解范围越大,故而后期案例B的产气速率也会高于案例A。

  • 与此同时,当采取最优参数组合进行降压开采时(案例C),其1年(短期)、5年(中期)和10年(长期)的累计产气量分别1.37×107 m3、2.96×107 m3和4.26×107 m3,对应较案例 A提升了5.09、4.84和4.81倍;在产气速率方面,案例C的产气速率分别为17594.15 m3/d、8286.72 m3/d和6388.57 m3/d,较案例A分别提高了4.82、4.72和4.81倍。上述结果表明,进行盖层封堵后的储层增产效果要优于单一增加水平井长度,其长期增产效果相对比较稳定。此外,通过对比案例B和案例C情况下的预测结果可以发现,前期约100天内,两者产气速率基本一致,随后辅助盖层封堵工况下的产气速率开始逐渐增加,表明盖层封堵技术能够在一定程度上提升产能,且增产效果主要作用于后期,最终瞬时产气速率约为案例B的1.05倍。产生上述现象的原因是,设置封堵层能够增大储层中的压降传播范围并减少地层水涌入井筒,而且随着开采时间的延长,作用效果逐渐显现;由图6可知,封堵层可以有效阻挡压降向盖层区域传递,促进其在水平方向上的传播,从而扩大水合物分解范围,并为伴生游离气提供更强的开采驱动力。此外,储层内温度空间分布也表明,下部地层水大部分被阻挡在盖层区域,使得储层远处地层水能够驱替游离气进入井筒,从而提高了开采效率。

  • 图5 模拟10年不同案例的累计产气量和产气速率变化情况

  • Fig.5 Cumulative gas production and gas production rate for different cases over 10 years

  • 图7展示了上述3个案例模拟开采10年内的产水速率(Qw)和气水产出比(R)演化情况。如图所示,案例A、案例B和案例C工况下的产水速率均随着开采时间的延长而增大,且在开采早期增加趋势更明显,这应该是早期井底压力梯度较大且水合物分解剧烈释放自由水共同导致的。当开采结束时,对应的产水速率分别为83.88 m3/d,527.18 m3/d和447.75 m3/d,其中案例B和案例C的产水速率远远高于案例A,分别增加了5.28和4.34倍。这主要是由于案例B和案例C的井筒较长,泄流面积大,导致产水速率显著提高。相比而言,盖层封堵后的产水速率还是会明显降低,最终案例C工况下的产水速率较案例B降低约为15.07%,这表明封堵层能够有效阻隔地层水侵入井筒。此外,可以观察到在约2800 天的时候,案例B和案例C工况下的产水速率均有明显抬升趋势,且未封堵时的现象更明显,这主要是由于井筒下方分布的水合物和伴生游离气被完全采出,外部地层水涌入引起的,由于封堵层能够在一定程度上阻隔该处地层水侵入,故而产水速率增加相对较小(图6)。

  • 图6 模拟10年不同案例的储层物性分布云图

  • Fig.6 Distributions of reservoir physical properties for different cases over 10 years

  • 在气水产出比变化方面,3种情况下的R值在短期内变化趋势基本相同。随着开采时间增加,案例A和案例C工况下的气水产出比随时间变化仍趋于一致,但案例C工况下的R值略高一些,当开采时间达到10年时,相应的气水产出比分别为32.46和31.44。对于案例B而言,生产中后期其气水产出比呈现出类似演化规律且处于最低,最终R值约为25.88。如前所述,在短期内井筒周围气源充足,井底压力相同,气水采出的驱动力相同,故而呈现出相同的演化趋势。但随着开采持续进行,压降不断向外扩散,井筒下方的气源逐渐减少,外部自由水逐渐侵入储层并流入井筒,因此,气水产出比逐渐减小。由于水平井筒越长,泄流面积越大,后期侵入的自由水量更多,因而其气水产出比更小,而封堵层能够显著减少井筒下方地层水侵入(图6),加之封堵层外部的地层水从两侧流入,能够驱替更多的游离气进入井筒,因而提高了开采过程中的气水产出比。

  • 图7 模拟10年不同案例的产水速率与气水产出比变化情况

  • Fig.7 Water production rates and gas-to-water ratios for different cases over 10 years

  • 2.3 水合物分解气对总产能最大贡献率

  • 水合物和伴生游离气合采过程中的气源贡献率是揭示气体产出规律的一个重要指标,它能够直观地反映不同气源对总产能的贡献情况,从而进一步指导后续增产研究。然而,水合物分解气和伴生游离气均为气体形式,难以直接统计二者对总产能的贡献率,但假设水合物分解气被完全采收,可以得到其对总产能的最大贡献率,为气源供应认识提供一些可靠的参考;而水合物分解气的最小贡献率由于受到甲烷气溶解、二次水合物再生成等因素的影响,目前还难以准确计算。因此,下文所提出的水合物分解气对总产能的最大贡献比计算思路不失为当前一种较为可行的折中方案。具体计算时,先确定水合物分解前缘范围,随后通过理论计算得出该区域内水合物分解气对总产能的最大贡献率。需要说明的是,为了计算最大贡献率(w),文中进行了如下假设:① 水合物分解产生的气体完全被井筒采收;② 不考虑储层中二次水合物生成问题;③ 不考虑甲烷气体溶解。因此,最终的计算公式如下:

  • w=VMCHVg×100%

  • 其中,VMCH表示一定范围内水合物分解产生的气体总体积(ST m3);Vg表示当前时间内的井筒累计产气量(ST m3)。

  • 在具体分析过程中,将通过当前时刻的水合物饱和度与初始状态的差值来确定某一时刻水合物的分解区域。与前述典型工况相同,图8分别绘制出了3种情况下的水合物分解前缘,并给出了最终水合物饱和度差值分布云图。如图8所示,取x方向0~420 m,y方向380~420 m区域作为水合物分解的最大范围。不难看出,该范围足以包含水合物分解的所有区域。

  • 图9展示了3种典型案例不同时刻下的水合物分解气最大贡献量(VMCH)及其对总产能的最大贡献率(w)。当未进行盖层封堵时,案例A在1年(短期)、5年(中期)和10年(长期)时的水合物分解气最大贡献量分别为3.78×105 m3、1.05×106 m3和1.78×106 m3,对应的产能最大贡献率分别为16.74%、20.62%和24.24%;而案例B在3个时刻的水合物分解气最大贡献量分别为1.36×106 m3,3.21×106 m3和4.88×106 m3,较前者分别提高了2.59、2.06和1.74倍,但对应的产能最大贡献率则分别降至10.48%、12.08%和13.09%。上述数据表明,在两气合采过程中,水平井布设在三相层中部位置且未进行盖层封堵时,地层中的伴生游离气是主要供给气源,约占总产能的80%~90%,但其贡献率会随着开采时间的增加而逐渐减少。不难理解,由于下伏游离气层渗透率高,其较水合物分解气更易进入井筒采出,而三相层渗透率相对较低,水合物分解气运移较难。同时,当水平井井长增加时,水合物分解气最大贡献量较短水平井而言显著增大,但增长倍数却低于井长之比,并随着开采时间的延长而降低。此外,最大水合物分解气贡献率也会随着井长的增加而大幅度下降,这表明长井筒条件下伴生游离气采出占比逐渐增大。造成上述变化的主要原因是随着井长增加,尽管压降波及范围会显著增大,使得水合物分解加快,但由于下伏伴生游离气层渗透率高且流动阻力小,故而更易产出,使得下伏游离气对总产能的贡献比增大(图10)。至于长水平井工况下的水合物分解气最大贡献量增长倍数低于井长之比,推测其原因是由于一方面压力沿井筒方向存在沿程损失,另一方面是由于上述长水平井加快了模拟区域内的伴生游离气采出。

  • 图8 模拟10年不同案例水合物分解范围

  • Fig.8 The range of hydrate dissociation for different cases over 10 years

  • 图9 不同案例水合物分解气最大贡献率随时间变化情况

  • Fig.9 Maximum contribution percentage of gas released from hydrate dissociation over time in different cases

  • 在盖层封堵之后,案例C在1年、5年和10年时的水合物分解气最大贡献量分别为1.51×106 m3、3.48×106 m3和5.21×106 m3,较案例A分别提高了3.00、2.33和1.93倍,其所对应的水合物分解气最大贡献率依次为10.98%、11.75%和12.24%。与案例B相比而言,盖层封堵能够在一定程度上提升水合物分解气最大贡献量,但对应的水合物分解气最大贡献率差异较小。在短期开采时,前者略高于后者,但随着开采时间延长,未封堵情况下的水合物分解气最大贡献率反而逐渐超过封堵情况。数据对比表明,盖层封堵能够促进压降传播从而加速水合物分解,故而具有更大的水合物分解气贡献量,使得短期内的水合物分解气最大贡献率增大。然而,随着开采时间的延长,未封堵储层由于缺少盖层阻隔,下伏地层水流入井筒会驱替井眼下方的伴生游离气,使其采收率降低,从而出现未封堵后的储层水合物分解气最大贡献率略高于封堵的情况。

  • 总而言之,在两气降压合采过程中,地层中的伴生游离气仍然是主要气源,而水合物分解气占比相对较小,但在长期开采过程中水合物分解气对总产能的最大贡献率会不断增加。因此,后续可进一步结合其他增产措施来扩大水合物分解区域,从而显著提升两气长期合采时的产能。

  • 2.4 最优封堵条件下的不同井位分析

  • 水平井布设位置也是影响水合物分解气和伴生气两气合采的一个关键因素。当上述储层缺乏圈闭时,将井位布设于下伏游离气层中,进行长期开采会造成地层水大量入侵从而降低产气速率。但前述分析表明,盖层封堵能够有效封隔外部水体。因此,本节将进一步对最优封堵参数组合情况下的不同井眼布设位置进行分析,重点对比分析水平井分别布设在三相层和游离气层中间位置时的产气情况。图11绘制了两种井位布设方案下,模拟开采10 年后的累计产气量与产气速率变化曲线。当井眼布设于游离气层中间位置时,10年内的累计产气量为6.41×107 m3,较布设于三相层中间位置处提高约50.47%,且其产气速率呈现出短期内快速下降而长期开采时缓慢下降的趋势。相较而言,井位布设在游离气层中间时的长期产气速率要普遍高于布设在三相层中间时的情况,但随开采时间的增加,两者之间的差距逐渐减小,开采10年后的产气速率为7218.37 m3/d,较布设在三相层中间位置时的产气速率提高约12.99%。上述结果表明,储层封堵后,将水平井布设在游离气层具有更好的产气效果。此外,通过计算得出,模拟开采10年后,该方案下的水合物分解气最大贡献量约为6.81×106 m3,最大水合物分解气贡献率约为10.61%。尽管,最大水合物分解气贡献率有所降低,但其水合物分解气体积较布设于三相层提高约30.71%,这是由于井眼布设在渗透率相对较高的地方,加之盖层封堵有利于储层中压力传递,使得水合物分解范围明显增加(图12)。

  • 图10 不同案例开采中游离气饱和度演化云图

  • Fig.10 Evolution of free gas saturation in different cases

  • 图11 两种井位布设方案下模拟开采10年中的累计产气量与产气速率曲线

  • Fig.11 Cumulative gas production and gas production rate over a 10-year period for two well deployment schemes

  • 图12 模拟10年不同井位案例的物性分布云图

  • Fig.12 Distribution of physical properties for different well deployments over 10 years

  • 3 讨论

  • 在水合物和伴生气合采过程中,开采成本与提产增效必须统筹兼顾。由于水平井长度并不相同,为了便于分析,开展单位井长条件下的产气速率(Q)对比十分必要。图13描绘了不同长度水平井在盖层封堵前后单位井长下的产气速率和气水产出比演化情况。如图所示,盖层封堵前后单位井长下的产气速率均随井身长度增加而减少,且辅助盖层封堵技术后,单位井长产气速率均有不同程度的提高。具体而言,当未采取封堵措施时,100 m长水平井单位长度产气速率最大,约为20.09 m3/d。相反,井长达到700 m时的产气速率最小,仅为14.60 m3/d,较前者下降约27.33%。虽然采取封堵措施之后,不同井长情况下的单位产气速率均有所提高,但整体演化趋势并未出现差异,即井长100 m时的产气速率仍然最高并增至25.37 m3/d,较未封堵时提高约26.28%。对于井长700 m的工况而言,对应的产气速率同样最低,约为16.68 m3/d,较未封堵时提高14.25%,但较盖层封堵后100 m井长工况下的产气速率下降约34.25%。如前所述,产生这些现象的原因可能是水平井长度增加一方面增大了井筒内压降的沿程损失,另一方面有利于下伏伴生气快速产出,使得开采中后期下伏地层水更易进入地层造成产气速率下降。对于封堵改造而言,它能够促进压降传递并减少地层水入侵,因而单位长度的水平井开采潜力明显提升。

  • 对于气水产出比而言,当未采取封堵措施时,井长100 m时的气水产出比最高,约为31.44,当井长进一步增大时,其值相差不大,约为26。当辅以盖层封堵之后,由于产气速率的提高以及产水量的减少,使得相同井长条件下的气水产出比也会显著增大,但提高程度会随着井长的增加而降低。如图11所示,当井长从100 m逐渐增大至700 m时,对应的气水产出比为47.62、39.18、33.54和32.46,分别较封堵前提高约51.45%、49.79%、31.04%和25.43%。根据盖层封堵前后产气速率和气水产出比变化情况,可以推断出气水产出比提高程度下降主要是由封堵半径大小导致的。因为在最优参数组合中,封堵半径仅为200 m,而500 m和700 m井长大于该值,导致井筒下方远处的地层水在压降驱动下仍能进入井筒,造成气水产出比相对较低。而当水平井布设长度为100 m和300 m时,井身位于整个封堵层有效作用范围内,封隔层封闭效果良好,此外封堵层外的伴生气也能较好地屏蔽地层水从侧向进入,故而显著提高气水产出比。上述结果表明,封堵层覆盖整个井筒区域可能提产效果更佳。

  • 图13 不同长度水平井在盖层封堵前后单位井长下的产气速率和气水产出比

  • Fig.13 Gas production rates and gas-to-water ratios per unit well length for horizontal wells with different lengths before and after sealing

  • 4 结论

  • 基于中国南海第一次水合物试采SHSC-4站位地质资料,本文开展了水平井辅以盖层封堵改造下的水合物分解气和伴生气合采研究,主要得出以下结论:

  • (1)水平井辅以盖层封堵措施后的降压合采产能优于单一水平井。在储层上盖层和下伏层中设置封堵层,可有效增强压降沿水平方向传播,加速水合物分解并有效阻隔地层水过早侵入井筒,从而提高水合物分解气和下伏伴生气采收率。

  • (2)正交试验结果表明,研究工况下水平井联合盖层封堵增产时的最优参数组合为封堵层半径200 m,厚度0.25 m,渗透率比值1000,水平井长度700 m,且对累计产气量的影响显著程度由高到低依次为水平井长度、封堵层半径、封堵层渗透率比值和封堵层厚度。

  • (3)伴生气是降压合采过程中井筒气体采出的主要气源。水合物分解气对总产能的最大贡献率介于10%~25%之间,且随着开采时间的延长会有所增加,同时辅以盖层封堵措施和增加水平井井长均会在一定程度上降低其贡献率。

  • (4)在水合物分解气和伴生气两气合采过程中,封堵前后单位井长产气速率和气水产出比均会随着井长增加而减小,且井长与封堵层直径可能对开采产能存在交互影响,推测封堵层直径大于井长可能提产效果更佳。此外,储层封堵改造后,水平井布设在游离气层产量更高,相比布设在三相层可提高约50.47%。

  • 参考文献

    • Boswell R. 2013. Japan completes first offshore methane hydrate production test—Methane successfully produced from deepwater hydrate layers. Center for Natural Gas and Oil, 412(1): 386~7614.

    • Cao Xinxin, Sun Jiaxin, Qin Fanfan, Ning Fulong, Mao Peixiao, Gu Yuhang, Li Yanlong, Zhang Heen, Yu Yanjiang, Wu Nengyou. 2023a. Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area. Energy, 270: 126690. DOI: 10. 1016/j. energy. 2023. 126690.

    • Cong Xiaorong, Wu Nengyou, Su Ming, Yang Rui, Qiao Shaohua, Mao Xiaoping. 2014. New progress and outlook of potential resources volume of natural gas hydrate. Adv New Renewable Energy, 2(6): 462~470 (in Chinese with English abstract).

    • Gu Yuhang, Liu Tianle, Sun Jiaxin, Qin Fanfan, Cao Xinxin, Qin Shunbo, Li Yanlong, Zhang Ling, Ning Fulong, Jiang Guosheng. 2023a. Influence of key geological factors on fluid production behaviors in marine natural gas hydrate reservoirs: A case study. Ocean Engineering, 288: 116023.

    • Gu Yuhang, Sun Jiaxin, Qin Fanfan, Ning Fulong, Cao Xinxin, Liu Tianle, Qin Shunbo, Zhang Ling, Jiang Guosheng. 2023b. Enhancing gas recovery from natural gas hydrate reservoirs in the eastern Nankai Trough: Deep depressurization and underburden sealing. Energy, 262: 125510.

    • Hancock S, Collett T S, Dallimore S R, Satoh T, Inoue T, Huenges E, Henninges J, Weatherill B. 2005. Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. Scientific results from the Mallik 2002 gas hydrate production research well Program, Mackenzie delta, Northwest Territories, Canada. Geological Survey of Canada, CD-ROM.

    • Huang Man, Zhao Zhirui, Su Dongchao, Wu Lianghong, Qin Fanfan, Zhang Meixia, Ning Fulong. 2023. Improving the production performance of low-permeability natural gas hydrate reservoirs by radial water jet slotting and grouting in a horizontal well. Energy & Fuels, 37(11): 7715~7727.

    • Jang J, Waite W F, Stern L A. 2020. Gas hydrate petroleum systems: What constitutes the “seal” ? Interpretation, 8(2): T231~T248.

    • Kurihara M, Sato A, Funatsu K, Ouchi H, Yamamoto K, Numasawa M, Ebinuma T, Narita H, Masuda Y, Dallimore S R. 2010. Analysis of production data for 2007/2008 Mallik gas hydrate production tests in Canada//International oil and gas conference and exhibition in China. Proceedings of the International Oil and Gas Conference and Exhibition in China, Beijing.

    • Li Fengguang, Yuan Qing, Li Tianduo, Li Zhi, Sun Changyu, Chen Guangjin. 2019. A review: Enhanced recovery of natural gas hydrate reservoirs. Chinese Journal of Chemical Engineering, 27(9): 2062~2073.

    • Li Jinfa, Ye Jianliang, Qin Xuwen, Qiu Haijun, Wu Nengyou, Lu Hailong, Xie Wenwei, Lu Jingan, Peng Fei, Xu Zhenqiang, Lu Cheng, Kuang Zenggui, Wei Jiangong, Liang Qianyong, Lu Hongfeng, Kou Beibei. 2018. The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1): 5~16.

    • Li Qingping, Zhou Shouwei, Zhao Jiafei, Song Yongchen, Zhu Junlong. 2022. Research status and prospects of natural gas hydrate exploitation technology. Strategic Study of Chinese Academy of Engineering, 24(3): 214~224 (in Chinese with English abstract).

    • Li Shuxia, Wu Didi, Wang Xiaopu, Hao Yongmao. 2021. Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens. Energy, 232: 120889. DOI: 10. 1016/j. energy. 2021. 120889.

    • Li Wenlong, Gao Deli, Yang Jin. 2019. Challenges and prospect of the drilling and completion technologies used for the natural gas hydrate reservoirs in sea areas. Oil Drilling & Production Technology, 41(6): 681~689(in Chinese with English abstract).

    • Lin Decai, Lu Jingsheng, Liu Jia, Liang Deqing, Li Dongliang, Jin Guangrong, Xia Zhiming, Li Xiaosen. 2023. Numerical study on natural gas hydrate production by hot water injection combined with depressurization. Energy, 282: 128862.

    • Ma Xiaolong, Sun Youhong, Liu Baochang, Guo Wei, Jia Rui, Li Bing, Li Shengli. 2020. Numerical study of depressurization and hot water injection for gas hydrate production in China's first offshore test site. Journal of Natural Gas Science and Engineering, 83: 103530.

    • Ma Xiaolong, Sun Youhong, Guo Wei, Jia Rui, Li Bing. 2021. Numerical simulation of horizontal well hydraulic fracturing technology for gas production from hydrate reservoir. Applied Ocean Research, 112: 102674.

    • Mao Peixiao, Wu Nengyou, Sun Jiaxin, Ning Fulong, Chen Lin, Wan Yizhao, Hu Gaowei, Cao Xinxin. 2021a. Numerical simulations of depressurization-induced gas production from hydrate reservoirs at site GMGS3-W19 with different free gas saturations in the northern South China Sea. Energy Science & Engineering, 9(9): 1416~1439.

    • Mao Peixiao, Wu Nengyou, Sun Jiaxin, Ning Fulong, Chen Lin, Wan Yizhao, Hu Gaowei, Cao Xinxin. 2021b. Numerical simulations of depressurization-induced gas production from hydrate reservoirs at site GMGS3-W19 with different free gas saturations in the northern South China Sea. Energy Science & Engineering, 9(9): 1416~1439.

    • Moridis G J. 2012. TOUGH+HYDRATE v1. 2 User's manual: A code for the simulation of system behavior in hydrate-bearing geologic media. https: //www. osti. gov/biblio/1173164.

    • Moridis G J, Collett T S, Boswell R, Kurihara M, Reagan M T, Koh C, Sloan E D. 2008. Toward production from gas hydrates: Current status, assessment of resources, and model-based evaluation of technology and potential//SPE Unconventional Resources Conference/Gas Technology Symposium. SPE: SPE-114163.

    • Moridis G J, Kowalsky M B, Pruess K. 2007. Depressurization-induced gas production from class 1 hydrate deposits. SPE Reservoir Evaluation & Engineering, 10(5): 458~481.

    • Moridis G J, Reagan M T, Queiruga A F. 2019. Gas hydrate production testing: design process and modeling results. Offshore Technology Conference. OTC: D031S035R005.

    • Ning Fulong, Chen Qiang, Sun Jiaxin, Wu Xiang, Cui Guodong, Mao Peixiao, Li Yanlong, Liu Tianle, Jiang Guosheng, Wu Nengyou. 2022. Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations. Energy, 254: 124220. DOI: 10. 1016/j. energy. 2022. 124220.

    • Pinero E, Marquardt M, Hensen C, Haeckel M, Wallmann K. 2013. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences, 10(2): 959~975.

    • Qin Xuwen, Liang Qianyong, Ye Jianliang, Yang Lin, Qiu Haijun, Xie Wenwei, Liang Jinqiang, Lu Jinan, Lu Cheng, Lu Hailong, Ma Baojin, Kuang Zenggui, Wei Jiangong, Lu Hongfeng, Kou Beibei. 2020. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea. Applied Energy, 278: 115649. DOI: 10. 1016/j. apenergy. 2020. 115649.

    • Schoderbek D, Farrell H, Howard J, Raterman K, Silpngarmlert S, Martin K, Smith B, Klein P. 2013. ConocoPhillips Gas Hydrate Production Test. Houston, TX (United States): ConocoPhillips Co.

    • Sloan E D. 2003. Fundamental principles and applications of natural gas hydrates. Nature, 426(6964): 353~359.

    • Sun Jiaxin, Ning Fulong, Li Shi, Zhang Ke, Liu Tianle, Zhang Ling, Jiang Guosheng, Wu Nengyou. 2015. Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu area by depressurising: The effect of burden permeability. Journal of Unconventional Oil and Gas Resources, 12: 23~33.

    • Sun Jiaxin, Ning Fulong, Liu Tianle, Li Yanlong, Lei Hongwu, Zhang Ling, Cheng Wan, Wang Ren, Cao Xinxin, Jiang Guosheng. 2019. Gas production from a silty hydrate reservoir in the South China Sea using hydraulic fracturing: A numerical simulation. Energy Science & Engineering, 7(4): 1106~1122.

    • Sun Jiaxin, Ning Fulong, Liu Tianle, Liu Changling, Chen Qiang, Li Yanlong, Cao Xinxin, Mao Peixiao, Zhang Ling, Jiang Guosheng. 2021. Numerical analysis of horizontal wellbore state during drilling at the first offshore hydrate production test site in Shenhu area of the South China Sea. Ocean Engineering, 238: 109614.

    • Sun Jiaxin, Zhang Ling, Ning Fulong, Liu Tianle, Fang Bin, Li Yanlong, Liu Changling, Jiang Guosheng. 2021. Research status and prospects of increasing production from gas hydrate reservoirs. Acta Petrolei Sinica, 42(4): 523~540 (in Chinese with English abstract).

    • Sun Jiaxin, Gu Yuhang, Qin Fanfan, Ning Fulong, Li Yanlong, Cao Xinxin, Mao Peixiao, Liu Tianle, Wang Ren, Jiang Guosheng. 2022. Key factors analyses for prediction of accurate gas production rate in hydrate reservoirs during model construction. Journal of Natural Gas Science and Engineering, 102: 104566.

    • Sun Yifei, Cao Bojian, Zhon Jingrong, Kan Jingyu, Li Rui, Niu Jingshuo, Chen Hongnan, Chen Guangjin, Wu Guozhong, Sun Changyu, Chen Daoyi. 2022. Gas production from unsealed hydrate-bearing sediments after reservoir reformation in a large-scale simulator. Fuel, 308: 121957.

    • Sun Zhenfeng, Li Nan, Jia Shuai, Cui Jinlong, Yuan Qing, Sun Changyu, Chen Guangjin. 2019. A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap. Applied Energy, 240: 842~850.

    • Wan Tinghui, Li Zhanzhao, Yu Yanjiang, Liang Qianyong, Lu Hongfeng, Wang Jingli. 2023. Depressurization-induced gas production from hydrate reservoirs in the Shenhu sea area using horizontal well: Numerical simulation on horizontal well section deployment for gas production enhancement. Frontiers in Earth Science, 11: 1137217. DOI: 10. 3389/feart. 2023. 1137217.

    • Wang Xiaochu, Sun Youhong, Li Bing, Zhang Guobiao, Guo Wei, Li Shengli, Jiang Shuhui, Peng Saiyu, Chen Hangkai. 2023. Reservoir stimulation of marine natural gas hydrate—A review. Energy, 263: 126120.

    • Wei Na, Qiao Yi, Fan Shuanshi, Cai Meng, Li Haitao, Zhou Shouwei, Zhao Jinzhou, Zhang Liehui, Richard B C. 2023. Analysis of flow field characteristics of sand removal hydrocyclone applicable to solid fluidization exploitation of natural gas hydrate. PLOSONE, 18(12): e0295147.

    • Wei Shuxian, Liu Siyuan, Cao Shoufu, Zhou Sainan, Chen Yong, Wang Zhaojie, Lu Xiaoqing. 2021. Theoretical investigation of the fusion process of mono-cages to tri-cages with CH4/C2H6 guest molecules in sI hydrates. Molecules, 26(23): 7071. DOI: 10. 3390/molecules26237071.

    • Wu Nengyou, Li Yanlong, Wan Yizhao, Sun Jianye, Huang Li, Mao Peixiao. 2021. Prospect of marine natural gas hydrate stimulation theory and technology system. Natural Gas Industry B, 8(2): 173~187.

    • Xin Xin, Wang Haibin, Luo Jiannan, Yu Han, Yuan Yilong, Xia Yingli, Zhu Huixing, Chen Qiang. 2020. Simulation-optimization coupling model for the depressuri-zation production of marine natural gas hydrate in horizontal wells based on machine learning method. Natural Gas Industry, 40(8): 149~158(in Chinese with English abstract).

    • Yamamoto K, Dallimore S. 2008. Aurora-JOGMEC-NRCan Mallik 2006-2008. Gas Hydrate Research Project progress. Fire in the Ice, 304: 285~4541.

    • Yamamoto K, Wang X X, Tamaki M, Suzuki K. 2019. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir. RSC Advances, 9(45): 25987~26013.

    • Ye Hongyu, Wu Xuezhen, Li Dayong, Jiang Yujing. 2022. Numerical simulation of productivity improvement of natural gas hydrate with various well types: Influence of branch parameters. Journal of Natural Gas Science and Engineering, 103: 104630. DOI: 10. 1016/j. jngse. 2022. 104630.

    • Ye Jianliang, Qin Xuwen, Xie Wenwei, Lu Hailong, Ma Baojin, Qiu Haijun, Liang Jinqiang, Lu Jing'an, Kuang Zenggui, Lu Cheng, Liang Qianyong, Wei Shipeng, Yu Yanjiang, Liu Chunsheng, Li Bin, Shen Kaixiang, Shi Haoxian, Lu Qiuping, Li Jing, Kou Beibei, Song Gang, Li Bo, Zhang He'en, Lu Hongfeng, Ma Chao, Dong Yifei, Bian Hang. 2020. Main progress of the second gas hydrate trial production in the South China Sea. Geology in China, 47(3): 557~568(in Chinese with English abstract).

    • Zhan Linsen, Kang Dongju, Lu Hailong, Jingan Lu. 2022. Characterization of coexistence of gas hydrate and free gas using sonic logging data in the Shenhu area, South China Sea. Journal of Natural Gas Science and Engineering, 101: 104540. DOI: 10. 1016/j. jngse. 2022. 104540.

    • Zhang Geng, Li Jun, Yang Hongwei, Liu Gonghui, Qin Pang, Wu Tong, Huang Honglin. 2022. Simulation research on solid fluidization exploitation of deepwater superficial layer natural gas hydrate reservoirs based on double-layer continuous pipe. Journal of Natural Gas Science and Engineering, 108: 104828.

    • Zhang Keni, Wu Yushu, Karsten P. 2008. User's guide for TOUGH2-MP—A massively parallel version of the TOUGH2 code. https: //escholarship. org/uc/item/5n3670p8.

    • Zhang Wei. 2013. The application of gas hydrate production methods—A case of ignik sikumi gas hydrate field trial in the north slope of Alaska(USA). Sino-Global Energy/Zhongwai Nengyuan, 18(2): 33~38(in Chinese with English abstract).

    • Zhao Ermeng, Hou Jian, Liu Yongge, Ji Yunkai, Liu Wenbin, Lu Nu, Bai Yajie. 2020. Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea. Energy, 213: 118826. DOI: 10. 1016/j. energy. 2020. 118826.

    • Zhao Qi, Li Xiaosen, Chen Zhaoyang, Xia Zhiming, Xiao Changwen. 2024. Numerical investigation of production characteristics and interlayer interference during co-production of natural gas hydrate and shallow gas reservoir. Applied Energy, 354: 122219.

    • Zhu Daoyi, Peng Shudai, Zhao Shuda, Wei Mingzhen, Bai Baojun. 2021. Comprehensive review of sealant materials for leakage remediation technology in geological CO2 capture and storage process. Energy & Fuels, 35(6): 4711~4742.

    • 丛晓荣, 吴能友, 苏明, 杨睿, 乔少华, 毛小平. 2014. 天然气水合物资源量估算研究进展及展望. 新能源进展, 2(6): 462~470.

    • 李清平, 周守为, 赵佳飞, 宋永臣, 朱军龙. 2022. 天然气水合物开采技术研究现状与展望. 中国工程科学, 24(3): 214~224.

    • 李文龙, 高德利, 杨进. 2019. 海域含天然气水合物地层钻完井面临的挑战及展望. 石油钻采工艺, 41(6): 681~689.

    • 孙嘉鑫, 张凌, 宁伏龙, 刘天乐, 方彬, 李彦龙, 刘昌岭, 蒋国盛. 2021. 天然气水合物藏增产研究现状与展望. 石油学报, 42(4): 523~540.

    • 辛欣, 王海彬, 罗建男, 于涵, 袁益龙, 夏盈莉, 朱慧星, 陈强. 2020. 基于机器学习方法的海洋天然气水合物水平井降压开采模拟-优化耦合模型. 天然气工业, 40(8): 149~158.

    • 叶建良, 秦绪文, 谢文卫, 卢海龙, 马宝金, 邱海峻, 梁金强, 陆敬安, 匡增桂, 陆程, 梁前勇, 魏士鹏, 于彦江, 刘春生, 李彬, 申凯翔, 史浩贤, 卢秋平, 李晶, 寇贝贝, 宋刚, 李博, 张贺恩, 陆红锋, 马超, 董一飞, 边航. 2020. 中国南海天然气水合物第二次试采主要进展. 中国地质, 47(3): 557~568.

    • 张炜. 2013. 天然气水合物开采方法的应用——以Ignik Sikumi天然气水合物现场试验工程为例. 中外能源, 18(2): 33~38.

  • 参考文献

    • Boswell R. 2013. Japan completes first offshore methane hydrate production test—Methane successfully produced from deepwater hydrate layers. Center for Natural Gas and Oil, 412(1): 386~7614.

    • Cao Xinxin, Sun Jiaxin, Qin Fanfan, Ning Fulong, Mao Peixiao, Gu Yuhang, Li Yanlong, Zhang Heen, Yu Yanjiang, Wu Nengyou. 2023a. Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area. Energy, 270: 126690. DOI: 10. 1016/j. energy. 2023. 126690.

    • Cong Xiaorong, Wu Nengyou, Su Ming, Yang Rui, Qiao Shaohua, Mao Xiaoping. 2014. New progress and outlook of potential resources volume of natural gas hydrate. Adv New Renewable Energy, 2(6): 462~470 (in Chinese with English abstract).

    • Gu Yuhang, Liu Tianle, Sun Jiaxin, Qin Fanfan, Cao Xinxin, Qin Shunbo, Li Yanlong, Zhang Ling, Ning Fulong, Jiang Guosheng. 2023a. Influence of key geological factors on fluid production behaviors in marine natural gas hydrate reservoirs: A case study. Ocean Engineering, 288: 116023.

    • Gu Yuhang, Sun Jiaxin, Qin Fanfan, Ning Fulong, Cao Xinxin, Liu Tianle, Qin Shunbo, Zhang Ling, Jiang Guosheng. 2023b. Enhancing gas recovery from natural gas hydrate reservoirs in the eastern Nankai Trough: Deep depressurization and underburden sealing. Energy, 262: 125510.

    • Hancock S, Collett T S, Dallimore S R, Satoh T, Inoue T, Huenges E, Henninges J, Weatherill B. 2005. Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. Scientific results from the Mallik 2002 gas hydrate production research well Program, Mackenzie delta, Northwest Territories, Canada. Geological Survey of Canada, CD-ROM.

    • Huang Man, Zhao Zhirui, Su Dongchao, Wu Lianghong, Qin Fanfan, Zhang Meixia, Ning Fulong. 2023. Improving the production performance of low-permeability natural gas hydrate reservoirs by radial water jet slotting and grouting in a horizontal well. Energy & Fuels, 37(11): 7715~7727.

    • Jang J, Waite W F, Stern L A. 2020. Gas hydrate petroleum systems: What constitutes the “seal” ? Interpretation, 8(2): T231~T248.

    • Kurihara M, Sato A, Funatsu K, Ouchi H, Yamamoto K, Numasawa M, Ebinuma T, Narita H, Masuda Y, Dallimore S R. 2010. Analysis of production data for 2007/2008 Mallik gas hydrate production tests in Canada//International oil and gas conference and exhibition in China. Proceedings of the International Oil and Gas Conference and Exhibition in China, Beijing.

    • Li Fengguang, Yuan Qing, Li Tianduo, Li Zhi, Sun Changyu, Chen Guangjin. 2019. A review: Enhanced recovery of natural gas hydrate reservoirs. Chinese Journal of Chemical Engineering, 27(9): 2062~2073.

    • Li Jinfa, Ye Jianliang, Qin Xuwen, Qiu Haijun, Wu Nengyou, Lu Hailong, Xie Wenwei, Lu Jingan, Peng Fei, Xu Zhenqiang, Lu Cheng, Kuang Zenggui, Wei Jiangong, Liang Qianyong, Lu Hongfeng, Kou Beibei. 2018. The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1): 5~16.

    • Li Qingping, Zhou Shouwei, Zhao Jiafei, Song Yongchen, Zhu Junlong. 2022. Research status and prospects of natural gas hydrate exploitation technology. Strategic Study of Chinese Academy of Engineering, 24(3): 214~224 (in Chinese with English abstract).

    • Li Shuxia, Wu Didi, Wang Xiaopu, Hao Yongmao. 2021. Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens. Energy, 232: 120889. DOI: 10. 1016/j. energy. 2021. 120889.

    • Li Wenlong, Gao Deli, Yang Jin. 2019. Challenges and prospect of the drilling and completion technologies used for the natural gas hydrate reservoirs in sea areas. Oil Drilling & Production Technology, 41(6): 681~689(in Chinese with English abstract).

    • Lin Decai, Lu Jingsheng, Liu Jia, Liang Deqing, Li Dongliang, Jin Guangrong, Xia Zhiming, Li Xiaosen. 2023. Numerical study on natural gas hydrate production by hot water injection combined with depressurization. Energy, 282: 128862.

    • Ma Xiaolong, Sun Youhong, Liu Baochang, Guo Wei, Jia Rui, Li Bing, Li Shengli. 2020. Numerical study of depressurization and hot water injection for gas hydrate production in China's first offshore test site. Journal of Natural Gas Science and Engineering, 83: 103530.

    • Ma Xiaolong, Sun Youhong, Guo Wei, Jia Rui, Li Bing. 2021. Numerical simulation of horizontal well hydraulic fracturing technology for gas production from hydrate reservoir. Applied Ocean Research, 112: 102674.

    • Mao Peixiao, Wu Nengyou, Sun Jiaxin, Ning Fulong, Chen Lin, Wan Yizhao, Hu Gaowei, Cao Xinxin. 2021a. Numerical simulations of depressurization-induced gas production from hydrate reservoirs at site GMGS3-W19 with different free gas saturations in the northern South China Sea. Energy Science & Engineering, 9(9): 1416~1439.

    • Mao Peixiao, Wu Nengyou, Sun Jiaxin, Ning Fulong, Chen Lin, Wan Yizhao, Hu Gaowei, Cao Xinxin. 2021b. Numerical simulations of depressurization-induced gas production from hydrate reservoirs at site GMGS3-W19 with different free gas saturations in the northern South China Sea. Energy Science & Engineering, 9(9): 1416~1439.

    • Moridis G J. 2012. TOUGH+HYDRATE v1. 2 User's manual: A code for the simulation of system behavior in hydrate-bearing geologic media. https: //www. osti. gov/biblio/1173164.

    • Moridis G J, Collett T S, Boswell R, Kurihara M, Reagan M T, Koh C, Sloan E D. 2008. Toward production from gas hydrates: Current status, assessment of resources, and model-based evaluation of technology and potential//SPE Unconventional Resources Conference/Gas Technology Symposium. SPE: SPE-114163.

    • Moridis G J, Kowalsky M B, Pruess K. 2007. Depressurization-induced gas production from class 1 hydrate deposits. SPE Reservoir Evaluation & Engineering, 10(5): 458~481.

    • Moridis G J, Reagan M T, Queiruga A F. 2019. Gas hydrate production testing: design process and modeling results. Offshore Technology Conference. OTC: D031S035R005.

    • Ning Fulong, Chen Qiang, Sun Jiaxin, Wu Xiang, Cui Guodong, Mao Peixiao, Li Yanlong, Liu Tianle, Jiang Guosheng, Wu Nengyou. 2022. Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations. Energy, 254: 124220. DOI: 10. 1016/j. energy. 2022. 124220.

    • Pinero E, Marquardt M, Hensen C, Haeckel M, Wallmann K. 2013. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences, 10(2): 959~975.

    • Qin Xuwen, Liang Qianyong, Ye Jianliang, Yang Lin, Qiu Haijun, Xie Wenwei, Liang Jinqiang, Lu Jinan, Lu Cheng, Lu Hailong, Ma Baojin, Kuang Zenggui, Wei Jiangong, Lu Hongfeng, Kou Beibei. 2020. The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea. Applied Energy, 278: 115649. DOI: 10. 1016/j. apenergy. 2020. 115649.

    • Schoderbek D, Farrell H, Howard J, Raterman K, Silpngarmlert S, Martin K, Smith B, Klein P. 2013. ConocoPhillips Gas Hydrate Production Test. Houston, TX (United States): ConocoPhillips Co.

    • Sloan E D. 2003. Fundamental principles and applications of natural gas hydrates. Nature, 426(6964): 353~359.

    • Sun Jiaxin, Ning Fulong, Li Shi, Zhang Ke, Liu Tianle, Zhang Ling, Jiang Guosheng, Wu Nengyou. 2015. Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu area by depressurising: The effect of burden permeability. Journal of Unconventional Oil and Gas Resources, 12: 23~33.

    • Sun Jiaxin, Ning Fulong, Liu Tianle, Li Yanlong, Lei Hongwu, Zhang Ling, Cheng Wan, Wang Ren, Cao Xinxin, Jiang Guosheng. 2019. Gas production from a silty hydrate reservoir in the South China Sea using hydraulic fracturing: A numerical simulation. Energy Science & Engineering, 7(4): 1106~1122.

    • Sun Jiaxin, Ning Fulong, Liu Tianle, Liu Changling, Chen Qiang, Li Yanlong, Cao Xinxin, Mao Peixiao, Zhang Ling, Jiang Guosheng. 2021. Numerical analysis of horizontal wellbore state during drilling at the first offshore hydrate production test site in Shenhu area of the South China Sea. Ocean Engineering, 238: 109614.

    • Sun Jiaxin, Zhang Ling, Ning Fulong, Liu Tianle, Fang Bin, Li Yanlong, Liu Changling, Jiang Guosheng. 2021. Research status and prospects of increasing production from gas hydrate reservoirs. Acta Petrolei Sinica, 42(4): 523~540 (in Chinese with English abstract).

    • Sun Jiaxin, Gu Yuhang, Qin Fanfan, Ning Fulong, Li Yanlong, Cao Xinxin, Mao Peixiao, Liu Tianle, Wang Ren, Jiang Guosheng. 2022. Key factors analyses for prediction of accurate gas production rate in hydrate reservoirs during model construction. Journal of Natural Gas Science and Engineering, 102: 104566.

    • Sun Yifei, Cao Bojian, Zhon Jingrong, Kan Jingyu, Li Rui, Niu Jingshuo, Chen Hongnan, Chen Guangjin, Wu Guozhong, Sun Changyu, Chen Daoyi. 2022. Gas production from unsealed hydrate-bearing sediments after reservoir reformation in a large-scale simulator. Fuel, 308: 121957.

    • Sun Zhenfeng, Li Nan, Jia Shuai, Cui Jinlong, Yuan Qing, Sun Changyu, Chen Guangjin. 2019. A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap. Applied Energy, 240: 842~850.

    • Wan Tinghui, Li Zhanzhao, Yu Yanjiang, Liang Qianyong, Lu Hongfeng, Wang Jingli. 2023. Depressurization-induced gas production from hydrate reservoirs in the Shenhu sea area using horizontal well: Numerical simulation on horizontal well section deployment for gas production enhancement. Frontiers in Earth Science, 11: 1137217. DOI: 10. 3389/feart. 2023. 1137217.

    • Wang Xiaochu, Sun Youhong, Li Bing, Zhang Guobiao, Guo Wei, Li Shengli, Jiang Shuhui, Peng Saiyu, Chen Hangkai. 2023. Reservoir stimulation of marine natural gas hydrate—A review. Energy, 263: 126120.

    • Wei Na, Qiao Yi, Fan Shuanshi, Cai Meng, Li Haitao, Zhou Shouwei, Zhao Jinzhou, Zhang Liehui, Richard B C. 2023. Analysis of flow field characteristics of sand removal hydrocyclone applicable to solid fluidization exploitation of natural gas hydrate. PLOSONE, 18(12): e0295147.

    • Wei Shuxian, Liu Siyuan, Cao Shoufu, Zhou Sainan, Chen Yong, Wang Zhaojie, Lu Xiaoqing. 2021. Theoretical investigation of the fusion process of mono-cages to tri-cages with CH4/C2H6 guest molecules in sI hydrates. Molecules, 26(23): 7071. DOI: 10. 3390/molecules26237071.

    • Wu Nengyou, Li Yanlong, Wan Yizhao, Sun Jianye, Huang Li, Mao Peixiao. 2021. Prospect of marine natural gas hydrate stimulation theory and technology system. Natural Gas Industry B, 8(2): 173~187.

    • Xin Xin, Wang Haibin, Luo Jiannan, Yu Han, Yuan Yilong, Xia Yingli, Zhu Huixing, Chen Qiang. 2020. Simulation-optimization coupling model for the depressuri-zation production of marine natural gas hydrate in horizontal wells based on machine learning method. Natural Gas Industry, 40(8): 149~158(in Chinese with English abstract).

    • Yamamoto K, Dallimore S. 2008. Aurora-JOGMEC-NRCan Mallik 2006-2008. Gas Hydrate Research Project progress. Fire in the Ice, 304: 285~4541.

    • Yamamoto K, Wang X X, Tamaki M, Suzuki K. 2019. The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir. RSC Advances, 9(45): 25987~26013.

    • Ye Hongyu, Wu Xuezhen, Li Dayong, Jiang Yujing. 2022. Numerical simulation of productivity improvement of natural gas hydrate with various well types: Influence of branch parameters. Journal of Natural Gas Science and Engineering, 103: 104630. DOI: 10. 1016/j. jngse. 2022. 104630.

    • Ye Jianliang, Qin Xuwen, Xie Wenwei, Lu Hailong, Ma Baojin, Qiu Haijun, Liang Jinqiang, Lu Jing'an, Kuang Zenggui, Lu Cheng, Liang Qianyong, Wei Shipeng, Yu Yanjiang, Liu Chunsheng, Li Bin, Shen Kaixiang, Shi Haoxian, Lu Qiuping, Li Jing, Kou Beibei, Song Gang, Li Bo, Zhang He'en, Lu Hongfeng, Ma Chao, Dong Yifei, Bian Hang. 2020. Main progress of the second gas hydrate trial production in the South China Sea. Geology in China, 47(3): 557~568(in Chinese with English abstract).

    • Zhan Linsen, Kang Dongju, Lu Hailong, Jingan Lu. 2022. Characterization of coexistence of gas hydrate and free gas using sonic logging data in the Shenhu area, South China Sea. Journal of Natural Gas Science and Engineering, 101: 104540. DOI: 10. 1016/j. jngse. 2022. 104540.

    • Zhang Geng, Li Jun, Yang Hongwei, Liu Gonghui, Qin Pang, Wu Tong, Huang Honglin. 2022. Simulation research on solid fluidization exploitation of deepwater superficial layer natural gas hydrate reservoirs based on double-layer continuous pipe. Journal of Natural Gas Science and Engineering, 108: 104828.

    • Zhang Keni, Wu Yushu, Karsten P. 2008. User's guide for TOUGH2-MP—A massively parallel version of the TOUGH2 code. https: //escholarship. org/uc/item/5n3670p8.

    • Zhang Wei. 2013. The application of gas hydrate production methods—A case of ignik sikumi gas hydrate field trial in the north slope of Alaska(USA). Sino-Global Energy/Zhongwai Nengyuan, 18(2): 33~38(in Chinese with English abstract).

    • Zhao Ermeng, Hou Jian, Liu Yongge, Ji Yunkai, Liu Wenbin, Lu Nu, Bai Yajie. 2020. Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea. Energy, 213: 118826. DOI: 10. 1016/j. energy. 2020. 118826.

    • Zhao Qi, Li Xiaosen, Chen Zhaoyang, Xia Zhiming, Xiao Changwen. 2024. Numerical investigation of production characteristics and interlayer interference during co-production of natural gas hydrate and shallow gas reservoir. Applied Energy, 354: 122219.

    • Zhu Daoyi, Peng Shudai, Zhao Shuda, Wei Mingzhen, Bai Baojun. 2021. Comprehensive review of sealant materials for leakage remediation technology in geological CO2 capture and storage process. Energy & Fuels, 35(6): 4711~4742.

    • 丛晓荣, 吴能友, 苏明, 杨睿, 乔少华, 毛小平. 2014. 天然气水合物资源量估算研究进展及展望. 新能源进展, 2(6): 462~470.

    • 李清平, 周守为, 赵佳飞, 宋永臣, 朱军龙. 2022. 天然气水合物开采技术研究现状与展望. 中国工程科学, 24(3): 214~224.

    • 李文龙, 高德利, 杨进. 2019. 海域含天然气水合物地层钻完井面临的挑战及展望. 石油钻采工艺, 41(6): 681~689.

    • 孙嘉鑫, 张凌, 宁伏龙, 刘天乐, 方彬, 李彦龙, 刘昌岭, 蒋国盛. 2021. 天然气水合物藏增产研究现状与展望. 石油学报, 42(4): 523~540.

    • 辛欣, 王海彬, 罗建男, 于涵, 袁益龙, 夏盈莉, 朱慧星, 陈强. 2020. 基于机器学习方法的海洋天然气水合物水平井降压开采模拟-优化耦合模型. 天然气工业, 40(8): 149~158.

    • 叶建良, 秦绪文, 谢文卫, 卢海龙, 马宝金, 邱海峻, 梁金强, 陆敬安, 匡增桂, 陆程, 梁前勇, 魏士鹏, 于彦江, 刘春生, 李彬, 申凯翔, 史浩贤, 卢秋平, 李晶, 寇贝贝, 宋刚, 李博, 张贺恩, 陆红锋, 马超, 董一飞, 边航. 2020. 中国南海天然气水合物第二次试采主要进展. 中国地质, 47(3): 557~568.

    • 张炜. 2013. 天然气水合物开采方法的应用——以Ignik Sikumi天然气水合物现场试验工程为例. 中外能源, 18(2): 33~38.