-
冷泉是富甲烷流体的海底表现形式,这些流体主要由甲烷和硫化氢组成,主要分布在大陆边缘(Campbell,2006; Boetius et al.,2013; Suess,2014; Cao Jingya et al.,2022)。冷泉碳酸盐岩是海底冷泉系统的一种重要产物,它的形成与主动或者被动大陆边缘富甲烷冷泉流体渗漏有着密切关系,是地质历史时期海底曾经发生甲烷渗漏的重要证据,记录了流体成分、流体来源、流体运移以及沉积环境特征等(Teichert et al.,2005; Campbell,2006; Suess,2014; Thiagarajan et al.,2020; Ruban et al.,2022)。大量的岩石学及地球化学研究证实,渗漏的甲烷在硫酸盐还原带附近发生甲烷厌氧的氧化作用形成了大量的HCO-3,增加了环境的碱度,最终导致碳酸盐的沉淀和冷泉碳酸盐岩的形成(Peckmann et al.,2001)。因此,开展冷泉碳酸盐岩的相关研究对阐明冷泉系统的形成和演化机制具有重要意义,其中冷泉碳酸盐岩的形成环境以及流体来源是重要的研究内容之一(Feng Dong et al.,2018)。传统观点认为冷泉系统应为一种还原环境,但是近期研究表明部分冷泉系统可能存在短暂的氧化环境(冯东和陈多福,2008; Feng Dong et al.,2009; Birgel et al.,2011; Rongemaille et al.,2011; Hu Yu et al.,2014; Wang Shuhong et al.,2014),而且不同类型的冷泉碳酸盐岩形成的环境可能会有差异,比如富含文石的冷泉碳酸盐岩易形成于偏氧化环境中(Peckmann et al.,2001; Naehr et al.,2007)。对于冷泉碳酸盐岩前人已利用多种同位素体系(如C、O、Sr、Nd、Mo等)约束流体的性质及其来源(Rongemaille et al.,2011; Ge Lu and Jiang Shaoyong,2013; Guan Hongxiang et al.,2013; Liang Qianyong et al.,2017; Chen Tingting et al.,2021; Ge Lu et al.,2023; Jia Zice et al.,2023,2024)。其中Nd同位素不仅可以保存原始流体来源的信息而且可以灵敏地示踪水岩反应而获得广泛关注(Jakubowicz et al.,2019)。有研究指出深部的火山岩流体可能参与了某些古老的冷泉碳酸盐(具有较高εNd(t)值)的形成(Jakubowicz et al.,2015,2019)。海水和沉积物水岩反应释放出富含放射性的Nd同位素流体则参与了南海北部神狐海域冷泉碳酸盐岩的形成(Ge Lu et al.,2020)。
-
2016年广州海洋地质调查局的海洋6号调查航次船载的“海马号”深海深潜器(ROV)在南海北部琼东南盆地的海马冷泉(水深约为1381 m) 获得两个站点(ROV1和ROV2)的冷泉碳酸盐岩样品,采样地点如图1所示。这两个站点的冷泉碳酸盐岩可能形成于6.1~5.1 ka BP且明显富集轻碳同位素(δ13CV-PDB为-43.0‰~-27.5‰)和重氧同位素(δ18OV-PDB为2.5‰~5.8‰),指示该站点的冷泉碳酸盐岩流体可能来自于水合物分解产生的结构水(Liang Qianyong et al.,2017)。本次在前人研究的基础上,针对这两个站点的冷泉碳酸盐岩开展了一系列地球化学成分研究(包括主微量元素和Nd同位素),试图进一步约束海马冷泉碳酸盐岩的形成环境、流体性质、甲烷渗漏强度及碳酸盐矿物沉淀速率等重要特征。
-
1 地质背景
-
南海是西太平洋最大的边缘海之一,其面积约为350×104 km2,位于欧亚板块、太平洋板块和印度洋板块的交汇处。南海新生代的构造活动主要与印度板块和欧亚板块碰撞、太平洋板块向欧亚板块的俯冲以及澳大利亚板块向北运动有关(姚伯初等,2004)。南海新生代经历了四个演化阶段,即扩张前的初始裂陷阶段、同扩张强烈的裂陷阶段、扩张后缓慢沉降阶段和扩张后快速沉降阶段,在演化过程中形成了一系列沉积盆地(夏斌等,2004)。这些沉积盆地(如琼东南盆地、珠江口盆地、台西南盆地等)含有丰富的天然气水合物和油气资源,(Li Lun et al.,2013; Wang Shuhong et al.,2014; Wang Chen et al.,2018; Wang Xiujuan et al.,2018)。研究区所在的琼东南盆地位于南海西北部,盆地演化可分为始新世—渐新世裂陷阶段和新近纪—第四纪裂陷后沉降阶段。其中,裂陷阶段的形成包括岭头组(始新世)、崖城组(早渐新世)和陵水组(晚渐新世)三个沉积单元,岩性主要为湖相泥岩、浅海泥岩及海岸平原含煤地层,厚度约为几千米,这些岩石是盆地内主要的优质烃源岩(Huang Baojia et al.,2003; Xie Xinong et al.,2006; Zhu Weilin et al.,2009)。裂陷后沉降阶段的构造演化可分为热沉降阶段和加速沉降阶段。热沉降阶段形成的三亚组(早中新世)和梅山组(中中新世)呈不整合接触,下伏于加速沉降阶段形成的黄流组(晚中新世)、莺歌海组(上新世)和乐东组(更新世—全新世)。其中,黄流组、莺歌海组和乐东组为半深海-深海沉积,可成为油气藏良好的区域性盖层(Xie Xinong et al.,2006; Wu Shiguo et al.,2009; Sun Qiliang et al.,2011)。琼东南盆地以高沉积速率(最高可达1.2 mm/g)和高地温梯度(39~41℃/km)为特征,有利于油气运移(Zhu Weilin et al.,2009; Chen Tingting et al.,2021)。
-
图1 中国区域简图(a)和南海北部地质简图(b,据冯俊熙等,2018)
-
Fig.1 Regional sketchy map of China (a) and sketchy geological map of the northern South China Sea (b, after Feng Junxi et al., 2018)
-
2 样品描述及分析方法
-
本次采集的样品包括含贝壳冷泉碳酸盐岩(ROV2)和筒状冷泉碳酸盐岩(ROV1B)。这两种冷泉碳酸盐岩均呈灰色。其中,含贝壳冷泉碳酸盐岩中存在大量胶结的双壳类贝壳,岩石较为致密(图2a),而筒状冷泉碳酸盐岩则呈现孔隙结构(图2b)。含贝壳冷泉碳酸盐岩和筒状冷泉碳酸盐岩中的碳酸盐矿物主要为文石和高镁方解石,其中前者主要以文石为主(文石/方解石含量比值约为8∶1~9∶1),而后者则以高镁方解石为主,详细的矿物特征参见Liang Qianyong et al.(2017)。将冷泉碳酸盐岩破碎剔除生物贝壳、碎屑等杂质后,利用玛瑙研钵进行手工研磨至0.074 mm,以备下步分析。
-
2.1 全岩主微量元素成分分析
-
全岩微量元素含量在武汉上谱分析科技有限责任公司利用Agilent 7700e ICP-MS分析完成。用于ICP-MS分析的样品前处理步骤如下:①将粒径为0.074 mm的样品置于105℃烘箱中烘干12 h;②准确称取50 mg粉末样品置于Teflon溶样弹中;③依次缓慢加入1 mL高纯HNO3和1 mL高纯HF;④将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中加热24 h以上;⑤待溶样弹冷却,开盖后置于140℃电热板上蒸干,然后加入1 mL HNO3并再次蒸干;⑥加入1 mL高纯HNO3、1 mL MQ水和1 mL内标In(浓度为1×10-6),再次将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中加热12 h以上;⑦将溶液转入聚乙烯料瓶中,并用2%的 HNO3稀释至100 g以备ICP-MS测试,分析精度优于5%。
-
2.2 全岩Nd同位素组成分析
-
Nd同位素化学分析在北京科荟测试技术有限公司实验室完成。称取150 mg样品(对于Nd含量低的样品,适当增加称样量),加入15 mL Savillex消解罐中,密闭加热48 h,消解完全后的样品,蒸干加入1 mL 浓度为3 mol/L 的HCl。Nd同位素分离分两步,首先通过阳离子交换树脂(AG502X12,粒径为0.04~0.074 mm,用3 mol/L HCl将基体元素洗脱,再用6 mol/L的 HCl得到稀土组分;稀土组分通过Ln树脂(Triskem公司生产,100~150 μm),用0.25 mol/L的 HCl洗脱Nd;将提纯的Nd蒸干后加入1 mL 浓度为2% 的HNO3待上机测试。Nd同位素组成测试在ThermoFisher公司Neptune plus型MC-ICP-MS上进行。Nd同位素仪器分馏校正采用指数方程,以146Nd/144Nd = 0.7219进行校正,分析精度优于0.003%。
-
图2 海马冷泉区典型冷泉碳酸盐岩特征
-
Fig.2 Feature of the Haima cold-seep carbonates
-
(a)—含贝壳冷泉碳酸盐岩;(b)—筒状冷泉碳酸盐岩
-
(a)—shell-bearing cold-seep carbonates;(b)—tubular cold-seep carbonates
-
3 结果
-
筒状冷泉碳酸盐岩和含贝壳冷泉碳酸盐岩的微量元素(包含稀土元素)组成见表1。其中筒状冷泉碳酸盐岩和含贝壳冷泉碳酸盐岩的Sr/Ca比值分别为0.01~0.02和0.01~0.03,其Mg/Ca比值分别为0.03~0.09和0.01~0.10。在相关性图解中,两种冷泉碳酸盐岩主要落在文石到方解石演化线上且以文石为主,这同前人研究获得的XRD数据结果吻合(Liang Qianyong et al.,2017)。而且筒状冷泉碳酸盐岩的Mg/Ca比值较含贝壳冷泉碳酸盐岩高,表明其高镁方解石含量明显升高(图3a)。然而,相对于其他含贝壳冷泉碳酸盐岩,ROV2-4样品具有异常高的Mg/Ca比值和低Sr/Ca比值,可能说明其具有高的高镁方解石含量。
-
筒状冷泉碳酸盐岩和含贝壳冷泉碳酸盐岩具有相似的稀土元素总量(ΣREE),分别为36.9×10-6~41.8×10-6和36.0×10-6~53.5×10-6,且均以轻稀土元素(LREE)富集和重稀土元素(HREE)亏损(LREE/HREE分别为11.2~11.6和10.0~11.4)为特征。澳大利亚后太古宙平均页岩标准化稀土元素含量显示筒状冷泉碳酸盐岩和含贝壳冷泉碳酸盐岩均无明显的铕异常(δEu分别为1.03~1.05和1.00~1.03)和铈异常(δCe分别为0.97~0.98和0.92~1.01)(图3b)。本研究中海马冷泉区两种类型的冷泉碳酸盐岩Nd同位素组成见表1。两种类型的冷泉碳酸盐岩143Nd/144Nd同位素比值较为接近,分别为0.512066~0.512096和0.512059~0.512087。本次研究利用前人提出的模型对143Nd/144Nd同位素比值进行了换算,并引出新的参数εNd来代替原143Nd/144Nd同位素比值。计算公式如下:
-
其中,(143Nd/144Nd)sample为样品的143Nd/144Nd同位素比值,(143Nd/144Nd)CHUR= 0.512638为现代球粒陨石均一储库的143Nd/144Nd同位素比值(Jacobsen and Wasserburg,1984)。经过计算,筒状冷泉碳酸盐岩和含贝壳冷泉碳酸盐岩的εNd值分别为-10.8~-10.6和-11.3~-10.7(图4)。
-
图3 海马冷泉碳酸盐岩分类图解(a)(据Bayon et al.,2007)和澳大利亚后太古宙页岩平均(PAAS) 稀土元素标准化曲线(据Mclennan,1989)(b)
-
Fig.3 Graphic classification of Haima cold spring carbonates (a, after Bayon et al., 2007) and rare earth element patterns normalized by the Post-Archean average shales of Australia (PAAS) (b, after Mclennan, 1989)
-
4 讨论
-
4.1 稀土元素组成指示氧化还原条件
-
由于碳酸盐岩成岩过程中的稀土元素组成一般比较稳定,因此,海洋碳酸盐岩中的稀土元素可以作为示踪海洋氧化还原条件的重要指标之一(Shields and Webb,2004; Feng Dong et al.,2009,2013; Rongemaille et al.,2011)。Ce在还原条件下以Ce3+的形式与其他三价稀土离子共存,但是在氧化条件下,Ce3+被氧化成Ce4+同其他三价稀土离子分离,将会导致负铈异常的出现,因此负铈异常的出现是指示氧化环境的重要指标(Shields and Webb,2004)。然而,在碳酸盐从海洋环境沉淀的过程中,后期成岩作用不可避免地会混入非碳酸盐成分,这将干扰对原始海洋沉积环境的恢复(Shields and Stille,2001)。因此,在恢复古代海洋环境时,需要确保碳酸盐能够反映沉积环境的原始信息(Smrzka et al.,2020,2021)。有学者提出后期成岩作用将会导致碳酸盐岩的δCe和DyN/SmN具有负相关关系且δCe和ΣREE具有正相关关系(Shields and Stille,2001)。本研究中两种类型冷泉碳酸盐岩的δCe与DyN/SmN和ΣREE均无明显的相关性(图5),表明本研究中两种类型的冷泉碳酸盐岩受后期成岩作用影响较小,其REE成分特征可以代表冷泉碳酸盐岩形成过程中流体的REE组成。此外,两种类型冷泉碳酸盐岩具有不同的Mg/Ca和Sr/Ca比值,指示其在文石和方解石含量比例上具有差异(图3a)。前人研究认为稀土元素在文石和方解石沉淀过程中的分配并无显著差异(Rongemaille et al.,2011),加之两种类型的冷泉碳酸盐岩具有相似的PAAS标准化配分曲线(图3b),指示两者应沉淀于相似的流体环境之下。根据分析结果显示,两种类型的冷泉碳酸盐岩均无明显的Ce异常(δCe为0.92~1.01),指示了一种缺氧的还原环境,相似特征在南海北部其他含水合物盆地的冷泉碳酸盐岩中也有发现(Wang Shuhong et al.,2014; Liu Shuang et al.,2020; Chen Tingting et al.,2021; Liu Yujia et al.,2022; Wei Jiangong et al.,2023)。但也有学者在全球多处冷泉碳酸盐岩中发现了Ce负异常的信号,指示了一种氧化环境,这种氧化环境可能是暂时的,也可能与甲烷渗漏速度或者反硝化作用过程中产生的氧有关(Ettwig et al.,2010)。
-
图4 海马冷泉碳酸盐岩εNd和其他储库对比
-
Fig.4 Comparison of εNd values of the Haima cold-seep carbonates and other reservoirs
-
南海西北部沉积物和南海北部海水数据分别来自Li Xianhua et al.(2003)和Wu Qiong et al.(2015)
-
The data on sediments of NW South China Sea and ocean water of the northern South China Sea are from Li Xianhua et al. (2003) and Wu Qiong et al. (2015) , respectively
-
图5 海马冷泉碳酸盐岩δCe 与ΣREE(a)和δCe与DyN/SmN(b)图解
-
Fig.5 δCe vs. ΣREE (a) and δCe vs. DyN/SmN (b) plots of the Haima cold-seep carbonates
-
4.2 流体中Nd的来源
-
碳酸盐矿物沉淀过程中,孔隙水中的Nd元素与其他稀土元素一同进入矿物结构。因此,通过分析碳酸盐矿物的Nd同位素组成,可以追踪孔隙水的来源和性质(Bayon et al.,2011)。研究发现,两个站点的冷泉碳酸盐岩具有较低的δ13CV-PDB值(-43.0‰~-27.5‰)和较高的δ18OV-PDB值(2.5‰~5.8‰),表明海马冷泉区的冷泉碳酸盐岩中的碳和氧分别来自于水合物分解释放的甲烷和富含18O的水(Liang Qianyong et al.,2017)。学界普遍认为,沉积物孔隙水中的Nd主要来自海水下渗、Fe-Mn氢氧化物还原以及有机质分解(Freslon et al.,2014),其中海水可能是Nd的主要来源。南海北部海水和沉积物中的Fe-Mn氢氧化物以及有机物的Nd同位素组成分别为-4.5~-3.5、-8.2~-6.2以及-6.7(Freslon et al.,2014; Huang Kuofang et al.,2014; Wu Qiong et al.,2015)。本研究中,筒状冷泉碳酸盐岩和含贝壳冷泉碳酸盐岩具有均一的Nd同位素组成,εNd值分别为-10.8~-10.6和-11.3~-10.7,明显不同于上述三种机制产出的孔隙水中Nd同位素组成。因此,孔隙水中的Nd不大可能单一源于上述物质。研究表明,南海西北部海底沉积物具有较低的εNd值(-13~-11.3)(Li Xianhua et al.,2003),而海洋沉积物和海水之间的水岩反应可以释放出富含放射性的Nd进入孔隙水(Ge Lu et al.,2020)。此外,研究区内冷泉碳酸盐岩的εNd和1/Nd具有明显的线性关系,指示其流体来源具有多流体混合的特征(图6)。结合研究区内冷泉碳酸盐岩样品的εNd值位于海水和南海西北部海底沉积物之间(图4),推测本次研究中冷泉碳酸盐岩的Nd来源可能为水岩反应释放出的富含143Nd和海水中Nd的混合。值得注意的是,南海北部海水中的Nd元素含量仅为10.432.9 pmol/kg(Alibo and Nozaki,2000),远不足以形成本研究中的冷泉碳酸盐岩Nd含量(6.56×10-6~9.84×10-6)。但南海北部沉积物中Nd元素可达21×10-6~28×10-6(Boulay et al.,2005),说明水岩反应过程中释放的Nd可能是本研究中冷泉碳酸盐岩中Nd的源区之一。然而,当前研究尚无法确定Fe-Mn氢氧化物还原以及有机质分解释放出的Nd是否对最终的Nd组成有贡献。
-
图6 海马冷泉碳酸盐岩εNd和1/Nd图解
-
Fig.6 εNd vs.1/Nd plot of the Haima cold-seep carbonates
-
4.3 矿物组合以及元素组成对甲烷渗漏强度及碳酸盐矿物沉淀速率的指示意义
-
前人研究认为,高通量的甲烷渗漏将会导致硫酸盐-甲烷的转换界面(SMTZ)变浅(甚至可在海底水-沉积物界面附近),这样的环境有利于文石沉淀而不利于高镁方解石沉淀(Burton,1993; Thiagarajan et al.,2020),反之,则有利于高镁方解石沉淀(Thiagarajan et al.,2020; Smrzka et al.,2021)。由于硫酸盐驱动的甲烷具有厌氧氧化作用(SD-AOM),高通量的甲烷渗漏将会导致SD-AOM作用明显变强及可溶性HCO-3含量的提高(Michaelis et al.,2002),而最终导致碳酸盐矿物的沉淀速率加快。前人同样指出,高的沉淀速率将会导致形成的碳酸盐矿物富Sr、贫Mg,进而形成具有高Sr/Ca和低Mg/Ca比值的碳酸盐岩。反之,低沉淀速率将会导致形成具有高Mg/Ca和低Sr/Ca比值的碳酸盐岩(Blättler et al.,2021)。另外,由于文石和方解石矿物晶格的差异,导致文石较方解石明显富Sr(文石中Sr的分配系数大于1,而方解石中的Sr分配系数约为0.1)(Wassenburg et al.,2016; Drysdale et al.,2019),因此,碳酸盐矿物中的Sr、Mg含量可以作为区分文石和高镁方解石的重要指标。本研究中,相较于ROV1站点的筒状冷泉碳酸盐岩,ROV2站点的含贝壳冷泉碳酸盐岩中具有较高的Sr/Ca比值和较低的Mg/Ca比值,指示其碳酸盐矿物主要以文石为主,这与前人的XRD研究结果类似(文石含量可达80%~90%)(Liang Qianyong et al.,2017),指示了ROV2站点具有较高的甲烷渗漏通量和较高的沉淀速率。南海北部多个甲烷渗漏区域均有冷泉碳酸盐岩的发现,如西沙海槽、神狐海域、东沙西南、台西南、琼东南等。但其碳酸盐矿物组合多有差异,其中西沙海槽海域发育的冷泉碳酸盐岩中的自生碳酸盐矿物几乎全部为文石,而其他区域多为文石或者高镁方解石不同比例的混合,少数区域发育有较高含量的白云石(神狐海域、东沙海域等),这可能指示了南海北部不同海域甲烷渗漏通量的差异(佟宏鹏等,2012)。在琼东南盆地中冷泉碳酸盐岩主要以文石为主,最高可达90%,指示在一种较高甲烷通量条件下高效的甲烷氧化作用(佟宏鹏等,2012; Wei Jiangong et al.,2020,2023; Liu Shuang et al.,2020; Liu Yujia et al.,2022)。因此,甲烷渗漏强度的高低是决定硫酸盐-甲烷转换带(STMZ)深度的关键因素,继而影响碳酸盐沉淀的环境和沉淀速率,最终影响了碳酸盐岩的地球化学组成。
-
5 结论
-
本次研究在琼东南海马冷泉区两个站点分别获得筒状和含贝壳冷泉碳酸盐岩。两种类型的冷泉碳酸盐岩中的碳酸盐矿物分别以文石和高镁方解石为主,前者指示了较高通量甲烷渗漏以及较高沉淀速率的环境。稀土元素组成指示两种类型的冷泉碳酸盐岩均形成于较为缺氧的环境中。放射性Nd同位素的组成表明,两种类型的冷泉碳酸盐岩中Nd主要来源于海水和沉积物的水岩反应所释放出的富集143Nd的流体。
-
致谢:感谢三位审稿人对本文提出的建设性的修改意见和建议,为我们进一步完善文章提供了极大帮助。同时也感谢编辑在本文投稿过程中的帮助。
-
参考文献
-
Alibo D S, Nozaki Y. 2000. Dissolved rare earth elements in the South China Sea: Geochemical characterization of the water masses. Journal of Geophysical Research-Oceans, 105(C12): 28771~28783.
-
Bayon G, Birot D, Ruffine L, Caprais J C, Ponzevera E, Bollinger C, Donval J P, Charlou J L, Voisset M, Grimaud S. 2011. Evidence for intense ree scavenging at cold seeps from the Niger Delta margin. Earth and Planetary Science Letters, 312(3-4): 443~452.
-
Bayon G, Pierre C, Etoubleau J, Voisset M, Cauquil E, Marsset T, Sultan N, Le Drezen E, Fouquet Y. 2007. Sr/ca and Mg/ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments. Marine Geology, 241(1): 93~109.
-
Birgel D, Feng Dong, Roberts H H, Peckmann J. 2011. Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chemical Geology, 285(1-4): 82~96.
-
Blättler C L, Hong Weili, Kirsimäe K, Higgins J, Lepland A. 2021. Small calcium isotope fractionation at slow precipitation rates in methane seep authigenic carbonates. Geochimica Et Cosmochimica Acta, 298: 227~239.
-
Boetius A, Wenzhoefer F. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience, 6(9): 725~734.
-
Boulay S, Colin C, Trentesaux A, Frank N, Liu Zhifei. 2005. Sediment sources and East Asian monsoon intensity over the last 450 ky. Mineralogical and geochemical investigations on South China Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3~4): 260~277.
-
Burton E A. 1993. Controls on marine carbonate cement mineralogy: review and reassessment. Chemical Geology, 105: 163~179.
-
Campbell K A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2~4): 362~407.
-
Cao Jingya, Yang Shengxiong, Tang Danling, Feng Junxi, Liang Jinqiang. 2022. Mg/Ca, Ba/Ca, and S/Ca ratios as environmental and growth proxies for bivalve shells from the Haima cold seep, South China Sea. Journal of Oceanology and Limnology, 41: 660~672
-
Chen Tingting, Sun Xiaoming, Lin Zhiyong, Lu Yang, Fang Yunxin, Wu Zhongwei, Xiao Yang, Lin Haixin, Lin Xiao, Ning Youfeng, Strauss H. 2021. Deciphering the geochemical link between seep carbonates and enclosed pyrite: A case study from the northern South China Sea. Marine and Petroleum Geology, 128: 105020.
-
Drysdale R N, Zanchetta G, Baneschi I, Guidi M, Isola I, Couchoud I, Piccini L, Greig An, Wong Henri, Woodhead J, Regattieri E, Corrick E, Paul B, Spotl C, Denson E, Gordon J, Jaillet S, Dux F, Hellstrom J. 2019. Partitioning of Mg, Sr, Ba and U into a subaqueous calcite speleothem. Geochimica Et Cosmochimica Act, 264: 67~91.
-
Ettwig K F, Butler M K, LePaslier D, Pelletier E, Mangenot S, Kuypers M M M, Schreiber F, Dutilh B E, Zedelius J, De Beer D, Gloerich J, Wessels H J C T, van Alen T, Luesken Fa, Wu M L, van de Pas-Schoonen K T, Op den Camp H JM, Janssen-Megens E M, Francoijs K J, Stunnenberg H, Weissenbach J, Jetten M, Strous M. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288): 543.
-
Feng Dong, Chen Duofu. 2008. Petrographic characterization and rare earth elements as geochemical tracers for redox condition of seep carbonates from Northwestern Black Sea. Geoscience, 22(3): 390~396 (in Chinese with English abstract).
-
Feng Dong, Chen Duofu, Peckmann J. 2009. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova, 21(1): 49~56.
-
Feng Dong, Lin Zhijia, Bian Youyan, Chen Duofu, Peckmann J, Bohrmann G, Roberts H. 2013. Rare earth elements of seep carbonates: indication for redox variations and microbiological processes at modern seep sites. Journal of Asian Earth Sciences, 65: 27~33.
-
Feng Dong, Qiu Jianwen, Hu Yu, Peckmann J, Guan Hongxiang, Tong Hongpeng, Chen Chong, Chen Jiangxin, Gong Shanggui, Li Niu, Chen Duofu. 2018. Cold seep systems in the South China Sea: an overview. Journal of Asian Earth Sciences, 168: 3~16.
-
Feng Junxi, Yang Shengxiong, Sun Xiaoming, Liang Jinqiang. 2018. Geochemical tracers for methane microleakage activity in the Qiongdongnan Basin. Journal of Southwest Petroleum University (Science and Technology Edition), 40(3): 63~75 (in Chinese with English abstract).
-
Freslon N, Bayon G, Toucanne S, Bermell S, Bollinger C, Cheron S, Etoubleau J, Germain Y, Khripounoff A, Ponzevera E, Rouget M L. 2014. Rare earth elements and neodymium isotopes in sedimentary organic matter. Geochimica Et Cosmochimica Acta, 140: 177~198.
-
Ge Lu, Chen Wei, Zhu Bi, Fan Meitong, Yang Tao, Jiang Shaoyong. 2020. Sr and Nd isotopes of cold seep carbonates from the northern South China Sea as proxies for fluid sources. Marine and Petroleum Geology, 115: 104284.
-
Ge Lu, Jiang Shaoyong. 2013. Sr isotopic compositions of cold, seep carbonates from the South China Sea and the Panoche Hills (California, USA) and their significance in palaeooceanography. Journal of Asian Earth Sciences, 65: 34~41.
-
Ge Lu, Qu Pengfei, Zhu, Bi, Yang Tao, Jiang Shaoyong. 2023. Formation process of Pliocene cold seep carbonates from the southern Western Foothills, Southwestern Taiwan: A synthetical rare earth element and C-O-Sr-Nd isotope study. Marine and Petroleum Geology, 154: 106327.
-
Guan Hongxiang, Sun Yongge, Zhu Xiaowei, Mao Shengyi, Feng Dong, Wu Nengyou, Chen Duofu. 2013. Factors controlling the types of microbial consortia in cold-seep environments: A molecular and isotopic investigation of authigenic carbonates from the South China Sea. Chemical Geology, 354: 55~64.
-
Hu Yu, Feng Dong, Peckmann J, Roberts H H, Chen Duofu. 2014. New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps. Chemical Geology, 381: 55~66.
-
Huang Baojia, Xiao Xianming, Li Xuxuan. 2003. Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea. Organic Geochemistry, 34(7): 1009~1025.
-
Huang, Kuofang, You, Chenfeng, Chung, Chuanhsiung, Lin, Yahui, Liu, Zhifei. 2014. Tracing the Nd isotope evolution of North Pacific Intermediate and Deep Waters through the last deglaciation from South China Sea sediments. Journal of Asian Earth Sciences, 79, 564~573.
-
Jacobsen S B, Wasserburg G J. 1984. Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth and Planetary Science Letters, 67(2): 137~150.
-
Jakubowicz M, Dopieralska J, Belka Z. 2015. Tracing the composition and origin of fluids at an ancient hydrocarbon seep (Hollard Mound, Middle Devonian, Morocco): An Nd, REE and stable isotope study. Geochimica Et Cosmochimica Acta, 156: 50~74.
-
Jakubowicz M, Dopieralska J, Kaim A, Skupien P, Kiel S, Belka Z. 2019. Nd isotope composition of seep carbonates: towards a new approach for constraining subseafloor fluid circulation at hydrocarbon seeps. Chemical Geology, 503: 40~51.
-
Jia Zice, Bayon G, Peckmann J, Wang Xudong, Gong Shanggui, Li Jie, Roberts H, Chen Duofu, Feng Dong. 2024. Molybdenum isotope fingerprinting of microbial sulfate reduction in seep carbonate rocks. Geochemistry, Geophysics, Geosystems, 25: e2023GC011379.
-
Jia Zice, Hu Yu, Bayon G, Peckmann J, Wang Xudong, Gong Shanggui, Li Jie, Roberts H, Chen Duofu, Feng Dong. 2023. Seawater-fluid composition records from molybdenum isotopes of sequentially extracted phases of seep carbonate rocks. Geochemistry, Geophysics, Geosystems, 24: e2023GC011128.
-
Li Lun, Lei Xinhua, Zhang Xin, Sha Zhibin. 2013. Gas hydrate and associated free gas in the Dongsha area of northern South China Sea. Marine and Petroleum Geology, 39(1): 92~101.
-
Li Xianhua, Wei Gangjian, Shao Lei, Liu Ying, Liang Xirong, Jian Zhiming, Sun M, Wang Pinxian. 2003. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in SE Asia. Earth and Planetary Science Letters, 211(3~4): 207~220.
-
Liang Qianyong, Hu Yu, Feng Dong, Peckmann J, Chen Linying, Yang Shengxiong, Liang Jinqiang, Tao Jun, Chen Duofu. 2017. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics. Deep Sea Research Part II: Topical Studies in Oceanography, 124: 31~41.
-
Liu Shuang, Feng Xiuli, Feng Zhiquan, Xiao Xiao, Feng Li. 2020. Geochemical evidence of methane seepage in the sediments of the Qiongdongnan basin, South China Sea. Chemical Geology, 543: 119588.
-
Liu Yujia, Wei Jiangong, Li Yuanyuan, Chang, Jingyi, Miao, Xiaoming, Lu Hailong. 2022. Seep dynamics as revealed by authigenic carbonates from the eastern Qiongdongnan basin, South China Sea. Marine and Petroleum Geology, 142: 105736.
-
Mclennan S M. 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In Lipin B R and McKay G A (Eds. ). Geochemistry and Mineralogy of Rare Earth Elements. Dublin: De Gruyter, 169~200.
-
Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jorgensen B B, Widdel F, Peckmann J, Pimenov Nv, Gulin M B. 2002. Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 297(5583): 1013~1015.
-
Naehr T H, Eichhubl P, Orphan V J, HovlandM, Paull C K, Ussler W, Lorenson T D, Greene H G. 2007. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11~13): 1268~1291.
-
Peckmann J, Reimer A, Luth U, Luth C, Hansen B T, Heinicke C, Hoefs J, Reitner J. 2001. Methane-derived carbonates and authigenic pyrite from the northwestern black sea. Marine Geology, 177(1~2): 129~150.
-
Rongemaille E, Bayon G, Pierre C, Bollinger C, Chu N C, Fouquet Y, Riboulot V, Voisset M. 2011. Rare earth elements in cold seep carbonates from the Niger delta. Chemical Geology, 286(3~4): 196~206.
-
Ruban A, Rudmin M, Mazurov A, Chernykh D, Dudarev O, Semiletov I. 2022. Cold-seep carbonates of the Laptev Sea continental slope: Constraints from fluid sources and environment of formation. Chemical Geology, 610: 121103.
-
Shields G A, Webb G E. 2004. Has the ree composition of seawater changed over geological time? Chemical Geology, 204(1-2): 103~107.
-
Shields G, Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1~2): 29~48.
-
Smrzka D, Feng Dong, Himmler T, Zwicker J, Hu Yu, Monien P, Tribovillard N, Chen Duofu, Peckmann J. 2020. Trace elements in methane-seep carbonates: Potentials, limitations, and perspectives. Earth-Science Reviews, 208.
-
Smrzka D, Zwicker J, Lu Yu, Sun Yuedong, Feng Dong, Monien P, Bohrmann G, Peckmann J. 2021. Trace element distribution in methane-seep carbonates: The role of mineralogy and dissolved sulfide. Chemical Geology, 580: 120357.
-
Suess E. 2014. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103(7): 1889~1916.
-
Sun Qiliang, Wu Shiguo, Hovland M, Luo Peng, Lu Yintao, Qu Tailai. 2011. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea. Marine and Petroleum Geology, 28(6): 1146~1156.
-
Teichert B M A, Gussone N, Eisenhauer A, Bohrmann G. 2005. Clathrites: archives of near-seafloor pore-fluid evolution (δ44/40Ca, δ13C, δ18O) in gas hydrate environments. Geology, 33(3): 213~216.
-
Thiagarajan N, Crémière A, Blättler, C, Lepland A, Kirsimäe K, Higgins J, Brunstad H, Eiler J. 2020. Stable and clumped isotope characterization of authigenic carbonates in methane cold seep environments. Geochimica et Cosmochimica Acta, 279, 204~219.
-
Tong Hongpeng, Feng Dong, Chen Duofu. 2012. Progresses on petrology, mineralogy and geochemistry of cold seep carbonates in the northern South China Sea. Journal of Tropical Oceanography, 31(5): 45~56 (in Chinese with English abstract).
-
Wang Chen, Zeng Jianhui, Zhang Zhongtao, Shi Ning, Lao Miaoji, Zhao Qing, Dai Jinhui, Wang Fangfang, Liu Xiaofeng. 2018. Origin and distribution of natural gas and oil in the Baiyun Depression, Pearl River Mouth Basin, South China Sea. Journal of Petroleum Science and Engineering, 170: 467~475.
-
Wang Shuhong, Yan Wen, Chen Zhong, Zhang Nan, Chen Han. 2014. Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea. Marine and Petroleum Geology, 57: 482~493.
-
Wang Xiujuan, Liu Bo, Qian Jin, Zhang Xin, Guo Yiqun, Su Pibo, Liang Jinqiang, Jin Jiapeng, Luan Zhendong, Chen Duanxin, Xi Shichuan, Li Chaolun. 2018. Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin, South China Sea. Journal of Asian Earth Sciences, 168: 27~37.
-
Wassenburg J A, Scholz D, JochumK P, Cheng H J, Oster J, Immenhauser A, Richter D K, Häger T, Jamieson R A, Baldini J U L, Hoffmann D, Breitenbach S F M. 2016. Determination of aragonite trace element distribution coefficients from speleothem calcite-aragonite transitions. Geochimica Et Cosmochimica Acta, 190: 347~367.
-
Wei Jiangong, Miao Xiaoming, Wan Zhifeng, Li Jiwei, Xu Hengchao, Li Jiangtao, Wu Tingting. 2023. A newly discovered ancient cold seep in the northwestern part of the South China Sea: evidence from the authigenic carbonate. Journal of Asian Earth Sciences, 256: 105835.
-
Wei Jiangong, Wu Tingting, Zhang Wei, Deng Yinan, Xie Rui, Feng Junxi, Liang Jinqiang, Lai Peixi, Zhou Jianhou, Cao Jun. 2020. Deeply buried authigenic carbonates in the Qiongdongnan Basin, South China Sea: Implications for ancient cold seep activities. Minerals, 10(12): 1135.
-
Wu Qiong, Colin C, Liu Zhifei, Thil F, Dubois-Dauphin Q, Frank N, Tachikawa K, Bordier L, Douville E. 2015. Neodymium isotopic composition in foraminifera and authigenic phases of the South China Sea sediments: Implications for the hydrology of the North Pacific Ocean over the past 25 kyr. Geochemistry Geophysics Geosystems, 16(11): 3883~3904.
-
Wu Shiguo, Yuan Shengqiang, Zhang Gongcheng, Ma Yubo, Mi Lijun, Xu Ning. 2009. Seismic characteristics of a reef carbonate reservoir and implications for hydrocarbon exploration in deepwater of the Qiongdongnan Basin, northern South China Sea. Marine and Petroleum Geology, 26(6): 817~823.
-
Xia Bin, Cui Xuejun, Xie Jianhua, Wang Ran. 2004. Thinking about the dynamics mechanism study on formation and evolution of South China Sea. Geotectonica et Metallogenia, 28(3): 221~227 (in Chinese with English abstract).
-
Xie Xinong, Müller R D, Li Sitian, Gong Zaisheng, Steinberger B. 2006. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7): 745~765.
-
Yao Bochu, Wan Ling, Wu Nengyou. 2024. Cenozoic plate tectonic activities in the Great South China Sea area. China Geology, 31(2): 113~122 (in Chinese with English abstract).
-
Zhu Weilin, Huang Baojia, Mi Lijun, Wilkins R, Fu Ning, Xiao Xiaoming. 2009. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea. AAPG Bulletin, 93(6): 741~761.
-
冯东, 陈多福. 2008. 黑海西北部冷泉碳酸盐岩的沉积岩石学特征及氧化还原条件的稀土元素地球化学示踪. 现代地质, 22(3): 390~396.
-
冯俊熙, 杨胜雄, 孙晓明, 梁金强. 2018. 琼东南盆地甲烷微渗漏活动地球化学示踪研究. 西南石油大学学报(自然科学版), 40(3): 63~75.
-
佟宏鹏, 冯东, 陈多福. 2012. 南海北部冷泉碳酸盐岩的矿物, 岩石及地球化学研究进展. 热带海洋学报, 31(5): 45~56.
-
夏斌, 崔学军, 谢建华, 王冉. 2004. 关于南海构造演化动力学机制研究的一点思考. 大地构造与成矿学, 28(3): 221~227.
-
姚伯初, 万玲, 吴能友. 2004. 大南海地区新生代板块构造活动. 中国地质, 31(2): 113~122.
-
摘要
稀土元素和Nd同位素组成是示踪冷泉碳酸盐岩形成环境以及流体来源的重要工具。本研究对采集于南海北部琼东南盆地海马冷泉区两个站点的筒状和含贝壳冷泉碳酸盐岩展开一系列元素和Nd同位素组成研究。筒状冷泉碳酸盐岩和含贝壳冷泉碳酸盐岩的Sr/Ca比值分别为0.01~0.02和0.01~0.03,而Mg/Ca比值分别为0.03~0.09和0.01~0.10,指示两种类型的冷泉碳酸盐岩中碳酸盐矿物分别以文石和高镁方解石为主,其中前者指示了较高通量甲烷渗漏和较高沉淀速率的形成环境。两种类型冷泉碳酸盐岩具有相似的稀土元素总量(ΣREE),分别为36.9×10-6~41.8×10-6和36.0×10-6~53.5×10-6,且均以富集轻稀土元素(LREE)和亏损重稀土元素(HREE)(LREE/HREE分别为11.2~11.6和10.0~11.4)为特征,二者均无明显的铕异常(δEu分别为1.03~1.05和1.00~1.03)和铈异常(δCe分别为0.97~0.98和0.92~1.01),指示其应形成于缺氧环境。筒状冷泉碳酸盐岩和含贝壳冷泉碳酸盐岩均具有相对较低的143Nd/144Nd同位素比值(分别为0.512066~0.512096和0.512059~0.512087),计算得到εNd值分别为-10.8~-10.6和-11.3~-10.7,且εNd和1/Nd具有明显的负相关性,指示形成两种类型冷泉碳酸盐岩的流体中Nd可能是混合来源,其中绝大部分Nd来源于海水和沉积物的水岩反应释放出的富集143Nd流体。
Abstract
Rare earth element (REE) compositions and Nd isotopic signatures are important tools for tracing the formation environments and fluid sources of cold-seep carbonates. This study investigates the elemental and Nd isotopic compositions of tubular and shell-bearing cold-seep carbonates collected from two sites within the Haima cold seep in the Qiongdongnan Basin, northern South China Sea. The Sr/Ca ratios of tubular and shell-bearing carbonates range from 0.01 to 0.02 and 0.01 to 0.03, respectively, while their Mg/Ca ratios are 0.03 to 0.09 and 0.01 to 0.10, respectively. These ratios suggest that the carbonate minerals in shell-bearing carbonates are primarily aragonite, while those in tubular carbonates are predominantly high-Mg calcite. This difference indicates that shell-bearing carbonates formed under conditions of relatively high methane leakage flux and precipitation rates. Both types of cold-seep carbonates have similar total REE (ΣREE) concentrations, ranging from 36.9×10-6 to 41.8×10-6 for tubular carbonates and 36.0×10-6 to 53.5×10-6 for shell-bearing carbonates. They are characterized by enrichment in light REEs (LREEs) and depletion in heavy REEs (HREEs), with LREE/HREE ratios ranging from 11.2 to 11.6 and 10.0 to 11.4, respectively. Additionally, both types lack significant Eu anomalies (δEu=1.03~1.05 and 1.00~1.03, respectively) and Ce anomalies (δCe=0.97~0.98 and 0.92~1.01, respectively), suggesting formation in anoxic environments. Both tubular and shell-bearing cold-seep carbonates exhibit relatively low 143Nd/144Nd ratios, ranging from 0.512066 to 0.512096 and 0.512059 to 0.512087, respectively. The calculated εNd values range from -10.8 to -10.6 for tubular carbonates and -11.3 to -10.7 for shell-bearing carbonates. A notable negative correlation between εNd and 1/Nd suggests that the Nd in the fluids responsible for forming these carbonates is likely derived from mixed sources, with the majority of Nd predominantly originating from 143Nd-enriched water, which was released from the seawater-sediment interaction.
Keywords
rare earth elements ; Nd isotopes ; redox conditions ; cold seep carbonates ; Haima cold seeps