en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

蒋林桐,男,1999年生。硕士研究生,工程力学专业。E-mail: TS21030008A31@cumt.edu.cn。

通讯作者:

马天然,男,1989年生。讲师,主要从事工程地质多物理场耦合研究。E-mail:matianran@cumt.edu。

参考文献
Andrés S, Santillán D, Mosquera, J C, Cueto-Felgueroso L. 2019. Delayed weakening and reactivation of rate-and-state faults driven by pressure changes due to fluid injection. Journal of Geophysical Research (Solid Earth), 124(11): 11917~11937.
参考文献
Bakker E, Hangx S J T, Niemeijer A R, Spiers C J. 2016. Frictional behaviour and transport properties of simulated fault gouges derived from a natural CO2 reservoir. International Journal of Greenhouse Gas Control, 54: 70~83.
参考文献
Blanco-Martín L, Jahangir E, Rinaldi A P, Rutqvist J. 2022. Evaluation of possible reactivation of undetected faults during CO2 injection. International Journal of Greenhouse Gas Control, 121: 103794.
参考文献
Cai Bofeng, Li Qi, Zhang Xian. 2021. Annual Report on Carbon Dioxide Capture, Utilization and Storage (CCUS) in China (2021)—A study on China's CCUS pathway. China Agenda 21 Management Center: Wuhan Institute of Rock and Soil Mechanics. Chinese Academy of Sciences (in Chinese with English abstract).
参考文献
Chen Xiaowei, Nakata N. 2017. Preface to the focus section on the 3 September 2016 Pawnee, Oklahoma, earthquake. Seismological Research Letters, 88(4): 953~955.
参考文献
Cuss R J, Harrington J F. 2016. An experimental study of the potential for fault reactivation during changes in gas and pore-water pressure. International Journal of Greenhouse Gas Control, 53: 41~55.
参考文献
Cappa F, Rutqvist J. 2011. Impact of CO2 geological sequestration on the nucleation of earthquakes. Geophysical Research Letters, 38(17): L17313.
参考文献
Chen Jianye, Spiers C J. 2016. Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model. Journal of Geophysical Research: Solid Earth, 121(12): 8642~8665.
参考文献
Chen Jianye, Niemeijer A R, Spiers C J. 2017. Microphysically derived expressions for rate-and-state friction parameters, a, b, and Dc. Journal of Geophysical Research (Solid Earth), 122(12): 9627~9657.
参考文献
Chen Ting, Lapusta N. 2009. Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model. Journal of Geophysical Research (Solid Earth), 114(B1): B01311.
参考文献
Gaucher E, Schoenball M, Heidbach O, Zang A, Fokker P A, van Wees J D, Kohl T. 2015. Induced seismicity in geothermal reservoirs: A review of forecasting approaches. Renewable and Sustainable Energy Reviews, 52: 1473~1490.
参考文献
Hutka G A, Cacace M, Hofmann H, Zang A, Wang Lei, Ji Yinlin. 2023. Numerical investigation of the effect of fluid pressurization rate on laboratory-scale injection-induced fault slip. Scientific Reports, 13(1): 4437.
参考文献
Im K, Elsworth D, Fang Yi. 2018. The influence of preslip sealing on the permeability evolution of fractures and faults. Geophysical Research Letters, 45(1): 166~175.
参考文献
Kohli A H, Zoback M D. 2013. Frictional properties of shale reservoir rocks. Journal of Geophysical Research (Solid Earth), 118(9): 5109~5125.
参考文献
Li Zheng, Zhang Dongjie, Pan Lingying, Li Tianxiao, Gao junwei. 2021. Low-carbon transition of China's energy sector and suggestions with the ‘Carbon-Peak and Carbon-Neutrality’ target. Journal of Chinese Society of Power Engineering, 41(11): 905~909(in Chinese with English abstract).
参考文献
Li Ziyan, Elsworth D, Wang Chaoyi, Im K. 2019. A new apparatus for the concurrent measurement of friction and permeability evolution in fault gouge. International Journal of Rock Mechanics and Mining Sciences, 121: 104046.
参考文献
Luis C-F, Santillán D, Mosquera J C. 2017. Stick-slip dynamics of flow-induced seismicity on rate and state faults. Geophysical Research Letters, 44: 4098~4106.
参考文献
Luis C-F, Vila C, Santillán D, Mosquera J C. 2018. Numerical modeling of injection-induced earthquakes using laboratory-derived friction laws. Water Resources Research, 54(12): 9833~9859.
参考文献
Ma Tianran, Zhang Keni, Shen Weijun, Guo Chaobin, Xu Hao. 2021a. Discontinuous and continuous Galerkin methods for compressible single-phase and two-phase flow in fractured porous media. Advances in Water Resources, 156: 104039.
参考文献
Ma Tianran, Shen Weijun, Liu Weiqun, Xu Hao. 2021b. Discontinuous Galerkin fem method for the coupling of compressible two-phase flow and poromechanics. Chinese Journal of Theoretical and Applied Mechanics, 53(8): 2235~2245 (in Chinese with English abstract).
参考文献
Ma Tianran, Jiang Lintong, Shen Weijun, Cao Wenzhuo, Guo Chaobin, Hamidreza M N. 2023. Fully coupled hydro-mechanical modeling of two-phase flow in deformable fractured porous media with discontinuous and continuous Galerkin method. Computers and Geotechnics, 164: 105823.
参考文献
McGarr A, Barbour A J. 2017. Wastewater disposal and the earthquake sequences during 2016 near fairview, Pawnee, and cushing, Oklahoma. Geophysical Research Letters, 44(18): 9330~9336.
参考文献
Mukuhira Y, Dinske C, Asanuma H, Ito T, Häring M O. 2017. Pore pressure behavior at the shut-in phase and causality of large induced seismicity at Basel, Switzerland. Journal of Geophysical Research: Solid Earth, 122(1): 411~435.
参考文献
Mazzoldi A, Rinaldi A P, Borgia A, Rutqvist J. 2012. Induced seismicity within geological carbon sequestrationprojects: Maximum earthquake magnitude and leakage potential from undetected faults. International Journal of Greenhouse Gas Control, 10: 434~442.
参考文献
Pan Pengzhi, Wu Zhenhua, Feng Xiating, Yan Fei. 2016. Geomechanical modeling of CO2 geological storage: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(6): 936~947.
参考文献
Quan Gan, Lei Qinghua. 2020. Induced fault reactivation by thermal perturbation in enhanced geothermal systems. Geothermics, 86: 101814.
参考文献
Rahman M J, Fawad M, Mondol N H. 2024. Integrated containment risks assessment for subsurface CO2 storage: Overburden analysis and top seal integrity study, offshore Norway. International Journal of Coal Geology, 282: 104440.
参考文献
Rathnaweera T D, Wu Wei, Ji Yinlin, Gamage R P. 2020. Understanding injection-induced seismicity in enhanced geothermal systems: From the coupled thermo-hydro-mechanical-chemical process to anthropogenic earthquake prediction. Earth-Science Reviews, 205: 103182.
参考文献
Ren Shaoran, Li Dexiang, Zhang Liang, Huang Haidong. 2014. Leakage pathways and risk analysis of carbon dioxide in geological storage. ActaPetrolei Sinica, 35(3): 591~601 (in Chinese with English abstract).
参考文献
Rice J R. 1993. Spatio-temporal complexity of slip on a fault. Journal of Geophysical Research: Solid Earth, 98(B6): 9885~9907.
参考文献
Rubin A M, Ampuero J P. 2005. Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical Research: Solid Earth, 110(B11): L17313.
参考文献
Song Youngsoo, Jun Sungjun, Na Yoonsu, Kim Kyuhyun, Jang Youngho, Wang Jihoon. 2023. Geomechanical challenges during geological CO2 storage: A review. Chemical Engineering Journal, 456: 140968.
参考文献
Sun Zihan, Elsworth D, Cui Guanglei, Li Yingchun, Zhu Aiyu, Chen Tianyu. 2024. Impacts of rate of change in effective stress and inertial effects on fault slip behavior: New insights into injection-induced earthquakes. Journal of Geophysical Research: Solid Earth, 129(2): e2023JB027126.
参考文献
Van Duijn C J, Molenaar J, De Neef M J. 1995. The effect of capillary forces on immiscible two-phase flow in heterogeneous porous media. Transport in Porous Media, 21(1): 71~93.
参考文献
Wang Hong. 2022. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Science & Technology, 3: 100044.
参考文献
Wang Lei, Kwiatek G, Rybacki E, Bonnelye A, Bohnhoff M, Dresen G. 2020. Laboratory study on fluid‐induced fault slip behavior: The role of fluid pressurization rate. Geophysical Research Letters, 47(6).
参考文献
Wiseall A C, Cuss R J, Hough E, Kemp S J. 2018. The role of fault gouge properties on fault reactivation duringhydraulic stimulation: An experimental study using analogue faults. Journal of Natural Gas Science and Engineering, 59: 21~34.
参考文献
Williams-Stroud S, Bauer R, Leetaru H, Oye V, Stanek F, Greenberg S, Langet N. 2020. Analysis of microseismicity and reactivated fault size to assess the potential for felt events by CO2 injection in the Illinois Basin. The Bulletin of the Seismological Society of America, 110(5): 2188~2204.
参考文献
Yeo I W, Brown M R M, Ge S, Lee K K. 2020. Causal mechanism of injection-induced earthquakes through the Mw 5. 5 Pohang earthquake case study. Nature Communications, 11: 2614.
参考文献
Zoback M D, Gorelick S M. 2012. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 109(26): 10164~10168.
参考文献
李政, 张东杰, 潘玲颖, 李天枭, 高俊伟. 2021. “双碳” 目标下我国能源低碳转型路径及建议. 动力工程学报, 41(11): 905~909+971.
参考文献
蔡博峰, 李琦, 张贤. 2021. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2021)—中国 CCUS 路径研究. 中国 21 世纪议程管理中心: 中国科学院武汉岩土力学研究所.
参考文献
马天然, 沈伟军, 刘卫群, Xu Hao. 2021b. 可压缩两相流固耦合模型的间断Galerkin有限元方法. 力学学报, 53(8): 2235~2245.
参考文献
任韶然, 李德祥, 张亮, 黄海东. 2014. 地质封存过程中CO2泄漏途径及风险分析. 石油学报, 35(3): 591~601.
目录contents

    摘要

    地下注入二氧化碳(CO2)可能通过改变孔隙压力和地下应力而引发地震。深入了解流体注入导致的断层再活化的基本机理对于评估与地下流动过程相关的地震及流体泄漏风险具有重要意义。基于此问题,本文推导了地层和断层内CO2与水两相渗流控制方程,建立了模拟CO2注入诱发断层活化及泄漏的全过程数值模型,重点分析了不同的断层属性和CO2注入工况对断层活化及流体泄漏的影响。数值结果表明,在断层活化后,其渗透率显著提升,最大增幅可达106倍,将断层滑移区从原本的阻碍渗透的屏障状态转变为主导渗流通道。不同的初始切向渗透率对断层活化时的力学特征有显著影响,初始切向渗透率越大,断层滑移量越大。具有较强的剪切刚度的断层对注入诱发的活化表现出更强的抵抗能力。此外,CO2注入速率影响了断层活化的地震和CO2泄漏。低注入速率在相同的注入量下引起的断层滑移量更小,但伴随着更多的CO2泄漏;而高注入速率下,断层滑移量更大,但CO2泄漏量较少。

    Abstract

    Underground carbon dioxide (CO2) injection may cause earthquakes by changing pore pressure and underground stress. Understanding the fundamental mechanisms of fault reactivation caused by fluid injection is of great significance for evaluating the risks associated with earthquakes and fluid leakage related to underground flow processes. This study presents the governing equations of two-phase flow (CO2 and water) in underground formations and faults. A numerical model simulates the entire process of fault activation and leakage induced by CO2 injection, investigating the effect of different fault properties and CO2 injection scenarios on fault activation and fluid leakage. Our numerical results show that fault permeability increases significantly after activation, with a maximum increase of up to 106 times. This transformation converts the fault slip zone from an impermeable barrier to a dominant seepage channel. The initial tangential permeability of the fault has a significant impact on the mechanical characteristics of fault activation. Higher initial tangential permeability leads to greater fault slip. Faults with higher shear stiffness show stronger resistance to injection-induced activation. In addition, the CO2 injection rate affects both earthquake occurrence and CO2 leakage caused by fault activation. At the same injection rate, low injection rates result in smaller fault slip but increased CO2 leakage. Conversely, higher injection rates lead to greater fault slip but reduced CO2 leakage.

  • CO2地质封存作为碳捕集与封存(carbon capture and storage,CCS)领域中技术成熟度最高、最具有直接减排效果的技术,在减缓气候变化方面有重要作用(李政等, 2021; Wang Hong,2022)。大规模流体注入地下储层会引发相关力学问题(任韶然等,2014Pan Pengzhi et al., 2016; 蔡博峰等,2021; Song et al.,2023),其中包括断层活化并诱发地震和CO2沿裂隙或断层泄漏。以2016年瑞士Basel地热项目为例,注入深度为4600~5000 m,引发了超过20000个地震事件,最大震级达到了3.4级,导致项目过早关闭,带来了较大的经济损失和纠纷(Mukuhira et al.,2017)。类似地,美国俄克拉荷马州Pawnee镇的废水处理项在2016年引发了5.8级地震,造成人员伤害和建筑损坏(McGarr et al.,2017; Chen Xiaowei et al,2017)。韩国Pohang项目在2017年注入12800 m3流体,引起的最大震级为5.5级(Yeo et al.,2020)。这些事件凸显了人工注入诱发地震对深部能源安全开发与利用的严重制约。因此,CO2地质封存的实施需要综合考虑上述力学问题,最大程度地减少与CO2注入相关的地质风险,以确保项目的安全性和环境可持续性。

  • 地层注入流体诱发断层活化的机制,主要包括孔隙压力扩散和地层应力扰动两个方面。首先,注入的流体扩散到断层上会削弱其剪切强度,导致活化。研究表明,在断层接近临界状态时,孔隙压力的增加通过降低有效正应力而引发断层活化(Kohli et al.,2013Rathnaweera et al.,2020)。其次,高压流体注入地层改变地层应力状态,导致处于临界状态的断层活化。断层渗透率变化受到断层填充物的矿物成分、正应力大小和温度等因素的控制(Wang Lei et al.,2020; Chen Jianye et al.,2016)。在断层活化后,断层渗透率可能出现增强或者削弱(Zoback et al.,2012)。其中断层岩体成分和组成结构在渗透率变化中起到主导作用(Bakker et al.,2016; Wiseall et al.,2018)。通常情况下,速度增强的断层在滑移过程中渗透率下降,而速度减弱的断层可能会出现渗透率增大的现象(Cuss et al.,2016; Im et al.,2018; Li Ziyan et al.,2019)。流体注入改变了断层的应力分布,而断层活化时的地层变形反作用于孔隙流体,可能降低CO2封存的有效性(Mazzoldi et al.,2012)。研究断层摩擦滑动和流体泄漏过程多采用数值模拟的手段,常用的模拟器其包括COMSOL、MATLAB、TOUGH-PYLITH、和TOUGH-FLAC等(Luis et al.,2017,2018; Cappa et al.,2011; Blanco-Martín et al.,2022)。Rahman et al.(2024)通过跨学科的评估方法,分析了OASIS项目的CO2封存风险,有效地表征了应力状态与泄漏风险的关系。Williams-Stroud et al.(2020)整合了IBDP和IL-ICCS项目的主动和被动地震数据,明确识别了CO2注入基底导致诱发地震的路径,为持续注入过程中的地震减少现象提供了地质解释。Sun Zihan et al.(2024)提出了流体注入诱发地震机制的新见解,除有效应力改变带来的诱发地震事件外,有效应力的变化率及其惯性作用也可能是机制之一。

  • 高压CO2流体在注入地层后可能引起处于临界状态的断层活化,断层活化后所形成的渗漏通道又反作用于CO2的流动,研究流体注入引起的断层活化及流体运移机理对于评估与地下流动过程相关的地震及流体泄漏风险具有重要意义。地层流体流动与断层活化是高度耦合的,现有研究往往只注重于断层力学或流体运移中的一个方面,对流体如何在储层与断层介质中运移及断层活化对流体反向作用机理的研究尚不充分。

  • 针对上述问题,本文建立了CO2注入导致断层活化和流体泄漏的全过程耦合模型。关注CO2注入阶段到泄漏阶段的两种不同机制:断层活化机制和CO2-水两相运移机制,特别关注断层滑移量与切向渗透率的变化。断层滑动过程中,断层滑移量的大小影响地震事件的剧烈程度,而断层切向渗透性的改变直接关系到CO2的逃逸量。通过数值模型,研究断层渗透率、断层力学性质以及CO2注入速率等因素对诱发地震大小以及CO2泄漏量的影响。最后,结合数值模拟的结果,讨论断层活化导致CO2泄漏的潜在环境和地震威胁,并提出了相应的防控策略以降低CO2封存引发的风险。

  • 1 控制方程

  • 1.1 流固耦合控制方程

  • 在孔隙压力作用下流体-固体的耦合服从有效应力原理,固体变形控制方程如下所示:

  • σ=-ρsg
    (1)
  • σ'=σ+αpI
    (2)
  • 式中,ρs为基质干密度,α为Biot系数,σ′为Biot有效应力,I为单位矩阵。两相流体渗流方程的推导基于如下假设:① 流体的渗流过程是等温的;② 地层为被流体饱和的弹性多孔介质,其中的流体流动服从线性达西定律;③ CO2和水为不混溶流体;④ 地层和断层中CO2和水质量交换满足线性质量传递方程。地层中CO2-水两相渗流控制方程可表示为(Van et al.,1995; Ma Tianran et al.,2021a):

  • φmSwmρwmcwpnwmt+φmρwm-φmSwmρwmcwpcmSwmt-ρwmSwmαενt+-ρwmkmkrwmμwpnwm--ρwmkmkrwmμwpcmSwm=0
    (3)
  • φmSnwmρnwmcnwpnwmt-φmρnwmSnwmt-ρnwmSnwmαενt+-ρnwmkmkrnwmμnwpnwm=0
    (4)
  • 断层中两相渗流方程可表示为:

  • dfφfSwfρwfcwpnwft+dfφfρwf-φfSwfρwfcwpcfSwft+T-dfρwfkfkrwfμwpnwf-T-dfρwfkfkrwfμwpcfSwf=ρwmuwn
    (5)
  • dfφfSnwfρnwfcnwρnwft-dfφfρnwfSnwft+T-dfρnwfkfkrnwfμnwpnwf=ρnwmunwn
    (6)
  • 式中,上标mf表示地层和断层,下标wnw表示水和CO2φ为孔隙率,S为流体饱和度,ρ为流体密度,c为流体可压缩系数,p为流体压力,p为毛细压力,绝对渗透率张量k=kI,k为绝对渗透率,kr为相对渗透率,μ为流体黏度,df为断层张开度。源汇项[ρu·n]表示与断层相邻的基质单元流体法向通量的跳跃。采用间断伽辽金法对两相渗流方程进行离散,该方法具有高阶精度和局部通量守恒的特点,能够在网格界面上实现物理量的不连续性,从而更好地契合断层等不连续介质的建模需求(马天然等,2021b; Ma Tianran et al.,2023)。

  • 地层和断层选取相同的相对渗透率和毛细压力模型,表达式如下:

  • krwα=Seα1-1-Seα1/ωαωα2,Swα<11,Swα>1
    (7)
  • krnwα=1-krwα,Srnwα=01-Seα21-Seα2,Srnwα>0
    (8)
  • pcα=pnwα-pwα=peαSeα-1λα
    (9)
  • 式中,krwαkrnwα分别为水相和气相的相对渗透率;Seα为有效饱和度;pcα为毛细压力(单位:Pa);ωα为van Genuchten系数,λα为孔径分布指数。

  • 1.2 断层摩擦控制方程

  • 断层被描述为具有Mohr-Coulomb强度的摩擦接触面(Andrés et al.,2019),作用在断层面上的剪应力τ受其临界强度τf的限制,库仑摩擦定律定义了两者之间的关系:

  • τf=τc-μσ'n+ξV,σ'n<0τc,σ'n0
    (10)
  • 式中,τc是断层的内聚力强度(本文假设τc=0),μ是摩擦因子,σn为断层的有效接触压力。为了有效地限制准静态模拟过程中速度出现失稳的情况,在准动态模拟中引入的辐射阻尼项ξV(Rice et al.,1993),ξ可由下式给出:

  • ξ=G2CsCs=Gρd
    (11)
  • 式中,G是剪切模量,Cs是剪切波速。ρd是地层密度。摩擦系数的演化规律采用Dieterich-Ruina的速率-状态摩擦本构关系(RSF),其中摩擦系数f和状态变量θ在断层上根据下式更新(Rubin et al.,2005; Chen Ting et al.,2009):

  • f=f0+alnvv0+blnv0θDc
    (12)
  • dθdt=1-θvDc
    (13)
  • 式中,v是滑移速度,f0是滑移率v=v0时的稳态摩擦系数,ab是摩擦参数,Dc是特征滑移距离(单位:m),θ是状态变量。为了避免计算奇异性,设定滑动速度v不得小于v0=10-9m/s(Luis et al.,2018)。状态变量θ通常为断层上接触的平均时间。在滑移速度发生瞬时变化后,f在特征距离Dc上随时间变化(Chen Jianye et al.,2017)。

  • 1.3 断层动态渗透率演化方程

  • 断层活化时的渗透率受到多种因素影响(Gaucher et al.,2015),而渗透率变化会显著改变流体沿断层的运移趋势。在断层活动过程中,断层可能充当流体的流动管道;在活动停止后,由于矿物沉淀可能使得断层变为阻碍流体流动的屏障。因此,考虑断层在活化前后的渗透性质变化对于CO2泄漏风险分析是必要的(Cuss et al.,2016Li Ziyan et al.,2019)。本文专注于研究断层在活化后的滑移弱化和渗透率变化。在考虑断层的切向渗透率时,采用Warren-Root模型的方法,将切向渗透率与断层张开度bd和断层间距s相关联:

  • kd=bd312s
    (14)
  • 断层的张开度bd可以分成两个部分:

  • bd=bn+bs
    (15)
  • 式中,正应力影响下的张开度bn和断层发生剪切滑移后的剪涨效应导致的法向张开度bs表示为(Quan Gan et al.,2020):

  • bn=br+bmax-brexp-ωσn'-σ0
    (16)
  • bs=ustanψs
    (17)
  • 式中,bmax是无正应力下的最大张开度,br是残余张开度,ω是裂隙压缩系数,us是断层滑移量,ψs是断层剪涨角。因此,断层的渗透率和张开度公式如下:

  • kd=bn+bs312s
    (18)
  • b=bd+bini
    (19)
  • k=kd+kini
    (20)
  • 式中,b是断层总张开度,bini是断层初始张开度。k为断层渗透率,kini为断层初始渗透率。

  • 2 模型验证

  • 在本节中,通过将模型的数值结果与 Wang Lei et al.(2020)进行的注水驱动剪切试验结果进行比较。在Wang Lei et al.(2020)的试验中,采用了流体增压方案来驱动处于临界应力状态的锯切断层活化。试样为均质和各向同性的Bentheim砂岩,椭圆形断裂面与样品纵轴约成30°,如图1所示。在实验过程中,首先将围压加载至35 MPa,同时保持孔隙压力维持在5 MPa,轴向加载到峰值强度的92%。流体压力从5 MPa逐步增加到最高29 MPa,分为6个单次长10 min的循环。每循环一次压力增加4 MPa。采用2 MPa/min的增压速率。每个加压阶段结束后,在10 min周期的剩余时间内,流体压力保持不变。

  • 图1 注入驱动滑移实验示意图

  • Fig.1 Schematic diagram of injection driven slip experiment

  • 模型考虑二维的情况,将断层定义为嵌入在二维矩阵中的一维不连续界面单元。在固定底边界的情况下,通过控制顶边界的垂直位移来模拟初始预应力阶段。随后,在顶边界和底边界施加零位移边界条件,以与实际试验的边界条件相匹配。为模拟注入过程,将实验室得到的注入压力历史施加在区域的底边界上。由于Bentheim砂岩的高渗透率,流体能够迅速扩散,导致样品内的孔隙压力均匀分布。模型的参数如下表所示(Hutka et al.,2023)。

  • 表1 模型参数表

  • Table1 Model parameters table

  • 如图2所示,在流体加压过程初始阶段,观察到速度较快的滑移事件,增压阶段峰值速度约为4.7 μm/s;在持续加压阶段,滑移速度快速衰减到一个稳定水平;在保持阶段,滑移速度降低到加压前的水平,滑移事件结束;数值计算的峰值滑移速度、稳定滑移速度及滑移持续时间与流体加压试验数据吻合良好。

  • 3 数值模型和结果

  • 该模型考虑了一条长度为800 m的断层,其位于一个高1500 m、宽1500 m的二维地层中。断层与水平夹角60°,注入点距离断层直线距离为50 m,地层上边界深度为500 m。模型包括上盖层、含水层、下盖层和基岩层。上下盖层的孔隙度和渗透率极低,具有阻碍流体运移的特性;含水层被地下水饱和,孔隙度和渗透率较大;基岩层的孔隙度和渗透率相对较低,是CO2注入的主要储层。模型在上边界施加14 MPa的地层压力载荷,内部遵循地层压力梯度,其余边界被设定为限制法向位移边界。在此应力条件下,断层处于临界滑移状态,这确保了注入能够激活断层。地层的初始水饱和度被设定为0.9,初始孔隙压力遵循该深度的水压梯度。下边界采用无流动边界条件,而其余边界均被设定为压力边界条件,其中压力由水压梯度决定,饱和度始终保持为地层初始饱和度。在断层上半部分设置了均匀分布的三个具有代表性的监测点:与注入点连线垂直于断层的最大加压点(P1)、上半部分三分之一点(P2)、上半部分三分之二点(P3)。P1、P2、P3距离断层中点的距离分别为0 m、133.3 m和266.6 m。CO2注入速度为0.01 kg/s,注入时间为1000 d。模型参数如表2所示(Luis et al.,2018; Ma Tianran et al.,2023)。

  • 图2 2 MPa/min注入速率下数值解和试验解对比图

  • Fig.2 Comparison between numerical and experimental solutions at injection rates of 2 MPa/min

  • (a)—数值解和试验解滑移速度;(b)—孔隙压力曲线

  • (a) —numerical and experimental solutions of slip velocity; (b) —pore pressure curve

  • 图3 模型几何示意图

  • Fig.3 Geometric schematic diagram of the model

  • 如图4、图5所示,地层孔隙压力沿高渗透断层段向基岩与含水层扩散,在断层穿透含水层处形成高压区域。基层水和CO2沿断层渗漏到含水层中。随着CO2持续注入,CO2在井口附近聚集,并在扩散到断层后发生泄漏。断层在活化后两侧产生了较为明显的不连续位移,表现为典型的正断层滑移模式。随着断层活化的进行,断层两侧不连续位移量逐渐增加。由于断层与水平夹角为60°,断层垂直位移量明显大于水平位移量,其数值约为水平位移量的两倍。

  • 表2 模型参数表

  • Table2 Modelparameters

  • 图6显示出随着与断层最大加压点P1的距离增加,断层的滑移量逐渐减小。断层在活化前,被阻渗的断层泥填充,导致注入流体在断层活化前无法通过断层运移。一旦断层开始滑移,由于剪涨效应的影响,断层的渗透率急剧增加(Quan Gan et al.,2020),使得原本作为阻渗屏障的断层转变为流体优势的渗流通道。在P1处,断层滑移量为0.106 m,最终渗透率达至了7×10-12 m2,渗透率约增长了106倍。距离断层最大加压点越近,断层的渗透率就越大,表现出流体更容易通过高渗透的断层运移的趋势。由于断层端部的滑移量较小,其渗透率的增加也相应较小,距离两端部20 m内的断层渗透率变化可以忽略不计。

  • 在断层上,随着孔隙压力的增大,有效正应力降低,导致断层剪切强度的降低。当断层上的剪切应力大于断层剪切强度时,断层发生活化。断层活化发生在较小的时间尺度内,当滑移结束后,断层的滑移量与渗透率在活化后的注入阶段保持不变。断层活化区域由成核处向断层两侧扩展,形成速度峰值,然后逐渐恢复至稳定状态。图7、图8展示了在活化过程中相同时间间隔的渗透率变化情况。随着断层活化,断层活化区域的渗透率逐渐增大,形成渗漏通道。

  • 图4 第100、500和1000天CO2饱和度分布(a~c)与地层孔隙压力分布(d~f)

  • Fig.4 Distribution of CO2 saturation (a~c) and pore pressure (d~f) at 100th, 500th and 1000th day

  • (a)—100天时地层CO2饱和度;(b)—500天时地层CO2饱和度;(c)—1000天时地层CO2饱和度;(d)—100天时地层孔隙压力;(e)—500天时地层孔隙压力;(f)—1000天时地层孔隙压力

  • (a) —distribution of CO2 saturation at 100th; (b) —distribution of CO2 saturation at 500th; (c) —distribution of CO2 saturation at 1000th; (d) —distribution of pore pressure at 100th; (e) —distribution of pore pressure at 500th; (f) —distribution of pore pressure at 1000th

  • 图5 第100、500和1000天水平位移分布(a~c)和竖直位移分布(d)~(f)

  • Fig.5 Distribution of horizontal (a~c) and vertical displacement (d~f) at 100th, 500th and 1000th day

  • (a)—100天时地层水平位移;(b)—500天时地层水平位移;(c)—1000天时地层水平位移;(d)—100天时地层竖直位移;(e)—500天时地层竖直位移;(f)—1000天时地层垂直位移

  • (a) —distribution of horizontal displacement at 100th; (b) —distribution of horizontal displacement at 500th; (c) —distribution of horizontal displacement at 1000th; (d) —distribution of vertical displacement at 100th; (e) —distribution of vertical displacement at 500th; (f) —distribution of vertical displacement at 1000th

  • 图6 P1、P2和P3的滑移量(a)和渗透率(b)变化

  • Fig.6 Evolution of slip (a) and permeability (b) of P1, P2, and P3

  • 图7 活化过程中滑移量(a)、渗透率(b)和滑移速度(c)沿断层分布

  • Fig.7 The profile of slip (a) , permeability (b) , and slip velocity (c) on the fault during activation

  • 如图9所示,监测点P3到P1深度逐渐增大,断层监测点P1处的初始正应力与剪切应力最大,由P1到P3处依次递减。由于P1距离注入井最近,孔隙压力作用效果最强,P1处的正应力下降幅度最大,剪切强度下降幅度也最大。伴随滑移,剪切应力被释放,滑移成核点的剪切应力向断层两侧转移;滑移后,断层监测区域剪切应力水平基本一致。

  • 在断层活化前,CO2泄漏速率和泄漏量基本为0。当断层活化后,断层由阻渗屏障转变为优势渗流通道,导致CO2的逃逸。在断层抗震滑动阶段,断层渗透率缓慢升高,CO2泄漏速率和泄漏量开始增加;在断层不稳定黏滑阶段,断层渗透率急剧升高,CO2泄漏速率和泄漏量大幅升高。最终CO2最终泄漏量约为130 t,注入量为864 t,1000 d综合泄漏率约为15%。

  • 图8 断层活化过程中不同时刻的断层渗透率

  • Fig.8 Fault permeability at different time during the activation process

  • (a)—滑移开始后0 s;(b)—滑移开始后0.2 s;(c)—滑移开始后0.4 s;(d)—滑移开始后0.6 s;(e)—滑移开始后0.8 s;(f)—滑移开始后1.0 s;(g)—滑移开始后1.2 s;(h)—滑移开始后1.4 s

  • (a) —0 s after slipping; (b) —0.2 s after slipping; (c) —0.4 s after slipping; (d) —0.6 s after slipping; (e) —0.8 s after slipping; (f) —1.0 s after slipping; (g) —1.2 s after slipping; (h) —1.4 s after slipping

  • 图9 断层上P1、P2、P3的剪切应力(a)与断层剪切强度(b)随时间变化

  • Fig.9 Changes in shear stress (a) and fault shear strength (b) over time for P1, P2, and P3 on faults

  • 4 参数敏感性分析

  • 4.1 断层初始渗透率的影响

  • 断层渗透率受到多种因素的影响,包括岩性、结构、成分和应力状态(Chen Jianye et al.,20162017)。本节研究断层初始切向渗透率对流体注入响应的影响。在设计的模拟案例中,断层法向渗透率knf保持为1×10-18 m2,断层初始切向渗透率ktf_ini从1×10-17 m2至1×10-12 m2,其余参数与上一节保持不变。

  • 如图11、图12所示,当初始切向渗透率等于或小于1×10-14 m2,其对断层的孔隙压力、滑移量、剪切应力和断层剪切强度影响较小。然而,当切向渗透率增加到1×10-14 m2以上时,切向渗透率对于孔隙压力和断层滑动演化的影响变得尤为明显。模拟结果表明,在模型计算的1000 d内,滑动行为显著不同:① 初始切向渗透率的增加缓解了断层附近的孔隙压力积聚,增强了断层沿断层的流体运移,导致在相同注入时间内注入压力降低,并延迟了初始滑移的发生。② 初始滑移渗透率增加虽然使断层孔隙高压降低,但也使得孔隙压力分布更加均匀,断层剪切强度整体下降。相对于低渗透率情况下的断层局部剪切强度下降,高渗透率使得断层整体抵抗力下降,一旦发生活化,其滑移量和滑移速度较大。

  • 图10 CO2泄漏量与泄漏速率演化结果

  • Fig.10 Evolution of CO2 leakage and leakage late

  • 当滑移发生时,孔隙空间在断层运动方向被挤压,而在相反方向的增大。孔隙空间压缩处会导致孔隙高压,抵抗断层的滑动。根据监测点P2处的孔压变化,可以观察到当初始切向渗透率较小时,断层中的流体难以通过断层运移。在滑移发生时,低渗透区域可视为不排水区域,孔隙压力变化较大;而高渗透区域可视为排水区域,孔隙压力变化较小。当初始渗透率小于1×10-14 m2时,其变化趋势基本一致。如图13所示,对于CO2泄漏量而言,由于初始断层渗透率较小,泄漏量在很小范围内波动。而渗透率大于1×10-14 m2时,随着初始渗透率的增加,CO2泄漏量呈现出逐渐增加的趋势,特别是在1×10-13~1×10-12 m2范围内,观察到泄漏量有突变增加的现象,这是由于断层初始渗透率接近剪胀后渗透率,CO2一直处于泄漏状态。

  • 图11 不同初始切向渗透率下P2的摩擦系数(a)和滑移量(b)演化

  • Fig.11 Evolution of friction coefficient (a) and slip displacement (b) of P2 with different initial tangential permeability

  • 图12 断层P2点处渗透率(a)和最终渗透率与孔隙压力(b)随时间变化

  • Fig.12 Evolution of permeability (a) , final permeability and pore pressure (b) at P2 of fault

  • 图13 不同初始渗透率下CO2泄漏量和泄漏率

  • Fig.13 The amount and rate of CO2 leakage with different initial permeability

  • 4.2 断层剪切刚度的影响

  • 对于断层活化的描述通常基于零厚度摩擦平面的假设。然而,自然界的断层往往具有复杂的结构,其核心被填充物填充,断层破碎带厚度可达数百米。本节中不仅考虑断层的摩擦特性,还关注断层的切向力学特性。通过赋予断层与周围基岩不同的材料属性,分析不同的断层填充物剪切刚度对于断层滑移的影响。断层剪切刚度被设置为5组:0.01 MPa/m、0.1 MPa/m、1 MPa/m、10 MPa/m和100 MPa/m,其余参数保持不变。

  • 如图14所示,考虑了断层剪切刚度后,相较于传统的摩擦面模型,断层的滑移和扩展会受到一定的阻碍。当断层剪切刚度达到100 MPa/m后,即使在高孔隙压力刺激下,断层也趋向于稳定状态,不发生滑动。当断层剪切刚度小于100 MPa/m时,断层上滑移趋势增强,断层活化时间提前,滑移量、渗透率依次增加。当断层剪切刚度小于1 MPa/m,断层剪切刚度对于断层滑动特性、渗透率变化的影响减弱,对于断层剪切应力变化量的影响远小于初始剪切应力水平,其影响可以忽略不计。

  • 如图15所示,监测点P2处的剪切应力和断层剪切强度的改变表明:① 高剪切刚度增加了断层对活化的抵抗力,即使某些区域的剪切应力大于剪切强度,由于其他剪切应力小于断层剪切强度区域的抵抗效应,断层成核的时间与成核区大小相应增加;② 除了断层剪切刚度在100 MPa/m左右时未发生活化,其残余剪切强度和剪切应力最大。其余各组随着断层剪切刚度的降低,断层残余剪切强度和剪切应力随之升高,当断层剪切刚度小于1 MPa/m后,残余剪切强度和剪切应力基本保持不变;③ 断层剪切强度主要与断层正应力和断层摩擦系数相关,当断层滑移结束后,在短时间内断层摩擦系数恢复到初始摩擦系数,断层剪切强度主要和断层孔压相关。断层剪切刚度越小,断层滑移量越大,断层渗透率相应增加,高压影响区的高孔隙压力通过高渗透断层扩散,P2处的孔隙压力降低,断层剪切强度增加;④ 断层剪切应力主要受到断层剪切刚度的影响,高刚度断层使得滑移的剪切应力释放更大,断层剪切刚度越高,断层的残余剪切应力越小。

  • 图14 断层活化时摩擦系数(a)、渗透率(b)和滑移量(c)演化

  • Fig.14 Evolution of friction coefficient (a) , permeability (b) and slip displacement (c) during fault activation

  • 图15 监测点P2处断层剪切应力和断层剪切强度演化

  • Fig.15 Evolution of fault shear stress and shear strength at P2

  • 如图16所示,断层剪切刚度与CO2泄漏量呈反比关系。当剪切刚度为0.01 MPa/m时,泄漏量最大为130 t;当剪切刚度为100 MPa/m时泄漏量最小为71 t。断层剪切刚度大于1 MPa/m后,断层剪切刚度对CO2泄漏量的影响显著上升。由于断层剪切刚度越高,断层的滑移量越小,断层的渗透率变化就越小,高剪切刚度的断层则无法形成渗漏通道,CO2沿断层泄漏的可能性较低。

  • 4.3 CO2注入速率的影响

  • 本节研究不同CO2注入速率对于断层滑移特征、沿断层孔压分布及CO2泄漏量的影响。在基础案例中,CO2注入速率设为0.01 kg/s,注入时间为1000 d。本节中设置了两组不同的CO2注入速率:0.02 kg/s和0.005 kg/s,保持其余参数不变。为了比较不同注入速率下的CO2泄漏量,固定CO2注入总量为864 t。因此,注入速率为0.02 kg/s组在500 d内注入;0.01 kg/s组在1000 d注入;而0.005 kg/s组在2000 d内注入。

  • 图16 不同剪切刚度下CO2泄漏量随时间变化

  • Fig.16 Evolution of CO2 leakage with different initial permeability

  • 如图17所示,不同注入速率导致不同的滑移次数和行为。在0.005 kg/s组中,只产生了一次滑移,且在不稳定滑移发生之前有近250 d的抗震滑移阶段,不稳定滑移发生的时间在500 d左右。在0.02 kg/s组中,发生了两次滑移,第一次滑移由距离注入井最近的高压区附近成核,影响范围包括监测点P2;第二次滑移为局部滑移,速度峰经过P2点的时间较为短暂,P2处的时间相关的摩擦系数没有明显的变化,P2位于第二次滑移成核影响区的边缘。相比于0.005 kg/s组,0.02 kg/s组在P2处的滑移量增加了约0.02 m。

  • 注入速率0.005 kg/s组发生了一次滑移,其残余剪切强度略高于0.02 kg/s组。然而,由于低注入速率导致的低孔隙压力,0.005 kg/s组的残余剪切强度比0.02 kg/s组高了约1 MPa,提升幅度约20%。两组不同注入速率下的剪切强度和剪切应力演化趋势不同,0.005 kg/s组剪切应力与剪切强度曲线基本平行,可预计不同在很长的一段时间内不会发生活化;而0.02 kg/s组剪切应力基本不变,剪切强度有缓慢降低的趋势,相较于0.005 kg/s组,该断层稳定性较差。

  • 如图19、图20所示,0.005 kg/s组有一次滑移,且在滑移前存在稳定抗震滑移阶段,孔隙高压沿断层活化区扩散,导致P2处的孔隙压力逐渐升高。对于0.02 kg/s组,第一次活化后,断层高压区P2处的断层渗透率增高,P2处的孔隙压力也随之增加;第二次活化后,断层P2处至含水层段渗透率的提高,由于含水层压力较低且渗透性较好,不易形成孔隙压力的积聚,因此断层孔压在短时间内呈现下降趋势。随着持续注入,孔压缓慢增长。高CO2注入速率在更短的时间内引发更多地震事件,且断层滑移量更大、断层孔隙压力更高。

  • 图17 不同注入率下P2的摩擦系数(a、b)和滑移量(c、d)演化

  • Fig.17 Evolution of friction coefficient (a, b) and slip (c, d) at P2 with different injection rates

  • 图18 不同注入率下P2的剪切应力和断层剪切强度演化

  • Fig.18 Evolution of shear stress and fault shear strength at P2 with injection rates

  • (a)—注入速率为0.005 kg/s;(b)—注入速率为0.02 kg/s

  • (a) —0.005 kg/s injection rate; (b) —0.02 kg/s injection rate

  • 在断层活化前,CO2在储层内基本不发生泄漏;然而,一旦断层活化发生,CO2将沿着活化后的断层渗漏通道泄漏。在相同的注入总量条件下,尽管较低的CO2注入速率导致泄漏速率较低,但总体泄漏量更大。具体而言,0.005 kg/s组总泄漏量为150 t,0.02 kg/s组总泄漏量为125 t,低CO2注入速率泄漏量相对增加了约20%。

  • 图19 不同注入速率下的孔隙压力分布

  • Fig.19 Distribution of pore pressure with different injection rates

  • (a)—注入速率为0.02 kg/s;(b)—注入速率为0.005 kg/s

  • (a) —0.02 kg/s injection rate; (b) —0.005 kg/s injection rate

  • 图20 不同注入率下P2的孔压演化

  • Fig.20 Evolution of pore pressure at P2 with different injection rates

  • 图21 不同注入率下含水层CO2泄漏量

  • Fig.21 CO2 leakage from aquifers with different injection rates

  • 5 结论

  • 本研究建立了两相流和地层变形耦合的数值模型,使用状态速率方程表征断层的滑移不稳定性,分析了不同断层初始渗透率、断层剪切刚度和CO2注入速率下的断层活化特征和CO2泄漏量,得到以下主要结论:

  • (1)断层在注入开始前具有较小的渗透率,流体无法通过断层运移。随着断层活化,由于剪涨效应,断层渗透率急剧增加,使其从阻渗屏障转变为优势渗流通道。在1000 d内,CO2泄漏量为总量的15%,然而,在达到稳定泄漏速度后,1000 d后的泄漏速率增加,增加了CO2沿活化后的断层泄漏的风险。

  • (2)初始切向渗透率的不同会显著影响断层的活化特征。初始切向渗透率越大,断层滑移量越大。当切向渗透率大于1×10-14 m2时,断层滑移量显著增大。切向渗透率小于1×10-13 m2时,对于CO2泄漏量影响基本不变。渗透率大于等于1×10-13 m2时,初始切向渗透率越大,断层泄漏量越大。

  • (3)断层剪切刚度越大,断层的活化阻力越大,滑移量和渗透率改变量越小。剪切刚度大于1 MPa/m时,断层的滑移量、渗透率变化及CO2泄漏量明显减小。高剪切刚度的断层具有更强的抵抗活化的能力,地震和泄漏风险相对较低。

  • (4)不同的注入速率对于断层活化、地震风险和CO2泄漏风险的影响不同。低CO2注入速率导致较小的滑移量,断层在一次活化后难以再次发生活化事件,降低了地震风险。然而,低注入速率下CO2泄漏量较大,相对于高注入速率提高了约20%。在选择CO2注入速率时,应综合考虑地震风险和泄漏风险,以确保CO2注入和封存效率。

  • 本文研究了CO2地质封存过程中诱发断层活化和CO2沿断层泄漏的完整过程与相关机理,提出了控制断层活化程度和减小气体泄漏量的关键因素,为注入诱发的地震灾害预测及CO2有效封存提供了理论支持。

  • 参考文献

    • Andrés S, Santillán D, Mosquera, J C, Cueto-Felgueroso L. 2019. Delayed weakening and reactivation of rate-and-state faults driven by pressure changes due to fluid injection. Journal of Geophysical Research (Solid Earth), 124(11): 11917~11937.

    • Bakker E, Hangx S J T, Niemeijer A R, Spiers C J. 2016. Frictional behaviour and transport properties of simulated fault gouges derived from a natural CO2 reservoir. International Journal of Greenhouse Gas Control, 54: 70~83.

    • Blanco-Martín L, Jahangir E, Rinaldi A P, Rutqvist J. 2022. Evaluation of possible reactivation of undetected faults during CO2 injection. International Journal of Greenhouse Gas Control, 121: 103794.

    • Cai Bofeng, Li Qi, Zhang Xian. 2021. Annual Report on Carbon Dioxide Capture, Utilization and Storage (CCUS) in China (2021)—A study on China's CCUS pathway. China Agenda 21 Management Center: Wuhan Institute of Rock and Soil Mechanics. Chinese Academy of Sciences (in Chinese with English abstract).

    • Chen Xiaowei, Nakata N. 2017. Preface to the focus section on the 3 September 2016 Pawnee, Oklahoma, earthquake. Seismological Research Letters, 88(4): 953~955.

    • Cuss R J, Harrington J F. 2016. An experimental study of the potential for fault reactivation during changes in gas and pore-water pressure. International Journal of Greenhouse Gas Control, 53: 41~55.

    • Cappa F, Rutqvist J. 2011. Impact of CO2 geological sequestration on the nucleation of earthquakes. Geophysical Research Letters, 38(17): L17313.

    • Chen Jianye, Spiers C J. 2016. Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model. Journal of Geophysical Research: Solid Earth, 121(12): 8642~8665.

    • Chen Jianye, Niemeijer A R, Spiers C J. 2017. Microphysically derived expressions for rate-and-state friction parameters, a, b, and Dc. Journal of Geophysical Research (Solid Earth), 122(12): 9627~9657.

    • Chen Ting, Lapusta N. 2009. Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model. Journal of Geophysical Research (Solid Earth), 114(B1): B01311.

    • Gaucher E, Schoenball M, Heidbach O, Zang A, Fokker P A, van Wees J D, Kohl T. 2015. Induced seismicity in geothermal reservoirs: A review of forecasting approaches. Renewable and Sustainable Energy Reviews, 52: 1473~1490.

    • Hutka G A, Cacace M, Hofmann H, Zang A, Wang Lei, Ji Yinlin. 2023. Numerical investigation of the effect of fluid pressurization rate on laboratory-scale injection-induced fault slip. Scientific Reports, 13(1): 4437.

    • Im K, Elsworth D, Fang Yi. 2018. The influence of preslip sealing on the permeability evolution of fractures and faults. Geophysical Research Letters, 45(1): 166~175.

    • Kohli A H, Zoback M D. 2013. Frictional properties of shale reservoir rocks. Journal of Geophysical Research (Solid Earth), 118(9): 5109~5125.

    • Li Zheng, Zhang Dongjie, Pan Lingying, Li Tianxiao, Gao junwei. 2021. Low-carbon transition of China's energy sector and suggestions with the ‘Carbon-Peak and Carbon-Neutrality’ target. Journal of Chinese Society of Power Engineering, 41(11): 905~909(in Chinese with English abstract).

    • Li Ziyan, Elsworth D, Wang Chaoyi, Im K. 2019. A new apparatus for the concurrent measurement of friction and permeability evolution in fault gouge. International Journal of Rock Mechanics and Mining Sciences, 121: 104046.

    • Luis C-F, Santillán D, Mosquera J C. 2017. Stick-slip dynamics of flow-induced seismicity on rate and state faults. Geophysical Research Letters, 44: 4098~4106.

    • Luis C-F, Vila C, Santillán D, Mosquera J C. 2018. Numerical modeling of injection-induced earthquakes using laboratory-derived friction laws. Water Resources Research, 54(12): 9833~9859.

    • Ma Tianran, Zhang Keni, Shen Weijun, Guo Chaobin, Xu Hao. 2021a. Discontinuous and continuous Galerkin methods for compressible single-phase and two-phase flow in fractured porous media. Advances in Water Resources, 156: 104039.

    • Ma Tianran, Shen Weijun, Liu Weiqun, Xu Hao. 2021b. Discontinuous Galerkin fem method for the coupling of compressible two-phase flow and poromechanics. Chinese Journal of Theoretical and Applied Mechanics, 53(8): 2235~2245 (in Chinese with English abstract).

    • Ma Tianran, Jiang Lintong, Shen Weijun, Cao Wenzhuo, Guo Chaobin, Hamidreza M N. 2023. Fully coupled hydro-mechanical modeling of two-phase flow in deformable fractured porous media with discontinuous and continuous Galerkin method. Computers and Geotechnics, 164: 105823.

    • McGarr A, Barbour A J. 2017. Wastewater disposal and the earthquake sequences during 2016 near fairview, Pawnee, and cushing, Oklahoma. Geophysical Research Letters, 44(18): 9330~9336.

    • Mukuhira Y, Dinske C, Asanuma H, Ito T, Häring M O. 2017. Pore pressure behavior at the shut-in phase and causality of large induced seismicity at Basel, Switzerland. Journal of Geophysical Research: Solid Earth, 122(1): 411~435.

    • Mazzoldi A, Rinaldi A P, Borgia A, Rutqvist J. 2012. Induced seismicity within geological carbon sequestrationprojects: Maximum earthquake magnitude and leakage potential from undetected faults. International Journal of Greenhouse Gas Control, 10: 434~442.

    • Pan Pengzhi, Wu Zhenhua, Feng Xiating, Yan Fei. 2016. Geomechanical modeling of CO2 geological storage: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(6): 936~947.

    • Quan Gan, Lei Qinghua. 2020. Induced fault reactivation by thermal perturbation in enhanced geothermal systems. Geothermics, 86: 101814.

    • Rahman M J, Fawad M, Mondol N H. 2024. Integrated containment risks assessment for subsurface CO2 storage: Overburden analysis and top seal integrity study, offshore Norway. International Journal of Coal Geology, 282: 104440.

    • Rathnaweera T D, Wu Wei, Ji Yinlin, Gamage R P. 2020. Understanding injection-induced seismicity in enhanced geothermal systems: From the coupled thermo-hydro-mechanical-chemical process to anthropogenic earthquake prediction. Earth-Science Reviews, 205: 103182.

    • Ren Shaoran, Li Dexiang, Zhang Liang, Huang Haidong. 2014. Leakage pathways and risk analysis of carbon dioxide in geological storage. ActaPetrolei Sinica, 35(3): 591~601 (in Chinese with English abstract).

    • Rice J R. 1993. Spatio-temporal complexity of slip on a fault. Journal of Geophysical Research: Solid Earth, 98(B6): 9885~9907.

    • Rubin A M, Ampuero J P. 2005. Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical Research: Solid Earth, 110(B11): L17313.

    • Song Youngsoo, Jun Sungjun, Na Yoonsu, Kim Kyuhyun, Jang Youngho, Wang Jihoon. 2023. Geomechanical challenges during geological CO2 storage: A review. Chemical Engineering Journal, 456: 140968.

    • Sun Zihan, Elsworth D, Cui Guanglei, Li Yingchun, Zhu Aiyu, Chen Tianyu. 2024. Impacts of rate of change in effective stress and inertial effects on fault slip behavior: New insights into injection-induced earthquakes. Journal of Geophysical Research: Solid Earth, 129(2): e2023JB027126.

    • Van Duijn C J, Molenaar J, De Neef M J. 1995. The effect of capillary forces on immiscible two-phase flow in heterogeneous porous media. Transport in Porous Media, 21(1): 71~93.

    • Wang Hong. 2022. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Science & Technology, 3: 100044.

    • Wang Lei, Kwiatek G, Rybacki E, Bonnelye A, Bohnhoff M, Dresen G. 2020. Laboratory study on fluid‐induced fault slip behavior: The role of fluid pressurization rate. Geophysical Research Letters, 47(6).

    • Wiseall A C, Cuss R J, Hough E, Kemp S J. 2018. The role of fault gouge properties on fault reactivation duringhydraulic stimulation: An experimental study using analogue faults. Journal of Natural Gas Science and Engineering, 59: 21~34.

    • Williams-Stroud S, Bauer R, Leetaru H, Oye V, Stanek F, Greenberg S, Langet N. 2020. Analysis of microseismicity and reactivated fault size to assess the potential for felt events by CO2 injection in the Illinois Basin. The Bulletin of the Seismological Society of America, 110(5): 2188~2204.

    • Yeo I W, Brown M R M, Ge S, Lee K K. 2020. Causal mechanism of injection-induced earthquakes through the Mw 5. 5 Pohang earthquake case study. Nature Communications, 11: 2614.

    • Zoback M D, Gorelick S M. 2012. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 109(26): 10164~10168.

    • 李政, 张东杰, 潘玲颖, 李天枭, 高俊伟. 2021. “双碳” 目标下我国能源低碳转型路径及建议. 动力工程学报, 41(11): 905~909+971.

    • 蔡博峰, 李琦, 张贤. 2021. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2021)—中国 CCUS 路径研究. 中国 21 世纪议程管理中心: 中国科学院武汉岩土力学研究所.

    • 马天然, 沈伟军, 刘卫群, Xu Hao. 2021b. 可压缩两相流固耦合模型的间断Galerkin有限元方法. 力学学报, 53(8): 2235~2245.

    • 任韶然, 李德祥, 张亮, 黄海东. 2014. 地质封存过程中CO2泄漏途径及风险分析. 石油学报, 35(3): 591~601.

  • 参考文献

    • Andrés S, Santillán D, Mosquera, J C, Cueto-Felgueroso L. 2019. Delayed weakening and reactivation of rate-and-state faults driven by pressure changes due to fluid injection. Journal of Geophysical Research (Solid Earth), 124(11): 11917~11937.

    • Bakker E, Hangx S J T, Niemeijer A R, Spiers C J. 2016. Frictional behaviour and transport properties of simulated fault gouges derived from a natural CO2 reservoir. International Journal of Greenhouse Gas Control, 54: 70~83.

    • Blanco-Martín L, Jahangir E, Rinaldi A P, Rutqvist J. 2022. Evaluation of possible reactivation of undetected faults during CO2 injection. International Journal of Greenhouse Gas Control, 121: 103794.

    • Cai Bofeng, Li Qi, Zhang Xian. 2021. Annual Report on Carbon Dioxide Capture, Utilization and Storage (CCUS) in China (2021)—A study on China's CCUS pathway. China Agenda 21 Management Center: Wuhan Institute of Rock and Soil Mechanics. Chinese Academy of Sciences (in Chinese with English abstract).

    • Chen Xiaowei, Nakata N. 2017. Preface to the focus section on the 3 September 2016 Pawnee, Oklahoma, earthquake. Seismological Research Letters, 88(4): 953~955.

    • Cuss R J, Harrington J F. 2016. An experimental study of the potential for fault reactivation during changes in gas and pore-water pressure. International Journal of Greenhouse Gas Control, 53: 41~55.

    • Cappa F, Rutqvist J. 2011. Impact of CO2 geological sequestration on the nucleation of earthquakes. Geophysical Research Letters, 38(17): L17313.

    • Chen Jianye, Spiers C J. 2016. Rate and state frictional and healing behavior of carbonate fault gouge explained using microphysical model. Journal of Geophysical Research: Solid Earth, 121(12): 8642~8665.

    • Chen Jianye, Niemeijer A R, Spiers C J. 2017. Microphysically derived expressions for rate-and-state friction parameters, a, b, and Dc. Journal of Geophysical Research (Solid Earth), 122(12): 9627~9657.

    • Chen Ting, Lapusta N. 2009. Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model. Journal of Geophysical Research (Solid Earth), 114(B1): B01311.

    • Gaucher E, Schoenball M, Heidbach O, Zang A, Fokker P A, van Wees J D, Kohl T. 2015. Induced seismicity in geothermal reservoirs: A review of forecasting approaches. Renewable and Sustainable Energy Reviews, 52: 1473~1490.

    • Hutka G A, Cacace M, Hofmann H, Zang A, Wang Lei, Ji Yinlin. 2023. Numerical investigation of the effect of fluid pressurization rate on laboratory-scale injection-induced fault slip. Scientific Reports, 13(1): 4437.

    • Im K, Elsworth D, Fang Yi. 2018. The influence of preslip sealing on the permeability evolution of fractures and faults. Geophysical Research Letters, 45(1): 166~175.

    • Kohli A H, Zoback M D. 2013. Frictional properties of shale reservoir rocks. Journal of Geophysical Research (Solid Earth), 118(9): 5109~5125.

    • Li Zheng, Zhang Dongjie, Pan Lingying, Li Tianxiao, Gao junwei. 2021. Low-carbon transition of China's energy sector and suggestions with the ‘Carbon-Peak and Carbon-Neutrality’ target. Journal of Chinese Society of Power Engineering, 41(11): 905~909(in Chinese with English abstract).

    • Li Ziyan, Elsworth D, Wang Chaoyi, Im K. 2019. A new apparatus for the concurrent measurement of friction and permeability evolution in fault gouge. International Journal of Rock Mechanics and Mining Sciences, 121: 104046.

    • Luis C-F, Santillán D, Mosquera J C. 2017. Stick-slip dynamics of flow-induced seismicity on rate and state faults. Geophysical Research Letters, 44: 4098~4106.

    • Luis C-F, Vila C, Santillán D, Mosquera J C. 2018. Numerical modeling of injection-induced earthquakes using laboratory-derived friction laws. Water Resources Research, 54(12): 9833~9859.

    • Ma Tianran, Zhang Keni, Shen Weijun, Guo Chaobin, Xu Hao. 2021a. Discontinuous and continuous Galerkin methods for compressible single-phase and two-phase flow in fractured porous media. Advances in Water Resources, 156: 104039.

    • Ma Tianran, Shen Weijun, Liu Weiqun, Xu Hao. 2021b. Discontinuous Galerkin fem method for the coupling of compressible two-phase flow and poromechanics. Chinese Journal of Theoretical and Applied Mechanics, 53(8): 2235~2245 (in Chinese with English abstract).

    • Ma Tianran, Jiang Lintong, Shen Weijun, Cao Wenzhuo, Guo Chaobin, Hamidreza M N. 2023. Fully coupled hydro-mechanical modeling of two-phase flow in deformable fractured porous media with discontinuous and continuous Galerkin method. Computers and Geotechnics, 164: 105823.

    • McGarr A, Barbour A J. 2017. Wastewater disposal and the earthquake sequences during 2016 near fairview, Pawnee, and cushing, Oklahoma. Geophysical Research Letters, 44(18): 9330~9336.

    • Mukuhira Y, Dinske C, Asanuma H, Ito T, Häring M O. 2017. Pore pressure behavior at the shut-in phase and causality of large induced seismicity at Basel, Switzerland. Journal of Geophysical Research: Solid Earth, 122(1): 411~435.

    • Mazzoldi A, Rinaldi A P, Borgia A, Rutqvist J. 2012. Induced seismicity within geological carbon sequestrationprojects: Maximum earthquake magnitude and leakage potential from undetected faults. International Journal of Greenhouse Gas Control, 10: 434~442.

    • Pan Pengzhi, Wu Zhenhua, Feng Xiating, Yan Fei. 2016. Geomechanical modeling of CO2 geological storage: A review. Journal of Rock Mechanics and Geotechnical Engineering, 8(6): 936~947.

    • Quan Gan, Lei Qinghua. 2020. Induced fault reactivation by thermal perturbation in enhanced geothermal systems. Geothermics, 86: 101814.

    • Rahman M J, Fawad M, Mondol N H. 2024. Integrated containment risks assessment for subsurface CO2 storage: Overburden analysis and top seal integrity study, offshore Norway. International Journal of Coal Geology, 282: 104440.

    • Rathnaweera T D, Wu Wei, Ji Yinlin, Gamage R P. 2020. Understanding injection-induced seismicity in enhanced geothermal systems: From the coupled thermo-hydro-mechanical-chemical process to anthropogenic earthquake prediction. Earth-Science Reviews, 205: 103182.

    • Ren Shaoran, Li Dexiang, Zhang Liang, Huang Haidong. 2014. Leakage pathways and risk analysis of carbon dioxide in geological storage. ActaPetrolei Sinica, 35(3): 591~601 (in Chinese with English abstract).

    • Rice J R. 1993. Spatio-temporal complexity of slip on a fault. Journal of Geophysical Research: Solid Earth, 98(B6): 9885~9907.

    • Rubin A M, Ampuero J P. 2005. Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical Research: Solid Earth, 110(B11): L17313.

    • Song Youngsoo, Jun Sungjun, Na Yoonsu, Kim Kyuhyun, Jang Youngho, Wang Jihoon. 2023. Geomechanical challenges during geological CO2 storage: A review. Chemical Engineering Journal, 456: 140968.

    • Sun Zihan, Elsworth D, Cui Guanglei, Li Yingchun, Zhu Aiyu, Chen Tianyu. 2024. Impacts of rate of change in effective stress and inertial effects on fault slip behavior: New insights into injection-induced earthquakes. Journal of Geophysical Research: Solid Earth, 129(2): e2023JB027126.

    • Van Duijn C J, Molenaar J, De Neef M J. 1995. The effect of capillary forces on immiscible two-phase flow in heterogeneous porous media. Transport in Porous Media, 21(1): 71~93.

    • Wang Hong. 2022. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Science & Technology, 3: 100044.

    • Wang Lei, Kwiatek G, Rybacki E, Bonnelye A, Bohnhoff M, Dresen G. 2020. Laboratory study on fluid‐induced fault slip behavior: The role of fluid pressurization rate. Geophysical Research Letters, 47(6).

    • Wiseall A C, Cuss R J, Hough E, Kemp S J. 2018. The role of fault gouge properties on fault reactivation duringhydraulic stimulation: An experimental study using analogue faults. Journal of Natural Gas Science and Engineering, 59: 21~34.

    • Williams-Stroud S, Bauer R, Leetaru H, Oye V, Stanek F, Greenberg S, Langet N. 2020. Analysis of microseismicity and reactivated fault size to assess the potential for felt events by CO2 injection in the Illinois Basin. The Bulletin of the Seismological Society of America, 110(5): 2188~2204.

    • Yeo I W, Brown M R M, Ge S, Lee K K. 2020. Causal mechanism of injection-induced earthquakes through the Mw 5. 5 Pohang earthquake case study. Nature Communications, 11: 2614.

    • Zoback M D, Gorelick S M. 2012. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 109(26): 10164~10168.

    • 李政, 张东杰, 潘玲颖, 李天枭, 高俊伟. 2021. “双碳” 目标下我国能源低碳转型路径及建议. 动力工程学报, 41(11): 905~909+971.

    • 蔡博峰, 李琦, 张贤. 2021. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2021)—中国 CCUS 路径研究. 中国 21 世纪议程管理中心: 中国科学院武汉岩土力学研究所.

    • 马天然, 沈伟军, 刘卫群, Xu Hao. 2021b. 可压缩两相流固耦合模型的间断Galerkin有限元方法. 力学学报, 53(8): 2235~2245.

    • 任韶然, 李德祥, 张亮, 黄海东. 2014. 地质封存过程中CO2泄漏途径及风险分析. 石油学报, 35(3): 591~601.