-
稀土是重要的关键金属资源,对保障国家经济健康发展和国防安全有重要战略意义。近年来,在我国西南地区上二叠统宣威组/龙潭组含煤岩系底部凝灰岩中发现的关键金属Nb-Zr-REY-Ga高度富集(REY:rare earth elements+Y,稀土元素和钇),引起了学者们的广泛关注(Dai Shifeng et al.,2010,2018a; Li Baoqing et al.,2020; 李宝庆等,2022;沈玉林等,2022; Wang Ning et al.,2022a,2022b,2024; Deng Wei et al.,2024; Shen Minglian et al.,2024; Yang Tianyang et al.,2024)。这些矿层中关键金属的含量通常与传统矿床的金属含量相当甚至更高,有很高的提取利用潜力(Dai Shifeng et al.,2016a,2018b)。
-
一些学者对富集Nb-Zr-REY-Ga的凝灰岩进行了较为深入的矿物学和地球化学研究(Dai Shifeng et al.,2010,2018a; Zhao Lei et al.,2017; Li Baoqing et al.,2020; Wang Ning et al.,2022a,2022b),取得了一些共识,如Nb-Zr-REY-Ga矿层是碱性火山碎屑降落后,经受风化、酸雨、海水入侵、热液蚀变等系列复杂的地质作用后形成的(Dai Shifeng et al.,2018a)。除碱性火山灰外,四川、重庆等地晚二叠世含煤岩系基底基性蚀变凝灰岩中也高度富集稀土元素(田和明等,2014;Zou Jianhua et al.,2016; Zhao Lei et al.,2017)。凝灰岩的蚀变过程与风化作用、埋藏成岩、热液作用等密切有关(Greenberger et al.,2015; Ottens et al.,2019)。李宝庆等(2022)认为低温热液作用对于我国西南地区含煤岩系中稀土元素的富集成矿有重要贡献。热液蚀变取决于温度、原岩类型、流体的化学性质和蚀变深度(Alt et al.,1986)。蚀变凝灰岩中次生矿物组成与组合、矿物赋存状态、地球化学特征可以提供流体来源、迁移机理、关键金属富集成矿机制等重要信息(Ottens et al.,2019; Piilonen et al.,2022)。然而,对西南地区凝灰岩中蚀变矿物组成以及矿物的共伴生关系的研究鲜见报道。本文从次生矿物的成因、共生组合关系及其控制因素入手,阐明了西南地区煤系凝灰岩中稀土元素等关键金属的富集过程。
-
水城-紫云断裂、师宗-贵阳断裂和南盘江断裂等对黔西地区煤系形成与分布、地球化学和矿物学组成具有重要影响,深大断裂为深源物质向上运移提供了有利的运输通道,该区是世界著名的大范围低温热液作用区(胡瑞忠等,2024),是研究低温热液作用下煤系稀土元素富集机理的良好对象。因此,我们采集了黔西晚二叠世含煤岩系基底的基性凝灰岩,对其地球化学和矿物学特征进行了研究,分析了次生矿物的共生组合及其控制因素,揭示了稀土元素的富集机制,该研究可为该区煤系稀土资源的勘探开发提供科学依据,亦可为在其他类似地质条件地区寻找煤系稀土资源提供借鉴和参考。
-
1 地质背景和样品采集
-
峨眉山大火成岩省(ELIP)分布在中国西南部和越南北部,构造边界包括西北部的龙门山断裂和西南部的哀牢山-红河断裂(图1),覆盖在约30万 km2的菱形区域内。玄武岩的体积超过30万 km3(Shellnutt et al.,2020),厚度由西向东减薄,西面最厚处约5 km(He Bin et al.,2007)。ELIP以溢流玄武岩为主,伴有火山碎屑岩、少量长英质侵入岩和层状镁铁质—超镁铁质侵入岩(Shellnutt et al.,2020),粗面岩和流纹岩主要出现在ELIP的最顶部(Shellnutt and Jahn,2010; Xu Yigang et al.,2010; Huang Hu et al.,2022)。云南东部和贵州西部的玄武岩组不整合覆盖在中二叠统茅口组海相灰岩上。根据下伏茅口灰岩的侵蚀程度,从东到西将ELIP划分为内带、中带和外带(图1; He Bin et al.,2003)。
-
根据Xu Yigang et al.,(2004)的分类方法,溢流玄武岩通常分为高钛玄武岩和低钛玄武岩。高钛玄武岩在整个ELIP中都有分布,而低钛玄武岩则局限于ELIP内带的下部(Xu Yigang et al.,2004,2010)。ELIP的中下部大量分布的火山碎屑和枕状熔岩表明,ELIP早期的火山活动主要发生在海洋环境中(Wignall et al.,2009),而晚期的火山活动主要发生在陆地(Zhu Jiang et al.,2018)。碱性和长英质熔岩主要喷发期在259~257 Ma,略晚于瓜达鲁普末期的生物大灭绝事件(Zhong Yuting et al.,2020),而大量高钛玄武岩的年龄约为260 Ma,略早于或与瓜达鲁普末期的生物大灭绝同期(Li Youjuan et al.,2017)。
-
本次研究的样品采集自黔西盘州市火铺煤田的勘探钻孔201614孔。在201614孔中,晚二叠世含煤岩系基底玄武岩组中凝灰岩层厚为2 m,根据样品宏观特征的差异,共采集8个凝灰岩样品,每个样品的厚度为20 cm,样品从上到下编号为201614-1~201614-8(图1)。
-
2 测试方法
-
2.1 矿物学方法
-
将采集的样品破碎并研磨至小于200目,利用日本Rigaku公司生产的D/max-2500PC型粉末X射线衍射仪(Ni过滤的Cu靶激发Kα射线,带火花检测器,工作电压40 kV,电流为100 mA)对岩石样品的粉末原样进行矿物组成分析。X射线衍射(XRD)的扫描范围为2.5°~70°(2θ角),步长为0.02°,扫描速度为2.0°/min。对获得的图谱进行矿物定性分析,然后利用商用软件SiroquantTM V4进行矿物定量分析(Taylor,1991),定量方法根据Ward et al.(2001),上述方法被广泛用来进行地质样品中矿物组成的定量分析(Dai Shifeng et al.,2015; Lumiste et al.,2021; Warr,2022; Ruban et al.,2024)。选取块状岩石样品,制作岩石薄片,使用Leica DM2500P光学显微镜观察薄片中矿物的组成和形态。
-
在矿物定性、定量分析和光学显微镜观察的基础上,结合地球化学数据,选取薄片进行镀碳,利用全自动矿物定量分析系统(TESCAN integrated mineral analyzer,TIMA)对矿物的赋存状态及其化学组成进行分析。TIMA是配有四个EDAX Element 30能谱探头的Mira-3扫描电镜,工作距离为15 mm,工作电压为25 kV,电流为9 nA。测试中使用解离模式,同时获取EDS数据和BSE图像,单点X射线计数为1000,能谱步长为7.5 μm,像素大小为2.5 μm。
-
2.2 地球化学研究方法
-
对破碎研磨至小于200目的粉末样进行常量元素氧化物和微量元素测试。利用X射线荧光光谱仪(XRF,BRUKERS8 TIGER)测试样品中常量元素氧化物(SiO2、TiO2、Al2O3、Fe2O3、MgO、CaO、MnO、Na2O、K2O和P2O5)的含量;利用电感耦合等离子体质谱仪(ICP-MS,Thermal Fisher,X-series II)测试样品中微量元素的含量;根据ASTM标准D5987-96(2002),利用高温燃烧水解—氟离子选择性电极法测试F的含量;利用Milestone DMA-80全自动测汞仪测试Hg的含量,仪器检测限为0.003 ng。
-
图1 我国西南地区ELIP内带、中带、外带的分布(据He Bin et al.,2003; Dai Shifeng et al.,2018a略加修改)和采样地点(a,裂谷带的分布据He Bin et al.,2006;粗体虚线表示三个ELIP区域的边界);西南地区晚二叠世沉积剖面示意图(b,修改自He Bin et al.,2003; Dai Shifeng et al.,2018a);钻孔201614的采样剖面(c)
-
Fig.1 Distribution for the inner, intermediate, and outer zones of the ELIP in southwestern China (modified from He Bin et al., 2003; Dai Shifeng et al., 2018a) and sampling locations (a, the distribution of rift zones are from He Bin et al., 2006; the bold dashed lines indicate boundaries of the three ELIP zones) ; schematic cross-section of the Late Permian deposits in southwestern China (b, after He Bin et al., 2003; Dai Shifeng et al., 2018a) ; sampling section of the201614 drillhole (c)
-
XRF分析前,先将岩石的粉末样进行高温灰化(灰化温度815℃),将高温灰样品与锂、硼酸的混合物充分混合,利用熔样机将其制成玻璃片,然后利用XRF测试其常量元素氧化物的含量。ICP-MS分析前对样品进行微波消解,首先称取约50 mg样品,加入5 mL浓度为40%的HF和2 mL浓度为65%的HNO3,然后使用Milestone公司生产的UltraClave微波消解仪对样品进行消解。经过微波消解、转移、定容等操作后,利用ICP-MS对样品进行微量元素测试(方法详见Dai Shifeng et al.,2011),并以美国InorganicVentures公司生产的100 μg/mL的CCS-1、CCS-4、CCS-5和CCS-6原液为标准溶液。测试中同时测试GBW07109岩石标准样品进行质量监控;以10 μg/L的103Rh溶液为内标溶液,通过控制其回收率(为70%~130%)来监控仪器的稳定性。
-
3 结果
-
3.1 矿物学特征
-
XRD分析结果(表1)表明:大多数样品中存在较高含量的鲕绿泥石、伊蒙混层、石英、方解石、锐钛矿和高岭石。伊利石和白云母虽然仅在个别样品中出现,但具有较高的含量。方沸石、黄铁矿、榍石、金红石和透长石仅零星出现,且含量较低(0.8%~7.9%)。此外,在光学显微镜下发现了粗面岩碎屑、火山玻璃、锆石、霰石。利用TIMA面扫描,发现有独居石、磷钇矿等含稀土的矿物。
-
在样品201614-3中发现了粗面岩碎屑(图2a)以及尖角状的玄武质火山玻璃(图2b、c),火山玻璃中含有较多孔洞(图2b、c),表明其形成时含有丰富的挥发性成分。在样品201614-6中发现了棱角分明的火山石英(图2d),在样品201614-2中发现了自形锆石(图2e)。样品中常见蚀变成因的黏土,如绿泥石、高岭石、伊利石和伊蒙混层。高岭石的赋存状态有:呈椭球形充填孔洞(图2f;样品201614-4),呈不规则状交代火山玻璃(图2g;样品201614-1),呈长条状交代斜长石(图2h;样品201614-8),高岭石近似椭球形作为核心被绿泥石包裹共同充填在火山玻璃的孔洞中(图3d;样品201614-2),与方解石分别充填孔洞(图4f;201614-5)。伊利石的赋存状态有:呈不规则状交代火山玻璃(图3a;样品201614-3),呈长条状交代长石(图3b;样品201614-4),呈不规则状与方解石共同充填孔隙(图4d;样品201614-8)。绿泥石的赋存状态有:鲕绿泥石呈环带状或椭球形充填玄武质玻璃的孔洞(图3c;样品201614-7),绿泥石和方解石共同交代辉石(图3f;样品201614-5),呈环带状的绿泥石充填在方解石的孔洞中(图3g;样品201614-6),鲕绿泥石和方解石共同交代玄武质玻璃(图3h;样品201614-7)。沸石的赋存状态有:方沸石呈不规则状充填在孔隙中(图3e;样品201614-7),纤维状沸石和细粒方解石共同交代火山玻璃(图4g;样品201614-8),黄铁矿叠加在沸石上(图4h;样品201614-7)。白云母的赋存状态有:充填在火山玻璃的孔洞中(图4a;样品201614-4),与伊利石共同充填在裂隙中(图4b;样品201614-3),白云母与方解石分别充填孔洞(图4c;样品201614-8)。方解石的赋存状态有:充填孔洞并部分叠加在伊利石上(图4e;样品201614-6),呈不规则状充填孔隙(图5c;样品201614-3)。在样品201614-5中发现了充填在孔洞中的后生黄铁矿(图5a),在样品201614-1中发现了充填孔洞的菱铁矿(图5b)。在样品201614-2中发现了充填裂隙的不规则状的霰石(图5d)。在样品201614-3中发现了充填孔洞的石英(图5e)。在样品201614-1中发现了充填裂隙的不规则状的锐钛矿(图5f)。在样品201614-4中发现了有机质(图5g),在样品201614-5中发现了与有机质共同充填裂隙的沸石(图5h)。利用TIMA进行面扫描(图6),在样品201614-4中发现有独居石、磷钇矿等稀土矿物,其中独居石呈脉状分布(图6a)。
-
3.2 地球化学特征
-
样品的烧失量(LOI)、常量元素氧化物和微量元素的含量见表2。在无SO3的基础上,将灰基中常量元素氧化物含量进行归一。样品的烧失量为6.6%~16.3%,较高的烧失量与较高的黏土矿物以及碳酸盐矿物含量有关(表1)。
-
根据Xiao Long et al.(2004)提出的分类方法,将所研究的样品归类为高钛玄武岩(TiO2>2.5%,Ti/Y>500,0.75<Nb/La<1.1)。为表征样品中常量元素氧化物和微量元素的含量特征,采用Dai Shifeng et al.(2015)提出的富集系数(CC)评价方法,将样品中元素的含量与ELIP高钛玄武岩样品(Xu Yigang et al.,2001; Xiao Long et al.,2004; Wang Christina Yan et al.,2007; Anh et al.,2011; Zhang Zhengwei et al.,2016)的平均值进行比较。当CC<0.5时代表亏损,0.5≤CC<2代表正常,2≤CC<5代表轻度富集,5≤CC<10代表富集,10≤CC<100代表高度富集,CC≥100代表异常富集。该富集系数评价方法在评估煤及其与之相关的其他地质样品中元素的富集程度时被应用(Li Baoqing et al.,2020;Karayigit et al.,2022; Vergunov et al.,2024)。
-
图2 黔西上二叠统龙潭组基底凝灰岩样品中的粗面岩碎屑、玄武质玻璃、方解石、石英、锆石和高岭石
-
Fig.2 Trachytic clast, basaltic glass, calcite, quartz, zircon, and kaolinite in the studied tuff samples from the basement of Longtan Formation, Upper Permian, western Guizhou
-
(a)—粗面岩碎屑,样品201614-3,平面偏振光(PPL);(b)—玄武质玻璃,样品201614-3,PPL;(c)—玄武质玻璃中充填的方解石,样品201614-6,PPL;(d)—火山石英,样品201614-6,正交偏光(UXP);(e)—样品201614-2中自形的锆石,UXP;(f)—填充孔洞的高岭石,样品201614-4,UXP;(g)—高岭石交代玄武质玻璃,样品201614-1,UXP;(h)—高岭石交代斜长石,样品201614-8,UXP
-
(a) —trachytic clast in sample 201614-3, plane polarised light (PPL) ; (b) —basaltic glass in sample 201614-3, PPL; (c) —basaltic glass with calcite infilling vesicles in sample 201614-6, PPL; (d) —volcanic quartz in sample 201614-6, under crossed polarised light (UXP) ; (e) —euhedral zircon in sample 201614-2, UXP; (f) —kaolinite filling vesicles in sample 201614-4, UXP; (g) —kaolinite replacing basaltic glass in sample 201614-1, UXP; (h) —kaolinite replacing plagioclase in sample 201614-8, UXP
-
图3 黔西上二叠统龙潭组基底凝灰岩样品中的伊利石、鲕绿泥石、高岭石、方沸石、绿泥石和方解石
-
Fig.3 Illite, chamosite, kaolinite, analcime, chlorite, and calcite in the studied tuff samples from the basement of Longtan Formation, Upper Permian, western Guizhou
-
(a)—充填孔洞的伊利石,样品201614-3,UXP;(b)—伊利石交代长石,样品201614-4,UXP;(c)—充填玄武质玻璃的鲕绿泥石,样品201614-7,PPL;(d)—充填孔洞的环带状绿泥石-高岭石,样品201614-2,PPL;(e)—样品201614-7中后生的方沸石,PPL;(f)—交代辉石的绿泥石-碳酸盐矿物,样品201614-5,UXP;(g)—充填方解石孔洞的环带状绿泥石,样品201614-6,UXP;(h)—鲕绿泥石和方解石充填玄武质玻璃的孔洞,样品201614-7,UXP
-
(a) —illite space-fill in sample 201614-3, UXP; (b) —feldspar crystal replaced by illite in sample 201614-4, UXP; (c) —chamosite in basaltic glass in sample 201614-7, PPL; (d) —zoned chlorite-kaolinite filled vesicles in sample 201614-2, PPL; (e) —epigenetic analcime in sample 201614-7, PPL; (f) —chlorite-carbonate replacing silicate in sample 201614-5, UXP; (g) —zoned chlorite filling in the voids of calcite in sample 201614-6, UXP; (h) —chamosite and calcite filling vesicles in basaltic glass in sample 201614-7, UXP
-
图4 黔西上二叠统龙潭组基底凝灰岩样品中的白云母、伊利石、方解石、高岭石、沸石和黄铁矿
-
Fig.4 Muscovite, illite, calcite, kaolinite, zeolite, and pyrite in the studied tuff samples from the basement of Longtan Formation, Upper Permian, western Guizhou
-
(a)—后生白云母充填在玻璃孔洞中,样品201614-4,UXP;(b)—白云母叠加在伊利石上共同充填裂隙,样品201614-3,UXP;(c)—充填孔洞的白云母和方解石,样品201614-8,UXP;(d)—充填孔洞的伊利石和方解石,样品201614-8,UXP;(e)—方解石叠加在在伊利石上,样品201614-6,UXP;(f)—后生方解石和高岭石填充孔洞,样品201614-5,UXP;(g)—纤维状沸石和细粒方解石,样品201614-8,UXP;(h)—黄铁矿叠加在纤维状沸石上生长,样品201614-7,UXP
-
(a) —epigenetic muscovite infilling vesicle in glass in sample 201614-4, UXP; (b) —muscovite superimposed on illite filling in the vein in sample 201614-3, UXP; (c) —muscovite and calcite vesicle-fill in sample 201614-8, UXP; (d) —illite and calcite space-fill in sample 201614-8, UXP; (e) —calcite overprinting illite in sample 201614-6, UXP; (f) —epigenetic calcite and kaolinite infilling vesicles in sample 201614-5, UXP; (g) —fibrous zeolite and fine-grained calcite space-fill in sample 201614-8, UXP; (h) —fibrous zeolite pressure shadows around pyrite in sample 201614-7, UXP
-
图5 黔西上二叠统龙潭组基底凝灰岩样品中的黄铁矿、菱铁矿、方解石、霰石、石英、锐钛矿、有机质和沸石
-
Fig.5 Pyrite, siderite, calcite, aragonite, quartz, anatase, organic matter, and analcime in the studied tuff samples from the basement of Longtan Formation, Upper Permian, western Guizhou
-
(a)—充填孔洞的黄铁矿,样品201614-5,PPL;(b)—充填孔洞的菱铁矿,样品201614-1,UXP;(c)—充填孔隙的方解石,样品201614-3,UXP;(d)—后生的霰石,样品201614-2,PPL;(e)—充填孔洞的石英,样品201614-3,UXP;(f)—锐钛矿,样品201614-1,PPL;(g)—有机质,样品201614-4,PPL;(h)—围绕有机质生长的沸石,样品201614-5,PPL
-
(a) —pyrite infilling vesicle in sample 201614-5, PPL; (b) —siderite infilling cavity in sample 201614-1, UXP; (c) —calcite space-fill in sample 201614-3, UXP; (d) —epigenetic aragonite in sample 201614-2, PPL; (e) —quartz infilling vesicle in sample 201614-3, UXP; (f) —anatase in sample 201614-1, PPL; (g) —organic matter in sample 201614-4, PPL; (h) —zeolites around organic matter in sample 201614-5, PPL
-
图6 黔西上二叠统龙潭组基底凝灰岩样品201614-2中的独居石、磷钇矿以及元素P和Ce的TIMA面扫描
-
Fig.6 TIMA mapping of monazite, xenotime and the elements P and Ce in the tuff sample 201614-2 from the basement of Longtan Formation, Upper Permian, western Guizhou
-
(a)—脉状独居石;(b)—磷钇矿;(c)—P元素的面扫描;(d)—Ce元素的面扫描
-
(a) —vein-like monazite; (b) —xenotime; (c) —mapping of element P; (d) —mapping of Ce
-
与ELIP高钛玄武岩中常量元素氧化物/微量元素的平均值相比(图7),样品201614-1中SiO2、TiO2、Fe2O3、P2O5含量在正常范围内,Al2O3轻度富集,MnO、MgO、CaO、Na2O、K2O亏损;微量元素Li轻度富集,Be、V、Cr、Co、Ni、Cu、Zn、Ga、Zr、Tb、Dy、Ho、Er、Dy、Yb、Lu、Hf、Pb、U等元素的含量处于正常范围,Sc、Rb、Sr、Nb、Cs、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Y、Ta、Th等元素亏损。样品201614-2中TiO2、Al2O3、Fe2O3、P2O5等的含量处于正常范围,K2O轻度富集,MnO、CaO、Na2O亏损;Co、Ni高度富集,Zn、Ga、Rb、Pb轻度富集,REY异常富集,其余微量元素的含量处于正常范围。TIMA测试结果显示,样品201614-2中独居石约占1.81%,磷钇矿约占0.09%。稀土元素主要赋存在独居石中(图6a),独居石中P含量较低而Ce含量相对较高,磷钇矿中P含量较高而Ce含量相对较低(图6c、d)。但两种矿物的含量都不高,对P元素的含量影响有限。利用TIMA对独居石进行能谱分析,并未检测到Th的存在,且独居石含量只占1.81%,所以样品201614-2中Th的含量并不高。
-
在样品201614-3~201614-8 的均值中,Na2O亏损,其他常量元素氧化物的含量处于正常范围,微量元素Rb轻度富集,Sr、Cs、Pr亏损,其余微量元素含量处于正常范围。
-
样品中REY含量为75.1×10-6~8745.9×10-6(表2),最高值出现在样品201614-2中。经球粒陨石(Taylor and McLennan,1985)标准后的REY配分模式表现为轻稀土富集的右倾模式(图8c、d)。Ce和Eu异常分别以CeN/Ce*N和EuN/Eu*N表示,Y的异常用YN/HoN的比值表示。Dai Shifeng et al.(2016b)研究表明,Gd在煤系样品中经常会出现异常,为了避免Gd异常而导致在计算Eu异常时造成干扰,在计算Eu异常时,采用Tb值而不采用Gd值,计算公式如下:
-
同时,如果检测方法不能检测到样品中Pr含量,Ce的异常可以根据下列公式进行计算(Dai Shifeng et al.,2016b):
-
样品201614-1具有明显的Eu和Y负异常,样品201614-2具有明显的Ce和Eu负异常。Ce的负异常表明样品201614-2可能经历了较强的热液蚀变(Dai Shifeng et al.,2011),Y的负异常表明样品201614-1在表生环境下经历了较强的水岩作用(Dai Shifeng et al.,2011,2017),而Eu的负异常与重庆晚二叠世煤系基底镁铁质凝灰岩一致(Dai Shifeng et al.,2011);其余样品具有弱的Eu和Ce正异常或无异常,弱的Y负异常,与ELIP高钛玄武岩的特征相似(图8e~h)。
-
图7 黔西上二叠统龙潭组基底凝灰岩样品的元素富集系数(CC)图,以 ELIP高钛玄武岩元素的平均值为对比标准(数据来自Xu Yigang et al.,2001; Xiao Long et al.,2004; Wang Christina Yan et al.,2007; Anh et al.,2011; Zhang Zhengwei et al.,2016)
-
Fig.7 Concentration coefficient (CC) of elements for the studied tuff samples from the basement of Longtan Formation, Upper Permian, western Guizhou, normalized to the average elemental compositions of ELIP's high-Ti basalts (data are from Xu Yigang et al., 2001; Xiao Long et al., 2004; Wang Christina Yan et al., 2007; Anh et al., 2011; Zhang Zhengwei et al., 2016)
-
4 讨论
-
4.1 凝灰岩中碎屑物质的来源
-
Al2O3/TiO2 值被广泛用来指示沉积岩、火山灰及煤层中矿物质的蚀源区(Hayashi et al.,1997; Dai Shifeng et al.,2017; Shen Minglian et al.,2021,2023a,2023b,2024),当Al2O3/TiO2值为3~8、8~21、21~70 时分别表示岩性为镁铁质、中性及长英质火成岩(Hayashi et al.,1997)。研究样品的Al2O3/TiO2值为4.35~6.15(表2),与高钛玄武岩中的Al2O3/TiO2值接近。同时,样品的REY分布模式与高钛玄武岩相似(图8c~h),表明它们可能具有相同的来源。棱角分明的玄武质火山玻璃(图2b、c),表明火山碎屑物质降落后没有经过搬运,或者只搬运了很短的距离。
-
相比于使用单个元素的含量来判别火山灰的物质来源,使用元素对或者元素组合的方法更为有效,这是因为易溶的常量元素在压实和成岩作用过程中迁移可导致微量元素在样品中的含量升高(Dai Shifeng et al.,2017)。另外,Zr/TiO2-Nb/Y被广泛用来研究含煤地层中蚀变火山灰的来源(Winchester and Floyd,1977; Spears,2012)。然而,相比于其他稀土元素,在表生环境下,Y更加活泼(Moller,2000),样品中Y的负异常也证明了这一观点(图8c)。Y的这一性质可能会降低Zr/TiO2-Nb/Y作为地球化学示踪指标的可靠性。相较于Y,Yb的地球化学性质更加稳定。Nb/Yb可以有效地区分不同的岩浆来源(Zheng Xue et al.,2020; Liu Jingjing et al.,2021; Shen Minglian et al.,2021,2024)。本文采用Zr/TiO2-Al2O3/TiO2和Nb/Yb-Al2O3/TiO2组合来示踪火山灰的物质来源。在Zr/TiO2-Al2O3/TiO2和 Nb/Yb-Al2O3/TiO2 岩石分类图(图8a、b)上,除样品201614-1与201614-2外(图8b),其余样品都位于高钛玄武岩的区域。样品201614-1是由于Nb含量过低(表2,图7),导致Nb/Yb值偏低,样品201614-2是由于Yb含量过高(表2,图7),导致Nb/Yb值偏低。
-
4.2 次生矿物形成与元素迁移
-
在水-岩作用的过程中,火山玻璃首先发生蚀变,然后是橄榄石、斜长石、辉石和不透明矿物(Eggleton et al.,1987)。化学蚀变过程中常量元素迁移的顺序通常为:S>F>Na>K>>Ca>Si>Mg>P>>>Al>Fe(Gíslason et al.,1996)。发生蚀变的辉石(图3f)以及后生黄铁矿(图4h、5a)等矿物的存在,表明几乎所有的常量元素都发生了迁移,凝灰岩遭受了较强的蚀变。Shen Minglian et al.(2024)在研究区附近相同层位的镁铁质凝灰岩中发现了形态上高度弯曲的含绿泥石的石英-方解石脉,表明凝灰岩经历了塑性变形。广泛存在的次生矿物,如高岭石、伊利石、绿泥石、方沸石、方解石、菱铁矿、白云母、黄铁矿、霰石、石英(图2f~h,图3~5),以及较高的LOI值(表2),表明火山灰遭受了强烈的水岩作用。
-
图8 黔西上二叠统龙潭组基底凝灰岩样品和ELIP岩石的Zr/TiO2-Al2O3/TiO2,Nb/Yb-Al2O3/TiO2和稀土元素配分模式图
-
Fig.8 The figures of Zr/TiO2-Al2O3/TiO2 and Nb/Yb-Al2O3/TiO2 and REY distribution patterns for the studied tuff samples from the basement of Longtan Formation, Upper Permian, western Guizhou, and ELIP rocks
-
(a)—Zr/TiO2-Al2O3/TiO2图;(b)—Nb/Yb-Al2O3/TiO2图(玄武岩和碱性岩数据来自Xu Yigang et al.,2001; Xiao Long et al.,2004; Shellnutt and Zhou Meifu,2007; He Qi et al.,2010;Xu Yigang et al.,2010; Anh et al.,2011; Shellnutt and Iizuka,2012; Wang Fenlian et al.,2015);(c、d)—凝灰岩样品经球粒陨石标准化后的REY 配分模式图;(e~h)—ELIP的低钛和高钛玄武岩、粗面岩和流纹岩的REY分布模式(数据来自Xiao Long et al.,2004; Xu Yigang et al.,2010; Anh et al.,2011);球粒陨石的REY值来自Taylor and McLennan,1985
-
(a) —Zr/TiO2-Al2O3/TiO2; (b) —Nb/Yb-Al2O3/TiO2 (data for the basalts and alkaline rocks are from Xu Yigang et al., 2001; Xiao Long et al., 2004; Shellnutt and Zhou Meifu, 2007; He Qi et al., 2010; Xu Yigang et al., 2010; Anh et al., 2011; Shellnutt and Iizuka, 2012; Wang Fenlian et al., 2015) ; (c, d) —the chondrite-normalized REY distribution patterns for the tuff samples; (e~h) —the ELIP's low-Ti and high-Ti basalts, trachyte, and rhyolite, respectively (data are from Xiao Long et al., 2004; Xu Yigang et al., 2010; Anh et al., 2011) ; REY values of chondrite are from Taylor and McLennan, 1985
-
火山玻璃、长石、辉石等经交代作用蚀变形成的次生矿物,可能形成于表生风化或早期成岩阶段。脉状分布的富集轻稀土元素的独居石(图6a、d)指示热液流体成因,其形成可能要晚于表生风化作用和早期成岩阶段。
-
在火山碎屑流沉积、埋藏过程中,它们与大气降水的强烈反应导致火山玻璃发生蚀变(如图2c、g,3d、h),这一过程为沸石、绿泥石和高岭石等的形成提供了主要物质基础和有利条件(Greenberger et al.,2015; Zhao Lei et al.,2017; Ottens et al.,2019; Piilonen et al.,2022; Shen Minglian et al.,2024)。粗粒方解石(图3g、4c)中的碳和氧可能来源于富含CO2的热液,玄武岩组岩石与下伏茅口组灰岩与出渗型热液流体反应,可能是次生碳酸盐Ca和CO2的另一个重要来源(Shen Minglian et al.,2023a)。自生高岭石(图2f~h)通常形成于酸性环境下(Dai Shifeng et al.,2017),而方解石(图3g、h)、方沸石和伊利石通常形成于碱性环境中(Zhao Lei et al.,2017)。因此,次生矿物的形成可能从酸性淋滤开始,以碳酸盐化(方解石化)结束,方解石和高岭石共同充填孔洞(图4f)的现象印证了这一观点。
-
玄武岩中的榍石、磷灰石及隐晶质/玻璃质等是Nb-Ga-REY等关键金属的原始载体物质(陈琦等,2020),岩石的蚀变作用通常会导致关键金属重新分配和富集,部分稀土元素会随热液流体活动而迁移(Zhao Lei et al.,2017;Wang Ning et al.,2022b;代世峰等,2024)。在ELIP活动的主要阶段,高钛玄武岩和伴生的火山碎屑沉积物、大气降水、周期性侵入的海水和上升的富含CO2和SO2的混合热液发生反应(He Bin et al.,2003; Dai Shifeng et al.,2018a),这一过程将玄武质玻璃和原生岩浆矿物中的金属离子溶解、重新分配,并形成次生矿物。
-
4.3 基性凝灰岩中稀土元素的富集机制
-
热液流体是我国西南地区煤系铌-锆-稀土-镓矿床形成的重要影响因素之一(Dai Shifeng et al.,2018a;刘晶晶等,2022;Wang Ning et al.,2022b;代世峰等,2024)。滇东晚二叠世底部碱性凝灰岩中黏土矿物的δ18O-δD稳定同位素分布在热液成因和风化成因高岭石的界线附近,该矿层形成时的热液流体为混合来源,即深部循环水、大气降水与地下水的混合(Dai Shifeng et al.,2018a)。Zhao Lixin et al.(2016)基于碱性凝灰岩中伊蒙混层矿物的有序类型,认为蚀变火山灰层的成岩温度可能为100~160℃,最高不超过180℃。Wang Ning et al.(2023)根据该矿层中X射线衍射计算的鲕绿泥石d001晶面间距及其与结晶温度之间的关系,推算出其形成温度为200~302℃。在火山灰蚀变过程中,Na+是最具流动性的碱性阳离子(Eggleton et al.,1987),Na离子的存在有利于沸石(图3e、4g)的形成,而沸石的形成温度为10~250℃(Benning et al.,2000)。因此,滇东地区上二叠统宣威组底部的碱性凝灰岩与黔西上二叠统龙潭组基底的基性凝灰岩中多种矿物都形成于低温背景(<300℃)。
-
黔西盘州火铺煤田晚二叠世含煤岩系剖面中上部层位煤层顶底板(Shen Minglian et al.,2023a)和滇东上二叠统宣威组底部凝灰岩中(Wang Ning et al.,2022a)含丰富的菱铁矿。这些菱铁矿的C、O同位素比值指示CO2来源于玄武岩下伏茅口组海相碳酸盐岩溶解、有机质脱羟基以及热液流体释放,证实该区晚二叠世煤系中存在出渗型低温热液活动(Wang Ning et al.,2022a;Shen Minglian et al.,2023a)。Shen Minglian et al.(2024)发现黔西盘州晚二叠世基底与本研究样品相同层位的基性凝灰岩遭受了强烈的水岩作用,且凝灰岩剖面下部亏损的元素,特别是Nb-Zr-REY-Ga等元素,在剖面上部表现为富集,可能是凝灰岩在遭受出渗型低温热液流体作用后,这些元素随热液流体向上发生了迁移。田和明等(2014)和Zou Jianhua et al.(2016)在重庆晚二叠世煤系基底的基性凝灰岩中也发现了同样的元素分布规律,即自底部到顶部,凝灰岩中稀土元素含量有明显增加的趋势。这可能是出渗型热液流体将稀土元素析出并将其运移至上部岩层中富集而造成的。
-
与峨眉山大火成岩省中元素的平均值相比,样品201614-2中明显富集K2O、REY、Hf、Nb、Ta、Pb、Co、Ni、Cu和Zn,样品 201614-1中Rb、Sr、Nb、Cs、REY、Ta、Pb和Th明显亏损(图7)。样品201614-1位于凝灰岩剖面的最顶部,凝灰岩层上覆由强烈风化作用形成的铝质黏土。样品201614-1中高岭石含量高达85%(表1),SiO2含量却只有35.5%,明显低于其他样品中SiO2的含量,表明该样品可能经历了强烈的风化作用,导致大部分元素流失。样品201614-1的Nb/Ta(24.0)、Zr/Hf(50.9)和 U/Th(2.21)值明显高于其余样品相应的值(12.4~16.2、28.8~40.1、0.30~0.35)(表2)。样品201614-1中Nb(0.41 μg/g)、Ta(0.02 μg/g)、Th(0.57 μg/g)的含量明显低于其余样品中的含量(Nb:20.6~43.0 μg/g;Ta:1.56~3.46 μg/g;Th:2.68~7.83 μg/g),表明该样品可能经历了强烈的风化淋滤作用,导致Nb、Ta、Th流失过多,由于Ta、Th的含量过低,造成Nb/Ta、U/Th值偏高;该样品中Zr(384 μg/g)的含量明显高于其他样品(135~315 μg/g),可能是凝灰岩上覆铝土岩形成时一部分Zr下渗到了该样品中,导致该样品具有较高的Zr/Hf值。201614-1样品处于凝灰岩剖面的顶部,上覆由强烈风化作用形成的铝质黏土,该样品特殊的层位导致其经历了复杂的地球化学作用。总体来讲,所研究样品的Nb/Ta(12.4~24.0)、Zr/Hf(28.8~50.9)和 U/Th(0.30~2.21)与四川华蓥山(Zhao Lei et al.,2017)、重庆中梁山(Zou Jianhua et al.,2016)、重庆南川(田和明等,2014)晚二叠世煤系基底凝灰岩的Nb/Ta(12.7~19.6)、Zr/Hf(33.0~44.6)和 U/Th(0.15~1.48)等较为一致。
-
值得注意的是,通过比较凝灰岩样品的CC值(图7)可以看出,样品201614-1中相对亏损的元素,特别是Nb-Ta-REY等元素,在其紧邻的下伏201614-2样品中出现了富集,可能是火山灰降落后,经历了表生风化作用,在地表水和周期性海水的作用下(Dai Shifeng et al.,2018a; Wang Ning et al.,2022a),导致剖面顶部样品中的元素发生淋滤而向下迁移。样品201614-2富集的元素,特别是Nb-Ta-Zr-Hf-REY-Ga,在ELIP东部玄武岩组上覆的发生黏土化蚀变的碱性凝灰岩和含煤沉积物中广泛发育(Zhao Lei et al.,2017; Dai Shifeng et al.,2018a)。通过比较CC值(图7)发现,样品201614-3到201614-8中相对亏损的元素,在其上覆样品201614-2中出现了富集,特别是稀土元素。样品201614-2中稀土元素主要赋存在热液成因的富轻稀土元素的脉状独居石(图6a、d)中。201614-2中富集的热液成因的稀土元素可能是后期出渗型热液流体与下伏凝灰岩反应,将其中的稀土元素析出并向上迁移、沉淀而富集的。
-
综上,我国西南地区晚二叠世煤系基底凝灰岩中稀土元素富集的模式可能是:火山灰降落后不久,经历了表生风化作用,在地表水和周期性海水的作用下,导致剖面顶部样品中的元素发生淋滤而向下迁移,后期出渗型热液流体与凝灰岩发生水岩作用,下部凝灰岩中部分不相容元素,特别是稀土元素,被析出并随热液流体迁移到上部而富集。样品201614-1的岩石粒度细,且较为致密,样品201614-2的岩石疏松且粒度较大。所以,后期出渗型热液流体向上运移时,可能由于201614-1样品所在层位透水性较差,限制了流体进一步向上运移,导致热液流体在样品201614-2所在层位发生了侧向迁移。
-
5 结论
-
(1)黔西晚二叠世煤系基底凝灰岩中的火山碎屑物质具有与高钛玄武岩一致的地球化学组成,火山碎屑物质降落后没有经过搬运,或者只搬运了很短的距离。
-
(2)火山灰降落后发生了强烈且普遍的水岩作用。火山玻璃以及长石、辉石等经交代蚀变形成的次生矿物,可能形成于表生风化或早期成岩阶段。稀土元素主要赋存在热液成因的脉状独居石中,其形成可能要晚于表生风化作用或早期成岩阶段。次生矿物的形成从酸性淋滤开始,以碳酸盐化(方解石化)结束。
-
(3)火山灰降落后不久,经历了表生风化作用,地表水和周期性海水的作用,导致剖面顶部样品中的元素发生淋滤而向下迁移,后期出渗型热液流体与凝灰岩发生水岩作用,下部凝灰岩中部分不相容元素,特别是稀土元素,被析出并随热液流体迁移到凝灰岩层上部富集。
-
参考文献
-
Alt J C, Honnorez J, Laverne C, Emmermann R. 1986. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater-basalt interactions. Journal of Geophysical Research: Solid Earth, 91: 10309~10335.
-
Anh T V, Pang K N, Chung S L, Lin H M Hoa T T, Anh T T, Yang H J. 2011. The Song Da magmatic suite revisited: A petrologic, geochemical and Sr-Nd isotopic study on picrites, flood basalts and silicic volcanic rocks. Journal of Asian Earth Sciences, 42: 1341~1355.
-
ASTM D5987-96 (2015). 2015. Standard test method for total fluorine in coal and coke by pyrohydrolytic extraction and ion selective electrode or ion chromatograph methods. ASTM International, West Conshohocken, PA. www. astm. org.
-
Benning L G, Wilkin R T, Barnes H L. 2000. Solubility and stability of zeolites in aqueous solution: II. Calcic clinoptilolite and mordenite. American Mineralogist, 85: 495~508.
-
Chen Qi, Yu Songyue, Wen Hanjie, Lan Jiangbo, Luo Chongguang. 2020. A preliminary study on the possible mechanism of enrichment and occurrence state of Nb-Ga-REE in the Emeishan basalts from the Diandong-Qianxi region. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1256~1277 (in Chinese with English abstract).
-
Dai Shifeng, Zhou Yiping, Zhang Mingquan, Wang Xibo, Wang Jumin, Song Xiaolin, Jiang Yaofa, Luo Yangbing, Song Zhentao, Yang Zong, Ren Deyi. 2010. A new type of Nb (Ta)-Zr (Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. International Journal of Coal Geology, 83: 55~63.
-
Dai Shifeng, Wang Xibo, Zhou Yiping, James C H, Li Dahua, Chen Wenmei, Zhu Xingwei, Zou Jianhua. 2011. Chemical and mineralogical compositions of silicic, mafic, and alkali Tonsteins in the Late Permian coals from the Songzao coalfield, Chongqing, Southwest China. Chemical Geology, 282(1-2): 29~44.
-
Dai Shifeng, Seredin V V, Ward C R, Hower J C, Xing Yunwei, Zhang Weiguo, Song Weijiao, Wang Peipei. 2015. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the late Permian Guiding coalfield, Guizhou, China. Mineralium Deposit, 50: 159~186.
-
Dai Shifeng, Chekryzhov I Y, Seredin V V, Nechaev V P, Graham I T, Howe J C, Ward C R, Ren Deyi, Wang Xibo. 2016a. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Research, 29: 60~82.
-
Dai Shifeng, Graham I T, Ward C R. 2016b. A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159: 82~95.
-
Dai Shifeng, Ward C R, Graham I T, French D, Hower J C, Zhao Lei, Wang Xibo. 2017. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Reviews, 175: 44~47.
-
Dai Shifeng, Nechaev V P, Chekryzhov I Y, Zhao Lixin, Vysotskiy S V, Graham I T, Ward C R, Ignatiev A V, Velivetskaya T A, Zhao Lei, French D, Hower J C. 2018a. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos, 302-303: 359~369.
-
Dai Shifeng, Finkelman R B. 2018b. Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 186: 155~164.
-
Dai Shifeng, Zhao Lei, Wang Ning, Wei Qiang, Liu Jingjing. 2024. Advance and prospect of researches on the mineralization of critical elements in coal-bearing sequences. Bulletin of Mineralogy, Petrology and Geochemistry, 43: 1~15 (in Chinese with English abstract).
-
Deng Wei, Wen Hanjie, Ling Kunyue, Du Shengjiang, Luo Chongguang, Yang Yang. 2024. Enrichment mechanisms of Nb, Zr, and REY in the Late Permian coal-bearing strata in western Guizhou, SW China. International Journal of Coal Geology, 287: 104517.
-
Eggleton R A, Foudoulis C, Varkevisser D. 1987. Weathering of basalt: Changes in rock chemistry and mineralogy. Clays and Clay Minerals, 35: 161~169.
-
Gíslason S R, Arnorsson S, Armannsson H. 1996. Chemical weathering of basalt in Southwest Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296: 837~907.
-
Greenberger R N, Mustard J F, Cloutis E A, Mann P, Wilson J H, Flemming R L, Robertson K M, Salvatore M R, Edwards C S. 2015. Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements. Geochimica et Cosmochimica Acta, 171: 174~200.
-
Hayashi K-I, Fujisawa H, Holland H D, Ohmoto H. 1997. Geochemistry of ~1. 9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4115~4137.
-
He Bin, Xu Yigang, Chung Sunlin, Xiao Long, Wang Yamei. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213: 391~405.
-
He Bin, Xu Yigang, Wang Yamei, Luo Zhenyu. 2006. Sedimentation and lithofacies paleogeography in southwestern China before and after the Emeishan flood volcanism: New insights into surface response to mantle plume activity. The Journal of Geology, 114: 117~132.
-
He Bin, Xu Yigang, Huang Xiaolong, Luo Zhenyu, Shi Yuruo, Yang Qijun, Yu Songyue. 2007. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth and Planetary Science Letters, 255: 306~323.
-
He Qi, Xiao Long, Balta B, Gao Rui, Chen Jianye. 2010. Variety and complexity of the Late-Permian Emeishan basalts: Reappraisal of plume-lithosphere interaction processes. Lithos, 119: 91~107.
-
Hu Ruizhong, Gao Wei, Fu Shanling, Su Wenchao, Peng Jiantang, Bi Xianwu. 2024. Mesozoic intraplate metallogenesis in South China. Earth Science Frontiers, 165(1): 226~238 (in Chinese with English abstract).
-
Huang Hu, Cawood P A, Hou Mingcai, Xiong Fuhao, Ni Shijun, Deng Min, Zhong Hanting, Yang Chenchen. 2022. Zircon U-Pb age, trace element, and Hf isotopic constrains on the origin and evolution of the Emeishan Large Igneous Province. Gondwana Research, 105: 535~550.
-
Karayigit A I, Azeri N, Oskay R G, Hower J C. 2022. Zeolite and associated mineral occurrences in high-sulphur coals from the middle Miocene upper coal seam from underground mines in the Çayirhan coalfield (Beypazarı, Central Turkey). International Journal of Coal Geology, 256: 104010.
-
Li Baoqing, Zhuang Xingguo, Querol X, Moreno N, Ćordoba P, Shangguan Yunfei, Yang Linjian, Li Jing, Zhang Feng. 2020. Geological controls on the distribution of REY-Zr(Hf)-Nb(Ta) enrichment horizons in late Permian coals from the Qiandongbei coalfield, Guizhou Province, SW China. International Journal of Coal Geology, 231: 103604.
-
Li Baoqing, Zhuang Xinguo, Ning Shuzheng, Li Jing, Wang Xiaomei, Huang Shaoqing, Du Hongyi, Liu Chang, Yang Linjian. 2022. Mobilization, migration, and enrichment mechanism of rareearth elements-Zr (Hf)-Nb (Ta)-Ga: A case study of coal-bearing strata within Upper Permian Wujiaping Formation in Wuzhengdao region. Joural of China Coal Society, 47(5): 1822~1839 (in Chinese with English abstract).
-
Li Youjuan, He Huaiyu, Ivanov A V, Demonterova E I, Pan Yongxin, Deng Chenglong, Zheng Dewen, Zhu Rixiang. 2017. 40Ar/39Ar age of the onset of high-Ti phase of the Emeishan volcanism strengthens the link with the end-Guadalupian mass extinction. International Geology Review, 60: 1906~1917.
-
Liu Jingjing, Dai Shifeng, Song Hongjian, Nechaev V P, French D, Spiro B F, Graham I T, Hower J C, Shao Longyi, Zhao Jingtao. 2021. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong coalfield, western Guizhou, China. International Journal of Coal Geology, 247: 103855.
-
Liu Jingjing, Han Qiuchan, Zhao Shumao, Jia Rongun. 2022. The sources of abnormally enriched critical metals in the Late Permian coals of western Guizhou Province. Journal of China Coal Society, 47(5): 1782~1794 (in Chinese with English abstract).
-
Lumiste K, Lang L, Paiste P, Lepland A, Kirsimäe K. 2021. Heterogeneous REE+Y distribution in early Paleozoic shelly phosphorites: Implications for enrichment mechanisms. Chemical Geology, 586: 120590.
-
Möller P. 2000. Rare earth elements and yttrium as geochemical indicators of the source of mineral and thermal waters. Hydrogeology of Crystalline Rocks. Springer, 227~246.
-
Ottens B, Götze J, Schuster R, Krenn K, Hauzenberger C, Zsolt B, Vennemann T. 2019. Exceptional multi stage mineralization of secondary minerals in cavities of flood basalts from the Deccan Volcanic Province, India. Minerals, 9: 351.
-
Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14~48.
-
Piilonen P C, Poirier G, Lechner W, Rowe R, Richards R P. 2022. Zeolite minerals from Wat Ocheng, Ta Ang, Ratanakiri Province, Cambodia—Occurrence, composition, and paragenesis. The Canadian Mineralogist, 60: 133~153.
-
Ruban A, Tesi T, Yaroshchuk E, Kosmach D, Rudmin M, Gershelis E, Dudarev O, Mazurov A, Semiletov I. 2024. The influence of cold seepage on the grain size and geochemistry of sediments from the Laptev Sea shelf. Marine and Petroleum Geology, 160: 106638.
-
Shellnutt J G, Zhou Meifu. 2007. Permian peralkaline, peraluminous and metaluminous Atype granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chemical Geology, 243: 286~316.
-
Shellnutt J G, Jahn B M. 2010. Formation of the Late Permian Panzhihua plutonic hypabyssal-volcanic igneous complex: Implications for the genesis of Fe-Ti oxide deposits and A-type granites of SW China. Earth and Planetary Science Letters, 289: 509~519.
-
Shellnutt J G, Iizuka Y. 2012. Oxidation zonation within the Emeishan Large Igneous Province: Evidence from mantle-derived syenitic plutons. Journal of Asian Earth Sciences, 54-55: 31~40.
-
Shellnutt J G, Pham T T, Denyszyn S W, Yeh M W, Tran T A. 2020. Magmatic duration of the Emeishan Large Igneous Province: Insight from northern Vietnam. Geology, 48: 457~461.
-
Shen Minglian, Dai Shifeng, Graham I T, Nechaev V P, French D, Zhao Fenghua, Shao Longyi, Liu Shande, Zuo Jianping, Zhao Jingtao, Chen Kun, Xie Xuanhao. 2021. Mineralogical and geochemical characteristics of altered volcanic ashes (tonsteins and K-bentonites) from the latest Permian coal-bearing strata of western Guizhou Province, southwestern China. International Journal of Coal Geology, 237: 103707.
-
Shen Minglian, Dai Shifeng, French D, Graham I T, Spiro B F, Wang Na, Tian Xiao. 2023a. Geochemical and mineralogical evidence for the formation of siderite in late Permian coal-bearing strata from western Guizhou, SW China. Chemical Geology, 637: 121675.
-
Shen Minglian, Dai Shifeng, Nechaev V P, French D, Graham I T, Liu Shande, Chekryzhov I Y, Tarasenko I A, Zhang Shaowei. 2023b. Provenance changes for mineral matter in the latest Permian coals from western Guizhou, southwestern China, relative to tectonic and volcanic activity in the Emeishan Large Igneous Province and Paleo-Tethys region. Gondwana Research, 113: 71~88.
-
Shen Minglian, Dai Shifeng, Nechaev V P, Graham I T, Hower J C, Liu Shande, Tarasenko I A, Zin'kov A V, Chekryzhov I Y, Antonchenko V V, Zhang Shaowei. 2024. Mineralogy and geochemistry of altered Emeishan basaltic volcaniclastics with respect to their critical element mineralization. Journal of Geochemical Exploration, 264: 107527.
-
Shen Yulin, Zhang Yunfei, Yang Tianyang, Hu Jiangchen, Jin Jun, Mu Xiwei, Huang Wen, Li Fayue, Zhao Yong, Zhang Yijie. 2022. Enrichment of strategic metals constrained by astronomical orbits in Late Permian coal measures in Panxian, Guizhou. Joumal of China Coal Society, 47(5): 1840~1850 (in Chinese with English abstract).
-
Spears D A. 2012. The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks. International Journal of Coal Geology, 94: 22~31.
-
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312.
-
Tian Heming, Dai Shifeng, Li Dahua, Liu Dong, Zou Jianhua, Li Tian. 2014. Geochemical features of the Late Permian Tuff in Nanchuan District, Chongging, southwestern China. Geological Review, 60(1): 169~177 (in Chinese with English abstract).
-
Vergunov A V, Arbuzov S I, Spears D A, Kholodov A S, Ilenok S S. 2024. Mineralogy and geochemistry of rare metal (Zr-Nb-Hf-Ta-REE-Ga) coals of the seam XXX of the Izykh coalfield, Minusinsk basin, Russia: Implications for more widespread rare metal mineralization in North Asia. International Journal of Coal Geology, 289, 104542.
-
Wang Christian Yan, Zhou Meifu, Qi Liang. 2007. Permian flood basalts and mafic intrusions in the Jinping (SW China)-Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation. Chemical Geology, 243: 317~343.
-
Wang Fenlian, Wang Christina Yan, Zhao Taiping. 2015. Boron isotopic constraints on the Nb and Ta mineralization of the syenitic dikes in the ~260Ma Emeishan Large Igneous Province (SW China). Ore Geology Reviews, 65: 1110~1126.
-
Wang Ning, Dai Shifeng, Nechaev V P, French D, Graham I T, Zhao Fenghua, Zuo Jianping. 2022a. Isotopes of carbon and oxygen of siderite and their genetic indications for the late Permian critical-metal tuffaceous deposits (Nb-Zr-REY-Ga) from Yunnan, southwestern China. Chemical Geology, 120727.
-
Wang Ning, Dai Shifeng, Wang Xibo, Nechaev V P, French D, Graham I T, Zhao Lei, Song Xiaolin. 2022b. New insights into the origin of Middle to Late Permian volcaniclastics (Nb-Zr-REY-Ga-rich horizons) from eastern Yunnan, SW China. Lithos, 420-421: 106702.
-
Wang Ning, French D, Dai Shifeng, Graham I T, Zhao Lei, Song Xiaolin, Zheng Jintian, Gao Yan, Wang Yan. 2023. Origin of chamosite and berthierine: Implications for volcanic-ash-derived Nb-Zr-REY-Ga mineralization in the Lopingian sequences from eastern Yunnan, SW China. Journal of Asian Earth Sciences, 253: 105703.
-
Wang Ning, Dai Shifeng, Nechaev V P, French D, Graham I T, Song Xiaolin, Chekryzhov I Y, Tarasenko I A, Budnitskiy S Y. 2024. Detrital U-Pb zircon geochronology, zircon Lu-Hf and Sr-Nd isotopic signatures of the Lopingian volcanic-ash-derived Nb-Zr-REY-Ga mineralized horizons from eastern Yunnan, SW China. Lithos, 468-469: 107494.
-
Ward C R, Taylor J C, Matulis C E, Dale L S. 2001. Quantification of mineral matter in the Argonne Premium Coals using interactive Rietveld-based X-ray diffraction. International Journal of Coal Geology, 46(2-4): 67~82.
-
Warr L N. 2022. Earth's clay mineral inventory and its climate interaction: A quantitative assessment. Earth-Science Reviews, 234: 104198.
-
Wignall P B, Sun Yadong, Bond D P G, Izon G, Newton R J, Vedrine S, Widdowson M, Ali J R, Lai Xulong, Jiang Haishui, Cope H, Bottrell S H. 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the middle Permian of China. Science, 324: 1179~1182.
-
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325~343.
-
Xiao L, Xu Y, Mei H, Zheng Y, He B, Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan Large Igneous Province, SW China: Implications for plume-lithosphere interaction. Earth and Planetary Science Letters, 228: 525~546.
-
Xu Yigang, Chung Sunlin, Jahn B M, Wu Genyao. 2001. Petrologic and geochemical constraints on the petrogenesis of Permine-Triassic Emeishan flood basalts in southwestern China. Lithos, 58: 145~168.
-
Xu Yigang, He Bin, Chung Sunlin, Menzies M A, Frey F A. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood basalt province. Geology, 32: 917~920.
-
Xu Yigang, Chung Sunlin, Shao Hui, He Bin. 2010. Silicic magmas from the Emeishan Large Igneous Province, Southwest China: Petrogenesis and their link with the end-Guadalupian biological crisis. Lithos, 119: 47~60.
-
Yang Tianyang, Shen Yulin, Lu Lu, Jin Jun, Huang Wen, Li Fayue, Zhang Yunfei, Hu Jiangchen, Zeng Lijun. 2024. Geological factors for the enrichment of critical elements within the Lopingian (Late Permian) coal-bearing strata in western Guizhou, southwestern China: Constrained with whole-rock and zircon geochemistry. International Journal of Coal Geology, 282: 104441.
-
Zhang Zhengwei, Zheng Guodong, Takahashi Y, Wu Chengquan, Zheng Chaofei, Yao Junhua, Xiao Chaoyi, 2016. Extreme enrichment of rare earth elements in hard clay rocks and its potential as a resource. Ore Geology Reviews, 72: 191~212.
-
Zhao Lei, Zhu Qing, Jia Shaohui, Zou Jianhua, Nechaev V, Dai Shifeng. 2017. Origin of minerals and critical metals in an argillized tuff from the Huayingshan coalfield, southwestern China. Minerals, 7: 92.
-
Zhao Lixin, Dai Shifeng, Graham I T, Wang Peipei. 2016. Clay mineralogy of coalhosted Nb-Zr-REE-Ga mineralized beds from Late Permian Strata, eastern Yunnan, SW China: Implications for paleotemperature and origin of the micro-quartz. Minerals, 6(2): 45.
-
Zheng Xue, Dai Shifeng, Nechaev V, Sun Rruoyu. 2020. Environmental perturbations during the latest Permian: Evidence from organic carbon and mercury isotopes of a coal-bearing section in Yunnan Province, southwestern China. Chemical Geology, 549: 119680.
-
Zhong Yuting, Mundil R, Chen Jun, Yuan Dongxun, Denyszyn S W, Jost A B, Payne J L, He Bin, Shen Shuzhong, Xu Yigang. 2020. Geochemical, biostratigraphic, and high-resolution geochronological constraints on the waning stage of Emeishan Large Igneous Province. Geological Society of America Bulletin, 132: 1969~1986.
-
Zhu Jiang, Zhang Zhaochong, Reichow M K, Li Hongbo, Cai Wenchang, Pan Ronghan. 2018. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly. Journal of Geophysical Research: Solid Earth, 123: 1018~1034.
-
Zou Jianhua, Tian Heming, Li Tian. 2016. Geochemistry and mineralogy of tuff in Zhongliangshan mine, Chongqing, southwestern China. Minerals, 6(2): 47.
-
陈琦, 于宋月, 温汉捷, 蓝江波, 罗重光. 2020. 滇东-黔西地区峨眉山玄武岩Nb-Ga-REE富集机制及赋存状态初步研究. 矿物岩石地球化学通报, 39(6): 1256~1277.
-
代世峰, 赵蕾, 王宁, 魏强, 刘晶晶. 2024.煤系中关键金属元素的成矿作用研究进展与展望.矿物岩石地球化学通报, 43: 1~15.
-
胡瑞忠, 高伟, 付山岭, 苏文超, 彭建堂, 毕献武. 2024.华南中生代陆内成矿作用.地学前缘, 165(1): 226~238.
-
李宝庆, 庄新国, 宁树正, 李晶, 汪小妹, 黄少青, 杜红毅, 刘旭, 杨林键. 2022.稀土-锆(铪)-铌(钽)-镓的活化、迁移和富集机理——以务正道地区上二叠统吴家坪组煤系为例. 煤炭学报, 47(5): 1822~1839.
-
刘晶晶, 韩秋婵, 赵书茂, 贾荣坤. 2022. 贵州西部晚二叠世煤中关键金属异常富集的物质来源. 煤炭学报, 47(5): 1782~1794.
-
沈玉林, 张云飞, 杨天洋, 胡江晨, 金军, 慕熙玮, 黄文, 李发跃, 赵勇, 张一杰. 2022. 贵州盘县晚二叠世煤系天文轨道约束的战略性金属富集. 煤炭学报, 47(5): 1840~1850.
-
田和明, 代世峰, 李大华, 刘东, 邹建华, 李甜. 2014. 重庆南川晚二叠世凝灰岩的元素地球化学特征. 地质论评, 60(1): 169~177.
-
摘要
我国西南地区晚二叠世含煤岩系基底蚀变凝灰岩中高度富集稀土元素等多种关键金属。低温热液作用通常对煤和煤系中稀土元素的富集成矿有重要贡献,黔西地区位于世界著名的大范围低温热液作用区内,是研究低温热液作用下煤系稀土元素富集机理的良好对象。蚀变凝灰岩的地球化学和矿物学组成可以提供凝灰岩蚀变过程中流体演化、热演化和成矿过程等信息,但以前的研究对凝灰岩中蚀变矿物组成以及矿物的共伴生关系还缺乏深入探讨,限制了对关键金属富集过程的认识。研究结果表明:凝灰岩具有与高钛玄武岩一致的地球化学组成;火山玻璃以及由长石、辉石等交代蚀变形成的次生矿物,可能形成于表生风化或早期成岩阶段。稀土元素主要赋存在后期热液成因的脉状独居石中。本文提出了西南地区晚二叠世煤系基底凝灰岩中稀土元素富集的模式:降落后火山灰经历了表生风化作用,地表水和周期性海水的作用导致凝灰岩层顶部样品中的稀土元素发生淋滤而向下迁移,后期出渗型热液流体与凝灰岩发生的水岩作用,导致下部凝灰岩中的稀土元素被析出并随热液流体迁移到凝灰岩层上部而富集。
Abstract
The altered tuffs in the Late Permian coal-bearing basement of the southwest region exhibit significant enrichment in rare earth elements and other critical metals. Low-temperature hydrothermal fluids have made an important contribution in this enrichment and mineralization. Western Guizhou, located in a globally significant region of low-temperature hydrothermal activity, provides an exceptional natural laboratory to unravel the mechanisms driving REE enrichment in coal-bearing strata under such conditions. The geochemical and mineralogical composition of altered tuffs can provide insights into fluid evolution, thermal history, and mineralization processes during alteration. However, a lack of under standing persists regarding the composition of altered mineral assemblages and their coexistence in the tuffs, which limits our comprehension of critical metal enrichment processes. This study reveals that the tuffs have geochemical properties consistent with high-titanium basalts; volcanic glass and secondary minerals formed by metasomatic alteration, such as feldspar and pyroxene, may have formed in the supergene weathering or early diagenetic stage; the vein-like distribution of monazite indicates the origin of late hydrothermal fluids. The proposed enrichment pattern of REEs in these tuffs is as follows: shortly after volcanic ash deposition, the tuff underwent supergene weathering. Surface water and periodic seawater incursions leached REEs from the upper tuff layers, causing downward migration. Subsequently, exfiltration hydrothermal fluids interacted with the tuff, leaching REEs from the lower layers and transporting them upwards, ultimately leading to enrichment in the overlying rock strata.
Keywords
Late Permian ; coal-bearing strata ; mafic tuff ; rare earth elements ; enrichment mechanism