-
西准噶尔地区作为古亚洲洋在古生代俯冲增生过程中的增生拼贴体,具有得天独厚的地理位置,多期次的蛇绿混杂岩和古生代火山-沉积建造及其伴生侵入岩,是揭示准噶尔洋盆乃至整个古亚洲洋发展演化历史的重要地区,更是研究古亚洲洋西南段最终消亡的关键区域(Xiao Wenjiao et al.,2008,2009a,2009b,2014;肖文交等,2019;Duan Fenghao et al.,2021,2022,2023;Tang Gongjian et al.,2017,2019;支倩,2022;支倩等,2024),其构造演化过程对约束准噶尔洋盆最终闭合时间,反演古亚洲洋古生代构造演化具有重要指示意义。
-
包古图构造带是指北西部以哈图断裂为界,南西方向被唐巴勒断裂阻挡,南东方向进入准噶尔盆地并主控包古图地层小区地质体分布的构造带(图1a),构造带内发育晚泥盆世达尔布特蛇绿构造混杂岩、白碱滩蛇绿构造混杂岩和广布的石炭系海相火山-沉积建造。唐巴勒—加尔吐一带的奥陶系—志留系原隶属于包古图地层小区北西部的玛依勒山地层小区,是经唐巴勒大断裂向东走滑并被达尔布特左行走滑断裂推移的结果。鉴于达尔布特和白碱滩两大蛇绿构造混杂岩的特殊构造属性,迄今有关论述包古图构造带的盆地属性、火山岩浆作用、地球化学特征及其构造环境等研究成果主要来自石炭纪火山岩所提供的信息(Geng Hongyan et al.,2011;Tang Gongjian et al.,2012;Shen Ping et al.,2013;向坤鹏等,2015;杨高学,2016;Li Ganyu et al.,2016;Zhi Qian et al.,2019,2020,2021;支倩等,2024)。
-
红山梁组是包古图构造带上新发现的唯一一套晚泥盆世层序地层,前人根据红山梁组的建组剖面、空间分布、地层层序、岩石组合及地质时代等展开研究(李永军等,2024)。本文在前人研究的基础上,聚焦该组基性火山岩,通过地球化学方法,揭示火山岩的岩石成因,探讨其形成的构造背景。研究成果将包古图构造带的火山岩浆作用及其演化历史向前推演至晚泥盆世,为探究包古图构造带前石炭纪的盆地属性及准噶尔洋盆的构造演化提供新的素材和证据。
-
1 区域地质概况
-
西准噶尔是中亚造山带的重要组成部分(图1a),由一系列的增生杂岩带、古生代岩浆弧构成(Buckman et al.,2004; Choulet et al.,2012),发育一系列NE-SW向断裂,由北向南依次为巴尔雷克、玛依勒和达尔布特断裂,这些断裂及所夹的构造地块,构成了西准噶尔“多”字型构造体系(陈宣华等,2011),它们控制着地层、花岗岩类和蛇绿岩的分布。西准噶尔地区出露的地层主体为奥陶系—石炭系火山-沉积地层,分布最为广泛的为石炭系,主要组成巨厚的火山-碎屑沉积建造。该地区出露大量的晚古生代中酸性侵入体及岩脉,具有正的εNd(t)值(Chen Bin et al.,2004; Geng Hongyan et al.,2009; Yin Jiyuan et al.,2010; Zheng Bo et al.,2020; Duan Fenghao et al.,2022)。
-
此外,西准噶尔发育多条形态复杂,变形强烈及时代跨度大的蛇绿岩带(Zhang Chi et al.,1993),主要包括达尔布特、白碱滩、唐巴勒、玛依勒及巴尔雷克等蛇绿岩带。前人对上述蛇绿岩展开研究发现,自早—中寒武世以来,西准噶尔洋壳开始逐步发生俯冲消减,由此形成了玛依勒、唐巴勒、巴尔雷克等蛇绿混杂岩(形成于531~415 Ma),以及岛弧和弧后盆地型的火山岩。进入泥盆纪,准噶尔南部地区出现以达尔布特、克拉玛依等(414~368 Ma)形成于俯冲带之上的SSZ型蛇绿混杂岩以及形成于岛弧、弧后盆地的中—基性岩浆岩。
-
本次研究的红山梁组位于准噶尔西北缘白碱滩北部(图1b),是本研究团队新识别出的一套晚泥盆世海相沉积建造,呈NE-SW向展布,与上覆包古图组整合接触,断层剥蚀未见底。其下部以红色硅质岩、凝灰质硅质粉砂岩为主,偶见玄武岩、玄武安山岩夹层;上部以玄武岩、玄武安山岩、集块岩、安山岩及凝灰岩为主,间夹红色凝灰质硅质岩及硅质条带,露头尺度多见谐调性极好的褶皱构造发育(图1c,李永军等,2024)。
-
图1 西准噶尔地层分区(图a,据李永军等,2021)、包古图地层小区地质简图(b)及红山梁组剖面图(c)
-
Fig.1 Stratigraphic zoning in west Junggar (a, after Li Yongjun et al., 2021) , geological map of the Baogutu stratigraphic minor-region (b) and profile map of the Hongshanliang Formation (c)
-
2 样品采集及岩石学特征
-
2.1 样品采集
-
本文测试样品采自白碱滩北部和剖面西南部约10 km处的大侏罗沟东部(图2)。选择出露良好,无蚀变的基岩作为主、微量元素的测试样品,共采集19件新鲜的玄武岩样品。
-
2.2 岩石学特征
-
样品均呈灰绿色玄武岩,斑状结构,块状构造。斑晶含量约1%,由斜长石和普通辉石组成。斜长石呈半自形板状,粒径为0.7 mm×0.28 mm,发育聚片双晶,具有中度帘石化、绿泥石化。普通辉石呈柱状、粒状,粒径为0.5~0.9 mm,具辉石式解理。基质含量约99%,其中斜长石呈半自形板条状,粒径为0.7 mm×0.28 mm,发育聚片双晶,含量约56%,普通辉石呈柱状、粒状,粒径为0.03~0.25 mm,淡黄绿色,具辉石式解理,含量约占43%。
-
3 分析方法
-
本研究的岩石主量、微量元素分析均在长安大学西部矿产资源与地质工程教育部重点实验室完成测试,主量元素采用X射线荧光光谱(XRF)方法分析完成,XRF溶片法按照国家标准GB/T14506.28—1993执行。元素分析误差小于2.5%,氧化物总量介于99.75%~100.25%。FeO用湿化学分析法单独测定完成,烧失量(LOI)在烘箱中经1000℃高温烘烤90 min后称重获得。微量元素采用Thermo-X7电感耦合等离子体质谱仪进行样品测定。
-
4 地球化学特征
-
4.1 主量元素
-
白碱滩北部上泥盆统红山梁组内玄武岩样品的岩石地球化学分析结果及相关参数列于附表1。从表中可以看出,玄武岩样品可划分为两种主要类型:第一类玄武岩中偶见安山玄武岩夹层,在图3中投点位于安山岩/玄武岩至亚碱性玄武岩的范围内;而第二类玄武岩岩性极为单一,在图3中则全部集中在碱性玄武岩的区域内(图3),二者在显微镜下极为相似,无法区分。
-
图2 白碱滩北部红山梁组玄武岩(a、c)、安山玄武岩(b、d)岩相学显微照片(正交偏光)及野外照片
-
Fig.2 Outcrop and microphotographs (crossed polars) of the Hongshanliang Formation basalt (a, c) and andesite basalt (b, d) in the northern part of Baijiantan
-
Pl—斜长石;Cpx—普通辉石;Am—角闪石;Cb—碳酸盐矿物
-
Pl—plagioclase; Cpx—clinopyroxene; Am—amphibole; Cb—carbonate
-
第一类玄武岩样品SiO2含量为45.93%~55.72%,平均含量为49.80%;Al2O3含量为12.80%~18.46%,平均含量为14.06%;MgO含量为4.12%~8.39%,平均含量为7.21%。Mg#变化范围较小,为42.23~64.37;具有相对较低的TiO2含量为0.30%~1.16%;Na2O含量为2.96%~5.57%;K2O含量为 0.05%~0.87%;全碱含量(K2O+Na2O)为3.15%~5.69%(平均值为 4.16%)。使用TAS图解进行分类投图,样品落入玄武岩区域(图3a),在Zr/(TiO2×0.0001)-Nb/Y的图解(图3b)中,玄武岩样品表现出鲜明的亚碱性特征。在AFM图和FeOT/MgO-SiO2图中,样品显示为拉斑质玄武岩特征(图3c、d)。
-
第二类玄武岩样品SiO2含量为48.93%~50.36%,平均含量为49.76%。此外,这些玄武岩样品的TiO2含量相对较高,为1.74%~1.88%,平均含量为1.79%,明显高于岛弧火山岩中常见的TiO2含量(约1%)。同时,这些样品普遍具有较低的TFe2O3(6.39%~7.62%)和MgO(2.83%~2.92%)含量,Mg#值变化范围相对较小,为41.84~47.13。样品Na2O+K2O的含量为5.28%~9.90%,并且相对富Na,其Na2O/K2O的值为0.75~2.37。使用TAS图解进行分类投图,样品落入了粗面玄武岩区域(图3a),在Zr/(TiO2×0.0001)-Nb/Y图解(图3b)中,第二类玄武岩样品呈现出鲜明的碱性玄武岩特征。
-
图3 白碱滩北部红山梁组玄武岩TAS图解(a,据Le Maitre,1989),Zr/(TiO2×0.0001)-Nb/Y图解(b,据Winchester et al.,1977),AFM图解(c,据Irvine et al.,1971)和FeOT/MgO-SiO2图解(d,据Miyashiro,1974)
-
Fig.3 TAS diagram (a, after Le Maitre, 1989) , Zr/ (TiO2×0.0001) -Nb/Y diagram (b, after Winchester et al., 1977) , AFM diagram (c, after Irvine et al., 1971) and FeOT/MgO-SiO2diagram (d, after Miyashiro, 1974) of Hongshanliang Formation basalt in the northern part of Baijiantan
-
4.2 微量元素
-
第一类拉斑玄武岩稀土元素(∑REE=14.58×10-6~39.58×10-6),平均值为26.65×10-6。14个玄武岩样品相对亏损轻稀土元素(LREE)但是重稀元素(HREE)相对平坦,(La/Yb)N=0.64~2.07,平均为0.99;(Gd/Yb)N=0.72~1.38,平均值为0.97,与N-MORB类似(图4a)。拉斑玄武岩的样品具有弱的δEu正异常(Eu/Eu*=0.97~1.98,平均值为1.21)。在原始地幔标准化的微量元素蛛网图(图4b)中,拉斑玄武岩呈现相对富集大离子亲石元素(LILE,如Sr、Ba)的特征,而高场强元素(HFSE,如Nb、Ta)相对亏损,第一类拉斑玄武岩样品的稀土配分曲线与N-MORB形态类似,具有洋中脊岩浆特征。
-
第二类5件碱性玄武岩样品稀土元素含量为∑REE=116.66×10-6~188.75×10-6,平均值为133.69×10-6,显著高于洋中脊玄武岩(MORB)的稀土元素总量(39.1×10-6)。没有明显的Eu异常,Eu/Eu*的比值为0.96~1.09,平均值为1.02,表明岩浆演化过程中斜长石分离结晶作用不明显。在稀土元素配分曲线图中(图4c),5件样品的中轻稀土元素(LREE)相对富集,而重稀土元素(HREE)则相对亏损。轻重稀土分馏现象较为明显,其(La/Yb)N=8.98~12.97,平均值为10.16。此外,从这5个样品中REE配分模式也可以看出其具有同源岩浆演化的特征。
-
在微量元素蛛网图(图4d)中,碱性玄武岩展现出大离子亲石元素(LILE)Th的相对富集,而高场强元素(HFSE)如Nb、Ta并未见明显亏损。样品Nb/Ta比值为15.28~18.15,平均值为16.86。这一数值略低于洋岛玄武岩(OIB)的平均值17.8,但很接近于原始地幔的值(17.5±2.0)。其Zr/Hf比值为41.84~52.16,平均值为44.52,高于OIB(35.9)以及原始地幔(36.3)比值,且远远大于大陆地壳的值(Nb/Ta比值为12~13,Zr/Hf比值为11;Taylor et al.,1995)。综合来看,碱性玄武岩样品的微量元素蛛网图曲线与OIB的形态基本一致。
-
图4 红山梁组玄武岩稀土元素配分曲线图(a)和微量元素蛛网图(b)(球粒陨石、原始地幔、 N-MORB、OIB值来自Sun Shensu et al.,1989;下同)
-
Fig.4 Chondrite normalized REE pattern plots (a) and primitive mantle normalized trace elements spider plots (b) for Hongshanliang Formation basalt (the chondrites, primitive mantle, N-MORB and OIB values are from Sun Shensu et al., 1989; the same below)
-
4.3 蚀变和元素的活动性
-
在本次研究中,红山梁组玄武岩的部分岩石样品具有较高的烧失量(部分达9.60%),表明这些岩石在形成过程中发生了一定程度的蚀变或变质作用。所以,对元素的活动性进行评估有助于我们判断这些元素是否在蚀变或变质过程中发生了改变,从而更准确地揭示岩石的成因机制。
-
Polat et al.(2003)认为,Ce/Ce*N比值在0.9~1.1的特定范围内,岩石中微量元素的变化可以忽略不计。因此,我们选择蚀变相对敏感的Ce元素来确定微量元素的蚀变程度。红山梁组火山岩的Ce/Ce*N比值大部分在0.89~1.12之间,极个别为0.69~0.83,平均值为0.96,进一步支持了火山岩没有明显蚀变。另外,主要元素和LOI之间缺乏明确的相关性(图5),这表明蚀变对岩石的影响可以忽略不计。因而,运用主微量元素探讨其岩石成因以及形成时的大地构造背景研究是可行的。
-
5 岩石成因及岩浆源区
-
5.1 拉斑玄武岩
-
在泥盆世红山梁组拉斑玄武岩的稀土元素配分曲线图(图4a)和微量元素蛛网图(图4b)中,显示Nb、Ta、Zr等高场强元素具有明显的负异常。前人针对镁铁质岩石中Nb的负异常进行深入研究,并指出可能是由两种原因造成(Davidson et al.,2006; Polat et al.,2011)。首先,有研究者认为它们可能形成于俯冲带上盘环境。在这种环境下,源区岩石受到俯冲组分的交代,因此表现出亏损地幔特征。在源区岩石部分熔融的过程中,由于Nb等元素的不相容性,它们可能未充分进入熔体,进而导致负异常的形成。另一种解释是,岩浆在上升过程中可能受到地壳物质的混染,这同样可能导致Nb、Ta等元素出现负异常。然而,值得注意的是,地壳通常富含Zr元素,与地壳混染相比,俯冲带上盘的镁铁质岩石往往展现出更为显著的Zr负异常特征。在本研究的拉斑玄武岩样品中,均观察到明显的Zr负异常,这表明在其形成过程中可能并未遭受显著的地壳混染。这与La/Nb(0.35~1.30)、Th/La(0.06~0.14)、Ce/Pb(0.27~29.96)和Th/Nb(0.07~0.27)等比值结果相吻合(Xu Zhao et al.,2013;Xiao Wenjiao et al.,2014),因此排除拉斑玄武岩的形成过程存在陆壳物质混染。样品较低的(La/Sm)N和(Nb/La)N比值(分别为0.73~1.71和0.17~0.43)表明其受俯冲流体的交代作用,这与Rb/Y-Nb/Y(图6a)的投图结果一致。另外,玄武岩样品的Ti/V比值基本都小于50,其投影范围相对集中,整体上横跨岛弧拉斑玄武岩(IAT)和洋中脊玄武岩(MORB)的区域,与现代大洋中的弧后盆地玄武岩相类似,如Mariana和Manus弧后盆地。在Nb/Yb-Th/Yb构造判别图解中(Taylor et al.,1995; Zhao Junhong et al.,2007; 司国浩,2021),这些样品整体落在Mariana弧后弧后盆地区域。
-
图5 红山梁组火山岩主要元素与LOI相关性图解
-
Fig.5 Correlation diagrams between main elements and LOI in Hongshanliang Formation
-
根据稀土元素配分图特征显示,拉斑玄武岩样品展现出与洋中脊型玄武岩(MORB)相似的较为平坦的稀土元素配分样式(图4b)。在Nb/Yb-TiO2/Yb图解中(图6b),拉斑玄武岩样品整体落在MORB演化线内,暗示了拉斑玄武岩岩石可能来源于浅部地幔源区的熔融(Pearce et al.,1995)。此外,拉斑玄武岩样品所表现出相对平坦的重稀土元素配分样式,进一步揭示其源区可能是一个无石榴子石残余的浅部地幔源区。在La/Sm-Sm/Yb和La/Yb-Zr/Nb图解(Zhao Junhong et al.,2007; Aldanmaz et al.,2008)(图7)中,拉斑质玄武岩落在了5%~10%尖晶石二辉橄榄岩部分熔融区域。此外,这些样品的Nb/Y比值(0.03~0.20)和Zr/Y(0.93~4.24)比值较低,同时呈现出较高的Zr/Nb比值(7.73~48.62),这些特征均表明它们来自于亏损地幔的部分熔融。在Zr-Zr/Y图解中(图8a),样品投影主要聚集在岛弧玄武岩的区域内。而在Ti/50-50×Sm-V三角图解中(图8b)(Vermeesch,2006),拉斑玄武岩样品整体上分布在洋中脊玄武岩(MORB)和岛弧拉斑玄武岩(IAT)的交界区域。在Nb×2-Zr/4-Y和TiO2-MnO×10-P2O5×10的三角图解中(图8c、d),这些样品分布于正常洋中脊玄武岩(N-MORB)与岛弧拉斑玄武岩(IAT)的区域内,这一显著特征表明拉斑玄武岩兼具洋中脊玄武岩(MORB)和岛弧拉斑玄武岩(IAT)的双重属性。这进一步提示我们,在部分熔融发生之前,原本具备MORB特征的地幔源区很可能受到了俯冲组分的交代变质作用影响。此外,与典型的N-MORB相比,这些样品呈现出更高的Th/Yb比值范围(0.05~0.39),同样为上述结论提供了有力的佐证。
-
前人大量研究结果表明,经过熔体交代的地幔源区普遍显示出较高的Nb/Zr比值和Nb/Y比值。相比之下,受流体交代影响的地幔源区则表现出高Th/Zr和低Nb/Zr的特点,这些特征有助于我们区分不同交代过程对地幔源区的影响。本次研究的红山梁组拉斑玄武岩具有较低的Nb/Zr比值,表明拉斑玄武岩起源于受俯冲流体交代的亏损地幔源区的部分熔融。
-
图6 红山梁组玄武岩岩石成因判别图Rb/Y-Nb/Y(a,据Temel et al.,1998)和Nb/Yb-TiO2/Yb(b,据Pearce,2008)
-
Fig.6 Rock genesis discrimination diagram of Hongshanliang Formation basalt Rb/Y-Nb/Y (a, after Temel et al., 1998) and Nb/Yb-TiO2/Yb (b, after Pearce, 2008)
-
图7 红山梁组火山岩源区成因判别图La/Sm-Sm/Yb(a,据Zhao Junhong et al.,2007), La/Yb-Zr/Nb(b,据Aldanmaz et al.,2008)
-
Fig.7 Genetic discrimination diagram of Hongshanliang Formation volcanics source area La/Sm-Sm/Yb (a, after Zhao Junhong et al., 2007) and La/Yb-Zr/Nb (b, after Aldanmaz et al., 2008)
-
图8 白碱滩北部红山梁组玄武岩构造环境判别图Zr-Zr/Y(a,据Pearce et al.,1979); Nb×2-Zr/4-Y(b,据Vermeesch,2006); Ti/50-Sm×50-V(c,据Meschede,1986)和TiO2-MnO×10-P2O5×10(d)
-
Fig.8 Discrimination diagram of the tectonic environment of Hongshanliang Formation basalt in the northern part of Baijiantan Zr-Zr/Y (a, after Pearce et al., 1979) ; Nb×2-Zr/4-Y (b, after Vermeesch, 2006) ; Ti/50-Sm×50-V (c, after Meschede, 1986) and TiO2-MnO×10-P2O5×10 (d)
-
5.2 碱性玄武岩
-
相较于拉斑玄武岩,碱性玄武岩样品中的TiO2含量更高,为1.74%~1.88%,同时Ti/V比值也显著增大(64.53~102.47)。此外,碱性玄武岩的稀土配分模式呈现右倾型,与典型的OIB玄武岩相似(图4a)。值得注意的是,这些碱性玄武岩样品并未出现明显的Nb、Ta亏损,且其Ti/Y比值为290~854,远高于大陆地壳的Ti/Y比值(270)(Taylor et al.,1995)。从这些特征也可以看出红山梁组的碱性玄武岩样品并未受到大量陆壳物质的混染。
-
微量元素比值进一步体现了红山梁组碱性玄武岩与OIB(洋岛玄武岩)的亲缘性(Wilson,1989)。本次研究的样品显示出与OIB相似的Ce/Nb比值(1.92~2.35,OIB为1.63~2.11),Hf/Nb比值(0.11~0.17,OIB为0.14~0.19),以及Zr/Nb比值(5.73~7.30,OIB为5.8~8.08)。此外,碱性玄武岩样品还具有高TiO2/Yb和Nb/Yb比值,整体位于OIB的演化线内(图7b),进一步支持碱性玄武岩来自更深的地幔源区。在岩浆分离结晶过程中,Sm/Yb和La/Sm的比值变化不明显,这使得La/Sm-Sm/Yb图解成为分析部分熔融程度的理想工具。在La/Sm-Sm/Yb图解中,碱性玄武岩5件样品位于尖晶石二辉橄榄岩和石榴子石二辉橄榄岩演化曲线之间,并较为接近OIB区域,表明红山梁组碱性玄武岩地幔源区可能由石榴子石和尖晶石二辉橄榄岩共同组成,并且经历了5%~10%的部分熔融过程。也与La/Yb-Zr/Nb图解中的投影结果是相同的(图7b)。
-
红山梁组碱性玄武岩样品的La/Ta比值为16.21~20.15,La/Sm比值为4.54~5.40,接近地幔柱源区特征(La/Ta=8~15,La/Sm<5),表明红山梁组碱性玄武岩源区有深部地幔物质加入。将碱性玄武岩的不相容元素比值与各类地幔储库中的不相容元素比值进行对比,发现碱性玄武岩的比值与典型的洋岛玄武岩(OIB)比值高度相似(表1),这也说明红山梁组碱性玄武岩岩浆主要来源于富集地幔源区。
-
在Zr-Zr/Y图中(图8a),碱性玄武岩主要落于板内玄武岩区,而在Ti/50-50×Sm-V三角图解中(图8b),碱性玄武岩的样品整体落入OIB区域内,这与2×Nb-Zr/4-Y及TiO2-MnO×10-P2O5×10(图8c、d)的投图结果一致。此外,在Ti-V图解(图9a)和Nb/Yb-Th/Yb构造判别图解中(图9b)样品落在OIB区域内。这些特征均表明红山梁组碱性玄武岩来自较深的OIB储库,很可能与地幔热柱有关。
-
6 构造意义
-
西准噶尔在古生代经历了多期次的俯冲、碰撞、增生等过程,并伴有洋脊俯冲、板片后撤、海山/大洋高原俯冲增生过程(Zhang Jien et al.,2023; 杨高学等,2023),进而导致在西准噶尔发育不同时代的蛇绿岩及不同类型的花岗岩(张蕊等,2024)。泥盆纪,在西准噶尔地区发育一系列洋内弧(Xiao Wenjiao et al.,2004,2008,2009a,2010),另外,洋盆内部还可能存在洋岛/海山(Wang Zhihong et al.,2003;Yang Gaoxue et al.,2019; 支倩,2022)。红山梁组火山岩的地质时代为374.6~365.9 Ma(李永军等,2024),表明其形成于上述大地构造背景。结合红山梁组地层的相关研究及本文火山岩地球化学特征,认为红山梁组的拉斑玄武岩应形成于俯冲消减带之上的弧后盆地。在弧后盆地初始扩张时期,随着洋壳的持续俯冲,导致弧后伸展,诱发弧后盆地的区域岩浆作用,即红山梁组的拉斑玄武岩。与此同时,在弧后盆地发育晚泥盆世的海山/洋岛,这与西准噶尔蛇绿岩中碱性玄武岩的研究结果相吻合。西准噶尔蛇绿岩中普遍发育碱性玄武岩,具有OIB属性,其轻稀土元素强烈富集,无明显的Nb、Ta负异常,前人研究认为这些碱性玄武岩形成于海山或大洋岛屿环境(杨高学,2016)。最终,随着弧后盆地大洋板片的持续的俯冲,洋盆最终关闭,这些拉斑玄武岩和海山/洋岛最终被保留在包古图构造带中。
-
图9 红山梁组玄武岩构造判别图解Ti/1000-V(a,据Shervais,1982)和Nb/Yb-Th/Yb(b,据Pearce et al.,2005)
-
Fig.9 Annotation on the discrimination diagram of Hongshanliang Formation basalt structure Ti/1000-V (a, after Shervais, 1982) and Nb/Yb-Th/Yb (b, after Pearce et al., 2005)
-
图10 晚泥盆世构造演化模式示意图(修改自杨高学,2012)
-
Fig.10 Schematic diagram of Late Devonian tectonic evolution model (modified from Yang Gaoxue, 2012)
-
7 结论
-
(1)红山梁组总体为一套火山岩-火山碎屑-正常沉积碎屑岩,通过地球化学岩石分析将玄武岩进一步分为拉斑玄武岩和碱性玄武岩。
-
(2)红山梁组拉斑玄武岩SiO2含量为45.93%~55.72%,普遍具有较低的TiO2含量,为0.30%~1.16%,具有N-MORB和IAT的典型特征,源自尖晶石二辉橄榄岩5%~10%的熔融,可能形成于弧后盆地环境。
-
(3)红山梁组碱性玄武岩样品的TiO2含量较高,为1.74%~1.88%,强烈富集轻稀土元素和高场强元素,与OIB极为相似。源区组成可能为石榴子石+尖晶石二辉橄榄岩,并发生了5%~10%的熔融,可能形成于大洋板内的海山/洋岛环境。
-
(4)西准噶尔在泥盆纪处于洋内俯冲阶段,同时发育海山/洋岛,而晚泥盆世红山梁组火山岩就是上述地质过程的记录者和见证者。红山梁组为探究包古图构造带前石炭纪的盆地属性及准噶尔洋盆的构造演化提供了资料更新、时代更早的火山岩岩浆作用与构造演化研究的素材和证据。
-
附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202412091?st=article_issue
-
参考文献
-
Aldanmaz E, Yaliniz M K, Güctekin A, Göncüoğlu M C. 2008. Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey: Implications for heterogeneous source contribution during variable stages of ocean crust generation. Geological Magazine, 145(1): 37~54.
-
Buckman S, Aitchison J C. 2004. Tectonic evolution of Paleozoic terranes in West Junggar, Xinjiang, NW China. In: Malpas J, Fletcher C J N, Aitchison J C, eds. Aspects of the Tectonic Evolution of China. London: Geological Society of London, Special Publication, 226: 101~129.
-
Chen Bin, Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar terrane, NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences, 23(5): 691~703.
-
Chen Xuanhua, Yang Nong, Ye Baoying, Wang Zhihong, Chen Zhengle. 2011. Tectonic system and its control on metallogenesis in western Junggar as part of the Central Asia multi-core metallogenic system. Geotectonica et Metallogenia, 35(3): 325~338 (in Chinese with English abstract).
-
Choulet F, Faure M, Dominique C, Chen Yan, Wei Lin, Wang Bo. 2012. From oblique accretion to transpression in the evolution of the Altaid collage: New insights from West Junggar, northwestern China. Gondwana Research, 21(2~3): 530~547.
-
Davidson J P, Arculus R J. 2006. The significance of Phanerozoic arc magmatism in generating continental crust. In: Brown M, Rushmer T, Eds. Evolution and Differentiation of the Continental Crust. Cambridge: Cambridge University Press, 135~172.
-
Duan Fenghao, Li Yongjun, Zhi Qian. 2022. Late Paleozoic multi-stage subduction accretion of the southwestern Central Asian orogenic belt: Insights from the Late Carboniferous-Early Permian granites in the southern West Junggar, NW China. International Geology Review, 64(14): 2051~2073.
-
Geng Hongyan, Sun Min, Yuan Chao, Xiao Wenjiao, Xian Weisheng, Zhao Guochun, Zhang Lifei, Wong K, Wu Fuyuan. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chemical Geology, 266(3-4): 364~389.
-
Geng Hongyan, Sun Min, Yuan Chao, Zhao Guochun, Xiao Wenjiao. 2011. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications, Journal of Asian Earth Sciences, 42(5): 854~866.
-
Irvine T N, Baragar W R A F. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523~548.
-
Li Ganyu, Li Yongjun, Wang Xuance, Yang Gaoxue, Wang Ran, Xiang Kunpeng, Liu Jia, Tong Lili. 2016. “Identifying Late Carboniferous sanukitoids in Hala'alate Mountain, Northwest China: New constraint on the closing time of remnant ocean basin in West Junggar. ” International Geology Review, 59(9): 1116~1130.
-
Li Yongjun, Li Weidong, Yang Gaoxue. 2021. Devonian-Carboniferous Formation Profile and Regional Correlation in East and West Junggar, Xinjiang. Beijing: Geology Press (in Chinese with English abstract).
-
Li Yongjun, Huang Jiaxuan, Zhu Zhao, Wang Xulong, Peng Nanhe, Zheng Menglin, Yang Gaoxue, Zhang Yueqian. 2024. Establishment of Upper Devonian Hongshanliang Formation and its geologicalsignificance in Baogutu stratigraphic minor-region , West Junggar tectonic belt, Acta Geologica Sinica, 98(4): 1025~1036 (in Chinese with English abstract).
-
Le Maitre R W, ed. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell.
-
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56: 207~218.
-
Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274.
-
Mullen E D. 1983. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53~62.
-
Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14~48.
-
Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69: 33~47.
-
Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmatism. Annual Review of Earth and Planetary Science Letters, 23: 251~285.
-
Pearce J A, Stern R J, Bloomer S H, Fryer P. 2005. Geochemical mapping of the Mariana arcbasin system: Implications for the nature and distribution of subduction components. Geochemistry Geophysics Geosystem, 6(7).
-
Polat A, Hofmann A W. 2003. Alteration and geochemical patterns in the 3. 7~3. 8 Ga Isua greenstone belt, West Greenland. Precambrian Research, 126(3-4): 197~218.
-
Polat A, Appel P W U, Fryer B J. 2011. An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: Implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Research, 20(2-3): 255~283.
-
Shen Ping, Pan Hongdi, Xiao Wenjiao, Chen Xuanhua, Eleonorad S, Shen Yuanchao. 2013. “Two Geodynamic-Metallogenic events in the Balkhash (Kazakhstan) and the West Junggar (China): Carboniferous porphyry Cu and Permian Greisen W-Mo mineralization. ” International Geology Review, 55(13): 1660~1687.
-
Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101~118.
-
Si Guohao. 2021. Genesis and tectonic significance of alkaline basalt in Mayile area, West Junggar. Master degree thesis of Chang'an University (in Chinese with English abstract).
-
Sun Shensu, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sauders A D and Norry M J, eds. Magmatism in the Ocean Basins. London: The Geological Society of London, Special Publications, 42: 313~345.
-
Tang Gongjian, Wang Qiang, Wyman D A, Li Zhengxiang, Zhao Zhenhua, Yang Yueheng. 2012. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 140-141: 86~102.
-
Tang Gongjian, Chung Sunlin, Hawkesworth C J, Cawood P A, Wang Qiang, Wyman D K, Xu Yigang, Zhao Zhenhua. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian orogenic belt, NW China. Earth and Planetary Science Letters, 464: 142~154.
-
Tang Gongjian, Wang Qiang, Wyman D A, Dan Wei. 2019. Crustal maturation through chemical weathering and crustal recycling revealed by Hf-O-B isotopes. Earth and Planetary Science Letters, 524: 115709.
-
Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241~265.
-
Temel A, Gündoğdu M, Gourgaud A. 1998. Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85(1-4): 32
-
Vermeesch P. 2006. Tectonic discrimination of basalts with classification trees. Geochimica et Cosmochimica Acta, 70(7): 1839~1848.
-
Wang Zhihong, Sun Shu, Li Jiliang, Hou Quanlin, Qin Kezhang, Xiao Wenjiao, Hao Jie. 2003. Paleozoic tectonic evolution of the northern Xinjiang, China: Geochemical and geochronological constrains from the ophiolites. Tectonics, 22 (2): 1014~1029.
-
Wilson M. 1989. Igneous Petrogenesis. Dordrecht: Springer Netherlands.
-
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325~343.
-
Xiang Kunpeng, Li Yongjun, Li Zhao, Wang Ran, Yang Gaoxue, Duan Fenghao, Li Ganyu. 2015. LA-ICP-MS zircon age and geochemistry of the Aladeyikesai Formation volcanic rocks in the Halaalate Mountain of West Junggar, Xinjiang, and their tectonic significance. Acta Geologica Sinica, 89(5): 843~855 (in Chinese with English abstract).
-
Xiao Wenjiao, Zhang Lianchang, Qin Kezhang, Sun Shu, Li Jiliang. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia. American Journal of Science, 304(4): 370~395.
-
Xiao Wenjiao, Han Chunming, Yuan Chao, Sun Min, Lin Shoufa, Chen Hanlin, Li Zilong, Li Jialiang, Sun Shu. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences, 32(2-4): 102~117.
-
Xiao Wenjiao, Kroner A, Windley B F. 2009a. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences, 98: 1185~1188.
-
Xiao Wenjiao, Windley B F, Huang Bochun, Han Chunming, Yuan Chao, Chen Hanlin, Sun Min, Sun Shu, Li Jialiang. 2009b. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98: 1189~1217.
-
Xiao Wenjiao, Huang Bochun, Han Chunming, Sun Shu, Li Jiliang. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253~273.
-
Xiao Wenjiao, Santosh M. 2014. The western Central Asian orogenic belt: A window to accretionary orogenesis and continental growth. Gondwana Research, 25: 1429~1444.
-
Xiao Wenjiao, Song Dongfang, Windley B F, Li Jiliang, Han Chunming, Wan Bo, Zhang Jien, Ao Songjian, Zhang Zhiyong. 2019. Research progress on accretion orogeny and mineralization in Central Asia. Scientia Sinica Terrae, 49(10): 1512~1545 (in Chinese with English abstract).
-
Xu Zhao, Han Baofu, Ren Rong, Zhou Yinzhang, Su Li. 2013. Palaeozoic multiphase magmatism at Barleik Mountain, southern West Junggar, Northwest China: Implications for tectonic evolution of the West Junggar. International Geology Review, 55(5): 633~656.
-
Yang Gaoxue. 2012. Geological characteristics and tectonic evolution of Paleozoic ophiolitic melange in western Junggar. Doctor degree thesis of Chang'an University (in Chinese with English abstract).
-
Yang Gaoxue. 2016. Genesis of oceanic island basalt in ophiolitic mélange from core area of Central Asian orogenic belt. Chinese Science Bulletin, 61(34): 3684~3697 (in Chinese with English abstract).
-
Yang Gaoxue. Li Yongjun, Tong Lili, Wang Zuopeng, Xu Qian. 2019. Petrogenesis of pillow basalts in West Junggar, NW China: Constraints from geochronology, geochemistry, and Sr-Nd-Pb isotopes. Geological Journal, 54(4): 1815~1833.
-
Yang Gaoxue, Zhu Zhao, Liu Xiaoyu, Li Hai, Tong Lili. 2023. Ophiolite in West Junggar: Records of the subduction-accretion process in ancient ocean. Acta Geologica Sinica, 97(6): 2054~2066 (in Chinese with English abstract).
-
Yin Jiyuan, Yuan Chao, Sun Min, Long Xiaoping, Zhao Guochun, Wong K P, Geng Hongyan, Cai Keda. 2010. Late Carboniferous high-Mg dioritic dikes in western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Research, 17(1): 145~152.
-
Zhang Chi, Zhai Mingguo, Allen M B, Saunders A D, Wang Guangrei, Huang Xuan. 1993. Implications of Palaeozoic ophiolites from western Junggar, NW China, for the tectonics of Central Asia. Journal of Geological Society, 150(3): 551~561.
-
Zhang Ji'en, Chen Yichao, Xiao Wenjiao, Wakabayashi J, Song Shuaihua, Luo Jun, Zhao Yulong. 2023. Architecture of ophiolitic mélanges in the Junggar region, NW China. Geosystems and Geoenvironment, 2(3): 100175.
-
Zhang Rui, Yin Jiyuan, Qiu Liang, Tao Zaili, Yang Fan, Chen Wen. 2024. Geochemistry and zircon Hf-O isotopic characteristics of Late Carboniferous I-type granite in northern West Junggar orogenic belt: Insights into petrogenesis and tectonic processes. Acta Geologica Sinica, 98(4): 1146~1163 (in Chinese with English abstract).
-
Zhao Junhong, Zhou Meifu. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Research, 152(1-2): 27~47.
-
Zheng Bo, Han Baofu, Wang Zengzhen, Liu Bo, Feng Lixia. 2020. An example of Phanerozoic continental crustal growth: The West Junggar orogenic belt, Northwest China. Lithos, 376: 105745.
-
Zhi Qian. 2022. Subduction and accretion process of Baogutu tectonic magma belt in western Junggar in Late Paleozoic and its geochemical constraints. Doctor degree thesis of Chang'an University (in Chinese with English abstract).
-
Zhi Qian, Li Yongjun, Yang Gaoxue, Duan Fenghao, Tong Lili. 2019. The discovery of 310 Ma back-arc basin basalt in the West Junggar, Xinjiang, NW China and its geological significance. Acta Geologica Sinica (English Edition), 93(2): 496~498.
-
Zhi Qian, Li Yongjun, Duan Fenghao, Tong Lili, Chen Jun, Gao Junbao, Chen Rongguang. 2020. Geochemical, Sr-Nd-Pb and zircon U-Pb-Hf isotopic constraints on the Late Carboniferous back-arc basin basalts from the Chengjisihanshan Formation in West Junggar, NW China. Geological Magazine, 157(11): 1781~1799.
-
Zhi Qian, Li Yongjun, Duan Fenghao, Chen Jun, Gao Junbao, Tong Lili. 2021. Geochronology and geochemistry of early Carboniferous basalts from Baogutu Formation in West Junggar, Northwest China: Evidence for a back-arc extension. International Geology Review, 63(12): 1521~1539.
-
Zhi Qian, Ren Rui, Duan Fenghao, Huang Jiaxuan, Zhu Zhao, Zhang Xinyuan, Li Yongjun. 2024. Genetic mechanism of Late Carboniferous intermediate-acid volcanic rocks in southern West Junggar and its constraints on the closure of the Junggar ocean. Earth Science Frontiers, 31(3): 40~58 (in Chinese with English abstract).
-
陈宣华, 杨农, 叶宝莹, 王志宏, 陈正乐. 2011. 中亚成矿域多核成矿系统西准噶尔成矿带构造体系特征及其对成矿作用的控制. 大地构造与成矿学, 35(3): 325~338.
-
李永军, 李卫东, 杨高学, 计文化, 支倩, 徐倩等. 2021. 新疆东西准噶尔泥盆系—石炭系建组剖面及区域对比. 北京: 地质出版社.
-
李永军, 黄家瑄, 朱钊, 王绪龙, 彭南赫, 郑孟林, 杨高学, 张越迁. 2024. 西准噶尔构造带包古图地层小区上泥盆统红山梁组的建立及地质意义. 地质学报, 98(4), : 1025~1036.
-
司国浩. 2021. 西准噶尔玛依勒地区碱性玄武岩成因及构造意义. 长安大学硕士学位论文.
-
向坤鹏, 李永军, 李钊, 王冉, 杨高学, 段丰浩, 李甘雨. 2015. 新疆西准噶尔哈拉阿拉特山火山岩LA ICP-MS锆石U-Pb年龄、地球化学特征及意义. 地质学报, 89 (05): 843~855.
-
肖文交, 宋东方, Windley B. F, 李继亮, 韩春明, 万博, 张继恩, 敖松坚, 张志勇. 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学: 地球科学, 49(10): 1512~1545.
-
杨高学. 2012. 西准噶尔古生代蛇绿混杂岩地质特征及其构造演化. 长安大学博士学位论文.
-
杨高学. 2016. 中亚造山带核心区蛇绿混杂岩中洋岛玄武岩成因探讨. 科学通报, 61(34): 3684~3697.
-
杨高学, 朱钊, 刘晓宇, 李海, 佟丽莉. 2023. 西准噶尔蛇绿岩: 古大洋俯冲增生过程的记录. 地质学报, 97(6): 2054~2066.
-
张蕊, 尹继元, 邱亮, 陶再礼, 杨帆, 陈文. 2024. 新疆西准噶尔造山带北部晚石炭世I型花岗岩的岩石地球化学和锆石Hf-O同位素特征: 对其岩石成因与构造过程的启示. 地质学报, 98(4): 1146~1163.
-
支倩. 2022. 西准噶尔包古图构造岩浆带晚古生代俯冲增生过程及其地球化学约束. 长安大学博士学位论文.
-
支倩, 任蕊, 段丰浩, 黄家瑄, 朱钊, 张新远, 李永军. 2024. 西准噶尔南部晚石炭世中-酸性火山岩成因机制及其对准噶尔洋闭合时限的约束. 地学前缘, 31(03): 40~58.
-
摘要
红山梁组是准噶尔盆地西北缘包古图构造带新发现的一套最老地层单位,时代为晚泥盆世,以红色硅质岩、凝灰质硅质粉砂岩、玄武岩、安山玄武岩为主。前人有关区内火山岩的岩石地球化学特征及构造演化研究仅限于石炭纪—二叠纪,而红山梁组玄武岩则提供了前石炭纪的重要信息。本组玄武岩可细分为拉斑玄武岩和碱性玄武岩两类。拉斑玄武岩普遍具有较低的TiO2(0.30%~1.16%)、Al2O3(12.80%~18.46%)、较高的TFe2O3(8.97%~13.57%)含量以及Mg#值(42.23~64.37),显示右倾的稀土模式,亏损Nb、Ta、Ti,具有N-MORB和IAT特征,是弧后盆地环境下经俯冲流体交代的尖晶石二辉橄榄岩,在亏损地幔源区发生5%~10%的部分熔融而成;碱性玄武岩普遍具有高TiO2(1.74%~1.88%)、Al2O3(15.92%~18.07%),低TFe2O3(6.39%~7.62%)和Mg#值(41.84~47.13)特征,无明显的Nb、Ta负异常,与OIB极为相似,是石榴子石+尖晶石二辉橄榄岩发生5%~10%部分熔融的产物,可能源自海山/洋岛环境。结合前人研究成果,本文认为准噶尔盆地西北缘在泥盆纪同时发育弧后盆地和海山/洋岛环境两类岩浆活动。
Abstract
The newly discovered Hongshanliang Formation represents the oldest stratigraphic unit within the Baogutu tectonic belt along the northwestern margin of the Junggar basin, with the age of Late Devonian. It is dominated by red siliceous rock, tuffaceous siliceous siltstone, basalt, and andesitic basalt. Previous geochemical and tectonic studies of volcanic rocks in this region were limited to the Carboniferous-Permian period. However, the basalts from the Hongshanliang Formation provide important information about the pre-Carboniferous magmatism. Geochemical analysis reveals two distinct basalt types: tholeiitic and alkaline. Tholeiitic basalts generally are characterized by low TiO2 (0.30%~1.16%), Al2O3 (12.80%~18.46%) contents, high TFe2O3 (8.97%~13.57%) and Mg# (42.23~64.37), and display a right-tilted rare earth element (REE) pattern with depletions in Nb, Ta, and Ti. These geochemical features are consistent with N-MORB and IAT affinities, suggesting fluid activity induced by subduction in a back-arc basin setting. This tectonic environment facilitated a 5%~10% partial melting of spinel lherzolite in a depleted mantle source. Conversely, alkaline basalts display elevated TiO2 (1.74%~1.88%), Al2O3 (15.92%~18.07%) contents, low TFe2O3 (6.39%~7.62%) and Mg# (41.84~47.13), lack distinct negative Nb and Ta anomalies. Their geochemical signature closely resembles OIBs, indicating a 5%~10% partial melting of garnet + spinel lherzolite. This suggests an origin possibly related to a seamount/ocean island setting associated with a mantle plume. Integrating these findings with previous research, this study considers that back-arc basin and mantle plume magmatism developed simultaneously during the Devonian period in the northwestern margin of the Junggar basin.