-
天然气水合物(简称水合物)是一种类冰状的固态化合物,存在于低温和高压环境,主要分布在全球大陆边缘深水盆地和冻土区(Sloan and Koh,2007)。目前,在国际多个海域的钻探发现水合物有孔隙充填型、裂隙充填型和孔隙与裂隙共存三种赋存形态,水合物的不同赋存形态对地层弹性参数与电磁性质影响不同(Dai Jianchun et al.,2004; Lee and Collett,2013; Pan Haojie et al.,2019,2022)。大量研究发现,受裂隙的影响,基于各向同性和各向异性电阻率计算的水合物饱和度差异大(Lee and Collett,2009; 钱进等,2019),如在印度克里希那-噶达瓦里盆地(Krishna-Godavari盆地,以下简称KG盆地)NGHP-01-10A井,利用各向同性的阿尔奇方程和随钻环形电阻率计算的水合物饱和度高达50%,远高于压力取芯计算的饱和度10%~20%,计算出的饱和度差异主要是由于赋存在裂隙内的水合物具有较强的各向异性,使得利用各向同性模型计算的结果偏差大。而孔隙充填型水合物发育在沉积物孔隙空间内,在泥质粉砂和砂质储层内,基于各向同性电阻率模型计算的水合物饱和度与速度、岩芯计算的饱和度相近(王秀娟等,2010; Wang Xiujuan et al.,2011)。因此,识别水合物赋存形态、优选合适岩石物理模型才能准确计算水合物饱和度。
-
利用CT扫描成像技术,通过X射线对岩芯结构进行无损检测,可以识别水合物发育的精确位置以及赋存形态。由于水合物分解吸收热量,岩芯样品出现低温异常,通过红外热成像可以大致识别水合物分布并定性识别水合物赋存(Alliance and Drilling,2003)。因此,岩芯能快速判别水合物赋存形态,但是取芯成本高、难度大,大量钻探井位并没有取芯。为了精准评价水合物储层物性,大量学者研究发现反射地震与随钻测井联合能定性识别水合物赋存类型(宁伏龙等,2013; You Kehua and Flemings,2021; 王秀娟等,2023; 表1)。在中等—高饱和度的裂隙充填型水合物层,电阻率和纵波速度出现高值异常,地震剖面上常呈现弱振幅、地层上拱或BSR上翘等烟囱状反射特征,如韩国郁陵盆地(Kim et al.,2011)、日本南海海槽(Jia Jihui et al.,2017)以及中国南海台西南盆地及琼东南盆地(Sha Zhibin et al.,2015; Deng Wei et al.,2021; Meng Miaomiao et al.,2021;Zhang Wei et al.,2021)。而低饱和度裂隙充填型水合物的地震响应特征不明显,电阻率出现相对高值或高值异常,纵波速度略微增加或无明显变化,如印度KG盆地NGHP-02-17井(Collett et al.,2019)。但无论是砂质还是粉砂质孔隙充填型水合物层,水合物饱和度达中等或较高时,纵波速度和电阻率均增加,地震剖面上出现强振幅异常(Shedd et al.,2010; Boswell et al.,2012,2016; Kang Dongju et al.,2024)。当水合物饱和度较低时,纵波速度和电阻率也明显高于饱和水地层,地震剖面上出现连续BSR和振幅空白,如布莱克海台(Hornbach et al.,2008)。从不同赋存类型、不同饱和度水合物层的测井响应特征看(表1),当水合物饱和度较高时,孔隙和裂隙充填型水合物都有明显的环形电阻率与纵波速度高值异常响应,而水合物饱和度较低时,测井异常不明显,无法识别两者的赋存形态。
-
大量随钻测井测量了不同类型的电阻率,其中环形电阻率分辨率最高,因此,水合物储层评价中多应用环形电阻率进行饱和度定量评价等。而电磁波传播测井对裂隙引起的垂直各向异性有明显的响应,主要表现为在裂隙发育层段不同电阻率曲线发生分离(Lü Ling et al.,1994; Anderson,2001; Ellis and Singer,2007; 陈小磊等,2024)。Cook et al.(2010) 利用NGHP-01-10井的电磁波电阻率数据模拟的水合物饱和度与压力岩芯计算结果吻合,表明电磁波电阻率在水合物赋存类型的识别与评价上有重要作用。在印度KG盆地水合物钻探区,发现了孔隙充填型与裂隙充填型水合物,且采集了齐全的随钻测井数据,尤其是各种电阻率测井数据,前人开展了水合物赋存形态与饱和度评价研究(Collett et al.,2008; Holland et al.,2008; Lee and Collett,2009; 王吉亮等,2013)。本文利用印度KG盆地翔实的电阻率测井数据,分析不同赋存类型水合物层的电磁波电阻率测井与环形电阻率测井响应特征差异,给出一种基于电磁波电阻率测井快速识别水合物赋存类型的方法,并分析影响电磁波电阻率测井的因素。
-
1 印度KG盆地区域概况与钻探认识
-
2015年印度国家水合物项目在KG盆地和Mahanadi盆地共钻探了25口井,主要目标是查明印度海域砂质水合物富集与控制因素。在区域B的大型背斜构造顶部发育一套砂质地层并钻探了12口井(图1a),主要位于背斜构造的东西两侧,其中NGHP-02-16、NGHP-02-17、NGHP-02-20、NGHP-02-23和NGHP-02-24井位于西侧,NGHP-02-14、NGHP-02-15、NGHP-02-18、NGHP-02-19、NGHP-02-21、NGHP-02-22和NGHP-02-25井位于东侧(图1a)。从地震剖面看(图1b),该区域识别出两个强振幅反射界面R1和R2,局部位置反射界面R2与BSR重合(Collett et al.,2019; Saito et al.,2019)。根据自然伽马和电阻率测井响应的变化识别了5个测井单元,R1和R2层段是主要的砂质储层,反射界面R1、R2分别为测井单元R1、R2底界面(Saito et al.,2019)。根据电阻率成像和其他随钻测井数据,认为R1层段及其周围地层为裂隙填充型水合物层,利用阿尔奇方程计算的水合物饱和度为5%~25%(Collett et al.,2019; Pandey and Ojha,2022)。BSR上方R2层段为孔隙充填型水合物层,水合物饱和度高达84%(Collett et al.,2019; Holland et al.,2019; Saito et al.,2019; Ghosh and Ojha,2021)。
-
图1 印度KG盆地17井、23井井位分布以及地震、测井特征(据Collett et al.,2019; Hsiung et al.,2019; Zhou Jilin et al.,2023修改)
-
Fig.1 Locations, seismic reflection profile and logging responses of sites 17 and 23 in the KG basin, India (modified from Collett et al., 2019; Hsiung et al., 2019; Zhou Jilin et al., 2023)
-
(a)—区域B及钻探井位位置图(据Zhou Jilin et al.,2023);(b)—过17井与23井地震剖面(据Hsiung et al.,2019);(c)—随钻测井曲线,包括井径、伽马、密度、环形电阻率及饱和水电阻率、纵波速度及饱和水纵波速度和电阻率成像测井(据Collett et al.,2019)
-
(a) —locations of area B and drill sites (after Zhou Jilin et al., 2023) ; (b) —seismic reflection profile through sites 17 and 23 (after Hsiung et al., 2019) ; (c) —LWD log, including caliper, gamma, density, ring resistivity and resistivity of water-saturated sediments, P-wave velocity and P-wave velocity of water-saturated sediments, and resistivity image (after Collett et al., 2019)
-
从背斜脊部西侧NGHP-02-17和NGHP-02-23井(简称17井与23井)看,两口井水合物充填类型相似,既发育了孔隙充填型水合物又发育了裂隙充填型水合物。从17井和23井随钻测井曲线看(图1c),在150~240 m,环形电阻率约为2~3 Ω·m,结合电阻率成像测井、压力岩芯和X射线岩芯扫描表明该层段发育了近垂直裂隙充填型水合物(Collett et al.,2019; Holland et al.,2019)。Joshi et al.(2019)采用各向异性的速度模型计算17井的水合物饱和度,裂隙充填型水合物段饱和度整体低于10%,与压力岩芯结果相符。在274~290 m砂质储层R2附近,环形电阻率测井最高达110 Ω·m,纵波速度高达3.0 km/s,利用阿奇公式计算的水合物饱和度高达80%(Collett et al.,2019)。该层段电阻率成像测井分析未发现垂直方向的裂隙,只发现大量水平层理,结合岩芯样品的孔隙水氯离子浓度分析以及常规岩芯的红外扫描认为该层段为高饱和度孔隙填充型水合物(Collett et al.,2019; Holland et al.,2019)。
-
在17井和23井解释的裂隙充填型水合物层内(图1c,绿色区域),从环形电阻率与纵波速度测井看,存在多个薄层环形电阻率与纵波速度高值异常,该异常与低饱和度孔隙充填型水合物相似。该现象表明现有的水合物赋存类型识别手段存在不足,加强对裂隙充填型和孔隙充填型水合物的多种电阻率分析,能更好识别水合物赋存类型。印度KG盆地17井和23井水合物钻探、取芯等各种资料齐全且水合物赋存形态类型多样,采集了不同源距、不同频率的电磁波电阻率测井,是利用电阻率测井分析和识别不同水合物赋存类型的理想井位。
-
2 数据与方法
-
2.1 电磁波传播测井测量原理
-
电磁波传播测井(electromagnetic propagation log)是以射频的方式向地层发射电磁波,电磁波在地层中传播时其参数会根据地层介质的电磁性质发生改变,根据电磁波参数变化计算穿过地层的视电阻率。电磁波传播测量仪器基础单元是1个发射极与2个接收极组成的三线圈系(图2a)。T为发射极,Ra为近接收极,Rb为远接收极,每个发射线圈都与井孔垂直。发射极从井孔向周围地层发射电磁波,形成的感应电动势在接收极被接收(Fredericks et al.,1989)。电磁波在地层中传播时,能量不断被地层吸收而减弱,远近两个接收极接收到的电动势有明显不同,体现在幅度比(H1/H2)与相位差上(Φ1-Φ2)(贾将等,2022)。电磁波传播测井的基本原理是电磁感应,根据麦克斯韦方程组推导出两个接收线圈幅度比与相位差关于地层电导率的函数,转换得到地层的衰减电阻率(attenuation resistivity,用简写A表示)和相位电阻率(phase resistivity,用简写P表示),两者统称电磁波电阻率。
-
2.2 电磁波传播电阻测井分析
-
水合物随钻测井通常采用阵列补偿式多发双接收电磁波传播仪器(图2b),阵列测量利用多个测点的数据来提高信号质量、减少噪音干扰(Egbert,2002)。以斯伦贝谢电磁波传播测量仪器为例,是一个五发双收线圈系,五个发射极距离测量中点的距离从上到下分别为40 in、28 in、16 in、22 in、34 in(1 in=2.54 cm)不同源距(图2b),主要发射低频400 kHz(用L表示)和高频2 MHz(用H表示)两个频率的电磁波。不同发射极均可以发射两种频率的电磁波,1次测量就可以得到20种电磁波电阻率,用A/P—L/H表示,其中A、P分别表示衰减电阻率和相位电阻率,L、H分别表示低频400 kHz和高频2 MHz,—表示源距。20种电磁波电阻率分别为五个源距的高频2 MHz衰减电阻率(A40H、A34H、A28H、A22H、A16H)、五个源距的低频400 kHz衰减电阻率(A40L、A34L、A28L、A22L、A16L)、五个源距的高频2 MHz相位电阻率(P40H、P34H、P28H、P22H、P16H)以及五个源距的低频400 kHz相位电阻率(P40L、P34L、P28L、P22L、P16L)。
-
图2 电磁波测井仪器基础结构
-
Fig.2 Infrastructure for propagation measurements
-
(a)—电磁波传播测量仪器基础单元,揭示电磁波在地层中传播的特性;(b)—斯伦贝谢电磁波传播测量仪,包括五个发射极与两个接收极
-
(a) —basic unit of propagation measurements, revealing the characteristics of electromagnetic wave propagation in the stratum; (b) —schlumberger propagation measuring instrument, consists of five transmitters and two receivers
-
在印度KG盆地17井和23井,利用斯伦贝谢EcoScope随钻测井工具采集了2 MHz和400 kHz的40 in、28 in、16 in、22 in、34 in 源距的电磁波电阻率数据(Collett et al.,2019)。为了确定水合物层分布,利用阿尔奇方程(Archie,1942)计算了饱和水的电阻率R0,方程如下:
-
其中,Rw是地层饱和水电阻率(Ω·m),φ为地层孔隙度(%),a和m为阿尔奇常数,利用电阻率与孔隙度交会拟合得到(Zhu Mangzheng et al.,2010)。图3为随钻电磁波电阻率测井曲线,在裂隙充填型与孔隙充填型水合物层,电磁波电阻率明显高于饱和水电阻率R0,表明电磁波电阻率在水合物的识别上与环形电阻率响应一致。但是在孔隙充填型水合物层,不同频率、不同源距的电磁波电阻率耦合较好,近似重合,而在裂隙充填型水合物层,不同频率、源距的电磁波电阻率发生了不同程度的分离。
-
2.3 电阻率参数选择
-
2.3.1 电磁波电阻率
-
从印度KG盆地17井和23井随钻电磁波电阻率测井曲线看(图3),不同频率和不同源距的电磁波电阻率在裂隙充填型水合物层的分离程度也各不相同。以17井的裂隙水合物层为例,将裂隙充填型水合物层中四个明显的响应峰值由上到下进行编号(①②③④),低频衰减电阻率(A—L)相比于饱和水电阻率有明显的高值异常,但在四个响应尖峰处都没有出现分离现象,没有裂隙响应特征;高频衰减电阻率(A—H)在①④尖峰处重合,而在②③尖峰处出现分离现象,并且②号尖峰分离现象十分明显。低频相位电阻率分离情况(P—L)与高频衰减(A—H)类似,②③出现分离现象,但分离程度低;高频相位电阻率(P—H)在四个尖峰处都出现了分离现象。通过上述分析可知,与低频电磁波电阻率相比,高频电磁波电阻率在裂隙地层更容易出现分离现象,分离现象的程度也更大,更能反映裂隙地层的电磁各向异性。同时,从电磁波电阻率曲线分离程度看,曲线分离程度与测量源距有关,通常电阻率异常表现为:16 in<22 in<28 in<34 in<40 in。因此,选用高频电磁波电阻率(A/P—H)分析各向异性时,选用16 in和40 in源距的电阻率(A16H、A40H、P16H以及P40H)就能更直观地观测到分离程度的大小。
-
2.3.2 环形电阻率
-
环形电阻率(RING)常被用来进行水合物识别、饱和度定量计算,表2为斯伦贝谢电磁波传播测井仪和环形电阻率的测量参数。从表2看,环形电阻率的垂直分辨率比电磁波电阻率高几倍,表明环形电阻率对水平电阻异常有较敏感的响应,对高角度裂隙引起的地层电磁性质不敏感,而电磁波电阻率对裂隙较敏感。因此,把环形电阻率与电磁波传播测量中对垂直各向异性最为敏感的40 in源距的高频电磁波电阻率(A40H与P40H)相联合,可以有效区分地层电磁性质差异,从而达到识别水合物赋存类型。
-
3 结果
-
3.1 联合测井响应特征
-
通过分析不同电磁波电阻率响应特征,对比环形电阻率和电磁波电阻率的测量参数,选取高频相位与衰减电阻率(A40H和P40H)与环形电阻率(RING)联合分析17井和23井裂隙充填型与孔隙充填型水合物层的响应(图4a)。从图4看,在饱和水地层,相位和衰减电阻率与环形电阻率比值(即A40H/RING和P40H/RING)均为1,表明环形电阻率与A40H和P40H电阻率值近似相等,将饱和水地层的电阻率比值1作为参考分析不同赋存类型水合物层A40H、P40H电阻率与环形电阻率之间的关系。在裂隙充填型水合物地层,由于裂隙导致地层的各向异性,电磁波电阻率明显高于环形电阻率,在17井和23井,其比值远大于1,在17井海底以下深度182~187.5 m处,利用40 in源距采集的高频衰减电阻率测量值达70 Ω·m,而源距40 in采集的高频相位电阻率测量值达60 Ω·m,最大的尖峰响应处电磁波电阻率与环形电阻率比值高达11(图4a),表明电磁波电阻率远大于环形电阻率。
-
图3 印度KG盆地17井和23井衰减、相位电磁波电阻率测井曲线
-
Fig.3 Two electromagnetic wave resistivities (attenuation resistivity and phase resistivity) of sites 17 and 23 in the KG basin, India
-
A—衰减电阻率;P—相位电阻率;L—低频400 kHz;H—高频2 MHz;R0—饱和水电阻率
-
A—attenuation resistivity; P—phase-shift resistivity; L—low frequency (400 kHz) ; H—high frequency (2 MHz) ; R0—resistivity of water-saturated sediments
-
在孔隙充填型水合物地层,环形电阻率值明显大于电磁波电阻率,电磁波电阻率与环形电阻率的比值整体明显小于1,局部比值为0.1(图4a)。从局部放大的环形电阻率与相位和衰减电阻率对比看(图4b、c),在多个层呈明显的尖峰状响应,环形电阻率出现明显高值异常,主要是由于该段出现细砂和粉砂质黏土的互层导致(Holland et al.,2019)。在细砂层内的水合物饱和度较高,约为65%~85%,而粉砂质黏土层的水合物饱和度约为10%(Collett et al.,2019)。由于泥砂互层局部较薄,环形电阻率的垂直分辨率达5~8 cm,因此能清晰地刻画不同水平地层间的电阻率变化,从而表现出尖峰响应,而电磁波电阻率分辨率明显降低(表2),受垂直分辨率的影响,测量的各种电磁波电阻率值低于环形电阻率。
-
3.2 多参数交会特征分析
-
利用电磁波电阻率(P40H、P16H、A40H)与环形电阻率(RING)测井曲线,对不同赋存类型水合物层进行交会分析(图5)。如果两种电阻率无明显区别,则与y=x线性关系耦合,反之出现向上或向下偏离。饱和水地层各种电阻率相近,交会分布在(1,1)附近的y=x上。从17井(图5a)和23井(图5e)16 in与40 in源距高频相位电阻率(P16H与P40H)的交会图看,饱和水地层与孔隙充填型水合物层主要沿y=x分布,表明不同源距地电磁波电阻率在饱和水层和孔隙充填型水合物层近似重合,而裂隙充填型水合物层明显向y=x上方偏离,表明在裂隙充填型水合物层不同源距的电磁波电阻率会发生分离。从17井(图5c、d)和23井(图5f、g)电磁波电阻率与环形电阻率(P40H、A40H与RING)的交会图看,孔隙充填型水合物层向y=x下方偏离,环形电阻率值大于电磁波电阻率;而裂隙充填型水合物层大部分向y=x上方偏离,电磁波电阻率大于环形电阻率。17井和23井16 in、40 in源距高频相位电阻率差值与40 in源距高频相位电阻率比值(P40H-P16H)/P40H可以表示高频相位电阻率的分离程度大小,从其与环形电阻率(RING)的交会图(图5d、h)发现裂隙充填型水合物层与孔隙充填型水合物层区分明显,表明此组电阻率交会参数容易识别水合物赋存类型差异,参数物理意义本质是不同电阻率偏离差异。
-
图4 印度KG盆地17井和23井环形电阻率与电磁波电阻率曲线及比值
-
Fig.4 Logs and ratio of ring resistivity to electromagnetic wave resistivity in sites 17 and 23 in the KG basin, India
-
(a)—17井、23井饱和水电阻率、环形电阻率、高频衰减与相位电阻率以及高频衰减与相位电阻率与环形电阻率比值;(b)—17井孔隙充填型水合物层电阻率曲线放大图;(c)—23井孔隙充填型水合物层电阻率曲线放大图;A40H—40 in源距高频衰减电阻率;P40H—40 in源距高频相位电阻率;RING—环形电阻率
-
(a) —water-saturated resistivity, ring resistivity, high frequency attenuation and phase resistivity and the ratio of high frequency attenuation and phase resistivity to ring resistivity in sites 17 and 23; (b) —enlarged resistivity curve of pore-filling gas hydrate layer in site17; (c) —enlarged resistivity curve of pore-filling gas hydrate layer in site 23; A40H—attenuation measurement made at 400 kHz and 40-inch source and receiver spacing; P40H—phase-shift measurement made at 400 kHz and 40-inch source and receiver spacing; RING—ring resistivity
-
裂隙倾角是影响电磁波电阻率的重要参数,根据印度KG盆地电阻率成像统计了裂隙与地层倾角的分布(图6),在孔隙充填型水合物层,识别出大量倾角小于10°的地层,不发育高角度裂隙,在裂隙充填型水合物层,17井发育大量倾角大于80°的近垂直裂隙,23井的裂隙倾角在40°~90°都有分布。选用23井来分析不同裂隙倾角对电磁波电阻率的影响。
-
图5 印度KG盆地17井和23井多种电阻率交会图
-
Fig.5 Multiple resistivity crossplot for sites 17 and 23 in the KG basin, India
-
(a、e)—17井、23井P40H与P16H交会;(b、f)—17井、23井RING与P40H交会;(c、g)—17井、23井RING与A40H交会;(d、h)—17井、23井RING与(P40H-P16H)/P40H交会;RING—环形电阻率;A40H—40 in源距高频衰减电阻率;P16H—16 in源距高频相位电阻率;P40H—40 in源距高频相位电阻率
-
(a, e) —crossplot of P40H and P16H in sites 17 and 23; (b, f) —crossplot of RING and P40H in sites 17 and 23; (c, g) —crossplot of RING and A40H in sites 17 and 23; (d, h) —crossplot of RING and (P40H-P16H) /P40H in sites 17 and 23; RING—ring resistivity; A40H—attenuation measurement made at 400 kHz and 40-inch source and receiver spacing; P16H—phase-shift measurement made at 400 kHz and 16-inch source and receiver spacing; P40H—phase-shift measurement made at 400 kHz and 40-inch source and receiver spacing
-
图6 根据电阻率成像测井统计的印度KG盆地17井和23井倾角属性图(据Collett et al.,2019修改)
-
Fig.6 True dip size distribution of sites 17 and 23 in the KG basin, India, derived from resistivity at bit (RAB) image (modified from Collett et al., 2019)
-
将23井裂隙分为0°~30°、30°~60°、60°~80°和80°~90°四个区间加入电阻率交会图(图7),发现近垂直裂隙(80°~90°)对电磁波电阻率响应最为明显,电阻率值最高,向上偏离y=x的程度最大,60°~80°裂隙同样有电阻率高值异常,总体在y=x上方分布,但向上偏离y=x的程度小于近垂直裂隙,倾角小于60°的裂隙主要沿y=x分布,且部分交会点与饱和水层重叠。结合倾角属性与电磁波电阻率发现,裂隙倾角越大,电磁波电阻率的响应越明显,分离程度越大,当裂隙倾角小于60°时,电磁波电阻率明显减小,分离现象不明显。
-
4 讨论
-
4.1 电磁波电阻率的影响因素
-
裂隙倾角与水合物饱和度影响裂隙充填型水合物层的电磁性质,在大斜度井中,人们发现在穿过地层边界测得的电阻率急剧增加(Ellis and Singer,2007),是电磁波传播测井对地层各向异性的响应。通过模拟2 MHz电磁波传播测量对不同倾角地层的响应,发现当倾角大于45°时,电磁波电阻率开始升高,当倾角大于60°后,不同源距的电磁波电阻率开始出现分离,并在90°时达到最大(Bonner et al.,1995; 许泽瑞等,2012),与23井含倾角属性电阻率交会(图7)特征一致。17井在裂隙充填型水合物层发育大量近垂直裂隙,但电磁波电阻响应集中在几个区间,可能受水合物的富集程度影响。
-
利用电阻率交会图联合分析水合物赋存类型时(图5),不是按照y=x来进行严格区分,不同电阻率的交会都出现了不同性质地层相互重合以及交会点的异常分布,例如裂隙充填型水合物层沿y=x分布且部分交会点与饱和水层重合,部分孔隙充填型水合物层分布在y=x上方。以23井为例,从联合电阻率曲线(图4)可以看出,并不是整个裂隙充填型水合物层都是高电磁波电阻率,电阻率响应异常主要集中在160~175 m和180~205 m层段。其余层电阻率值为1~2 Ω·m,与饱和水层电阻率相近。在180~205 m层段,电阻率出现高值异常,但电磁波电阻率与环形电阻率相差不大,近似重合,在电阻率交会图上此段交会点沿y=x分布。通过上述分析,导致出现交会异常的原因有三点:① 裂隙在地层中分布不均一,使地层电磁垂直各向异性也不均一;② 低角度裂隙的电磁各向异性微弱;③ 水合物饱和度低,电阻率低。
-
孔隙充填型水合物层交会点少数分布在y=x上方,对应电阻率峰值响应的低谷(图4b、c),与电磁波传播测量和环形电阻率测量的水平各向异性响应差异有关,环形电阻率的高垂直分辨率(表2)使其能清晰刻画水平方向电阻率变化,而电磁波传播测量垂直分辨率相对较低,测得的电阻率相对平均。在泥砂互层的情况下(Holland et al.,2019),环形电阻率对高阻层和低阻层同样敏感,导致环形电阻率在低阻层的响应小于电磁波电阻率,这也使得图5h中部分低RING的孔隙充填型水合物层交会点与裂隙充填型水合物层交会点重合。在17井的电磁波电阻率与环形电阻率交会图(图5b、c)中,有一串连续的低环形电阻率孔隙充填型水合物层交会点呈现裂隙充填型水合物交会特征,这些点位于饱和水层与孔隙充填型水合物层的界面(图4b虚线框处),是低电阻向高电阻的突变导致的交会误差。
-
图7 印度KG盆地23井含倾角属性与多电阻率交会图
-
Fig.7 Multiple resistivity crossplot of site 23 in the KG basin, India, with dip characteristics
-
RING—环形电阻率;A40H—40 in源距高频衰减电阻率;P16H—16 in源距高频相位电阻率;P40H—40 in源距高频相位电阻率
-
RING—ring resistivity; A40H—attenuation measurement made at 400 kHz and 40-inch source and receiver spacing; P16H—phase-shift measurement made at 400 kHz and 16-inch source and receiver spacing; P40H—phase-shift measurement made at 400 kHz and 40-inch source and receiver spacing
-
4.2 多种水合物赋存类型的电阻率联合响应
-
自然界中钻探发现的水合物赋存形态、饱和度、厚度和储层类型差异较大,不同赋存形态与饱和度的水合物层的电磁性质不同,反映出的电阻率测井响应也有所区别。通过分析17井与23井的电磁波电阻率和环形电阻率,提出的基于电磁波电阻率与环形电阻率联合识别水合物赋存形态的方法,能有效识别两口井中低饱和度裂隙充填型与高饱度孔隙充填型水合物层(Collett et al.,2019; Holland et al.,2019; Saito et al.,2019)。为了验证该方法是否适用于其他不同饱和度、不同赋存类型水合物,对中国南海北部和新西兰西库朗伊俯冲带的两口井进行水合物赋存类型识别。
-
GMGS5-W09是位于中国南海北部琼东南盆地气烟囱发育区的一个水合物钻探井位,从取芯结果来看,在GMGS5-W09井灰色黏土为主的沉积物中,获得了块状、脉状、结节状等多种裂隙充填型水合物。通过孔隙水氯离子浓度计算的水合物饱和度在40%左右,最高可达80%( Liang Jinqiang et al.,2019; Wei Jiangong et al.,2019),是典型的高饱和度裂隙充填型水合物。从GMGS5-W09井电磁波电阻率和环形电阻率分析看(图8),当深度达到60 m后,各电阻率异常迅速升高,表明是高饱和度水合物层。环形电阻率在10~30 Ω·m之间,电磁波电阻率在30~70 Ω·m之间,电磁波电阻率远大于环形电阻率。16 in与40 in源距高频相位电阻率在水合物层发生分离,P40H普遍高于P16H,与低饱和度裂隙充填型水合物电阻率响应特征一致。从新西兰西库朗伊俯冲带边缘U1517井看,随钻测井电阻率和速度测井表明在130~145 m为低饱和度孔隙充填型水合物,饱和度为10%~20%(陈杰等,2020)。从成像电阻率测井统计的倾角属性看,井主要穿过倾角小于20°的地层,高角度裂隙不发育(Pecher et al.,2022)。从电磁波电阻率和环形电阻率看(图8),环形电阻率在1.7~3.0 Ω·m之间,不同源距的电磁波电阻率在1.5~2.0 Ω·m之间,耦合较好,电磁波电阻率小于环形电阻率。
-
图8 不同赋存类型、不同饱和度水合物典型井位多电阻率响应特征
-
Fig.8 Multiple resistivity characteristics of typical sites of gas hydrate with different filling types and saturation
-
(a)—印度KG盆地NGHP-02-17井与NGHP-02-23井低饱和度裂隙充填型水合物层电阻率测井曲线;(b)—中国南海琼东南盆地GMGS5-W09井高饱和度裂隙充填型水合物层电阻率测井曲线;(c)—新西兰希库朗伊U1517井低饱和度孔隙充填型水合物层电阻率测井曲线;(d)—印度KG盆地NGHP-02-17井与NGHP-02-23井高饱和度孔隙充填型水合物层电阻率测井曲线;R0—饱和水电阻率;RING—环形电阻率;A40H—40 in源距高频衰减电阻率;P16H—16 in源距高频相位电阻率;P40H—40 in源距高频相位电阻率
-
(a) —resistivity logs of low saturation fracture-filling gas hydrate in sites NGHP-02-17 and NGHP-02-23 of the KG basin, India; (b) —resistivity logs of high saturation fracture-filling gas hydrate in site GMGS5-W09 of the Qiongdongnan basin, South China Sea; (c) —resistivity logs of low saturation pore-filling gas hydrate in site U1517 of Hikurangi, New Zealand; (d) —resistivity logs of high saturation pore-filling gas hydrate in sites NGHP-02-17 and NGHP-02-23 of the KG basin, India; R0—resistivity of water-saturated sediments; RING—ring resistivity; A40H—attenuation measurement made at 400 kHz and 40-inch source and receiver spacing; P16H—phase-shift measurement made at 400 kHz and 16-inch source and receiver spacing; P40H—phase-shift measurement made at 400 kHz and 40-inch source and receiver spacing
-
通过综合分析不同海域中不同饱和度和不同赋存形态的水合物层电阻率,不同饱和度的裂隙充填型水合物都会引起电磁波电阻率的分离,饱和度的大小影响电阻率的大小以及分离发生频次和厚度。在不同饱和度的孔隙充填型水合物层,电磁波电阻率均耦合良好,环形电阻率大于电磁波电阻率。
-
5 结论
-
通过对国际典型海域随钻电磁波电阻率测井研究,结合环形电阻率测井特征,提出了利用电磁波电阻率识别不同赋存类型水合物的异常特征,得到以下结论:
-
(1)通过对比电磁波电阻率与环形电阻率在裂隙充填型水合物层与孔隙充填型水合物层的响应特征差异,提出快速识别水合物赋存类型的方法。在裂隙充填型水合物层,40 in源距高频衰减(A40H)与相位电阻率(P40H)响应远大于环形电阻率; 在孔隙充填型水合物层,环形电阻率则高于所有电磁波电阻率,该方法能有效识别不同饱和度的水合物赋存类型。
-
(2)在电磁波传播测量中,不同源距的低频衰减电阻率(A—L)在裂隙充填型水合物层不发生分离,不同源距的高频衰减电阻率(A—H)、低频相位电阻率(P—L)与高频相位电阻率(P—H)在裂隙充填型水合物层发生分离,源距越大,对裂隙响应越敏感,其中高频相位电阻率(P—H)分离现象最明显。在孔隙充填型水合物层与饱和水层,不同源距的电磁波电阻率均不发生分离,近似重合,表明电磁波电阻率对水平方向电阻率变化响应不敏感,该现象可以作为识别裂隙充填型水合物的特征。
-
参考文献
-
Alliance J O I, Drilling O. 2003. ODP Leg 204 investigates gas hydrates beneath southern Hydrate Ridge, Northeast Pacific Ocean. JOIDES Journal, 29(2): 5~8.
-
Anderson B I. 2001. Modeling and Inversion Methods for the Interpretation of Resistivity Logging Tool Response. Delft University Press.
-
Archie G E. 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(1): 54~62.
-
Bonner S D, Tabanou J R, Wu P T, Seydoux J P, Moriarty K A, Seal B K, Kwok E Y, Kuchenbecker M W. 1995. New 2-MHz multiarray borehole-compensated resistivity tool developed for MWD in slim holes. SPE Annual Technical Conference and Exhibition, SPE-30547.
-
Boswell R, Collett T S, Frye M, Shedd W, McConnell D R, Shelander D. 2012. Subsurface gas hydrates in the northern Gulf of Mexico. Marine and Petroleum Geology, 34(1): 4~30.
-
Boswell R, Shipp C, Reichel T, Shelander D, Saeki T, Frye M, Shedd W, Collett T S, McConnell D R. 2016. Prospecting for marine gas hydrate resources. Interpretation, 4(1): SA13~SA24.
-
Chen Jie, Hu Gaowei, Bu Qingtao, Wang Xiujuan, Jing Pengfei, Liu Changling, Guo Yang, Wang Proud. 2020. Estimated gas hydrate saturation from the reservoir of clayey silt with sandy interlayers atsite U1517, Tuaheni landslide complex on the Hikurangi margin, New Zealand. Marine Geology & Quaternary Geology, (6): 159~168 (in Chinese with English abstract).
-
Chen Xiaolei, Liu Baoyin, Zhou Jun, Zhang Zhongqing, Zhou Zhengzhi, Mao Baohua, Zhang Juan, Wu Yue. 2024. Numerical simulation investigation and geological guided inversion method research of electromagnetic wave resistivity instruments for LWD in anisotropic formations. Progress in Geophysics, (1): 1~12 (in Chinese with English abstract).
-
Collett T S, Riedel M, Cochran J R, Boswell R, Kumar P, Sathe A V. 2008. Indian continental margin gas hydrate prospects: Results of the Indian national gas hydrate program (NGHP) expedition 01. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).
-
Collett T S, Boswell R, Waite W F, Kumar P, Roy S K, Chopra K, Singh K S, Yamada Y, Tenma N, Pohlman J, Zyrianova M, NGHP Expedition 02 Scientific Party. 2019. India National Gas Hydrate Program Expedition 02 summary of scientific results: Gas hydrate systems along the eastern continental margin of India. Marine and Petroleum Geology, 108: 39~142.
-
Cook A E, Anderson B I, Malinverno A, Mrozewski S, Goldberg D S. 2010. Electrical anisotropy due to gas hydrate-filled fractures. Geophysics, 75(6): F173~F185.
-
Dai Jianchun, Xu Haibin, Snyder F, Dutta N. 2004. Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico. The Leading Edge, 23(1): 60~66.
-
Deng Wei, Liang Jinqiang, Zhang Wei, Kuang Zenggui, Zhong Tong, He Yulin. 2021. Typical characteristics of fracture-filling hydrate-charged reservoirs caused by heterogeneous fluid flow in the Qiongdongnan basin, northern South China Sea. Marine and Petroleum Geology, 124: 104810.
-
Egbert G D. 2002. Processing and interpretation of electromagnetic induction array data. Surveys in Geophysics, 23(2): 207~249.
-
Ellis D V, Singer J M. 2007. Well Logging for Earth Scientists. Dordrecht: Springer.
-
Fredericks P D, Hearn F P, Wisler M M. 1989. Formation evaluation while drilling with a dual propagation resistivity tool. SPE Annual Technical Conference and Exhibition, SPE-19622.
-
Ghosh R, Ojha M. 2021. Amount of gas hydrate estimated from rock physics analysis based on morphology and intrinsic anisotropy in area B, Krishna Godavari offshore basin, expedition NGHP-02. Marine and Petroleum Geology, 124: 104856.
-
Holland M, Schultheiss P, Roberts J, Druce M. 2008. Observed gas hydrate morphologies in marine sediments. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).
-
Holland M E, Schultheiss P J, Roberts J A. 2019. Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-02, offshore India. Marine and Petroleum Geology, 108: 407~423.
-
Hornbach M J, Saffer D M, Holbrook W S, van Avendonk H J, Gorman A R. 2008. Three-dimensional seismic imaging of the Blake ridge methane hydrate province: Evidence for large, concentrated zones of gas hydrate and morphologically driven advection. Journal of Geophysical Research: Solid Earth, 113: B07101.
-
Hsiung K H, Saito S, Kanamatsu T, Sanada Y, Yamada Y. 2019. Regional stratigraphic framework and gas hydrate occurrence offshore eastern India: Core-log-seismic integration of National Gas Hydrate Program Expedition 02 (NGHP-02) Area-B drill sites. Marine and Petroleum Geology, 108: 206~215.
-
Jia Jihui, Tsuji T, Matsuoka T. 2017. Gas hydrate saturation and distribution in the Kumano forearc basin of the Nankai Trough. Exploration Geophysics, 48(2): 137~150.
-
Jia Jiang, Song Ruilin, Zhao Jun, Li Yonglong, Wang Yingjie, Tan Jinlin, Huang Jinghao. 2022. Signal measurement system of multi-frequency electromagnetic wave propagation logging. Progress in Geophysics, (6): 2562~2570 (in Chinese with English abstract).
-
Joshi A K, Sain K, Pandey L. 2019. Gas hydrate saturation and reservoir characterization at sites NGHP-02-17 and NGHP-02-19, Krishna Godavari basin, eastern margin of India. Marine and Petroleum Geology, 108: 595~608.
-
Kang Dongju, Zhang Zijian, Lu Jingan, Phillips S C, Liang Jinqiang, Deng Wei, Zhong Chao, Meng Dajiang. 2024. Insights on gas hydrate formation and growth within an interbedded sand reservoir from well logging at the Qiongdongnan basin, South China Sea. Marine Geology, 107343.
-
Kim G Y, Yi B Y, Yoo D G, Ryu B J, Riedel M. 2011. Evidence of gas hydrate from downhole logging data in the Ulleung basin, East Sea. Marine and Petroleum Geology, 28(10): 1979~1985.
-
Lee M W, Collett T S. 2009. Gas hydrate saturations estimated from fractured reservoir at site NGHP-01-10, Krishna-Godavari basin, India. Journal of Geophysical Research: Solid Earth, 114: B07102.
-
Lee M W, Collett T S. 2013. Characteristics and interpretation of fracture-filled gas hydrate-An example from the Ulleung basin, East Sea of Korea. Marine and Petroleum Geology, 47: 168~181.
-
Liang Jinqiang, Zhang Wei, Lu Jingan, Wei Jiangong, Kuang Zhenggui, He Yulin, all particpants of GMGS5 expedition. 2019. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan basin of the South China Sea: Insights from site GMGS5-W9-2018. Marine Geology, 418: 106042.
-
Luling M G, Rosthal R A, Shray F. 1994. Processing and modeling 2-MHz resistivity tools in dipping, laminated, anisotropic formations. SPWLA Annual Logging Symposium. SPWLA, SPWLA-1994-QQ.
-
Meng Miaomiao, Liang Jinqiang, Lu Jingan, Zhang Wei, Kuang Zenggui, Fang Yunxin, He Yunfang, Deng Wei, Huang Wei. 2021. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan basin, Northwest South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 177: 103628.
-
Ning Fulong, Liu Li, Li Shi, Zhang Ke, Jiang Guosheng, Wu Nengyou, Sun Changyu, Chen Guangjin. 2013. Well logging assessment of natural gas hydrate reservoir sand relevant influential factors. Acta Petrolei Sinica, (3): 591~606 (in Chinese with English abstract).
-
Pan Haojie, Li Hongbing, Chen Jingyi, Riedel M, Holland M, Zhang Yan, Cai Shengjuan. 2019. Quantification of gas hydrate saturation and morphology based on a generalized effective medium model. Marine and Petroleum Geology, 113: 1~16.
-
Pan Haojie, Li Hongbin, Wang Xiujuan, Cai Jianchao, Qian Jin, Howard J J, Gao Qiang. 2022. A unified effective medium modeling framework for quantitative characterization of hydrate reservoirs. Geophysics, 87(5): MR219~MR234.
-
Pandey L, Ojha M. 2022. Modeling of borehole washout effects and gas hydrate-filled fractures using NGHP-02 downhole data in Krishna Godavari offshore basin, India. Marine Geophysical Research, 43(3): 32.
-
Pecher I, Crutchley G, Kröger K F, Hillman J, Mountjoy J, Coffin R, Gorman A. 2022. New Zealand's gas hydrate systems. World Atlas of Submarine Gas Hydrates in Continental Margins, 415~424.
-
Qian Jin, Wang Xiujuan, Dong Dongdong, Kalachand S, Ye Yueming. 2019. New estimation of anisotropic saturation and fracture quantitative evaluation for fracture-filling as hydrate reservoir. Progress in Geophysics, (1): 354~364 (in Chinese with English abstract).
-
Saito S, Hsiung K H, Sanada Y, Moe K, Hamada Y, Nakamura Y, Wu Hungyu, Shinmoto Y, Yamada Y, NGHP Expedition 02 JAMSTEC Science Team. 2019. Gas hydrate occurrence and distribution controlled by regional geological structure off eastern India: Estimates from logging-while-drilling in Area-B, National Gas Hydrate Program Expedition 02 (NGHP-02). Marine and Petroleum Geology, 108: 216~225.
-
Sha Zhibin, Liang Jinqiang, Zhang Guangxue, Yang Shengxiong, Lu Jingan, Zhang Zijian, McConnell D R, Humphrey G. 2015. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations. Marine Geology, 366: 69~78.
-
Shedd W, Frye M, Godfriaux P, Dufrene R, McConnell D, Boswell R, Collett T, Mrozewski S, Guerin G, Cook A, Shelander D, Dai J. 2010. Gulf of Mexico gas hydrates joint industry project leg II: Results from the walker ridge 313 site. Offshore Technology Conference, OTC-20806.
-
Sloan Jr E D, Koh C A. 2007. Clathrate Hydrates of Natural Gases. CRC Press.
-
Wang Jiliang, Wang Xiujuan, Qian Jin, Wu Shiguo. 2013. Anisotropic analysis and saturation estimation of gas hydrate filled in fractures: A case of site NGHP01-10D, offshore eastern India. Chinese Journal of Geophysics, (4): 1312~1320 (in Chinese with English abstract).
-
Wang Xiujuan, et al. 2023. Characteristics and Quantitative Evaluation of Gas Hydrate Reservoirs. Beijing: Science Press (in Chinese with English abstract).
-
Wang Xiujuan, Wu Shiguo, Liu Xuewei, Guo Yiqun, Lu Jingan, Yang Shengxiong, Liang Jinqiang. 2010. Estimation of gas hydrate saturation based on resistivity logging and analysis of estimation error. Geoscince, (5): 993~999 (in Chinese with English abstract).
-
Wang Xiujuan, Hutchinson D R, Wu Shiguo, Yang Shengxiong, Guo Yiqun. 2011. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea. Journal of Geophysical Research: Solid Earth, 116: B05102.
-
Wei Jiangong, Liang Jinqiang, Lu Jingan, Zhang Wei, He Yulin. 2019. Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea—Results of the fifth gas hydrate drilling expedition. Marine and Petroleum Geology, 110: 287~298.
-
Xu Zerui, Wang Zhonghao, Wang Changxue, Li Xia. 2012. Response characteristics of LWD resistivity logging and its application. Lithologic Reservoirs, (3): 93~98 (in Chinese with English abstract).
-
Yang Shengxiong, Lei Yong, Liang Jinqiang, Holland M, Schultheiss P, Lu Jingan, Wei Jiangong. 2017. Concentrated gas hydrate in the Shenhu area, South China Sea: Results from drilling expeditions GMGS3 & GMGS4. Proceedings of 9th International Conference on Gas Hydrates, 25~30.
-
You Kehua, Flemings P B. 2021. Methane hydrate formation and evolution during sedimentation. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021235.
-
Zhang Wei, Liang Jinqian, Liang Qianyong, Wei Jiangong, Wan Zhifeng, Feng Junxi, Zhao Jing, Meng Miaomiao, Deng Wei, Chen Chongmin. 2021. Gas hydrate accumulation and occurrence associated with cold seep systems in the northern South China Sea: An overview. Geofluids, (1): 5571150.
-
Zhou Jilin, Wang Xiujuan, Collett T S, Li Sanzhong, Kuang Zenggui, Lu Yintao, Deng Wei, Yan Weichao, Qian Jin, Jin Jiapeng. 2023. Characterization of a complex sand-rich gas hydrate reservoir system in the Indian marine continental margin with downhole log and seismic data. Marine and Petroleum Geology, 155: 106370.
-
Zhu Mangzheng, Graham S, Pang Xiong, McHargue T. 2010. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Marine and Petroleum Geology, 27(1): 307~319.
-
陈杰, 胡高伟, 卜庆涛, 王秀娟, 景鹏飞, 刘昌岭, 郭洋, 王自豪. 2020. 新西兰Hikurangi边缘Tuaheni滑坡复合体黏土质粉砂储层天然气水合物饱和度估算. 海洋地质与第四纪地质, (6): 159~168.
-
陈小磊, 刘保银, 周军, 张中庆, 周正志, 毛保华, 张娟, 吴越. 2024. 各向异性地层随钻电磁波电阻率响应模拟及导向反演方法研究. 地球物理学进展, (1): 1~12.
-
贾将, 宋瑞林, 赵军, 李永龙, 汪英杰, 谭锦林, 黄靖浩. 2022. 多频电磁波传播测井信号测量系统. 地球物理学进展, (6): 2562~2570.
-
宁伏龙, 刘力, 李实, 张可, 蒋国盛, 吴能友, 孙长宇, 陈光进. 2013. 天然气水合物储层测井评价及其影响因素. 石油学报, (3): 591~606.
-
钱进, 王秀娟, 董冬冬, Kalachand S, 叶月明. 2019. 裂隙充填型天然气水合物储层的各向异性饱和度新估算及其裂隙定量评价. 地球物理学进展, (1): 354~364.
-
王吉亮, 王秀娟, 钱进, 吴时国. 2013. 裂隙充填型天然气水合物的各向异性分析及饱和度估算——以印度东海岸NGHP01-10D井为例. 地球物理学报, (4): 1312~1320.
-
王秀娟, 等. 2023. 天然气水合物储层特性与定量评价. 北京: 科学出版社.
-
王秀娟, 吴时国, 刘学伟, 郭依群, 陆敬安, 杨胜雄, 梁金强. 2010. 基于电阻率测井的天然气水合物饱和度估算及估算精度分析. 现代地质, (5): 993~999.
-
许泽瑞, 汪忠浩, 王昌学, 李霞. 2012. 随钻电阻率测井响应分析与应用. 岩性油气藏, (3): 93~98.
-
摘要
海洋天然气水合物赋存类型多样,识别赋存类型对精准评价水合物的储层物性及资源量具有重要意义。随钻测井与岩芯联合能定量计算水合物储层特性,但水合物取芯难度大、成本高,大量钻井仅实施了部分取芯或无取芯。环形电阻率与速度联合能识别含水合物层,但研究发现裂隙充填型与孔隙充填型水合物可能都具有高环形电阻率和高纵波速度测井响应,二者联合难以直接识别水合物赋存类型。本文分析了不同源距的电磁波电阻率,通过不同电阻率参数的交会分析,发现在裂隙充填型水合物地层,不同源距的高频电磁波电阻率存在明显的分离,高频相位电阻率中最为显著,而在孔隙充填型水合物地层中,电磁波电阻率耦合较好。通过环形电阻率与电磁波电阻率的联合对比,发现在裂隙充填型水合物地层的电磁波电阻率异常更高,而在孔隙充填型水合物地层,环形电阻率的异常更高。研究认为电磁波电阻率对高角度裂隙的响应更加敏感,能有效识别不同赋存类型的水合物,对于水合物的勘探和评价具有重要意义。
Abstract
Marine natural gas hydrates exhibit diverse morphologies, making accurate identification crucial for evaluating reservoir properties and resources. While integrating logging-while-drilling (LWD) with coring data offers quantitative assessment, coring operation sare complex and expensive, often resulting in partial or no data at most drilling sites. Combining ring resistivity and velocity logging can identify gas hydrate-bearing sediments but cannot distinguish between fracture-filling and pore-filling hydrates due to similar high values in both parameters. Our analysis of electromagnetic wave resistivities at various source-receiver spacings and crossplots of multiple resistivity parameters reveals distinct anomaliesin fracture-filling gas hydrate formations, particularly in high-frequency phase resistivity. Conversely, pore-filling hydrate formations exhibit consistent electromagnetic wave resistivities. Comparing electromagnetic wave resistivity and ring resistivity reveals a key difference: electromagnetic wave resistivity shows obvious high-value anomalies in fracture-filling hydrate formations, while ring resistivity exhibits similar anomalies in pore-filling hydrate formations. We propose that the electromagnetic wave resistivity is sensitive to high-angle fractures and effectively discriminates between different gas hydrate morphologies. This sensitivity is highly valuable for exploring and evaluating gas hydrate reservoirs.