en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

石海岩,女,1987年生。博士研究生,主要从事沉积地球化学方面的研究。E-mail: shy0407@sina.cn。

通讯作者:

樊启顺,男,1980年生。博士,研究员,博士生导师,主要从事盐湖资源与蒸发盐矿床成因与地球化学研究。E-mail: qsfan@isl.ac.cn。

参考文献
Cao Wenhu, Wu Chan. 2004. Brine Resources and Their Comprehensive Utilization Technology. Beijing: Geological Publishing House (in Chinese).
参考文献
Drever J I. 1988. The Geochemistry of Natural Waters (2nd Edition). New Jersey: Prentice Hall.
参考文献
Fan Qishun, Ma Haizhou, Ma Zhibang, Wei Haicheng, Han Fengqing. 2014a. An assessment and comparison of 230Th and AMS 14C ages for lacustrine sediments from Qarhan Salt Lake area in arid western China. Environmental Earth Sciences, 71: 1227~1237.
参考文献
Fan Qishun, Ma Haizhou, Wei Haicheng, Shan Fashou, An Fuyuan, Xu Liming, David B. 2014b. Madsen Late Pleistocene paleoclimatic history documented by an oxygen isotope record from carbonate sediments in Qarhan Salt Lake, NE Qinghai-Tibetan Plateau. Journal of Asian Earth Sciences, 85: 202~209.
参考文献
Fan Qishun, Ma Yunqi, Cheng Huaide, Wei Haicheng, Yuan Qin, Qin Zhanjie, Shan Fashou. 2015. Boron occurrence in halite and boron isotope geochemistry of halite in the Qarhan Salt Lake, western China. Sedimentary Geology, 322: 34~42.
参考文献
Fan Qishun, Lowenstein T K, Wei Haicheng, Yuan Qin, Qin Zhanjie, Shan Fashou, Ma Haizhou. 2018. Sr isotope and major ion compositional evidence for formation of Qarhan Salt Lake, western China. Chemical Geology, 497: 128~145.
参考文献
Fan Qishun, Li Jiansen, Qin Zhanjie, Li Qingkuan. 2021. The research progress on the origin of CaCl2 brines and the further scientific issues. Journal of Salt Lake Research, 29(1): 1~9(in Chinese with English abstract).
参考文献
Hardie L A, Eugster H P. 1970. The evolution of closed-basin brines. Mineral Society of America Bulletin, 3: 273~290.
参考文献
Khadka U R, Ramanathan A. 2013. Major ion composition and seasonal variation in the Lesser Himalayan Lake: Case of Begnas Lake of the Pokhara Valley, Nepal. Arabian Journal of Geosciences, 6(11): 4191~4206.
参考文献
Liu Chenglin, Lowenstein T K, Wang Anjian, Zheng Chunmiao, Yu Jianguo. 2023. Brine: Genesis and sustainable resource recovery worldwide. Annual Review of Environment and Resources, 48: 371~394.
参考文献
Lowenstein T K, Spencer R J, Zhang Pengxi. 1989. Origin of ancient potash evaporites: Clues from the modern nonmarine Qaidam basin of western China. Science, 245: 1090~1092.
参考文献
Lowenstein T K, Risacher F. 2009. Closed basin brine evolution and the influence of Ca-Cl inflow waters: Death valley and Bristol Dry Lake California, Qaidam basin, China, and Salar de Atacama, Chile. Aquatic Geochemistry, 15: 71~94.
参考文献
Lowenstein T K, Dolginko L A C, Garcia-Veigas J. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California. Geological Society of America Bulletin, 128: 1555~1568.
参考文献
Lowenstein T K, Jagniecki E A, Carroll A R, Smith M E, Renaut R W, Owen R B. 2017. The Green River salt mystery: What was the source of the hyperalkaline lake waters? Earth-Science Reviews, 173: 295~306.
参考文献
Miao Weriliang, Zhang Xiying, Li Yulong, Li Wenxia, Yuan Xiaolong, Li Changzhong. 2022. Lithium and strontium isotopic systematics in the Nalenggele River catchment of Qaidam basin, China: Quantifying contributions to lithium brines and deciphering lithium behavior in hydrological processes. Journal of Hydrology, 614: 128630.
参考文献
Shi Haiyan, Fan Qishun, Wang Liwen, Liiu Wanping, Wang Mingxiang, Li Zeren, Li Qingkuan, Chen Tianyuan, Yang Haotian. 2024a. Characterization of lithium and boron resource distribution and material sources in Dongling Lake, located in the northern region of Qarhan. Acta Geoscientica Sinica, 45(5): 728~742(in Chinese with English abstract).
参考文献
Shi Haiyan, Fan Qishun, Liu Wanping, Li Qingkuan, Zhao Weiyong, Chen Tianyuan, Yang Haotian, Shang Wenjun. 2024b. Hydrological recharge study of potassium salt deposition in Dongling Lake at the northern margin of the Qarhan Salt Lake from a source-sink perspective. Acta Petrologica Sinica, accpeted (in Chinese with English abstract).
参考文献
Song Hualing, Fan Qishun, Li Qingkuan, Chen Tianyuan, Yang Haotian, Han Chunmei. 2023. Recharge processes limit the resource elements of Qarhan Salt Lake in western China and analogues in the evaporite basins. Journal of Oceanology and Limnology, 41(4): 1226~1242.
参考文献
Song Hualing, Fan Qishun, Li Qingkuan, Hang Guang, Chen Tianyuan, Yang Haotian, Wei Qi. 2024. Ca-high water recharge and mixing constrain on evolution and K enrichment of brine deposits in the evaporite basin: Case and analogue study in the Qaidam basin, Qinghai-Tibet Plateau. Journal of Hydrology, 632: 130883.
参考文献
Sun Dapeng, Lock D E. 1988. Formation of potassium salt deposits in Qaidam basin. Science in China, (12): 1323~1333 (in Chinese with English abstract).
参考文献
Valyashko M. r. 1965. Geochemical Formation Rules of Potash Deposition. Beijing: China Industry Press (in Chinese).
参考文献
Wang Chunnan, Guo Xihua, Ma Mingzhu, LI Junde, LI Jian. 2008. Ore-forming geological background of K-Mg salt in Qarhan Salt Lake. Northwestern Geology, (1): 97~106 (in Chinese with English abstract).
参考文献
Wang Ruijiu. 1983. Three-line diagram and its hydrogeological interpretation. Geotechnical Investigation and Surveying, (6): 6~11 (in Chinese).
参考文献
Wei Haicheng, Fan Qishun, An Fuyuan, Shan Fashou, Ma Haizhou, Yuan Qin, Qin Zhanjie. 2016. Chemical elements in core sediments of the Qarhan Salt Lake and palaeoclimate evolution during 94~9 ka. Acta Geoscientica Sinica, 37(2): 193~203(in Chinese with English abstract).
参考文献
Wu Bihao, Duan Zhenghao, Guan Yuhua, Lian Wei. 1986. Deposition of potash-magnesium salts in the Qarhan playa, Qaidam basin. Acta Geological Sinica, (3): 286~296(in Chinese with English abstract).
参考文献
Yang Qian. 1982. The sedimentation mechanism of potash deposits in the Qarhan inland salt lake. Acta Geological Sinica, 56(3): 281~292 (in Chinese with English abstract).
参考文献
Yang Qian. 1993. Distribution regularity of the salt and potash-ore beds in Qarhan Saline Lake. Geology of Chemical Minerals, (3): 186~195 (in Chinese with English abstract).
参考文献
Yuan Jianqi, Huo Chengyu, Cai Keqin. 1983. The high mountain-deep basin saline environment—A now cenetic model of salt deposits. Geological Review, 29(2): 159~165 (in Chinese with English abstract).
参考文献
Yuan Jianqi, Yang Qian, Sun Dapeng, Huo Chengyu, Cai Keqin, Wang Wenda, Liu Xunjian. 1995. The Forming Condition of Potash Deposit in Qarhan Salt Lake. Beijing: Geological Publishing House (in Chinese).
参考文献
Zhang Pengxi. 1987. Salt Lake in Qaidam Basin. Beijing: Science Press (in Chinese).
参考文献
Zhang Pengxi, Zhang Baozhen, Lowenstein T K, Spencer R J. 1993. Origin of Ancient Potash Evaporites: Examples from the Formation of Potash of Qarhan Salt Lake in Qaidam Basin. Beijing: Science Press (in Chinese).
参考文献
Zhu Yunzhu, Li Zhengyan, Wu Bihao, Wang Mili. 1990. The formation of the Qarhan Saline Lake as viewed from the neotectonic movement. Acta Geological Sinica, 64(1): 13~21(in Chinese with English abstract).
参考文献
曹文虎, 吴蝉. 2004. 卤水资源及其综合利用技术. 北京: 地质出版社.
参考文献
樊启顺, 李建森, 秦占杰, 李庆宽. 2021. 氯化钙型卤水成因的研究进展及其科学问题. 盐湖研究, 29(1): 1~9.
参考文献
M. г. 瓦里亚什科. 1965. 钾盐矿床形成的地球化学规律. 北京: 中国工业出版社.
参考文献
孙大鹏, D. E. Lock. 1988. 柴达木盆地钾盐沉积的形成问题. 中国科学, (12): 1323~1333.
参考文献
石海岩, 樊启顺, 王利文, 刘万平, 王明祥, 李泽仁, 李庆宽, 陈天源, 杨浩田. 2024a. 察尔汗北部东陵湖Li、B资源分布特征与物质来源. 地球学报, 45(5): 728~742.
参考文献
石海岩, 樊启顺, 刘万平, 李庆宽, 赵为永, 陈天源, 杨浩田, 商雯君. 2024b. 从源汇视角探讨察尔汗盐湖北缘东陵湖钾盐沉积的水文补给研究. 岩石学报(录用).
参考文献
王春男, 郭新华, 马明珠, 李俊德, 李健. 2008. 察尔汗盐湖钾镁盐矿成矿地质背景. 西北地质, (1): 97~106.
参考文献
王瑞久. 1983. 三线图解及其水文地质解释. 工程勘察, (6): 6~11.
参考文献
魏海成, 樊启顺, 安福元, 山发寿, 马海州, 袁秦, 秦占杰. 2016. 94~9 ka察尔汗盐湖的气候环境演化过程. 地球学报, 37(2): 193~203.
参考文献
吴必豪, 段振豪, 关玉华, 连卫. 1986. 柴达木盆地察尔汗干盐湖钾镁盐的沉积. 地质学报, (3): 286~296.
参考文献
杨谦. 1982. 察尔汗内陆盐湖钾矿层的沉积机理. 地质学报, 56(3): 281~292.
参考文献
杨谦. 1993. 察尔汗盐湖盐层及钾矿层的分布规律. 化工地质, (3): 186~195.
参考文献
袁见齐, 霍承禹, 蔡克勤. 1983. 高山深盆的成盐环境——一种新的成盐模式的剖析. 地质论评, 29(2): 159~165.
参考文献
袁见齐, 杨谦, 孙大鹏, 霍承禹, 蔡克勤, 王文达, 刘训健. 1995. 察尔汗盐湖钾盐矿床的形成条件. 北京: 地质出版社.
参考文献
张彭熹. 1987. 柴达木盆地盐湖. 北京: 科学出版社.
参考文献
张彭熹, 张保珍, T K洛温斯坦, R J斯潘塞. 1993. 古代异常钾盐蒸发岩的成因——以柴达木盆地察尔汗盐湖钾盐的成成为例. 北京: 科学出版社.
参考文献
朱允铸, 李争艳, 吴必豪, 王弭力. 1990. 从新构造运动看察尔汗盐湖的形成.地质学报, 64(1): 13~21.
目录contents

    摘要

    东陵湖位于柴达木盆地大型钾盐富集基地察尔汗盐湖北部,其浅部石盐层中伴生有光卤石沉积,地勘工作揭示东陵湖浅部边缘地带有寻找低品位固体钾矿的潜力。本文以东陵湖湖表卤水、钻孔晶间卤水、承压卤水、浅层钻孔(0~8 m)盐类沉积物为研究对象,分析研究了东陵湖卤水水化学特征、钻孔沉积物特征及钾盐分布规律,在对比分析察尔汗盐湖钾矿分布特征的基础上,对研究区钾盐成矿作用进行了探讨,主要得出以下结论:① 东陵湖周边凹地钻孔的晶间卤水K+平均含量最高(3.19 g/L),其次为凹地钻孔承压卤水(1.46 g/L),湖表卤水(0.74 g/L)和湖区钻孔晶间卤水(0.79 g/L)K+含量较低;东陵湖卤水样品矿化度(TDS)变化范围较大,介于80.63~547.11 g/L之间,不同卤水样品的TDS与K+含量无明显正相关性。② 东陵湖钻孔揭露含盐地层厚4.2~6.4 m,岩性以石盐为主,局部含有光卤石沉积,偶见钾石盐;光卤石呈层状和浸染状分布,与石盐呈韵律结构。③ 东陵湖液体钾矿主要分布于湖区西南侧,卤水K+含量为4.33~6.29 g/L,KCl品位介于0.21%~0.47%之间;固体钾矿主要分布于湖区南侧,沉积物钾含量为2.05%~4.86%,KCl含量介于3.92%~9.29%之间。④ 东陵湖光卤石沉积区与察尔汗盐湖层状光卤石均沿北缘深大断裂带分布,且后者主要分布于北缘氯化物型水和南缘硫酸镁亚型水混合区域,即达布逊和别勒滩两个洼地北缘,结合Na+、K+、Mg2+、Ca2+//Cl-H2O体系相图和K+-Ca2+相关性分析,认为沿东陵湖南侧深大断裂带补给的Ca-Cl水促进了东陵湖光卤石的沉积。

    Abstract

    Dongling Lake, located north of the Qarhan Salt Lake, a large potash enrichment zone in the Qaidam basin, exhibits carnallite deposits associated with shallow rock salt layers. Geological exploration indicates the potential for low-grade solid potassium deposits along the lake's shallow periphery. This study investigates the water chemistry, sedimentary features of borehole sediments, and distribution of potassium resources in various brine types (lake surface brines, borehole intercrystalline brines, confined brines) and shallow borehole (0~8 m) salt sediments in Dongling Lake. Additionally, a comparative analysis of potassium deposit distribution in Qarhan Salt Lake is conducted to elucidate the mineralization processes and significance of potassium resources in the study area. Key findings include: ① Intercrystalline brines from the sunken borehole area around Dongling Lake exhibit the highest average K+ concentrations (3.19 g/L), followed by confined brines in the sunken borehole (1.46 g/L). Lake surface brines and intercrystalline brines from the lake borehole show relatively lower K+ concentrations of 0.74 g/L and 0.79 g/L, respectively. Salinity (TDS) in Dongling Lake brine samples varies widely, ranging from 80.63 to 547.11 g/L, with no significant positive correlation observed between TDS and K+ concentrations across different brine types. ② Borehole analysis reveals salt-bearing strata with thicknesses ranging from 4.2 to 6.4 m, predominantly composed of stone salt with intermittent carnallite deposits and occasional occurrences of potassium salt. Carnallite exhibits a stratified and rhythmic structure alongside the stone salt. ③ Liquid potassium deposits in Dongling Lake are primarily concentrated in the southwestern region, with K+ concentrations in brines ranging from 4.33 to 6.29 g/L and KCl grades from 0.21% to 0.47%. Solid potassium deposits are predominantly found in the southern part of the lake, exhibiting sedimentary potassium contents ranging from 2.05% to 4.86% and KCl contents between 3.92% and 9.29%. ④ Both the Dongling Lake carnallite sedimentary area and the stratiform carnallite deposits in Qarhan Salt Lake are distributed along the deep fault zone on the northern margin. The latter is mainly found in the mixed zone of chlorine-type water in the north and magnesium sulfate subtype water in the south, specifically within the northern margins of the Dabuxun and Bieletan depressions. Combining Na+, K+, Mg2+, Ca2+//Cl-H2O system phase diagrams with K+-Ca2+ correlation analysis suggests that Ca-Cl water recharge along the deep fault zone south of Dongling Lake facilitated carnallite deposition.

  • 柴达木盆地是我国典型的陆相含钾盆地,其钾盐沉积广泛分布于盆地第四纪盐湖中,同时该盆地具有钾盐沉积形成的良好条件,如丰富的钾物质来源、高山深盆沉积环境、干旱气候条件和持续不断地水文补给(袁见齐等,19831995张彭熹,1987),因盐湖外来水补给条件及其卤水化学组成的不同,盆地内不同盐湖形成了不同型式和不同类型的钾盐沉积(孙大鹏等,1988)。察尔汗盐湖是我国重要的钾盐钾肥基地,20世纪50年代以来,前人对察尔汗盐湖开展了大量的地质勘查和研究工作,较为系统地对区内矿床地质特征、成矿物质来源、沉积古气候、矿床成因等方面进行了大量的研究(杨谦,19821993张彭熹,1987孙大鹏等,1988Lowenstein et al.,19892009朱允铸等,1990张彭熹等,1993Fan Qishun et al.,2014a2014b20152018魏海成等,2016樊启顺等,2021Song Hualing et al.,2023),这些研究主要集中在察尔汗盐湖的别勒滩、达布逊、察尔汗和霍布逊四个干盐滩区段及达布逊湖等主要的卤水湖,而针对察尔汗盐湖北部的东陵湖及其凹地研究甚少。东陵湖凹地浅部普遍存在石盐层,并有光卤石、水氯镁石等矿物沉积,近年来地勘工作揭示东陵湖浅部边缘地带有寻找低品位固体钾矿的潜力(青海省核工业放射性地质勘查院,2023)。基于以上成果及认识,本文结合近两年在东陵湖凹地开展的地质勘查最新进展和地质资料,系统分析研究东陵湖水化学特征和钾盐空间分布规律,并与察尔汗盐湖固体钾矿沉积特征和分布进行对比分析(张彭熹等,1993袁见齐等,1995),以期为柴达木盆地中西部陆相钾盐找矿提供依据。

  • 1 区域地质背景

  • 柴达木盆地位于青藏高原东北部,盆地四周为高大山系所围绕,北为祁连山包围,南为昆仑山环绕,西临阿尔金山山脉(图1a)。察尔汗盐湖是中国最大的盐湖之一,也是柴达木盆地内最大的次级成盐盆地和钾盐富集基地,同时也是盆地内Ca-Cl型盐湖分布面积最大和集中的地区,东陵湖、协作湖和北霍布逊湖是察尔汗盐湖北缘的三个Ca-Cl型盐湖(图1a)(张彭熹,1987),Ca-Cl水富钙而贫硫酸根,与柴达木盆地内多数盐湖卤水水化学组成截然相反(樊启顺等,2021),以喀斯特水的形式沿盆地三湖断裂出露在察尔汗北缘(张彭熹,1987)。察尔汗盐湖包括东陵湖、涩聂湖、大别勒湖、小别勒湖、达西湖、达布逊湖、团结湖、协作湖、南霍布逊湖以及北霍布逊湖等10个现代盐湖,均是气候转暖时在更新世干盐滩的基础上形成的溶蚀湖(图1a)。晚更新世以来,察尔汗盐湖沉积了一套以陆源碎屑和石盐互层的盐湖沉积物,含盐系包括5个石盐层和5个碎屑层,一般40~50 m,最厚达70 m以上,自西向东盐层范围逐渐减小,厚度变薄,盐层矿物以石盐为主,相对贫石膏等硫酸盐矿物(袁见齐等,1995)。湖表及晶间卤水富含多种资源元素,其中K、Mg等资源量在整个盆地最高,已探明的液体KCl达2.44×108 t,MgCl2达0.5×108 t(曹文虎和吴蝉,2004王春男等,2008),截至2022年底,察尔汗盐湖累计查明液体KCl资源量为2.12×108 t,固体KCl达2.0×108 t(青海省自然资源厅,2023),这使得察尔汗盐湖成为我国最大的钾镁肥生产基地。

  • 东陵湖凹地位于柴达木盆地三湖沉降区之涩聂湖凹陷的北东部、察尔汗盐湖达布逊湖凹陷的北西部(94°50′E,37°16′N)(图1a)。东陵湖远离盆地周边山区,距南北基岩出露区多在100 km以上。构造分区上属于区域性的新生代褶皱断陷区,区内地质构造简单,其西部的涩北构造、东部的盐湖构造是下、中更新世以后形成的新构造,哑叭尔构造形成时间为上更新世以后,致使上更新统洪积砾石层发生拱曲,其形成后受外力破坏较小,因此地形等高线基本反映了构造形态。

  • 东陵湖凹地全为新生界覆盖,地层接触关系一般为整合,局部为假整合,产状水平。出露的全新统和中、上更新统是一套近水平的湖泊相沉积;全新统(Qh)为风积、化学沉积(Qhch+eol);环绕东陵湖湖区北西、北东侧分布有化学沉积(Qhch2);上更新统(QP3)为湖积、化学沉积;中更新统(QP1+2l)以湖相沉积为主,夹盐类化学沉积,与下伏下更新统(QP1l)为连续沉积(图1b)。沉积物主要类型如下:

  • Ⅰ灰褐色石盐壳(Qhch1):分布于湖东、湖西及北岸地区,地势平坦,湖东北岸形成较平缓的起伏地形,在北岸近湖地段,广泛分布有枯竭的卤水泉,其直径一般数十米,深度10~60 cm不等,部分尚存有卤水,部分已被泥砂和盐类沉积物充填封闭,但均有向湖的流水痕迹,岩性为石盐壳上覆薄层粉砂,向下为白色含粉砂石盐,呈中粗粒块状,致密坚硬,含粉砂约20%。

  • Ⅱ含光卤石的石盐壳(Qhch2):分布于湖的东南岸,南北宽100~450 m,地形平坦,广泛分布有盐类沉积坑,坑径一般1~3 m,多数坑中见有光卤石沉积,厚5 cm左右,光卤石多呈桶状晶形,向下为含石盐的泥砂。

  • Ⅲ风积粉砂(Qhch+eol):分布于湖南岸第四纪隆起和北部石盐壳外围,至东陵湖构造一带,呈近东西方向延长。岩性以灰黄色粉砂为主,含少量黏土,表面较坚硬,近湖地段较为潮湿疏松,粉砂下伏地层为第四纪灰绿色含石膏泥岩。

  • 东陵湖大部分地区已干涸,残留卤水分布在湖泊西南部,面积为7.2 km2,水深0.02~0.15 m,东部边缘拱起附近地势较高,最高海拔2763 m(张彭熹,1987),赋存着高矿化卤水。东陵湖湖区(Qhlw)成椭圆状,岩性南部多为含石盐黏土的粉砂,北部为石盐盐壳。湖区全部被蒸发析出的针状水氯镁石(MgCl2·6H2O)和溢晶石(CaCl2· MgCl2·12H2O)覆盖((青海省核工业放射性地质勘查院,2023),层厚为10~20 cm,底部为厚度2.3~4.8 m的含粉砂石盐沉积,另外,湖区东部一带有零星泉水出露,直径5~40 cm不等,深度40~60 cm,是高矿化的高镁、钙,低钠、钾的Ca-Cl型水。研究区主要含矿特征如下:

  • 图1 东陵湖及周边主要盐湖及河流分布图(a)(据Song Hualing et al.,2024石海岩等,2024a修改);东陵湖矿区地质图(b)(据青海省核工业放射性地质勘查院,2023石海岩等,2024a修改)

  • Fig.1 Distribution map of Dongling Lake and its surrounding major salt lakes and rivers (a) (modified after Song Hualing et al., 2024; Shi Haiyan et al., 2024a) ; geological map of Dongling Lake mining area (b) (Qinghai Institute of Nuclear Industrial Radioactive Geological Exploration, 2023; Shi Haiyan et al., 2024a)

  • Ⅰ白色和无色透明(半透明)水氯镁石:表层水氯镁石呈薄片状聚晶,水平长达10 cm,下部呈针状、长柱状,大小一般为0.5~1.0 cm,底部呈黄棕色,该层在湖内均有分布,厚度4~5 cm,极为稳定。

  • Ⅱ灰黄色水氯镁石:水氯镁石呈透明、半透明,上部为颗粒状,他形晶,直径0.5~1.0 cm,下部为柱状水氯镁石,块状集合体,柱状晶体均垂直层面排列,解理发育,具玻璃光泽。该层含泥砂量由上而下,由湖心向边缘逐渐增加。

  • Ⅲ深灰褐色含粉砂光卤石和粉砂光卤石:光卤石透明或半透明,呈自形、半自形晶,直径2~3 mm,粉砂含量由上而下,由湖心向边缘逐渐增加。

  • Ⅳ黄色粉砂:上部含有少量完整的光卤石和石盐结晶体,粉砂中有密集的小空洞,直径0.5~1 mm,可能为盐类矿物被溶蚀所致。

  • 2 样品采集与分析方法

  • 本次研究在东陵湖及凹地采集卤水样品70件、钻孔沉积物样品81件。卤水样品包括湖表卤水19件,湖区以外凹地钻孔晶间卤水39件,承压卤水件12件;沉积物样品包括湖区5个钻孔(ZK02:11件、ZK03:14件、ZK04:12件、ZK05:16件、ZK06:6件)共采集沉积物样品59件,湖区以外凹地6个钻孔(ZK01:1件、ZK07:1件、ZK08:7件、ZK09:9件、ZK10:3件、ZK13:1件)共采集22件,具体采样位置及间隔见表2和图3,卤水样品和钻孔沉积物样品采样方法详见石海岩等(2024a)。所有样品的分析测试在青海省核工业检测中心完成,钻孔沉积物水溶实验方法详见石海岩等(2024a)。卤水常量离子K+、Na+、Mg2+、Ca2+、SO2-4采用电感耦合等离子体发射光谱法测定,误差小于2%;Cl-采用硝酸银容量法测定;CO2-3、HCO-3采用HCl-NaOH容量法测定,测试精度为0.2%~0.3%;钻孔沉积物中水溶组分(即易溶盐类矿物和残余孔隙水)中的常量离子K+、Na+、Ca2+、Mg2+、SO2-4采用电感耦合等离子体发射光谱法测定,误差小于2%; Cl-用硝酸银容量法测定,水不溶物用重量法测定。

  • 3 分析结果

  • 3.1 东陵湖卤水钾离子含量及矿化度变化特征

  • 表1分析结果显示,东陵湖湖表卤水的K+含量变化范围介于0.55~3.28 g/L之间,平均值为0.74 g/L。其中,除东陵湖西边的一个样品K+含量最高(3.28 g/L),其余所有样品K+含量平均值为0.6 g/L(图2a)。晶间卤水K+含量差异明显,其中湖区钻孔ZK02、ZK03、ZK04、ZK05、ZK06中K+含量介于0.64~0.96 g/L之间,平均值为 0.79 g/L;而位于湖区以外凹地钻孔ZK01、ZK07、ZK09、ZK10晶间卤水所含K+含量变化较大,介于0.58~6.28 g/L之间,平均值为3.19 g/L;承压卤水K+含量介于0.45~2.81 g/L之间,平均值为1.46 g/L(图2b)。

  • 东陵湖湖表卤水矿化度(TDS)差异不大,介于330.51~488.95 g/L之间,平均为364.5 g/L(图2c),其湖区西边TDS值显示略高于湖东。晶间卤水TDS变化范围较大,介于 80.63~547.11 g/L之间,平均363.47 g/L,其中湖区钻孔晶间卤水分布存在两个端元值,钻孔ZK02(490.27 g/L)和ZK06(510.48 g/L)分布于TDS高值区,其余钻孔ZK03(380.83 g/L)、ZK04(417.90 g/L)、ZK05(390.52 g/L)样品TDS值随着钻孔中K+含量的增加,对应的TDS较低,分布于TDS低值区域(图2c),总体上,湖区钻孔晶间卤水样品TDS值普遍高于东陵湖凹地其他钻孔晶间卤水的TDS值,如东陵湖凹地钻孔ZK01(291.29 g/L)、ZK07(237.47 g/L)、ZK09(202.24 g/L)、ZK10(229.18 g/L)晶间卤水的TDS平均值为234.40 g/L。承压卤水TDS介于115.54~405.39 g/L之间,平均276.15 g/L(图2c)。以上结果显示,东陵湖不同卤水样品的K+含量与TDS无明显正相关性,如湖区钻孔晶间卤水、湖表卤水的TDS总体变化范围介于278.06~547.11 g/L之间,而其K+含量基本不变,类似地承压卤水随着TDS的增加K+含量并未有显著的增加(图2c)。

  • 3.2 东陵湖钻孔沉积物化学组成及钾含量变化特征

  • 东陵湖钻孔沉积物主量元素化学组成显示(表2),所有样品离子组成为Cl->Na+>Mg2+>Ca2+>K+>SO2-4。在沉积物主量元素蛛网图上(图2d),湖区含有光卤石沉积的钻孔ZK02(1.58%)、ZK03(2.93%)、ZK05(1.51%)、ZK06(1.29%)的K平均含量高于其他钻孔。在钻孔柱状剖面上,东陵湖湖区钻孔深度介于8~15 m之间,揭露含盐地层厚度4.2~6.4 m,岩性以石盐为主,局部含有光卤石呈层状产出,偶见钾石盐,研究区沉积有光卤石的钻孔在纵剖面上K含量具明显的分层、分段性,含有光卤石沉积的石盐层具有较高的K含量,碎屑沉积层中K含量较低(图3)。

  • I钻孔ZK02:水氯镁石层(0~0.1 m)、石盐层(0.1~2.3 m)、碎屑沉积层(2.3~4.6 m)中共采集11 件沉积物样品,其中水氯镁石层(0~0.1 m)K含量为0.05%;石盐层(0.1~2.3 m)K含量介于1.49%~4.50%之间,平均为3.19%;碎屑沉积层(2.3~4.6 m)K含量0.27%。

  • 表1 东陵湖卤水TDS、K+、Ca2+、SO2-4含量

  • Table1 Contents of TDS, K+, Ca2+ and SO2-4 in the brine of Dongling Lake

  • 注:表中序号1~10、20~47、69~70的数据引自石海岩等,2024b(待刊)。

  • II钻孔ZK03:水氯镁石层(0~0.1 m)、石盐层(0.1~2.4 m)、碎屑沉积层(2.4~3.4 m)、石盐层(3.4~6.5 m)中共采集14件沉积物样品,其中水氯镁石层(0~0.1 m)K含量为0.34%;石盐层(0.1~2.4 m)K含量介于3.33%~8.09%之间,平均为5.42%;碎屑沉积层(2.4~3.4 m)两个沉积物样品的K含量平均为5.14%;石盐层(3.4~6.5 m)K含量为0.56%。

  • III钻孔ZK04:水氯镁石层(0~0.1 m)、石盐层(0.1~0.9 m)、石盐层(1.3~3.1 m)、碎屑沉积层(3.1~4.1 m)、石盐层(4.1~5.1 m)中共采集11件沉积物样品,其中水氯镁石(0~0.1 m)K含量为0.50%;石盐层(0.1~0.9 m)K含量为0.64%;石盐层(1.3~3.1 m)K含量为0.092%;碎屑沉积层(3.1~4.1 m)K含量为0.08%;石盐层(4.1~5.1 m)K含量为0.04%。

  • IV钻孔ZK05:水氯镁石层(0~0.1 m)、碎屑沉积层(0.1~0.3 m)、石盐层(0.3~1.6 m)、碎屑沉积层(1.6~1.8 m)、石盐层(1.8~2.3 m)、碎屑沉积层(2.3~2.5 m)、石盐层(2.5~3.2 m)、碎屑沉积层(3.2~3.7 m)、石盐层(3.7~4.8 m)、碎屑沉积层(4.8~5.8 m)中共采集16件沉积物样品,水氯镁石层(0~0.1 m)K含量为0.06%;碎屑沉积层(0.1~0.3 m)K含量为0.78%;石盐层(0.3~1.6 m)K含量为0.15%;碎屑沉积层(1.6~1.8 m)K含量为0.12%;石盐层(1.8~2.3 m)K含量为0.12%;碎屑沉积层(2.3~2.5 m)K含量为0.13%;石盐层(2.5~3.2 m)K含量为0.40%;碎屑沉积层(3.2~3.7 m)K含量为2.67%;石盐层(3.7~4.8 m)K含量介于2.67%~6.39%之间,平均为4.86%;碎屑沉积层(4.8~5.8 m)K含量为1.13%。

  • 图2 东陵湖湖表卤水K含量柱状图(a);东陵湖钻孔卤水K含量柱状图(b);东陵湖卤水TDS和K含量关系图(c); 东陵湖钻孔沉积物主量元素蛛网图(d)

  • Fig.2 Histogram of K content in lake surface brine of Dongling Lake (a) ; histogram of K content in borehole brine in Dongling Lake (b) ; relationship between TDS and K content in Dongling Lake brine (c) ; spider map of sedimentary elements in Dongling Lake borehole (d)

  • V钻孔ZK06:水氯镁石层(0~0.1 m)、石盐层(0.1~2.5 m)中共采集6件沉积物样品,其中水氯镁石层(0~0.1 m)K含量为0.24%;石盐层(0.1~2.5 m)K含量为1.51%。

  • 4 讨论

  • 4.1 东陵湖卤水水化学类型

  • M.T.瓦里亚什科(1965)根据卤水的主要离子当量和含盐量计算了水化学分类的特征系数,并将地壳水体的主要化学类型划分为3类:① 硫酸盐卤水(分为硫酸钠和硫酸镁亚类),其主要成分为SO2-4、 Cl-、Na+(K+)、Mg2+;② 氯化型卤水,其主要成分为Cl-、Na+(K+)、Mg2+、Ca2+;③ 碳酸盐(或纯碱)型卤水,主要成分为CO32-、HCO-3、SO2-4、Cl-、Na+(K+)(Liu Chenglin et al.,2023);本文根据Hardie and Eugster(1970)的水化学划分原理,用天然水中的主要离子来定义不同的水类型:① 若方解石沉淀后母水含总碱度(CO32-、HCO-3)>Ca2+,则演化为Na-K-Cl-HCO3-CO3-SO4 型(Na-HCO3-SO4型);② 如果方解石沉淀后母水中的SO2-4>Ca2+,石膏会在水体进一步蒸发时沉淀,直到Ca2+被消耗耗掉,这种水演化成Na-K-Mg-Cl-SO4型(Cl-SO4型);③ 如果在方解石和石膏沉淀后,母水中的Ca2+>SO2-4,则水演化为Na-Ca-K-Mg-Cl型(Ca-Cl型)(Drever,1988; Lowenstein et al.,20162017; Fan Qishun et al.,2018; Miao Weiliang et al.,2022)。

  • 表2 东陵湖钻孔沉积物K+、Ca2+、SO2-4含量与采样深度

  • Table2 K+, Ca2+, SO2-4 contents and sampling depth in the borehole sediment of Dongling Lake

  • 三线图是由Piper在1994年提出来的,故又称Piper三线图。该图各以三组主要的阳离子(Ca2+、Mg2+、Na++K+)和阴离子(SO2-4、Cl-、CO2-3+HCO-3)的每升毫克当量的百分数来表示(王瑞久,1983)。东陵湖不同卤水样品Piper图显示(图4a),在阳离子区域,东陵湖湖表卤水和湖区晶间卤水以Mg2+为主,其次为Ca2+;承压卤水以Na++K+为主;东陵湖凹地晶间卤水差异明显,不同钻孔具有不同的优势离子,其中钻孔ZK07、ZK09、ZK10晶间卤水以Na++K+为主,其余钻孔卤水以Mg2+为主(图4a)。在阴离子区域,东陵湖湖表卤水、承压卤水和晶间卤水所有样品以Cl-为主,占总阴离子数的96%~100%。在中央菱形区域,东陵湖凹地钻孔承压卤水和钻孔ZK07、ZK09、ZK10晶间卤水水化学类型为Na-Cl型,而东陵湖湖表卤水、湖区钻孔晶间卤水和其余钻孔晶间卤水水化学类型为Ca-Cl型(Khadka and Ramanathan,2013)(图4a)。在Ca-SO4-HCO3三角当量图中,除钻孔ZK07、ZK11和ZK12样品落在Cl-SO4区域外,其余所有样品均落在Ca-Cl区域(图4b)。东陵湖湖表卤水和晶间卤水水化学类型均为Ca-Cl型,其特征是高Ca2+(28.19 g/L)、低SO2-4(1.0 g/L)含量;承压卤水和湖区北部钻孔晶间卤水为Cl-SO4型,具有高SO2-4(4.80 g/L)、低Ca2+(2.53 g/L)含量特征(表1)。水化学类型反映东陵湖西部和南部卤水为Ca-Cl型,这与研究区卤水钾矿和固体光卤石分布区域相一致。

  • 图3 东陵湖钻孔岩性和钾含量

  • Fig.3 Lithology and potassium content of borehole in Dongling Lake

  • 图4 东陵湖卤水水化类型Piper图(a);东陵湖卤水Ca-SO4-HCO3-碱度三角当量图(b)

  • Fig.4 Piper diagram showing the chemical compositions of brine in Dongling Lake(a); ternary Ca-SO4-HCO3-碱度 diagram showing the chemical composition of brine in Dongling Lake(b)

  • 4.2 东陵湖卤水钾盐分布规律

  • 东陵湖钻孔揭露潜卤水主要赋存于东陵湖凹地全新统化学沉积石盐层中,分布面积约为52 km2。卤水层顶板为地表干盐壳或致密的中细粒石盐层,底板为中下更新统湖积相灰黑色黏土、淤泥及黏土粉砂层(图5a)。卤水层顶板埋藏深度在0~2.38 m,平均为0.63 m,卤水层底板埋藏深度在0.42~6.47 m,平均为4.15 m,卤水层厚度0.24~6.47 m,平均为3.93 m。东陵湖凹地潜卤水矿层的赋存介质主要为石盐、砂质泥岩粉砂岩、含粉砂的石盐及含光卤石的石盐,岩性较松散,局部胶结致密,晶隙发育良好,含水性好(图5b)。本文分析对比了东陵湖卤水样品在纵深上的变化趋势,湖区钻孔ZK02、ZK03、ZK04、ZK05、ZK06晶间卤水的K+含量随着钻孔取样深度的增加,其K+含量并未有明显的变化趋势,且与湖表卤水K+含量接近。东陵湖凹地钻孔ZK09、ZK10晶间卤水K+含量最高,且在纵深上有明显的含量变化特征,即在3 m以浅范围内K+含量较高,3 m以深K+含量明显有降低趋势;东陵湖凹地钻孔ZK08、ZK11、ZK12承压卤水K+含量平均值为1.45 g/L,其含量在纵深上无明显变化。整体上,东陵湖钻孔3 m以浅其K+含量较高,这与东陵湖光卤石沉积层位深度相对应,也与东陵湖钻孔揭露潜卤水层的分布范围一致。结合钻孔资料,可圈定东陵湖湖区西南侧化学沉积区卤水钾矿:存在厚度2.85~4.0 m的富水性较好的盐类沉积,分布面积约3.0 km2,卤水样品KCl品位0.21%~0.47%。

  • 图5 东陵湖K含量分布图(a);东陵湖A—A′地质剖面图(b)

  • Fig.5 Distribution map of potassium content in Dongling Lake (a) ; A—A′ geological profile of Dongling Lake (b)

  • 东陵湖凹地潜卤水K含量在平面上沿现代湖区向周边化学沉积区呈水平环带状分布,其浓集中心位于湖区西南侧(图5a)。通过分析研究区不同卤水钾含量发现,东陵湖湖表卤水除西边一个样品K+含量异常高(3.28 g/L)外,其余K+含量在整个东陵湖湖区含量差异不大,平均为0.60 g/L。钻孔晶间卤水在平面上的分布差异较大,湖区钻孔晶间卤水K+平均值(0.79 g/L)和湖表卤水K+平均含量(0.60 g/L)接近,而凹地钻孔晶间卤水K+含量高值区域主要分布于东陵湖西南侧(图5a),水化学类型显示为Ca-Cl型(图4b),东陵湖卤水K+高值区与Ca-Cl水重叠对应,说明东陵湖卤水钾矿与察尔汗北缘沿深大断裂外溢的Ca-Cl水补给有关。

  • 4.3 东陵湖固体钾盐分布规律

  • 东陵湖经ZK02、ZK03、ZK04、ZK05、ZK06等5个钻孔验证,揭露含盐地层厚4.2~6.4 m,岩性以石盐为主,局部含有光卤石,其K+含量为2.05%~4.86%,平均为 3.59%,KCl品位3.92%~9.29%,平均7.85%。从平面分布来看,研究区光卤石沉积钻孔位于东陵湖南侧,即靠近东陵湖南缘深大断裂带由Ca-Cl水补给一侧,以钻孔 ZK03和ZK05为K含量浓集中心,在平面上表现为水平环带状分布(图5a)。分析东陵湖钻孔沉积物K+-Ca2+、Ca2+-SO2+4含量之间的相关性,东陵湖钻孔沉积物Ca2+含量小于1%范围内,其K+含量低于1%(图6a),在Ca2+含量大于1%区间内,K+含量变化较大,结合钻孔沉积特征,东陵湖沉积有光卤石的钻孔ZK02、ZK03、ZK04、ZK05和ZK06在K+-Ca2+相关性图中分布于光卤石沉积区,即该区钻孔K+和Ca2+具有正相关关系,表现出光卤石沉积具有高钾高钙特征。为进一步证明Ca-Cl水对东陵湖光卤石沉积作用的影响,分析了SO2+4-Ca2+相关关系(图6b),以SO2+4和Ca2+含量1∶1为分界线,光卤石沉积的钻孔Ca2+高,分布于SO2+4-Ca2+等量线的左上侧区域,而未有光卤石沉积的钻孔均位于SO2+4-Ca2+等量线附近或右下侧区域,即低钙高硫酸根区域。以上结果说明,在东陵湖钻孔固体沉积物中,高钙与高钾具有明显的对应关系。

  • 4.4 东陵湖成矿作用

  • 东陵湖位于察尔汗盐湖北部边缘地带,同时位于盆地北部沿古近系-新近系与第四纪地层之间的不整合断裂带上,与察尔汗Ca-Cl型盐湖协作湖、北霍布逊湖呈串珠状分布(图7a)。Ca-Cl水在察尔汗湖区北缘、东陵湖南缘沿深大断裂带广泛分布,是一种高矿化度(200~300 g/L,高者达520 g/L)(袁见齐等,1995)、Cl-和Ca2+含量很高、SO2-4含量很低的卤水。Ca-Cl水在盆地成盐过程中起着关键作用,简化了盐类矿物沉积顺序,加速了K+富集(Lowenstein et al.,19892009袁见齐等,1995;Fan Qinshun et al.,2018;樊启顺等,2021Song Hualing et al.,20232024),其机制与Ca-Cl水和浓度低的硫酸盐型水混合发生掺杂作用后,过量的Ca2+消耗了硫酸盐型水中的SO2-4有关,并使卤水保持氯化物型的特征(袁见齐等,1995)。

  • 察尔汗盐湖根据晶间卤水水化学类型可分为北缘主要由深部水补给形成的氯化物型水、南缘主要由河水补给形成的硫酸镁亚型水(袁见齐等,1995)(图7a),察尔汗固体钾盐主要分为层状光卤石、似层状光卤石和浸染状光卤石,其中层状光卤石主要分布在达布逊湖以东,光卤石粒度小,含量达80%以上(吴必豪等,1986);似层状光卤石主要分布在团结湖一带2~3 m以上的表层盐壳中,光卤石为半自形晶,含量约25%左右;浸染状光卤石主要分布在达布逊湖以东一带,光卤石为他形晶,颗粒粗大,呈浸染状充填在石盐孔隙中(吴必豪等,1986);层状和似层状光卤石系由光卤石和石盐组成的钾矿层,具有明显层状构造,石盐和光卤石分别组成薄层而显示出韵律结构,呈带状主要分布于达布逊湖和别勒滩两个洼地北缘(吴必豪等,1986袁见齐等,1995)(图7a)。东陵湖固体钾矿层与察尔汗盐湖层状光卤石在沉积特征上具有相似性,即为光卤石和石盐呈韵律结构(图3)。在水文补给方面,东陵湖主要受察尔汗盐湖北部沿断裂带上涌的Ca-Cl水的补给和源自盆地北部山系的淡水通过浅层地下径流的形式补给(石海岩等,2024a),察尔汗盐湖主要受盆地南部山系的淡水(地表径流和浅层地下径流)补给和Ca-Cl水的补给(Fan Qishun et al.,2018樊启顺等,2021Song Hualing et al.,20232024),以上二者均为河水与Ca-Cl水混合而成的盐湖,而Ca-Cl水对陆相蒸发岩盐盆地钾盐沉积的形成具有重要影响(Lowenstein et al.,19892009袁见齐等,1995Fan Qishun et al.,2018樊启顺等,2021Song Hualing et al.,20232024),并且钾矿的富集区域主要集中在这两种物源的充分混合区和Cl-SO4型卤水区域,察尔汗盐湖钾矿集中分布在别勒滩区段—达布逊区段和达布逊区段北部,前者代表水化学类型为Cl-SO4型区域,后者代表河水和Ca-Cl的充分混合区(Song Hualing et al.,20232024),东陵湖钾矿集中分布在湖区南侧靠近深大断裂带附近,根据东陵湖钻孔数据显示,东陵湖凹地承压卤水(100 m以浅)和湖区北部的钻孔晶间卤水水化学类型为Cl-SO4型水,湖区南侧钻孔晶间卤水水化学类型为Ca-Cl型,与察尔汗盐湖不同的是,东陵湖为封闭性小盆地,无地表河水的直接补给,淡水补给主要与柴北缘地下水补给作用形成有关。

  • 图6 东陵湖钻孔沉积物K-Ca(a)、SO4-Ca(b)关系图

  • Fig.6 The K-Ca (a) and SO4-Ca (b) relationships of the corresponding borehole sediments in Dongling Lake

  • 图7 察尔汗盐湖钾盐层分布示意图(a)(据袁见齐等,1995修改);东陵湖卤水样品相图(b);东陵湖卤水样品K-Ca关系图(c)

  • Fig.7 Distribution diagram of potassium salt layer in Qarhan Salt Lake (a) (modified after Yuan Jianqi et al., 1995) ; phase diagram of brine sample in Dongling Lake (b) ; K-Ca relationship of brine samples from Dongling Lake (c)

  • 本文将东陵湖和察尔汗盐湖卤水数据投影到Na+、K+、Mg2+、Ca2+//Cl-H2O体系中(图7b),结果表明,大部分数据点均落在光卤石沉积区域,该相图模拟的钾盐矿物类型与实际矿床中观察到的钾矿物相对应,与察尔汗盐湖不同的是,东陵湖光卤石显示出高钙特征,这可能与东陵湖凹地无地表水体的直接补给有关。东陵湖卤水样品K+-Ca2+相关性关系较好地显示了Ca-Cl水和东陵湖成矿作用之间的关系,在K+-Ca2+图中(图7c),东陵湖湖表卤水和湖区钻孔晶间卤水属于高Ca2+,低SO2-4区域,其K+含量很低;位于东陵湖北部的钻孔ZK07、ZK10晶间卤水和承压卤水属于低Ca2+,高SO2-4区域,其K+含量很低;而高Ca2+和高SO2-4混合区域,K+含量增加,与实际液体钾矿分布一致(图7b)。因此,东陵湖高钙水的补给促进了钾的富集,是该区固体钾矿形成的主要物质来源。

  • 5 结论

  • (1)东陵湖凹地钻孔晶间卤水K+平均含量最高(3.19 g/L),其次为凹地钻孔承压卤水(1.46 g/L),湖表卤水(0.74 g/L)和湖区钻孔晶间卤水(0.79 g/L)含量较低;东陵湖卤水样品矿化度变化范围较大,介于80.63~547.11 g/L之间,与K+含量无明显正相关性。

  • (2)东陵湖钻孔揭露含盐地层厚4.2~6.4 m,岩性以石盐为主,局部含有光卤石沉积,偶见钾石盐,光卤石与石盐呈韵律结构。

  • (3)东陵湖卤水钾矿主要分布于湖区西南侧,KCl品位介于0.21%~0.47%之间;固体钾矿主要分布于湖区南侧,KCl含量介于3.92%~9.29%之间。

  • (4)东陵湖光卤石沉积区与察尔汗盐湖层状光卤石均沿北缘深大断裂带分布,且后者主要分布于北缘氯化物型水和南缘硫酸镁亚型水混合区域,即达布逊和别勒滩两个洼地北缘,结合Na+、K+、Mg2+、Ca2+//Cl-H2O体系相图和K+-Ca2+相关性分析,认为沿东陵湖南侧深大断裂带补给的Ca-Cl水促进了东陵湖光卤石的沉积。

  • 致谢:本项目的野外考察和样品的采集、写作讨论得到青海省盐湖地质与环境重点实验室山发寿研究员、杨浩田、商雯君、杨吉磊和杨富康等的帮助,审稿老师提出的宝贵意见和建议,有益于帮助笔者提高本文质量,在此一并致谢。

  • 注释

  • ❶ 青海省核工业放射性地质勘查院.2023. 青海省格尔木市东陵湖卤水钾盐矿普查设计.

  • ❷ 青海省自然资源厅.2023.《截至2022年底青海省矿产资源储量简表》.

  • 参考文献

    • Cao Wenhu, Wu Chan. 2004. Brine Resources and Their Comprehensive Utilization Technology. Beijing: Geological Publishing House (in Chinese).

    • Drever J I. 1988. The Geochemistry of Natural Waters (2nd Edition). New Jersey: Prentice Hall.

    • Fan Qishun, Ma Haizhou, Ma Zhibang, Wei Haicheng, Han Fengqing. 2014a. An assessment and comparison of 230Th and AMS 14C ages for lacustrine sediments from Qarhan Salt Lake area in arid western China. Environmental Earth Sciences, 71: 1227~1237.

    • Fan Qishun, Ma Haizhou, Wei Haicheng, Shan Fashou, An Fuyuan, Xu Liming, David B. 2014b. Madsen Late Pleistocene paleoclimatic history documented by an oxygen isotope record from carbonate sediments in Qarhan Salt Lake, NE Qinghai-Tibetan Plateau. Journal of Asian Earth Sciences, 85: 202~209.

    • Fan Qishun, Ma Yunqi, Cheng Huaide, Wei Haicheng, Yuan Qin, Qin Zhanjie, Shan Fashou. 2015. Boron occurrence in halite and boron isotope geochemistry of halite in the Qarhan Salt Lake, western China. Sedimentary Geology, 322: 34~42.

    • Fan Qishun, Lowenstein T K, Wei Haicheng, Yuan Qin, Qin Zhanjie, Shan Fashou, Ma Haizhou. 2018. Sr isotope and major ion compositional evidence for formation of Qarhan Salt Lake, western China. Chemical Geology, 497: 128~145.

    • Fan Qishun, Li Jiansen, Qin Zhanjie, Li Qingkuan. 2021. The research progress on the origin of CaCl2 brines and the further scientific issues. Journal of Salt Lake Research, 29(1): 1~9(in Chinese with English abstract).

    • Hardie L A, Eugster H P. 1970. The evolution of closed-basin brines. Mineral Society of America Bulletin, 3: 273~290.

    • Khadka U R, Ramanathan A. 2013. Major ion composition and seasonal variation in the Lesser Himalayan Lake: Case of Begnas Lake of the Pokhara Valley, Nepal. Arabian Journal of Geosciences, 6(11): 4191~4206.

    • Liu Chenglin, Lowenstein T K, Wang Anjian, Zheng Chunmiao, Yu Jianguo. 2023. Brine: Genesis and sustainable resource recovery worldwide. Annual Review of Environment and Resources, 48: 371~394.

    • Lowenstein T K, Spencer R J, Zhang Pengxi. 1989. Origin of ancient potash evaporites: Clues from the modern nonmarine Qaidam basin of western China. Science, 245: 1090~1092.

    • Lowenstein T K, Risacher F. 2009. Closed basin brine evolution and the influence of Ca-Cl inflow waters: Death valley and Bristol Dry Lake California, Qaidam basin, China, and Salar de Atacama, Chile. Aquatic Geochemistry, 15: 71~94.

    • Lowenstein T K, Dolginko L A C, Garcia-Veigas J. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California. Geological Society of America Bulletin, 128: 1555~1568.

    • Lowenstein T K, Jagniecki E A, Carroll A R, Smith M E, Renaut R W, Owen R B. 2017. The Green River salt mystery: What was the source of the hyperalkaline lake waters? Earth-Science Reviews, 173: 295~306.

    • Miao Weriliang, Zhang Xiying, Li Yulong, Li Wenxia, Yuan Xiaolong, Li Changzhong. 2022. Lithium and strontium isotopic systematics in the Nalenggele River catchment of Qaidam basin, China: Quantifying contributions to lithium brines and deciphering lithium behavior in hydrological processes. Journal of Hydrology, 614: 128630.

    • Shi Haiyan, Fan Qishun, Wang Liwen, Liiu Wanping, Wang Mingxiang, Li Zeren, Li Qingkuan, Chen Tianyuan, Yang Haotian. 2024a. Characterization of lithium and boron resource distribution and material sources in Dongling Lake, located in the northern region of Qarhan. Acta Geoscientica Sinica, 45(5): 728~742(in Chinese with English abstract).

    • Shi Haiyan, Fan Qishun, Liu Wanping, Li Qingkuan, Zhao Weiyong, Chen Tianyuan, Yang Haotian, Shang Wenjun. 2024b. Hydrological recharge study of potassium salt deposition in Dongling Lake at the northern margin of the Qarhan Salt Lake from a source-sink perspective. Acta Petrologica Sinica, accpeted (in Chinese with English abstract).

    • Song Hualing, Fan Qishun, Li Qingkuan, Chen Tianyuan, Yang Haotian, Han Chunmei. 2023. Recharge processes limit the resource elements of Qarhan Salt Lake in western China and analogues in the evaporite basins. Journal of Oceanology and Limnology, 41(4): 1226~1242.

    • Song Hualing, Fan Qishun, Li Qingkuan, Hang Guang, Chen Tianyuan, Yang Haotian, Wei Qi. 2024. Ca-high water recharge and mixing constrain on evolution and K enrichment of brine deposits in the evaporite basin: Case and analogue study in the Qaidam basin, Qinghai-Tibet Plateau. Journal of Hydrology, 632: 130883.

    • Sun Dapeng, Lock D E. 1988. Formation of potassium salt deposits in Qaidam basin. Science in China, (12): 1323~1333 (in Chinese with English abstract).

    • Valyashko M. r. 1965. Geochemical Formation Rules of Potash Deposition. Beijing: China Industry Press (in Chinese).

    • Wang Chunnan, Guo Xihua, Ma Mingzhu, LI Junde, LI Jian. 2008. Ore-forming geological background of K-Mg salt in Qarhan Salt Lake. Northwestern Geology, (1): 97~106 (in Chinese with English abstract).

    • Wang Ruijiu. 1983. Three-line diagram and its hydrogeological interpretation. Geotechnical Investigation and Surveying, (6): 6~11 (in Chinese).

    • Wei Haicheng, Fan Qishun, An Fuyuan, Shan Fashou, Ma Haizhou, Yuan Qin, Qin Zhanjie. 2016. Chemical elements in core sediments of the Qarhan Salt Lake and palaeoclimate evolution during 94~9 ka. Acta Geoscientica Sinica, 37(2): 193~203(in Chinese with English abstract).

    • Wu Bihao, Duan Zhenghao, Guan Yuhua, Lian Wei. 1986. Deposition of potash-magnesium salts in the Qarhan playa, Qaidam basin. Acta Geological Sinica, (3): 286~296(in Chinese with English abstract).

    • Yang Qian. 1982. The sedimentation mechanism of potash deposits in the Qarhan inland salt lake. Acta Geological Sinica, 56(3): 281~292 (in Chinese with English abstract).

    • Yang Qian. 1993. Distribution regularity of the salt and potash-ore beds in Qarhan Saline Lake. Geology of Chemical Minerals, (3): 186~195 (in Chinese with English abstract).

    • Yuan Jianqi, Huo Chengyu, Cai Keqin. 1983. The high mountain-deep basin saline environment—A now cenetic model of salt deposits. Geological Review, 29(2): 159~165 (in Chinese with English abstract).

    • Yuan Jianqi, Yang Qian, Sun Dapeng, Huo Chengyu, Cai Keqin, Wang Wenda, Liu Xunjian. 1995. The Forming Condition of Potash Deposit in Qarhan Salt Lake. Beijing: Geological Publishing House (in Chinese).

    • Zhang Pengxi. 1987. Salt Lake in Qaidam Basin. Beijing: Science Press (in Chinese).

    • Zhang Pengxi, Zhang Baozhen, Lowenstein T K, Spencer R J. 1993. Origin of Ancient Potash Evaporites: Examples from the Formation of Potash of Qarhan Salt Lake in Qaidam Basin. Beijing: Science Press (in Chinese).

    • Zhu Yunzhu, Li Zhengyan, Wu Bihao, Wang Mili. 1990. The formation of the Qarhan Saline Lake as viewed from the neotectonic movement. Acta Geological Sinica, 64(1): 13~21(in Chinese with English abstract).

    • 曹文虎, 吴蝉. 2004. 卤水资源及其综合利用技术. 北京: 地质出版社.

    • 樊启顺, 李建森, 秦占杰, 李庆宽. 2021. 氯化钙型卤水成因的研究进展及其科学问题. 盐湖研究, 29(1): 1~9.

    • M. г. 瓦里亚什科. 1965. 钾盐矿床形成的地球化学规律. 北京: 中国工业出版社.

    • 孙大鹏, D. E. Lock. 1988. 柴达木盆地钾盐沉积的形成问题. 中国科学, (12): 1323~1333.

    • 石海岩, 樊启顺, 王利文, 刘万平, 王明祥, 李泽仁, 李庆宽, 陈天源, 杨浩田. 2024a. 察尔汗北部东陵湖Li、B资源分布特征与物质来源. 地球学报, 45(5): 728~742.

    • 石海岩, 樊启顺, 刘万平, 李庆宽, 赵为永, 陈天源, 杨浩田, 商雯君. 2024b. 从源汇视角探讨察尔汗盐湖北缘东陵湖钾盐沉积的水文补给研究. 岩石学报(录用).

    • 王春男, 郭新华, 马明珠, 李俊德, 李健. 2008. 察尔汗盐湖钾镁盐矿成矿地质背景. 西北地质, (1): 97~106.

    • 王瑞久. 1983. 三线图解及其水文地质解释. 工程勘察, (6): 6~11.

    • 魏海成, 樊启顺, 安福元, 山发寿, 马海州, 袁秦, 秦占杰. 2016. 94~9 ka察尔汗盐湖的气候环境演化过程. 地球学报, 37(2): 193~203.

    • 吴必豪, 段振豪, 关玉华, 连卫. 1986. 柴达木盆地察尔汗干盐湖钾镁盐的沉积. 地质学报, (3): 286~296.

    • 杨谦. 1982. 察尔汗内陆盐湖钾矿层的沉积机理. 地质学报, 56(3): 281~292.

    • 杨谦. 1993. 察尔汗盐湖盐层及钾矿层的分布规律. 化工地质, (3): 186~195.

    • 袁见齐, 霍承禹, 蔡克勤. 1983. 高山深盆的成盐环境——一种新的成盐模式的剖析. 地质论评, 29(2): 159~165.

    • 袁见齐, 杨谦, 孙大鹏, 霍承禹, 蔡克勤, 王文达, 刘训健. 1995. 察尔汗盐湖钾盐矿床的形成条件. 北京: 地质出版社.

    • 张彭熹. 1987. 柴达木盆地盐湖. 北京: 科学出版社.

    • 张彭熹, 张保珍, T K洛温斯坦, R J斯潘塞. 1993. 古代异常钾盐蒸发岩的成因——以柴达木盆地察尔汗盐湖钾盐的成成为例. 北京: 科学出版社.

    • 朱允铸, 李争艳, 吴必豪, 王弭力. 1990. 从新构造运动看察尔汗盐湖的形成.地质学报, 64(1): 13~21.

  • 参考文献

    • Cao Wenhu, Wu Chan. 2004. Brine Resources and Their Comprehensive Utilization Technology. Beijing: Geological Publishing House (in Chinese).

    • Drever J I. 1988. The Geochemistry of Natural Waters (2nd Edition). New Jersey: Prentice Hall.

    • Fan Qishun, Ma Haizhou, Ma Zhibang, Wei Haicheng, Han Fengqing. 2014a. An assessment and comparison of 230Th and AMS 14C ages for lacustrine sediments from Qarhan Salt Lake area in arid western China. Environmental Earth Sciences, 71: 1227~1237.

    • Fan Qishun, Ma Haizhou, Wei Haicheng, Shan Fashou, An Fuyuan, Xu Liming, David B. 2014b. Madsen Late Pleistocene paleoclimatic history documented by an oxygen isotope record from carbonate sediments in Qarhan Salt Lake, NE Qinghai-Tibetan Plateau. Journal of Asian Earth Sciences, 85: 202~209.

    • Fan Qishun, Ma Yunqi, Cheng Huaide, Wei Haicheng, Yuan Qin, Qin Zhanjie, Shan Fashou. 2015. Boron occurrence in halite and boron isotope geochemistry of halite in the Qarhan Salt Lake, western China. Sedimentary Geology, 322: 34~42.

    • Fan Qishun, Lowenstein T K, Wei Haicheng, Yuan Qin, Qin Zhanjie, Shan Fashou, Ma Haizhou. 2018. Sr isotope and major ion compositional evidence for formation of Qarhan Salt Lake, western China. Chemical Geology, 497: 128~145.

    • Fan Qishun, Li Jiansen, Qin Zhanjie, Li Qingkuan. 2021. The research progress on the origin of CaCl2 brines and the further scientific issues. Journal of Salt Lake Research, 29(1): 1~9(in Chinese with English abstract).

    • Hardie L A, Eugster H P. 1970. The evolution of closed-basin brines. Mineral Society of America Bulletin, 3: 273~290.

    • Khadka U R, Ramanathan A. 2013. Major ion composition and seasonal variation in the Lesser Himalayan Lake: Case of Begnas Lake of the Pokhara Valley, Nepal. Arabian Journal of Geosciences, 6(11): 4191~4206.

    • Liu Chenglin, Lowenstein T K, Wang Anjian, Zheng Chunmiao, Yu Jianguo. 2023. Brine: Genesis and sustainable resource recovery worldwide. Annual Review of Environment and Resources, 48: 371~394.

    • Lowenstein T K, Spencer R J, Zhang Pengxi. 1989. Origin of ancient potash evaporites: Clues from the modern nonmarine Qaidam basin of western China. Science, 245: 1090~1092.

    • Lowenstein T K, Risacher F. 2009. Closed basin brine evolution and the influence of Ca-Cl inflow waters: Death valley and Bristol Dry Lake California, Qaidam basin, China, and Salar de Atacama, Chile. Aquatic Geochemistry, 15: 71~94.

    • Lowenstein T K, Dolginko L A C, Garcia-Veigas J. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California. Geological Society of America Bulletin, 128: 1555~1568.

    • Lowenstein T K, Jagniecki E A, Carroll A R, Smith M E, Renaut R W, Owen R B. 2017. The Green River salt mystery: What was the source of the hyperalkaline lake waters? Earth-Science Reviews, 173: 295~306.

    • Miao Weriliang, Zhang Xiying, Li Yulong, Li Wenxia, Yuan Xiaolong, Li Changzhong. 2022. Lithium and strontium isotopic systematics in the Nalenggele River catchment of Qaidam basin, China: Quantifying contributions to lithium brines and deciphering lithium behavior in hydrological processes. Journal of Hydrology, 614: 128630.

    • Shi Haiyan, Fan Qishun, Wang Liwen, Liiu Wanping, Wang Mingxiang, Li Zeren, Li Qingkuan, Chen Tianyuan, Yang Haotian. 2024a. Characterization of lithium and boron resource distribution and material sources in Dongling Lake, located in the northern region of Qarhan. Acta Geoscientica Sinica, 45(5): 728~742(in Chinese with English abstract).

    • Shi Haiyan, Fan Qishun, Liu Wanping, Li Qingkuan, Zhao Weiyong, Chen Tianyuan, Yang Haotian, Shang Wenjun. 2024b. Hydrological recharge study of potassium salt deposition in Dongling Lake at the northern margin of the Qarhan Salt Lake from a source-sink perspective. Acta Petrologica Sinica, accpeted (in Chinese with English abstract).

    • Song Hualing, Fan Qishun, Li Qingkuan, Chen Tianyuan, Yang Haotian, Han Chunmei. 2023. Recharge processes limit the resource elements of Qarhan Salt Lake in western China and analogues in the evaporite basins. Journal of Oceanology and Limnology, 41(4): 1226~1242.

    • Song Hualing, Fan Qishun, Li Qingkuan, Hang Guang, Chen Tianyuan, Yang Haotian, Wei Qi. 2024. Ca-high water recharge and mixing constrain on evolution and K enrichment of brine deposits in the evaporite basin: Case and analogue study in the Qaidam basin, Qinghai-Tibet Plateau. Journal of Hydrology, 632: 130883.

    • Sun Dapeng, Lock D E. 1988. Formation of potassium salt deposits in Qaidam basin. Science in China, (12): 1323~1333 (in Chinese with English abstract).

    • Valyashko M. r. 1965. Geochemical Formation Rules of Potash Deposition. Beijing: China Industry Press (in Chinese).

    • Wang Chunnan, Guo Xihua, Ma Mingzhu, LI Junde, LI Jian. 2008. Ore-forming geological background of K-Mg salt in Qarhan Salt Lake. Northwestern Geology, (1): 97~106 (in Chinese with English abstract).

    • Wang Ruijiu. 1983. Three-line diagram and its hydrogeological interpretation. Geotechnical Investigation and Surveying, (6): 6~11 (in Chinese).

    • Wei Haicheng, Fan Qishun, An Fuyuan, Shan Fashou, Ma Haizhou, Yuan Qin, Qin Zhanjie. 2016. Chemical elements in core sediments of the Qarhan Salt Lake and palaeoclimate evolution during 94~9 ka. Acta Geoscientica Sinica, 37(2): 193~203(in Chinese with English abstract).

    • Wu Bihao, Duan Zhenghao, Guan Yuhua, Lian Wei. 1986. Deposition of potash-magnesium salts in the Qarhan playa, Qaidam basin. Acta Geological Sinica, (3): 286~296(in Chinese with English abstract).

    • Yang Qian. 1982. The sedimentation mechanism of potash deposits in the Qarhan inland salt lake. Acta Geological Sinica, 56(3): 281~292 (in Chinese with English abstract).

    • Yang Qian. 1993. Distribution regularity of the salt and potash-ore beds in Qarhan Saline Lake. Geology of Chemical Minerals, (3): 186~195 (in Chinese with English abstract).

    • Yuan Jianqi, Huo Chengyu, Cai Keqin. 1983. The high mountain-deep basin saline environment—A now cenetic model of salt deposits. Geological Review, 29(2): 159~165 (in Chinese with English abstract).

    • Yuan Jianqi, Yang Qian, Sun Dapeng, Huo Chengyu, Cai Keqin, Wang Wenda, Liu Xunjian. 1995. The Forming Condition of Potash Deposit in Qarhan Salt Lake. Beijing: Geological Publishing House (in Chinese).

    • Zhang Pengxi. 1987. Salt Lake in Qaidam Basin. Beijing: Science Press (in Chinese).

    • Zhang Pengxi, Zhang Baozhen, Lowenstein T K, Spencer R J. 1993. Origin of Ancient Potash Evaporites: Examples from the Formation of Potash of Qarhan Salt Lake in Qaidam Basin. Beijing: Science Press (in Chinese).

    • Zhu Yunzhu, Li Zhengyan, Wu Bihao, Wang Mili. 1990. The formation of the Qarhan Saline Lake as viewed from the neotectonic movement. Acta Geological Sinica, 64(1): 13~21(in Chinese with English abstract).

    • 曹文虎, 吴蝉. 2004. 卤水资源及其综合利用技术. 北京: 地质出版社.

    • 樊启顺, 李建森, 秦占杰, 李庆宽. 2021. 氯化钙型卤水成因的研究进展及其科学问题. 盐湖研究, 29(1): 1~9.

    • M. г. 瓦里亚什科. 1965. 钾盐矿床形成的地球化学规律. 北京: 中国工业出版社.

    • 孙大鹏, D. E. Lock. 1988. 柴达木盆地钾盐沉积的形成问题. 中国科学, (12): 1323~1333.

    • 石海岩, 樊启顺, 王利文, 刘万平, 王明祥, 李泽仁, 李庆宽, 陈天源, 杨浩田. 2024a. 察尔汗北部东陵湖Li、B资源分布特征与物质来源. 地球学报, 45(5): 728~742.

    • 石海岩, 樊启顺, 刘万平, 李庆宽, 赵为永, 陈天源, 杨浩田, 商雯君. 2024b. 从源汇视角探讨察尔汗盐湖北缘东陵湖钾盐沉积的水文补给研究. 岩石学报(录用).

    • 王春男, 郭新华, 马明珠, 李俊德, 李健. 2008. 察尔汗盐湖钾镁盐矿成矿地质背景. 西北地质, (1): 97~106.

    • 王瑞久. 1983. 三线图解及其水文地质解释. 工程勘察, (6): 6~11.

    • 魏海成, 樊启顺, 安福元, 山发寿, 马海州, 袁秦, 秦占杰. 2016. 94~9 ka察尔汗盐湖的气候环境演化过程. 地球学报, 37(2): 193~203.

    • 吴必豪, 段振豪, 关玉华, 连卫. 1986. 柴达木盆地察尔汗干盐湖钾镁盐的沉积. 地质学报, (3): 286~296.

    • 杨谦. 1982. 察尔汗内陆盐湖钾矿层的沉积机理. 地质学报, 56(3): 281~292.

    • 杨谦. 1993. 察尔汗盐湖盐层及钾矿层的分布规律. 化工地质, (3): 186~195.

    • 袁见齐, 霍承禹, 蔡克勤. 1983. 高山深盆的成盐环境——一种新的成盐模式的剖析. 地质论评, 29(2): 159~165.

    • 袁见齐, 杨谦, 孙大鹏, 霍承禹, 蔡克勤, 王文达, 刘训健. 1995. 察尔汗盐湖钾盐矿床的形成条件. 北京: 地质出版社.

    • 张彭熹. 1987. 柴达木盆地盐湖. 北京: 科学出版社.

    • 张彭熹, 张保珍, T K洛温斯坦, R J斯潘塞. 1993. 古代异常钾盐蒸发岩的成因——以柴达木盆地察尔汗盐湖钾盐的成成为例. 北京: 科学出版社.

    • 朱允铸, 李争艳, 吴必豪, 王弭力. 1990. 从新构造运动看察尔汗盐湖的形成.地质学报, 64(1): 13~21.