en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李家新,女,1997年生。硕士,从事煤地球化学研究。E-mail: LJiaxin0306@163.com。

通讯作者:

王文峰,男,1970年生。教授,博士生导师,长期从事煤地质学研究。E-mail: wenfwang@vip.163.com。

白洪阳,男,1989年生。讲师,博士,从事煤地球化学研究。E-mail: bhy1989@163.com。

参考文献
Bai Hongyang. 2022. Geochemical characteristics and genetic mechanism of high uranium coal in Yili. Doctoral dissertation of China University of Mining and Technology (in Chinese with English abstract).
参考文献
Cao Qingyi, Ren Wenying, Liang Chaoming, Zhang Yufei, Yang Liu. 2022. Spatial distribution of harmful trace elements in Chinese coals. Coal Geology & Exploration, 50(5): 13~22 (in Chinese with English abstract).
参考文献
Chen Fenxiong, Nie Fengjun, Zhang Chengyong, Zhang Zhanfeng. 2016. Geological characteristics and genetic mechanism of the Honghaigou uranium deposit in the southern margin of Yili basin. Acta Geologica Sinica, 90(12): 3324~3336 (in Chinese with English abstract).
参考文献
Cheng Xianghu. 2019. Geological characteristics and genetic analysis of sandstone uranium deposits in Wukuerqi-Mongqiguer area, southern margin of Yili basin. Master's thesis of Northwest University (in Chinese with English abstract).
参考文献
Dai Shifeng, Ren Deyi, Sun Yuzhuang, Tang Yuegang. 2004. Concentration and the sequential chemical extraction procedures of U and Th in the Paleozoic coals from the Ordos basin. Journal of China Coal Society, 29(B10): 56~60 (in Chinese with English abstract).
参考文献
Dai Shifeng, Wang Xibo, Zhou Yiping, Hower J C, Li Dahua, Chen Wenmei, Zhu Xingwei, Zou Jianhua. 2011. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao coalfield, Chongqing, Southwest China. Chemical Geology, 282(1-2): 29~44.
参考文献
Dai Shifeng, Ren D, Chou Chenlin, Finkelman R B, Seredin V V, Zhou Yiping. 2012. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94: 3~21.
参考文献
Dai Shifeng, Seredin V V, Ward C R, Hower J C, Xing Yunwei, Zhang Weiguo, Song Weijiao, Wang Peiei. 2015a. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding coalfield, Guizhou, China. Mineralium Deposita, 50: 159~186.
参考文献
Dai Shifeng, Yang Jianye, Ward C R, Hower J C, Liu Huidong, Garrison T M, French D, O'Keefe J M. 2015b. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili basin, Xinjiang, northwestern China. Ore Geology Reviews, 70: 1~30.
参考文献
Du Mo, Qiu Yubo, Chen Wenbin, Zhang Zhanfeng, Liu Junping. 2014. Sandstone development and uranium mineralization in the lower member of the Xishanyao Formation, northern Zhajisitan, Yili basin. Sedimentary Geology and Tethyan Geology, 34(1): 55~60 (in Chinese with English abstract).
参考文献
Duan Piaopiao, Wang Wenfeng, Sang Shuxun, Tang Yuegang, Ma Mengya, Liang Bin. 2018. Geochemistry of toxic elements and their removal via the preparation of high-uranium coal in southwestern China. Minerals, 8(3): 83.
参考文献
Eskenazy G M. 1987. Rare earth elements and yttrium in lithotypes of Bulgarian coals. Organic Geochemistry, 11: 83~89.
参考文献
Hayashi K I, Fujisawa H, Holland H D, Ohmoto H. 1997. Geochemistry of ~1. 9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115~4137.
参考文献
He Bin, Xu Yigang, Zhong Yuting, Guan Junpeng. 2010. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos, 119(1-2): 10~19.
参考文献
Hower J C, Dai S, Eskenazy G. 2016. Distribution of uranium and other radionuclides in coal and coal combustion products, with discussion of occurrences of combustion products in Kentucky power plants. Coal Combustion and Gasification Products, 8(3): 44~53.
参考文献
Huang Bingxiang, Zhao Xinglong, Yu Bin, He Guisheng, Yue Zhongwen, Yang Chengxiang, Wang Changshen, Meng Qingbin, Yang Yugui, Liu Jiangfeng, Feng Xiujuan, Chen Dayang, Xing Yuekun, Zhu Weibing, Duan Xiaoheng, Ju Jinfeng. 2022. Research framework of theory and technology for coordinated mining of coal and its co-existed and associated strategic metal minerals. Journal of China Coal Society, 47(7): 2516~2533 (in Chinese with English abstract).
参考文献
Huang Bingxiang, Zhao Xinglong, Han Xiaoke, Wu Zhanwei, Yuan Guodong, Zhang Qinglin. 2024. Collaborative development of co-existed and associated minerals in the coal series. Journal of Mining & Safety Engineering, 41(1): 1~14 (in Chinese with English abstract).
参考文献
Huang Wenhui, Yang Qi, Tang Dazhen, Tang Xiuyi, Zhao Zhigen. 2000. The affinity of trace elements of permian coal from panji mine in Huainan coal field. Earth Science Frontiers, 7(B08): 263~270 (in Chinese with English abstract).
参考文献
Huang Wenhui, Tang Xiuyi. 2002. Uranium, thorium and other radionuclides in coal of China. Coal Geology of China, 14(B07): 55~63 (in Chinese with English abstract).
参考文献
Huang Wenhui, Wan Huan, Finkelman R B, Tang Xiuyi, Zhao Zhigen. 2012. Distribution of uranium in the main coalfields of China. Energy Exploration & Exploitation, 30(5): 819~836.
参考文献
Ji Huali, He Zhongbo, Wei Sanyuan, Cao Jianhui, Yang Fan. 2020. Indicative significance of trace element analysis in Early Cretaceous sedimentary environment of Hegang basin. Mineral Exploration, 11(1): 21~27 (in Chinese with English abstract).
参考文献
Jia Zhiyong, Zhang Hujun, Chen Wenzheng, Zhang Lei, Qiu Yubo. 2020. Ore-control factors of Honghaigou coal type uranium deposit in the southern margin of Yili basin, Xinjiang. Mineral Exploration, 11(11): 2417~2423 (in Chinese with English abstract).
参考文献
Jiao Chunquan, Li Zhen. 1995. Genesis and distribution regularity of isolate barrier beds in channel reservoir sandbody. Petroleum Exploration and Development, 22(4): 78~81 (in Chinese with English abstract).
参考文献
Jones B, Manning D A. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111~129.
参考文献
Ketris M P, Yudovich Y E. 2009. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2): 135~148.
参考文献
Lauer N, Vengosh A, Dai Shifeng. 2017. Naturally occurring radioactive materials in uranium-rich coals and associated coal combustion residues from China. Environmental Science & Technology, 51(22): 13487~13493.
参考文献
Liu Jingjing, Dai Shifeng, Song Hongjian, Nechaev V P, French D, Spiro B F, Graham I T, Hower J C, Shao Longyi, Zhao Jingtao. 2021. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong coalfield, western Guizhou, China. International Journal of Coal Geology, 247: 103855.
参考文献
Liu Shuangshuang, Wang Wenfeng, Wang Wenlong, Lu Qingfeng, Shao Fengjun, Wang Yulong. 2022. Distribution regularity and occurrence characteristics of critical metal elements in Yili coals. Journal of China Coal Society, 47(5): 1761~1772 (in Chinese with English abstract).
参考文献
Luo Xinggang, Wang Shouyu, Wang Fangxia, Liu Fuqiang. 2022. Sedimentary characteristics of sand body and uranium mineralization controlling factors of the lower member of Toutunhe Formation in Honghaigou deposit. Uranium Geology, 38(4): 707~716 (in Chinese with English abstract).
参考文献
Michard A, Albarede F, Michard G, Minster J F, Charlou J L. 1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 N). Nature, 303(5920): 795~797.
参考文献
Min Maozhong, Chen Jia, Wang Jinpeng, Wei Guanhui, Fayek M. 2005. Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China. Ore Geology Reviews, 26(1-2): 51~69.
参考文献
Qin Mingkuan, Zhao Ruiquan. 1997. The geochemistry and significance of rhenium inuranium deposit No. 512. Uranium Geology, 13(5): 273~278 (in Chinese with English abstract).
参考文献
Qiu Yubo, Yi Haisheng, Luo Xinggang, Wang Maomao, Qiao Qi, Liu Jie. 2015. Lithophase characteristics of Toutunhe Formation and its control on uranium mineralization in Honghaigou uranium deposit. Metal Mine, (1): 90~93 (in Chinese with English abstract).
参考文献
Quan Zhigao, Li Zhanshuang. 2002. Geological characteristics and genesis of the Shihongtan sandstone-type uranium deposit, Xinjiang. Geological Review, 48(4): 430~436 (in Chinese with English abstract).
参考文献
Seredin V V, Finkelman R B. 2008. Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76(4): 253~289.
参考文献
Seredin V V, Dai Shifeng. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94: 67~93.
参考文献
Song Hao, Fan Yuanqing, Zhang Chengjiang, Tan Yahui, Xu Zhengqi, Hou Mingcai, Wen Zhenqian, Duan Meiling, Zhou Jing, Li Mei, Du Qianmin, Yu Huijie, Huang Xiaodong, Xu Xifeng, Tian Zenghui, Wang Zexin, Xiao Tao. 2024. Advances in the study of process mineralogy of sandstone-type uranium deposits in northern China. Mineralogy and Petrology, 44(1): 11~29 (in Chinese with English abstract).
参考文献
Sun Yuzhuang, Zhao Cunliang, Li Yanheng, Wang Jinxi. 2014. Minimum mining grade of the selected trace elements in Chinese coal. Journal of China Coal Society, 39(4): 744~748 (in Chinese with English abstract).
参考文献
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1~328.
参考文献
Wang Fudong, Zhang Lei, Chen Cheng, Wei Xianzhen. 2021. Analysis of hydrochemical condition and uranium sources about uranium deposit in Ⅶ cycle Honghaigou. Mineral Exploration, 12(6): 1332~1338 (in Chinese with English abstract).
参考文献
Wang Guandong, Jing Jidong, Zhang Peng. 2014. Study on effective exploitation model of resources under coal-uranium symbiosis in Yili basin, Xinjiang. Modern Business, (9): 118 (in Chinese).
参考文献
Wang Guo, Hua Renmin, Qin Lifeng. 2000. Study on fluid interaction of the sandstone-type uranium deposits in the Mesozoic-Cenozoic terrestrial sedimentary basins. Geological Journal of China Universities, (3): 437~446 (in Chinese with English abstract).
参考文献
Wang Junning, Yang Junfeng. 2006. Valence state characteristics of uranium at a sandstone type uranium deposit and its significance in in situ leaching. Uranium Mining and Metallurgy, 25(1): 50~52 (in Chinese with English abstract).
参考文献
Wang Maomao, Li Hua, Qiu Yubo. 2015. Coal-type uranium metallogenic analysis in Honghaigou area, Ili basin, Xinjiang. Coal Geology of China, 27(12): 12~16(in Chinese with English abstract).
参考文献
Wang Maomao, Qiu Yubo, Chang Jingtao, Du Mo, Wang Mingli, Zhang Hujun, Wang Qiangqiang. 2016. Valence uranium characteristics of Middle Jurassic Xishanyao Formation in the southern margin of Ili basin. Modern Mining, 32(7): 137~140 (in Chinese with English abstract).
参考文献
Wang Wenfeng, Qin Yong, Song Dangyu. 2003. Modes of occurrence on hazardous trace elements in coal. Coal Geology of China, 15(4): 10~13 (in Chinese with English abstract).
参考文献
Wang Wenfeng, Wang Wenlong, Liu Shuangshuang, Bai Hongyang, Wang Yulong, Duan Piaopiao, Qin Kemin, Chen Yilin. 2021. Distribution and occurrence of uranium in coal and its migration behavior during the coal utilization. Coal Geology & Exploration, 49(1): 65~80 (in Chinese with English abstract).
参考文献
Wei Yingchun, Hua Fanghui, He Wenbo, Ning Shuzheng, Zhang Ning, Qin Yunhu, Cao Daiyong. 2020. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area. Journal of China Coal Society, 45(4): 1473~1487 (in Chinese with English abstract).
参考文献
Xing Dongxu, Kang Yon, Wang Bing, Qiu Yubo, Zhang Hujun. 2014. Main ore-bearing aquifer and hydrogeochemical characteristics of the Uranium deposit in Honghaigou area, southern margin of Yili basin. Xinjiang Geology, 32(2): 240~243 (in Chinese with English abstract).
参考文献
Yang Jianye. 2007. Concentration and distribution of uranium in Chinese coals. Energy, 32(3): 203~212.
参考文献
Yang Jianye, Di Yongqiang, Zhang Weiguo, Liu Shande. 2011a. Geochemistry study of its uranium and other element of brown coal of ZK0161 well in Yili basin. Journal of China Coal Society, 36(6): 945~952 (in Chinese with English abstract).
参考文献
Yang Jianye, Wang Guo, Shi Zhilong, Ren Manchuan, Zhang Weiguo, Liu Shande. 2011b. Geochemistry study of uranium and other element in brown coal of ZK0407 well in Yili basin. Journal of Fuel Chemistry and Technology, 39(5): 340~346 (in Chinese with English abstract).
参考文献
Yudovich Y E. 2003. Notes on the marginal enrichment of germanium in coal beds. International Journal of Coal Geology, 56(3-4): 223~232.
参考文献
Zhang Guowei, Li Sanzhong, Liu Junxia, Teng Zhihong, Jin Hailong, Li Wei, Huang Xianxiong, Wu Yahong. 1999. Structural feature and evolution of Yili basin, Xinjiang. Earth Science Frontiers, 6(4): 203~214 (in Chinese with English abstract).
参考文献
Zhou Xianqing, Qin Yong, Lu Lu. 2019. Advances on geological-geochemical research of coal-type uranium in China. Coal Geology & Exploration, 47(4): 45~53 (in Chinese with English abstract).
参考文献
白洪阳. 2022. 伊犁高铀煤的地球化学特征和成因机理. 中国矿业大学博士学位论文.
参考文献
曹庆一, 任文颖, 梁朝铭, 张宇飞, 杨柳. 2022. 中国煤中有害微量元素含量的空间分布. 煤田地质与勘探, 50(5): 13~22.
参考文献
陈奋雄, 聂逢君, 张成勇, 张占峰. 2016. 伊犁盆地南缘洪海沟矿床富大矿体地质特征与成因机制研究. 地质学报, 90(12): 3324~3336.
参考文献
程相虎. 2019. 伊犁盆地南缘乌库尔其-蒙其古尔地区砂岩铀矿地质特征与成因分析. 西北大学硕士学位论文.
参考文献
代世峰, 任德贻, 孙玉壮, 唐跃刚. 2004. 鄂尔多斯盆地晚古生代煤中铀和钍的含量与逐级化学提取. 煤炭学报, 29(B10): 56~60.
参考文献
杜默, 邱余波, 陈文彬, 张占峰, 刘俊平. 2014. 伊犁盆地扎吉斯坦北部西山窑组下段砂体发育特征与铀成矿的关系. 沉积与特提斯地质, 34(1): 55~60.
参考文献
黄炳香, 赵兴龙, 余斌, 贺桂成, 岳中文, 杨成祥, 王长申, 孟庆彬, 杨玉贵, 刘江峰, 冯秀娟, 陈大勇, 邢岳堃, 朱卫兵, 段晓恒, 鞠金峰. 2022. 煤与共伴生战略性金属矿产协调开采理论与技术构想. 煤炭学报, 47(7): 2516~2533.
参考文献
黄炳香, 赵兴龙, 韩晓克, 吴占伟, 袁国栋, 张青林. 2024. 煤系共伴生矿产协同开发. 采矿与安全工程学报, 41(1): 1~14.
参考文献
黄文辉, 杨起, 汤达祯, 唐修义, 赵志根. 2000. 潘集煤矿二叠纪主采煤层中微量元素亲和性研究. 地学前缘, 7(B08): 263~270.
参考文献
黄文辉, 唐修义. 2002. 中国煤中的铀、钍和放射性核素. 中国煤田地质, 14(B07): 55~63.
参考文献
冀华丽, 何中波, 卫三元, 曹建辉, 杨帆. 2020. 微量元素在鹤岗盆地早白垩世沉积环境分析中的应用. 矿产勘查, 11(1): 21~27.
参考文献
贾智勇, 张虎军, 陈文正, 张磊, 邱余波. 2020. 新疆伊犁盆地南缘洪海沟煤岩型铀矿控矿因素研究. 矿产勘查, 11(11): 2417~2423.
参考文献
焦春泉, 李祯. 1995. 河道储层砂体中隔挡层的成因与分布规律. 石油勘探与开发, 22(4): 78~81.
参考文献
刘双双, 王文峰, 王文龙, 陆青锋, 邵峰军, 王昱龙. 2022. 伊犁盆地煤中关键金属的分布赋存特征. 煤炭学报, 47(5): 1761~1772.
参考文献
罗星刚, 王守玉, 王芳霞, 刘富强. 2022. 洪海沟铀矿床头屯河组下段砂体沉积特征及铀矿化控因. 铀矿地质, 38(4): 707~716.
参考文献
秦明宽, 赵瑞全. 1997. 512铀矿床Re的地球化学及其研究意义. 铀矿地质, 13(5): 273~278.
参考文献
邱余波, 伊海生, 罗星刚, 王毛毛, 乔淇, 刘杰. 2015. 洪海沟铀矿床头屯河组岩相特征及对铀成矿的控制. 金属矿山, (1): 90~93.
参考文献
权志高, 李占双. 2002. 新疆十红滩砂岩型铀矿床基本特征及成因分析. 地质论评, 48(4): 430~436.
参考文献
宋昊, 范元清, 张成江, 谭亚辉, 徐争启, 侯明才, 闻振乾, 段美铃, 周靖, 李梅, 杜钱敏, 于慧杰, 黄晓东, 许喜凤, 田增辉, 王泽鑫, 肖涛. 2024. 中国北方砂岩型铀矿床工艺矿物学研究若干进展. 矿物岩石, 44(1): 11~29.
参考文献
孙玉壮, 赵存良, 李彦恒, 王金喜. 2014. 煤中某些伴生金属元素的综合利用指标探讨. 煤炭学报, 39(4): 744~748.
参考文献
王福东, 张磊, 陈程, 魏显珍. 2021. 洪海沟铀矿床Ⅶ旋回水化学条件与铀源分析. 矿产勘查, 12(6): 1332~1338.
参考文献
王贯东, 景继东, 张鹏. 2014. 新疆伊犁盆地煤铀共生条件下资源有效开发模式研究. 现代商业, (9): 118.
参考文献
王果, 华仁民, 秦立峰. 2000. 中、新生代陆相沉积盆地砂岩型铀矿床流体作用研究. 高校地质学报, (3): 437~446.
参考文献
王军宁, 杨军锋. 2006. 某砂岩型铀矿床铀的价态特征及在地浸开采中的意义. 铀矿冶, 25(1): 50~52.
参考文献
王毛毛, 李华, 邱余波. 2015. 新疆伊犁盆地洪海沟地区煤岩型铀成矿分析. 中国煤炭地质, 27(12): 12~16.
参考文献
王毛毛, 邱余波, 常京涛, 杜默, 王明力, 张虎军, 王强强. 2016. 伊犁盆地南缘中侏罗统西山窑组价态铀特征. 现代矿业, 32(7): 137~140.
参考文献
王文峰, 秦勇, 宋党育. 2003. 煤中有害微量元素的赋存状态. 中国煤田地质, 15(4): 10~13.
参考文献
王文峰, 王文龙, 刘双双, 白洪阳, 王昱龙, 段飘飘, 秦可敏, 陈义林. 2021. 煤中铀的赋存分布及其在利用过程中的迁移特征. 煤田地质与勘探, 49(1): 65~80.
参考文献
魏迎春, 华芳辉, 何文博, 宁树正, 张宁, 秦云虎, 曹代勇. 2020. 峰峰矿区 2 号煤中微量元素富集特征差异性研究. 煤炭学报, 45(4): 1473~1487.
参考文献
邢东旭, 康勇, 王冰, 秋余波, 张虎军. 2014. 伊犁盆地南缘洪海沟地区铀矿主要含矿含水层及水文地球化学特征. 新疆地质, 32(2): 240~243.
参考文献
杨建业, 狄永强, 张卫国, 刘善德. 2011a. 伊犁盆地ZK0161井褐煤中铀及其它元素的地球化学研究. 煤炭学报, 36(6): 945~952.
参考文献
杨建业, 王果, 师志龙, 任满船, 张卫国, 刘善德. 2011b. 伊犁盆地ZK0407井褐煤中铀及其他元素的地球化学研究. 燃料化学学报, 39(5): 340~346.
参考文献
张国伟, 李三忠, 刘俊霞, 滕志宏, 金海龙, 李伟, 黄先雄, 吴亚红. 1999. 新疆伊犁盆地的构造特征与形成演化. 地学前缘, 6(4): 203~214.
参考文献
周贤青, 秦勇, 陆鹿. 2019. 中国煤型铀地质-地球化学研究进展. 煤田地质与勘探, 47(4): 45~53.
目录contents

    摘要

    铀是重要能源矿产和国家战略资源,煤岩型铀矿对我国核能产业可持续发展和“双碳”目标实现具有重要意义。本文采用X射线荧光光谱(XRF)、电感耦合等离子体质谱(ICP-MS)和X射线光电子能谱(XPS)等手段,研究了伊犁盆地洪海沟矿区煤的元素地球化学、富铀因素以及铀活化迁移过程的价态变化特征。结果表明:① 洪海沟煤中U超常富集,平均含量为258.91 μg/g。石炭纪—二叠纪中—酸性火成岩和海西期花岗岩是煤中铀的物质来源,稳定的单斜构造,头屯河组砂砾岩和粗砂岩的岩性组合,晚侏罗世以来干旱气候及后生富铀溶液的入渗共同控制煤层中U、Re、Se、Mo等元素共同富集。② 煤岩型铀矿的形成与氧化环境中U6+以络合物或酸根形式迁移,氧化—还原过渡环境中富铀含氧流体中U6+被还原成U4+沉淀富集有关。洪海沟矿区弱氧化—还原过渡环境高价态的变价元素被还原,以Se-U-Re-Mo模式共同富集于煤层顶部。③ 洪海沟矿区“上铀下煤”矿产资源分布和铀矿下部多煤层的发育,需要合理划分煤-铀矿产资源之间保护区距离,上部砂岩型铀矿优先进行地浸开采,下部煤岩型铀矿采用井工开拓方式进行“煤炭地下气化+煤灰原位地浸开采”,将煤灰中铀提取至地表利用,实现煤-铀资源协调开采利用。

    Abstract

    Coal-type uranium deposits are critical for the sustainable development of China's nuclear energy industry and the achievement of its ‘double carbon’ goals. This study, using X-ray fluorescence spectroscopy (XRF), inductively coupled plasma-mass spectrometry (ICP-MS), and X-ray photoelectron spectroscopy (XPS), investigates the elemental geochemistry, U-enrichment controlling factors, and valence state characteristics of uranium during activation and migration processes in coals from the Honghaigou mine in the Yili basin. Our results indicated that: ① The Honghaigou coal displays abnormally high uranium enrichment, with an average of 258.91 μg/g. This enrichment can be attributed to several contributing factors: the presence of U-rich Permian-Carboniferous Hercynian granites with a stable monoclinic structure; the association of sandy conglomerate and coarse sandstone of the Toutunhe Formation; arid climatic conditions following the Late Jurassic; and the infiltration of epigenetic U-rich solutions. These factors collectively controlled the co-enrichment of U, Re, Se, Mo, and other elements in this coal. ② In the oxidation zone of the coal-rock-type uranium ore, U6+ migrates in the form of complexes or acid radicals. As this migration continues to the oxidation-reduction transition zone, U6+ is reduced to U4+ and precipitates, leading to enrichment in uranium-rich oxygenated fluids. The uranium content of the original, reduced zone decreases and tends towards a solid state. In contrast, in the weak oxidation-reduction transition zone of the Honghaigou mine, uranium content exhibits a sharp increase, and the high-valence variable elements become co-enriched at the top of the coal seam in the Se-U-Re-Mo combination. ③ The spatial distribution of mineral resources in Honghaigou mine, characterized by ‘upper uranium and lower coal’, alongside the development of multiple coal seams in the lower part of the uranium mine, allows for a strategic and balanced mining approach. The upper sandstone-type uranium mine is preferentially mined by in-situ leaching, while the lower coal-rock-type uranium mine adopts the underground mining method to carry out ‘underground coal gasification+coal ash in-situ leaching mining’. This dual mining strategy allows for the extraction of uranium from coal ash and its subsequent utilization on the surface, promoting the coordinated mining and utilization of both coal and uranium resources.

    关键词

    富铀煤元素地球化学价态协调开采

  • 煤、铀资源存在空间配置和成矿关联性,我国巨大的煤炭资源消耗和能源结构特点使煤岩型铀矿资源的开发利用迫在眉睫(周贤青等,2019)。伊犁煤田煤具有煤层厚、煤质好、低灰低硫的特点,也是富铀煤主要地区(曹庆一等,2022)。富铀煤中铀含量高于10 μg/g,而含量大于40 μg/g可作为煤中铀回收利用的工业指标(孙玉壮等,2014; Lauer et al.,2017)。伊犁煤中铀含量最高可达7207 μg/g,显著高于中国煤及世界煤中铀的平均含量(Huang Wenhui et al.,2012; Dai Shifeng et al.,2015a)。

  • 1957年,中央地质队在湖南郴州花岗岩层中发现711铀矿,随后开展煤中铀的普查。中国各聚煤区、不同成煤时代煤中铀的分布不同,西南荣阳富铀煤中有机硫与U含量正相关,伊犁部分煤中U、Se、Mo、Re富集(黄文辉,2002; Yang Jianye,2007; 杨建业,2011a; Dai Shifeng et al.,2015b; Duan Piaopiao et al.,2018)。王军宁等(2006)认为砂岩型铀矿床六价铀能与溶浸液中阴离子结合成铀酰离子被浸出,四价铀被氧化成六价铀后才被浸出;Hower et al.(2016)发现低阶煤中的铀主要与有机质有关,尤其是腐植质。王文峰等(2021)系统总结了中国煤中铀的分布规律、赋存分布和元素间的共生组合等特征,为铀资源利用和环境污染控制提供依据。

  • 伊犁盆地煤中铀的分布、赋存、富集成因等已有较多研究,但对铀超常富集控制因素研究较少以及煤中铀活化迁移过程中价态的变化认识不充分。因此,本文以新疆伊犁盆地南缘洪海沟矿区富铀煤为研究对象,分析其元素地球化学特征,探讨煤中铀的分布赋存、控制因素及铀迁移过程中价态特征,为煤-铀资源的协调开采和清洁利用提供科学依据。

  • 1 地质背景

  • 伊犁盆地是由古生代弧间裂陷槽演化而成的陆相中新生代盆地,沉积物源区主要由海西花岗岩、石炭纪—二叠纪中—酸性火成岩及夹杂碳酸盐层的火山碎屑岩组成(张国伟等,1999; Min Maozhong et al.,2005; Seredin et al.,2012; 程相虎等,2019)。洪海沟矿床位于伊犁盆地南缘斜坡带西部构造相对稳定区,次级构造单元属洪海沟西部凹陷。单斜构造呈南高北低、北偏西延伸产出是层间氧化带稳定发育的前提(图1)(陈奋雄等,2016; 贾智勇等,2020)。

  • 伊犁盆地内侏罗系地层是主要的含煤地层,自下而上可划分为八道湾组、三工河组、西山窑组,其中西山窑组是重要的含煤层位和主要的铀矿层位(王福东等,2021)。洪海沟地区铀矿化主要分布于中侏罗统西山窑组上段和中侏罗统头屯河组(Ⅶ、Ⅷ旋回),自下而上形成三层工业矿体:下部西山窑组上段砂岩型铀矿体、中部12煤层顶部的煤型铀矿体、上部头屯河组下段的砂岩型铀矿体。洪海沟砂岩型铀矿形成于矿床中部厚大、稳定的面状砂体,层间氧化带前锋线及铀矿化主要发育在岩性-岩相变化部位。煤岩型铀矿主要出现在氧化砂体与12煤层的接触部位且偏煤层一侧,垂向上与头屯河组砂体底部铀矿体连续发育,两者在成因和形态上具有一定相关性(王毛毛等,2016)。洪海沟矿区头屯河组下段和西山窑组上段的砂体均以砂砾岩、粗砂岩为主,呈近南北向展布,砂体厚度稳定且连通性好,均属河流相沉积(罗星刚等,2022),为后期铀的沉淀富集提供空间和通道。其中含铀流体在孔隙较好的粗粒结构碎屑沉积岩中运移,砂体中出现隔挡层后,形成多个流动单元,最终在煤层顶部形成板状、透镜状煤岩型铀矿体(焦春泉等,1995; 杜默等,2014; 王毛毛等,2015)。

  • 2 实验材料与方法

  • 2.1 样品采集与制备

  • 煤样采集自中侏罗统西山窑组第12煤层(图1),通过分层刻槽法采集了煤层样品11件,其中煤样9件,顶板、底板岩石样品2件。煤样按照10 cm×10 cm(宽×深)采集,取样后煤样密封保存,防止煤样污染、氧化。样品置于DF-4电磁式矿石粉碎机辅以玛瑙研钵粉碎,再用分级筛过滤,制备粒径为150~74 μm和<74 μm的固体粉末样品。

  • 2.2 实验方法

  • X射线荧光光谱(XRF,BurkerS8-TIGER)测试采用压片机对煤粉进行硼酸衬底压片,采用顺序扫描对煤中常量元素进行分析。主要性能指标:分析元素范围4Be~92U,最大功率/电流4 kW/170 mA,电压60 kV,微区分析的最小光斑尺寸300 μm。

  • 图1 伊犁洪海沟矿区综合地质图(据陈奋雄等,2016; 王福东等,2021

  • Fig.1 Comprehensive geological map of Honghaigou mine, Yili basin (modified after Chen Fenxiong et al., 2016; Wang Fudong et al., 2021)

  • 电感耦合等离子体质谱仪(ICP-MS,Thermofisher IcapQc型)测试煤中微量元素(除As、Se和Hg外)。首先把样品破碎至0.74 μm以下,样品使用微波高压反应器进行消解,样品的消解试剂为5 mL 40%HF,2 mL 65%HNO3和1 mL 30%H2O2,消解后采用多元素标准对微量元素浓度进行校准。

  • X射线光电子能谱仪(XPS,ThermoFisher ESCALAB250Xi型)。主要技术指标如下:180°半球能量分析器,能量范围0~5000 eV;AlKα单色化XPS,X射线束斑面积在900~200 μm连续可调。将煤样研磨至45 μm以下,取50 mg于室温15~20℃、相对湿度<45%的环境下进行测量。

  • 3 结果与讨论

  • 3.1 煤质特征

  • 洪海沟矿区煤的工业分析、全硫分析测试结果见表1,洪海沟矿区煤的挥发分平均产率为38.21%,属于高挥发分低阶煤(ASTM D 388-99,2005)。洪海沟矿区煤中灰分产率、总硫分别为19.23%和1.69%,灰分含量低(Ad< 20%),硫分含量中等(1.00%<St,d≤2.00%)(全国煤炭标准化技术委员会,2018,2021)。根据中国煤炭行业标准,煤的固定碳平均含量为低等(FC≤55%)(中华人民共和国煤炭行业标准,2008)。整体上洪海沟煤属于高挥发分、中硫、低灰和低固定碳低阶煤。

  • 表1 伊犁洪海沟矿区煤的工业分析及含硫量

  • Table1 Proximate analysis and sulfur content of coal from the Honghaigou mine, Yili basin

  • 注:Mad表示空气干燥基水分;Ad表示干燥基灰分;Vdaf表示干燥无灰基挥发分;FCd表示干燥基固定碳;St,d表示全硫。

  • 3.2 煤中主量和微量元素

  • 洪海沟矿区煤中主量元素氧化物含量测试结果见表2,SiO2、Fe2O3、CaO、Al2O3是煤中主要的常量元素氧化物,分别占5.61%、4.50%、3.92%和2.22%。其余煤中氧化物含量依次为MgO(0.21%)、K2O(0.20%)、TiO2(0.13%)和MnO(0.01%)。与中国煤常量元素平均含量相比,洪海沟煤中主要氧化物SiO2、Fe2O3和Al2O3的平均含量低,CaO平均含量高。表3为洪海沟煤中微量元素的含量,U含量远高于世界煤中微量元素平均值,达258.91 μg/g。Re、V、Cr、Co、Ni、Ge、Se、Sr、Mo、Ba、Hf和Ta含量高于世界煤。

  • 表2 伊犁洪海沟矿区煤及围岩中主量元素氧化物的含量(%)

  • Table2 Content (%) of major element oxides of coal from the Honghaigou mine, Yili basin

  • 注:中国煤表示中国煤中主量元素平均值(Dai Shifeng et al.,2012)。

  • 表3 洪海沟矿区煤与围岩中微量元素的含量(μg/g)

  • Table3 Concentration (μg/g) of trace elements of coal, roof and floor rocks from the Honghaigou mine, Yili basin

  • 注:世界煤表示世界煤中微量元素的平均含量(Ketris and Yudovich,2009);世界煤或中国煤中铼的含量均值尚没有报道,以煤中Re的工业利用品位0.001 μg/g为标准(Dai Shifeng et al.,2015a2015b)。

  • 根据Dai Shifeng et al.(2015b)提出的富集系数(CC)用于判断煤中微量元素的富集程度,即煤中微量元素含量与世界煤中元素背景值的比值。与世界煤和煤中铼的工业利用品位相比(CC≥100),洪海沟煤中U和Re超常富集,CC分别为107.88和228.66(表3,图2)。Se、Mo和Ta显著富集(10≤CC<100),Cr、Ba和Hf轻微富集(2≤CC<5)。Sc、Cu、Ga、Nb、Sb、Hg、Bi、Th和REY亏损(CC<0.5),其中Bi的富集系数仅为0.06。洪海沟煤中其他元素含量与世界煤中元素含量相当,CC的范围为0.5≤CC<2。

  • 3.3 煤中微量元素的垂向分布

  • 煤层中微量元素含量分布不均,评估煤层微量元素垂向分布有助于研究元素共生组合和煤中元素富集过程(Yudovich et al.,2003)。图3显示洪海沟矿区煤中微量元素、灰分和硫分的垂向分布,将微量元素分为3组,即Li-Sc-Cr-Cu-Ga-Rb-Zr-Nb-In-Sb-Cs-Hf-Ta-W-Pb-Bi-Th-REY、Be-V-Zn-Se-Sr-Cd-Hg和Co-Ni-Ge-As-Mo-Ba-Re-Tl-U。

  • Li-Sc-Cr-Cu-Ga-Rb-Zr-Nb-In-Sb-Cs-Hf-Ta-W-Pb-Bi-Th-REY主要富集在煤层顶板和煤层底板中。该组主要为Li、Sc、Ga、Rb、Hf、Ta、W、Th、Zr、Nb、Cs等亲石元素,与灰分垂向分布相似,表明元素在洪海沟矿区煤中元素赋存状态多与无机组分相关。Be-V-Zn-Se-Sr-Cd-Hg的含量在接近煤层顶板时趋于增加,在煤层底板含量低,表明元素来源与煤层顶板相关。Zn、Cd、Hg在元素周期表中属于IIB族,Be和Sr属于IIA族,同族元素地球化学性质和行为相似。

  • Co-Ni-Ge-As-Mo-Ba-Re-Tl-U以亲铁元素为主,煤层顶板和底板中元素含量较少。煤层中存在一个相似高峰值,特别是Ba、Re和U存在显著高峰值。该组元素在某些情况下被浓缩,具有相同的成因来源。

  • 3.4 REY分布模式

  • 稀土元素地球化学参数及配分模式是地质作用过程中物质迁移和元素分异重要指标(Eskenazy et al.,1987; Liu Jingjing et al.,2021)。洪海沟煤中REY亏损(CC<0.5),仅Eu的CC为0.66,含量正常(图4a)。图4b洪海沟矿区煤及顶底板样品以轻稀土元素(La、Ce、Pr、Nd和Sm)为主,其次是中稀土元素(Eu、Gd、Tb、Dy和Y)、重稀土元素(Ho、Er、Tm、Yb和Lu)。轻稀土元素范围为2.10~100.42 μg/g,中稀土元素范围为0.72~46.79 μg/g,重稀土元素范围为0.11~7.74 μg/g。根据上地壳(UCC)对煤中稀土元素进行标准化处理,确定三种富集类型(Taylor et al.,1985; Seredin et al.,2012):L-REY富集型、M-REY富集型、H-REY富集型。图4c、d中REY标准化分配模式显示煤层稀土元素表现一定程度左倾,轻稀土亏损,ZK-8呈现右倾。洪海沟煤中ZK-2、ZK-4和ZK-8为M-REY富集型,ZK-1、ZK-5、ZK-6、ZK-7和ZK-9为H-REY富集型,ZK-3为L-REY富集型。

  • 煤中LREY/MREY、LREY/HREY、MREY/HREY平均值分别为0.91、0.95、1.07,表明REY分馏作用不明显。洪海沟煤中δCe均值为0.93(范围为0.79~1.32),表现出微弱负异常,通常酸性环境中形成,指示弱氧化环境(白洪阳,2022)。δEu平均2.22(范围为1.00~9.00),铕正异常在还原环境富集,可以指示热液流体活动(Michard et al.,1983)。Y/Ho不受氧化还原条件影响,与热液水岩作用或不同热液间络合介质差异有关(Y/Ho=27.74)(Hower et al.,2016)。煤层和煤层顶板Y/Ho均值范围为33.86~40.40,煤层底板ZK-F的值为27.83。Y/Ho比值变化原因是热液输入与围岩发生水-岩反应,热液以络合方式带出一部分元素。伊犁盆地511铀矿富铀煤中 Y 的正异常也归因于热液流体的影响(Dai Shifeng et al.,2015a)。

  • 图2 伊犁洪海沟矿区煤样中微量元素的富集系数

  • Fig.2 Concentration coefficient of trace elements in coal from the Honghaigou mine, Yili basin

  • 图3 伊犁洪海沟矿区煤中微量元素的垂向分布

  • Fig.3 Vertical distribution of trace elements in coal from the Honghaigou mine, Yili basin

  • 图4 伊犁洪海沟矿区煤中REY的富集系数(a)、LREY、MREY和HREY含量(b)和上地壳标准化REY分配模式(c、d)

  • Fig.4 Enrichment factor (a) , LREY, MREY and HREY concentration (b) and the upper crust normalized distribution pattern of REY (c, d) in coal from the Honghaigou mine, Yili basin

  • 煤层顶板ZK-R与煤层REY标准化分配模式变化趋势相同,为H-REY富集型。煤层底板ZK-F中Ce、Nd和Y出现明显峰,为L-REY富集型。煤层底板ZK-F中δCe为3.16指示还原环境,Ce/La的值为1.96(1.8≤Ce/La<2)也指示弱还原环境。煤层中SiO2含量均值为5.61%,ZK-F中SiO2含量为75.59%(SiO2>70%,砂岩)岩性发生改变。环境敏感型稀土元素处在还原环境、岩性改变的煤层顶板,造成ZK-F中Ce、Nd和Y显著异常。洪海沟矿区12煤层中REY富集模式以中—重稀土富集型为主,煤层存在热液流体活动。

  • 3.5 煤中铀的分布及价态

  • 洪海沟矿区12煤层处于氧化—还原过渡带,煤中铀具有无机—有机亲和性,与硫化物、有机硫紧密共生。图5洪海沟煤中U含量与灰分、固定碳的相关性不明显,U可能赋存于有机质,也可能赋存于无机组分。U与Co、Ge、Ba和Re显著相关,Co通常存在硫化物或黏土矿物,或与低级煤种的有机质有关(王文峰等,2003)。Ge通常存在硫化物中,Ba多分布在黏土矿物中,部分存在于有机物(Dai Shifeng et al.,2011)。Re富集是氧化还原过渡环境重要地球化学标志,煤中U和Re显著正相关关系也表明煤层处于氧化—还原过渡带(秦明宽等,1997; 王果等,2000)。铀与As、Mo、Tl显著相关,As和Tl一般以硫化物形式存在,Mo在强还原条件下可以富集有机质和硫化铁沉积物(黄文辉等,2000)。U与硫及亲硫元素As、Ge、Tl相关,说明U极可能在岩浆晚期低温热液过程中,可能以硫酸铀酰离子形式迁移,遇到煤等还原障后沉积(杨建业等,2011a)。

  • 图5 伊犁洪海沟矿区煤中U与灰分(a)、固定碳(b)、硫分(c)及元素(d~j)间相关性

  • Fig.5 Correlation between U and ash yield (a) , fixed carbon (b) , sulfur (c) and elements (d~j) in coal from the Honghaigou mine, Yili basin

  • 传统的层间氧化带铀矿成矿理论认为,铀矿是地表及浅部氧化带中含U6+地下水在沿渗透性砂岩层向下迁移过程中,在氧化—还原过渡环境被还原成U4+(U4+> U6+),从而沉淀、富集成矿(权志高等,2002; 王毛毛等,2015)。但图6 XPS自旋分裂峰拟合结果显示,处于氧化—还原过渡环境ZK-2煤中铀主要以U6+和金属U形式存在,煤中U6+含量高于金属U含量且没有检测出U4+

  • 洪海沟矿区煤中U6+含量高可能是氧化环境中U6+易溶于水,形成六价铀酰离子或铀酸根离子,U6+迁移到氧化—还原过渡环境过程中氧气被消耗。同时,煤中重要还原物质(固定碳等)在氧化—还原过渡带(煤层顶部)中含量较低,流体酸度发生变化,铀酰离子出现结晶,以六价硫酸铀酰、碳酸铀酰形式赋存于孔隙中(王毛毛等,2016)。洪海沟矿区中金属U具有不稳定性和变价性,在酸性或碱性溶液中U都是强还原剂,洪海沟矿区中金属U将溶液中的H+还原成H2,U本身被氧化为U4+,从而富集、沉淀成矿。

  • 4 讨论

  • 4.1 煤中铀的富集成因

  • 4.1.1 沉积物源区

  • 沉积物源区性质是决定煤中微量元素浓度的主要因素,Al2O3/TiO2是判别含煤盆地沉积源岩的可靠指标,源自基性、中性、酸性火成岩沉积物的比值分别为3~8、8~21、21~70(Hayashi et al.,1997; He Bin et al.,2010)。图7洪海沟煤层和顶底板Al2O3/TiO2比值均值分别为17.29和21.63,表明洪海沟煤层沉积物源区主要是中—酸性火成岩,与石炭纪—二叠纪中—酸性火成岩、海西期花岗岩性质相似(Dai Shifeng et al.,2015a)。洪海沟矿区煤及顶底板中具有明显的铕正异常、铈弱负异常均表明沉积物来源于中—酸性岩。

  • 4.1.2 沉积环境

  • 洪海沟矿区稳定的单斜构造和以砂砾岩、粗砂岩为主的砂体及晚侏罗世干旱气候有利于氧气渗入,形成层间氧化带,提供了活性铀的迁移、富集的有利地段(邱余波等,2015; 白洪阳,2022)。Sr/Cu比值用于表示古气候指示效应(魏迎春等,2020),洪海沟煤中Sr/Cu为24.43,表明煤层沉积时处于干旱气候。Sr/Ba可以推测古环境水体中盐度特征,U/Th可以反映沉积环境的氧化还原环境(Jones et al.,1994; 冀华丽等,2020),洪海沟煤的Sr/Ba为0.33,U/Th为172.79,表明煤层处于陆相淡水环境且厌氧。刘双双等(2022)研究结果表明富铀煤中U-Re-Se-Mo显示有机和无机亲和性,海西期花岗岩蚀源区、后生富铀溶液入渗的地质条件及干旱气候造成煤中铀的富集。

  • 图6 伊犁洪海沟矿区ZK-2煤中铀的XPS分峰拟合图

  • Fig.6 XPS peak fitting diagram of uranium in ZK-2 coal from the Honghaigou mine, Yili basin

  • U6+4f表示峰分裂,轨道裂分为4f5/2和4f7/2

  • U6+ 4f indicates peak split, the orbital split into 4f5/2 and 4f7/2

  • 图7 伊犁洪海沟矿区煤及顶底板岩石的Al2O3/TiO2

  • Fig.7 Ratios of Al2O3/TiO2 in coal, roof and floor rocks from the Honghaigou mine, Yili basin

  • 4.1.3 热液输入

  • 由于Th在表生作用中溶解度很低,易稳定保存,铀为变价元素易受后期环境影响,易发生活化、迁移(代世峰等,2004)。洪海沟煤层的垂向分布中Th和U存在明显分离,表明煤不仅形成于同生作用,还形成于后生作用。洪海沟矿区沉积物源区主要由中—酸性火成岩组成,容易导致L-REY型稀土元素富集,但洪海沟煤中富集类型为H-REY或M-REY型,表明煤层受热液影响。煤中REY分馏作用不明显,归因于热液输入。岩浆晚期热液作用影响层间氧化—还原带,Re、U可能和硫化物热液有一定关系(杨建业等,2011b)。

  • 因此,洪海沟矿区煤中元素富集是物源、构造、沉积环境等多因素耦合的结果。伊犁盆地南缘沉积物源区石炭纪—二叠纪中—酸性火成岩和海西花岗岩,提供了铀的来源。稳定的单斜构造和头屯河组砂砾岩、粗砂岩为主的砂体形成了良好的储矿空间和含铀地下水的运移通道。晚侏罗世以来的干旱气候有利于大气中氧的渗入形成层间氧化带,后生富铀溶液的入渗导致铀元素的富集。

  • 4.2 煤中铀的价态变化

  • 洪海沟矿区煤岩型铀矿化主要发生在西山窑组12煤层顶部(图3),后生富铀流体渗入是煤中元素铀矿化重要过程(贾智勇等,2020)。洪海沟矿区ZK煤层从上往下U含量先增大后减小的变化趋势与氧化—还原环境变化密切相关。根据Seredin(2008)Dai Shifeng(2015a)等研究以及煤岩型铀矿中铀的赋存分布特征,洪海沟矿区煤岩型铀矿成矿模式如图8所示。氧化环境中U6+易溶于水,形成铀酰离子或铀酸根离子,随着氧化程度的减弱,头屯河组下段砂体中含铀含氧流体向下迁移过程中,铀含量不断累积增大。富铀含氧流体到达头屯河组下段和西山窑组上段煤层形成的氧化—还原过渡带,过渡带界面附近U6+被还原成U4+,从而沉淀富集。还原带煤层透水性差,铀含量较少。U4+处于还原状态,赋存于氧化物(沥青铀矿)和硅酸盐(白洪阳,2022),趋向于固相状态。

  • 氧化环境富铀含氧流体中高价态变价元素U、Re、Se和Mo以络合物或酸根形式迁移,遇到还原环境时易变成低价态富集沉淀,常与游离的腐植酸以络合物形式结合存在于有机质。煤层过渡带高价态变价元素以Se-U-Re-Mo模式共同富集于煤层顶部(图8)。而洪海沟矿区ZK煤层高价态变价元素 Cr主要天然化合物铬铁矿存在,趋向煤层顶底板富集。Ta和Hf亲石元素化学性质稳定,趋向煤层顶底板富集。Ta、Hf和Ba不相容元素在岩浆或热液矿物结晶过程趋向液相富集,Ba随含铀热液流体运移,常交代于沥青铀矿(图3)。

  • 4.3 煤-铀矿产资源协调开采

  • 洪海沟矿区煤-铀资源空间垂向叠置分布且煤中伴生铀,整体上形成“砂岩型-煤岩型-砂岩型铀矿床”(陈奋雄等,2016)。煤-铀矿产资源开采最大难题是层间岩层活动和地下水中污染物迁移形成层间贯通裂隙,造成资源浪费和环境污染。根据“先铀后煤,互不影响”的开采原则,利用分区错时开采、污染物源头阻隔等技术有效弱化矿产开采的环境影响,其中地浸开采铀矿开发利用过程中最经济有效、环保的开采选冶方式(王贯东等,2014; 黄炳香等,2022)。

  • 洪海沟矿区煤岩型铀矿床产于南高北低、北偏西的单斜地层,地下水补-径-排距离较远,地下水水流方向从南向北(邢东旭等,2014)。洪海沟矿区煤层厚度在0.80~3.50 m之间更有利于铀矿富集,煤岩型铀矿化发育在煤层顶部,其中煤中铀的主要载体矿物为沥青铀矿、长石、黄铁矿等铀矿物,(CO2+O2)地浸开采方式对铀矿物浸出效率较好(贾智勇等,2020; 白洪阳等,2022; 宋昊等,2024)。图9根据煤-铀矿产协同开发理念(黄炳香等,2024)和洪海沟矿区的地下水、构造和“上铀下煤”的矿产资源的分布,煤-铀资源协调开采前需要合理划分铀矿与煤矿开采区域之间保护区距离,优先对头屯河组砂岩型铀矿进行(CO2+O2)地浸开采,地浸开采结束恢复地下水,防止破坏砂岩型铀矿下部煤层。西山窑组煤岩型铀矿煤层厚度较薄且煤层下方发育多煤层,采用井工开拓方式进行煤炭地下气化,气化后煤灰进行原位地浸,将煤灰中的铀提取至地表利用。煤矿开采结束回补煤层缺陷,减少对上层砂岩型铀矿发育和地下水动力系统的影响,便于后期形成新的铀矿化。

  • 图8 伊犁洪海沟矿区煤岩型铀矿的成矿模式(据Seredin et al.,2008; Dai Shifeng et al.,2015a; 贾智勇等,2020

  • Fig.8 Metallogenic model of coal-hosted uranium deposit in the Honghaigou mine, Yili basin (modified after Seredin et al., 2008; Dai Shifeng et al., 2015a; Jia Zhiyong et al., 2020)

  • 图9 洪海沟矿区煤-铀资源协调开采(据黄炳香等,20222024; 宋昊等,2024

  • Fig.9 Coordinated mining of coal-uranium resources in the Honghaigou mine (modified after Huang Bingxiang et al., 2022, 2024; Song Hao et al., 2024)

  • 5 结论

  • (1)洪海沟矿区煤质特征为高挥发分、中硫、低灰和低固定碳。与世界煤相比,洪海沟煤中U、Re超常富集,Se、Mo、Ta显著富集。Co-Ni-Ge-As-Mo-Ba-Re-Tl-U元素浓度在煤层ZK-2中近似峰值远高于煤层顶板和底板元素浓度,REY富集模式以M-H稀土富集型为主。

  • (2)明确了洪海沟矿区富铀煤的富集成因,伊犁盆地南缘沉积物源区石炭纪—二叠纪中—酸性火成岩和海西期花岗岩提供了铀的来源,稳定的单斜构造和煤层上覆的头屯河组砂砾岩、粗砂岩为主的砂体形成了良好的储矿空间和含铀地下水的运移通道。晚侏罗世以来的干旱气候有利于大气中氧的入渗,后生富铀溶液入渗导致U、Re、Se、Mo等元素共同富集。

  • (3)探讨了洪海沟矿区铀的价态变化,本次研究结果和前人的研究结果较为一致,煤岩型铀矿垂向上氧化环境到还原环境中铀含量先增大后减小。氧化-还原过渡环境U6+被还原为U4+,富集沉淀成矿。高价态元素U、Re、Se、Mo在氧化—还原过渡环境中变成低价态沉淀富集,以Se-U-Re-Mo组合共同富集于煤层顶部。

  • (4)洪海沟矿区煤-铀资源空间垂向叠置分布且煤中伴生铀,煤-铀资源开采过程中合理划分煤-铀矿产资源开采区域之间保护区距离,优先对砂岩型铀矿进行(CO2+O2)地浸开采,煤岩型铀矿采用井工开拓方式进行“煤炭地下气化+煤灰原位地浸开采”,实现煤-铀资源的协调开采。

  • 注释

  • ❶ ASTM D 388-99.2005. Annual book of ASTM standards. Standard Classification of Coals by Rank. Gaseous Fuels: Coal and Coke, 05: 6.

  • ❷ 全国煤炭标准化技术委员会.2018. GB/T15224.1—2018.国家市场监督管理总局,中国国家标准化管理委员会.

  • ❸ 全国煤炭标准化技术委员会.2021. GB/T15224.2—2021.国家市场监督管理总局,国家标准化管理委员会.

  • ❹ 中华人民共和国煤炭行业标准.2008. MT/T561—2008. 中华人民共和国国家安全生产监督管理总局.

  • 参考文献

    • Bai Hongyang. 2022. Geochemical characteristics and genetic mechanism of high uranium coal in Yili. Doctoral dissertation of China University of Mining and Technology (in Chinese with English abstract).

    • Cao Qingyi, Ren Wenying, Liang Chaoming, Zhang Yufei, Yang Liu. 2022. Spatial distribution of harmful trace elements in Chinese coals. Coal Geology & Exploration, 50(5): 13~22 (in Chinese with English abstract).

    • Chen Fenxiong, Nie Fengjun, Zhang Chengyong, Zhang Zhanfeng. 2016. Geological characteristics and genetic mechanism of the Honghaigou uranium deposit in the southern margin of Yili basin. Acta Geologica Sinica, 90(12): 3324~3336 (in Chinese with English abstract).

    • Cheng Xianghu. 2019. Geological characteristics and genetic analysis of sandstone uranium deposits in Wukuerqi-Mongqiguer area, southern margin of Yili basin. Master's thesis of Northwest University (in Chinese with English abstract).

    • Dai Shifeng, Ren Deyi, Sun Yuzhuang, Tang Yuegang. 2004. Concentration and the sequential chemical extraction procedures of U and Th in the Paleozoic coals from the Ordos basin. Journal of China Coal Society, 29(B10): 56~60 (in Chinese with English abstract).

    • Dai Shifeng, Wang Xibo, Zhou Yiping, Hower J C, Li Dahua, Chen Wenmei, Zhu Xingwei, Zou Jianhua. 2011. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao coalfield, Chongqing, Southwest China. Chemical Geology, 282(1-2): 29~44.

    • Dai Shifeng, Ren D, Chou Chenlin, Finkelman R B, Seredin V V, Zhou Yiping. 2012. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94: 3~21.

    • Dai Shifeng, Seredin V V, Ward C R, Hower J C, Xing Yunwei, Zhang Weiguo, Song Weijiao, Wang Peiei. 2015a. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding coalfield, Guizhou, China. Mineralium Deposita, 50: 159~186.

    • Dai Shifeng, Yang Jianye, Ward C R, Hower J C, Liu Huidong, Garrison T M, French D, O'Keefe J M. 2015b. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili basin, Xinjiang, northwestern China. Ore Geology Reviews, 70: 1~30.

    • Du Mo, Qiu Yubo, Chen Wenbin, Zhang Zhanfeng, Liu Junping. 2014. Sandstone development and uranium mineralization in the lower member of the Xishanyao Formation, northern Zhajisitan, Yili basin. Sedimentary Geology and Tethyan Geology, 34(1): 55~60 (in Chinese with English abstract).

    • Duan Piaopiao, Wang Wenfeng, Sang Shuxun, Tang Yuegang, Ma Mengya, Liang Bin. 2018. Geochemistry of toxic elements and their removal via the preparation of high-uranium coal in southwestern China. Minerals, 8(3): 83.

    • Eskenazy G M. 1987. Rare earth elements and yttrium in lithotypes of Bulgarian coals. Organic Geochemistry, 11: 83~89.

    • Hayashi K I, Fujisawa H, Holland H D, Ohmoto H. 1997. Geochemistry of ~1. 9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115~4137.

    • He Bin, Xu Yigang, Zhong Yuting, Guan Junpeng. 2010. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos, 119(1-2): 10~19.

    • Hower J C, Dai S, Eskenazy G. 2016. Distribution of uranium and other radionuclides in coal and coal combustion products, with discussion of occurrences of combustion products in Kentucky power plants. Coal Combustion and Gasification Products, 8(3): 44~53.

    • Huang Bingxiang, Zhao Xinglong, Yu Bin, He Guisheng, Yue Zhongwen, Yang Chengxiang, Wang Changshen, Meng Qingbin, Yang Yugui, Liu Jiangfeng, Feng Xiujuan, Chen Dayang, Xing Yuekun, Zhu Weibing, Duan Xiaoheng, Ju Jinfeng. 2022. Research framework of theory and technology for coordinated mining of coal and its co-existed and associated strategic metal minerals. Journal of China Coal Society, 47(7): 2516~2533 (in Chinese with English abstract).

    • Huang Bingxiang, Zhao Xinglong, Han Xiaoke, Wu Zhanwei, Yuan Guodong, Zhang Qinglin. 2024. Collaborative development of co-existed and associated minerals in the coal series. Journal of Mining & Safety Engineering, 41(1): 1~14 (in Chinese with English abstract).

    • Huang Wenhui, Yang Qi, Tang Dazhen, Tang Xiuyi, Zhao Zhigen. 2000. The affinity of trace elements of permian coal from panji mine in Huainan coal field. Earth Science Frontiers, 7(B08): 263~270 (in Chinese with English abstract).

    • Huang Wenhui, Tang Xiuyi. 2002. Uranium, thorium and other radionuclides in coal of China. Coal Geology of China, 14(B07): 55~63 (in Chinese with English abstract).

    • Huang Wenhui, Wan Huan, Finkelman R B, Tang Xiuyi, Zhao Zhigen. 2012. Distribution of uranium in the main coalfields of China. Energy Exploration & Exploitation, 30(5): 819~836.

    • Ji Huali, He Zhongbo, Wei Sanyuan, Cao Jianhui, Yang Fan. 2020. Indicative significance of trace element analysis in Early Cretaceous sedimentary environment of Hegang basin. Mineral Exploration, 11(1): 21~27 (in Chinese with English abstract).

    • Jia Zhiyong, Zhang Hujun, Chen Wenzheng, Zhang Lei, Qiu Yubo. 2020. Ore-control factors of Honghaigou coal type uranium deposit in the southern margin of Yili basin, Xinjiang. Mineral Exploration, 11(11): 2417~2423 (in Chinese with English abstract).

    • Jiao Chunquan, Li Zhen. 1995. Genesis and distribution regularity of isolate barrier beds in channel reservoir sandbody. Petroleum Exploration and Development, 22(4): 78~81 (in Chinese with English abstract).

    • Jones B, Manning D A. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111~129.

    • Ketris M P, Yudovich Y E. 2009. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2): 135~148.

    • Lauer N, Vengosh A, Dai Shifeng. 2017. Naturally occurring radioactive materials in uranium-rich coals and associated coal combustion residues from China. Environmental Science & Technology, 51(22): 13487~13493.

    • Liu Jingjing, Dai Shifeng, Song Hongjian, Nechaev V P, French D, Spiro B F, Graham I T, Hower J C, Shao Longyi, Zhao Jingtao. 2021. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong coalfield, western Guizhou, China. International Journal of Coal Geology, 247: 103855.

    • Liu Shuangshuang, Wang Wenfeng, Wang Wenlong, Lu Qingfeng, Shao Fengjun, Wang Yulong. 2022. Distribution regularity and occurrence characteristics of critical metal elements in Yili coals. Journal of China Coal Society, 47(5): 1761~1772 (in Chinese with English abstract).

    • Luo Xinggang, Wang Shouyu, Wang Fangxia, Liu Fuqiang. 2022. Sedimentary characteristics of sand body and uranium mineralization controlling factors of the lower member of Toutunhe Formation in Honghaigou deposit. Uranium Geology, 38(4): 707~716 (in Chinese with English abstract).

    • Michard A, Albarede F, Michard G, Minster J F, Charlou J L. 1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 N). Nature, 303(5920): 795~797.

    • Min Maozhong, Chen Jia, Wang Jinpeng, Wei Guanhui, Fayek M. 2005. Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China. Ore Geology Reviews, 26(1-2): 51~69.

    • Qin Mingkuan, Zhao Ruiquan. 1997. The geochemistry and significance of rhenium inuranium deposit No. 512. Uranium Geology, 13(5): 273~278 (in Chinese with English abstract).

    • Qiu Yubo, Yi Haisheng, Luo Xinggang, Wang Maomao, Qiao Qi, Liu Jie. 2015. Lithophase characteristics of Toutunhe Formation and its control on uranium mineralization in Honghaigou uranium deposit. Metal Mine, (1): 90~93 (in Chinese with English abstract).

    • Quan Zhigao, Li Zhanshuang. 2002. Geological characteristics and genesis of the Shihongtan sandstone-type uranium deposit, Xinjiang. Geological Review, 48(4): 430~436 (in Chinese with English abstract).

    • Seredin V V, Finkelman R B. 2008. Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76(4): 253~289.

    • Seredin V V, Dai Shifeng. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94: 67~93.

    • Song Hao, Fan Yuanqing, Zhang Chengjiang, Tan Yahui, Xu Zhengqi, Hou Mingcai, Wen Zhenqian, Duan Meiling, Zhou Jing, Li Mei, Du Qianmin, Yu Huijie, Huang Xiaodong, Xu Xifeng, Tian Zenghui, Wang Zexin, Xiao Tao. 2024. Advances in the study of process mineralogy of sandstone-type uranium deposits in northern China. Mineralogy and Petrology, 44(1): 11~29 (in Chinese with English abstract).

    • Sun Yuzhuang, Zhao Cunliang, Li Yanheng, Wang Jinxi. 2014. Minimum mining grade of the selected trace elements in Chinese coal. Journal of China Coal Society, 39(4): 744~748 (in Chinese with English abstract).

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1~328.

    • Wang Fudong, Zhang Lei, Chen Cheng, Wei Xianzhen. 2021. Analysis of hydrochemical condition and uranium sources about uranium deposit in Ⅶ cycle Honghaigou. Mineral Exploration, 12(6): 1332~1338 (in Chinese with English abstract).

    • Wang Guandong, Jing Jidong, Zhang Peng. 2014. Study on effective exploitation model of resources under coal-uranium symbiosis in Yili basin, Xinjiang. Modern Business, (9): 118 (in Chinese).

    • Wang Guo, Hua Renmin, Qin Lifeng. 2000. Study on fluid interaction of the sandstone-type uranium deposits in the Mesozoic-Cenozoic terrestrial sedimentary basins. Geological Journal of China Universities, (3): 437~446 (in Chinese with English abstract).

    • Wang Junning, Yang Junfeng. 2006. Valence state characteristics of uranium at a sandstone type uranium deposit and its significance in in situ leaching. Uranium Mining and Metallurgy, 25(1): 50~52 (in Chinese with English abstract).

    • Wang Maomao, Li Hua, Qiu Yubo. 2015. Coal-type uranium metallogenic analysis in Honghaigou area, Ili basin, Xinjiang. Coal Geology of China, 27(12): 12~16(in Chinese with English abstract).

    • Wang Maomao, Qiu Yubo, Chang Jingtao, Du Mo, Wang Mingli, Zhang Hujun, Wang Qiangqiang. 2016. Valence uranium characteristics of Middle Jurassic Xishanyao Formation in the southern margin of Ili basin. Modern Mining, 32(7): 137~140 (in Chinese with English abstract).

    • Wang Wenfeng, Qin Yong, Song Dangyu. 2003. Modes of occurrence on hazardous trace elements in coal. Coal Geology of China, 15(4): 10~13 (in Chinese with English abstract).

    • Wang Wenfeng, Wang Wenlong, Liu Shuangshuang, Bai Hongyang, Wang Yulong, Duan Piaopiao, Qin Kemin, Chen Yilin. 2021. Distribution and occurrence of uranium in coal and its migration behavior during the coal utilization. Coal Geology & Exploration, 49(1): 65~80 (in Chinese with English abstract).

    • Wei Yingchun, Hua Fanghui, He Wenbo, Ning Shuzheng, Zhang Ning, Qin Yunhu, Cao Daiyong. 2020. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area. Journal of China Coal Society, 45(4): 1473~1487 (in Chinese with English abstract).

    • Xing Dongxu, Kang Yon, Wang Bing, Qiu Yubo, Zhang Hujun. 2014. Main ore-bearing aquifer and hydrogeochemical characteristics of the Uranium deposit in Honghaigou area, southern margin of Yili basin. Xinjiang Geology, 32(2): 240~243 (in Chinese with English abstract).

    • Yang Jianye. 2007. Concentration and distribution of uranium in Chinese coals. Energy, 32(3): 203~212.

    • Yang Jianye, Di Yongqiang, Zhang Weiguo, Liu Shande. 2011a. Geochemistry study of its uranium and other element of brown coal of ZK0161 well in Yili basin. Journal of China Coal Society, 36(6): 945~952 (in Chinese with English abstract).

    • Yang Jianye, Wang Guo, Shi Zhilong, Ren Manchuan, Zhang Weiguo, Liu Shande. 2011b. Geochemistry study of uranium and other element in brown coal of ZK0407 well in Yili basin. Journal of Fuel Chemistry and Technology, 39(5): 340~346 (in Chinese with English abstract).

    • Yudovich Y E. 2003. Notes on the marginal enrichment of germanium in coal beds. International Journal of Coal Geology, 56(3-4): 223~232.

    • Zhang Guowei, Li Sanzhong, Liu Junxia, Teng Zhihong, Jin Hailong, Li Wei, Huang Xianxiong, Wu Yahong. 1999. Structural feature and evolution of Yili basin, Xinjiang. Earth Science Frontiers, 6(4): 203~214 (in Chinese with English abstract).

    • Zhou Xianqing, Qin Yong, Lu Lu. 2019. Advances on geological-geochemical research of coal-type uranium in China. Coal Geology & Exploration, 47(4): 45~53 (in Chinese with English abstract).

    • 白洪阳. 2022. 伊犁高铀煤的地球化学特征和成因机理. 中国矿业大学博士学位论文.

    • 曹庆一, 任文颖, 梁朝铭, 张宇飞, 杨柳. 2022. 中国煤中有害微量元素含量的空间分布. 煤田地质与勘探, 50(5): 13~22.

    • 陈奋雄, 聂逢君, 张成勇, 张占峰. 2016. 伊犁盆地南缘洪海沟矿床富大矿体地质特征与成因机制研究. 地质学报, 90(12): 3324~3336.

    • 程相虎. 2019. 伊犁盆地南缘乌库尔其-蒙其古尔地区砂岩铀矿地质特征与成因分析. 西北大学硕士学位论文.

    • 代世峰, 任德贻, 孙玉壮, 唐跃刚. 2004. 鄂尔多斯盆地晚古生代煤中铀和钍的含量与逐级化学提取. 煤炭学报, 29(B10): 56~60.

    • 杜默, 邱余波, 陈文彬, 张占峰, 刘俊平. 2014. 伊犁盆地扎吉斯坦北部西山窑组下段砂体发育特征与铀成矿的关系. 沉积与特提斯地质, 34(1): 55~60.

    • 黄炳香, 赵兴龙, 余斌, 贺桂成, 岳中文, 杨成祥, 王长申, 孟庆彬, 杨玉贵, 刘江峰, 冯秀娟, 陈大勇, 邢岳堃, 朱卫兵, 段晓恒, 鞠金峰. 2022. 煤与共伴生战略性金属矿产协调开采理论与技术构想. 煤炭学报, 47(7): 2516~2533.

    • 黄炳香, 赵兴龙, 韩晓克, 吴占伟, 袁国栋, 张青林. 2024. 煤系共伴生矿产协同开发. 采矿与安全工程学报, 41(1): 1~14.

    • 黄文辉, 杨起, 汤达祯, 唐修义, 赵志根. 2000. 潘集煤矿二叠纪主采煤层中微量元素亲和性研究. 地学前缘, 7(B08): 263~270.

    • 黄文辉, 唐修义. 2002. 中国煤中的铀、钍和放射性核素. 中国煤田地质, 14(B07): 55~63.

    • 冀华丽, 何中波, 卫三元, 曹建辉, 杨帆. 2020. 微量元素在鹤岗盆地早白垩世沉积环境分析中的应用. 矿产勘查, 11(1): 21~27.

    • 贾智勇, 张虎军, 陈文正, 张磊, 邱余波. 2020. 新疆伊犁盆地南缘洪海沟煤岩型铀矿控矿因素研究. 矿产勘查, 11(11): 2417~2423.

    • 焦春泉, 李祯. 1995. 河道储层砂体中隔挡层的成因与分布规律. 石油勘探与开发, 22(4): 78~81.

    • 刘双双, 王文峰, 王文龙, 陆青锋, 邵峰军, 王昱龙. 2022. 伊犁盆地煤中关键金属的分布赋存特征. 煤炭学报, 47(5): 1761~1772.

    • 罗星刚, 王守玉, 王芳霞, 刘富强. 2022. 洪海沟铀矿床头屯河组下段砂体沉积特征及铀矿化控因. 铀矿地质, 38(4): 707~716.

    • 秦明宽, 赵瑞全. 1997. 512铀矿床Re的地球化学及其研究意义. 铀矿地质, 13(5): 273~278.

    • 邱余波, 伊海生, 罗星刚, 王毛毛, 乔淇, 刘杰. 2015. 洪海沟铀矿床头屯河组岩相特征及对铀成矿的控制. 金属矿山, (1): 90~93.

    • 权志高, 李占双. 2002. 新疆十红滩砂岩型铀矿床基本特征及成因分析. 地质论评, 48(4): 430~436.

    • 宋昊, 范元清, 张成江, 谭亚辉, 徐争启, 侯明才, 闻振乾, 段美铃, 周靖, 李梅, 杜钱敏, 于慧杰, 黄晓东, 许喜凤, 田增辉, 王泽鑫, 肖涛. 2024. 中国北方砂岩型铀矿床工艺矿物学研究若干进展. 矿物岩石, 44(1): 11~29.

    • 孙玉壮, 赵存良, 李彦恒, 王金喜. 2014. 煤中某些伴生金属元素的综合利用指标探讨. 煤炭学报, 39(4): 744~748.

    • 王福东, 张磊, 陈程, 魏显珍. 2021. 洪海沟铀矿床Ⅶ旋回水化学条件与铀源分析. 矿产勘查, 12(6): 1332~1338.

    • 王贯东, 景继东, 张鹏. 2014. 新疆伊犁盆地煤铀共生条件下资源有效开发模式研究. 现代商业, (9): 118.

    • 王果, 华仁民, 秦立峰. 2000. 中、新生代陆相沉积盆地砂岩型铀矿床流体作用研究. 高校地质学报, (3): 437~446.

    • 王军宁, 杨军锋. 2006. 某砂岩型铀矿床铀的价态特征及在地浸开采中的意义. 铀矿冶, 25(1): 50~52.

    • 王毛毛, 李华, 邱余波. 2015. 新疆伊犁盆地洪海沟地区煤岩型铀成矿分析. 中国煤炭地质, 27(12): 12~16.

    • 王毛毛, 邱余波, 常京涛, 杜默, 王明力, 张虎军, 王强强. 2016. 伊犁盆地南缘中侏罗统西山窑组价态铀特征. 现代矿业, 32(7): 137~140.

    • 王文峰, 秦勇, 宋党育. 2003. 煤中有害微量元素的赋存状态. 中国煤田地质, 15(4): 10~13.

    • 王文峰, 王文龙, 刘双双, 白洪阳, 王昱龙, 段飘飘, 秦可敏, 陈义林. 2021. 煤中铀的赋存分布及其在利用过程中的迁移特征. 煤田地质与勘探, 49(1): 65~80.

    • 魏迎春, 华芳辉, 何文博, 宁树正, 张宁, 秦云虎, 曹代勇. 2020. 峰峰矿区 2 号煤中微量元素富集特征差异性研究. 煤炭学报, 45(4): 1473~1487.

    • 邢东旭, 康勇, 王冰, 秋余波, 张虎军. 2014. 伊犁盆地南缘洪海沟地区铀矿主要含矿含水层及水文地球化学特征. 新疆地质, 32(2): 240~243.

    • 杨建业, 狄永强, 张卫国, 刘善德. 2011a. 伊犁盆地ZK0161井褐煤中铀及其它元素的地球化学研究. 煤炭学报, 36(6): 945~952.

    • 杨建业, 王果, 师志龙, 任满船, 张卫国, 刘善德. 2011b. 伊犁盆地ZK0407井褐煤中铀及其他元素的地球化学研究. 燃料化学学报, 39(5): 340~346.

    • 张国伟, 李三忠, 刘俊霞, 滕志宏, 金海龙, 李伟, 黄先雄, 吴亚红. 1999. 新疆伊犁盆地的构造特征与形成演化. 地学前缘, 6(4): 203~214.

    • 周贤青, 秦勇, 陆鹿. 2019. 中国煤型铀地质-地球化学研究进展. 煤田地质与勘探, 47(4): 45~53.

  • 参考文献

    • Bai Hongyang. 2022. Geochemical characteristics and genetic mechanism of high uranium coal in Yili. Doctoral dissertation of China University of Mining and Technology (in Chinese with English abstract).

    • Cao Qingyi, Ren Wenying, Liang Chaoming, Zhang Yufei, Yang Liu. 2022. Spatial distribution of harmful trace elements in Chinese coals. Coal Geology & Exploration, 50(5): 13~22 (in Chinese with English abstract).

    • Chen Fenxiong, Nie Fengjun, Zhang Chengyong, Zhang Zhanfeng. 2016. Geological characteristics and genetic mechanism of the Honghaigou uranium deposit in the southern margin of Yili basin. Acta Geologica Sinica, 90(12): 3324~3336 (in Chinese with English abstract).

    • Cheng Xianghu. 2019. Geological characteristics and genetic analysis of sandstone uranium deposits in Wukuerqi-Mongqiguer area, southern margin of Yili basin. Master's thesis of Northwest University (in Chinese with English abstract).

    • Dai Shifeng, Ren Deyi, Sun Yuzhuang, Tang Yuegang. 2004. Concentration and the sequential chemical extraction procedures of U and Th in the Paleozoic coals from the Ordos basin. Journal of China Coal Society, 29(B10): 56~60 (in Chinese with English abstract).

    • Dai Shifeng, Wang Xibo, Zhou Yiping, Hower J C, Li Dahua, Chen Wenmei, Zhu Xingwei, Zou Jianhua. 2011. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao coalfield, Chongqing, Southwest China. Chemical Geology, 282(1-2): 29~44.

    • Dai Shifeng, Ren D, Chou Chenlin, Finkelman R B, Seredin V V, Zhou Yiping. 2012. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94: 3~21.

    • Dai Shifeng, Seredin V V, Ward C R, Hower J C, Xing Yunwei, Zhang Weiguo, Song Weijiao, Wang Peiei. 2015a. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding coalfield, Guizhou, China. Mineralium Deposita, 50: 159~186.

    • Dai Shifeng, Yang Jianye, Ward C R, Hower J C, Liu Huidong, Garrison T M, French D, O'Keefe J M. 2015b. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili basin, Xinjiang, northwestern China. Ore Geology Reviews, 70: 1~30.

    • Du Mo, Qiu Yubo, Chen Wenbin, Zhang Zhanfeng, Liu Junping. 2014. Sandstone development and uranium mineralization in the lower member of the Xishanyao Formation, northern Zhajisitan, Yili basin. Sedimentary Geology and Tethyan Geology, 34(1): 55~60 (in Chinese with English abstract).

    • Duan Piaopiao, Wang Wenfeng, Sang Shuxun, Tang Yuegang, Ma Mengya, Liang Bin. 2018. Geochemistry of toxic elements and their removal via the preparation of high-uranium coal in southwestern China. Minerals, 8(3): 83.

    • Eskenazy G M. 1987. Rare earth elements and yttrium in lithotypes of Bulgarian coals. Organic Geochemistry, 11: 83~89.

    • Hayashi K I, Fujisawa H, Holland H D, Ohmoto H. 1997. Geochemistry of ~1. 9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115~4137.

    • He Bin, Xu Yigang, Zhong Yuting, Guan Junpeng. 2010. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: Implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism. Lithos, 119(1-2): 10~19.

    • Hower J C, Dai S, Eskenazy G. 2016. Distribution of uranium and other radionuclides in coal and coal combustion products, with discussion of occurrences of combustion products in Kentucky power plants. Coal Combustion and Gasification Products, 8(3): 44~53.

    • Huang Bingxiang, Zhao Xinglong, Yu Bin, He Guisheng, Yue Zhongwen, Yang Chengxiang, Wang Changshen, Meng Qingbin, Yang Yugui, Liu Jiangfeng, Feng Xiujuan, Chen Dayang, Xing Yuekun, Zhu Weibing, Duan Xiaoheng, Ju Jinfeng. 2022. Research framework of theory and technology for coordinated mining of coal and its co-existed and associated strategic metal minerals. Journal of China Coal Society, 47(7): 2516~2533 (in Chinese with English abstract).

    • Huang Bingxiang, Zhao Xinglong, Han Xiaoke, Wu Zhanwei, Yuan Guodong, Zhang Qinglin. 2024. Collaborative development of co-existed and associated minerals in the coal series. Journal of Mining & Safety Engineering, 41(1): 1~14 (in Chinese with English abstract).

    • Huang Wenhui, Yang Qi, Tang Dazhen, Tang Xiuyi, Zhao Zhigen. 2000. The affinity of trace elements of permian coal from panji mine in Huainan coal field. Earth Science Frontiers, 7(B08): 263~270 (in Chinese with English abstract).

    • Huang Wenhui, Tang Xiuyi. 2002. Uranium, thorium and other radionuclides in coal of China. Coal Geology of China, 14(B07): 55~63 (in Chinese with English abstract).

    • Huang Wenhui, Wan Huan, Finkelman R B, Tang Xiuyi, Zhao Zhigen. 2012. Distribution of uranium in the main coalfields of China. Energy Exploration & Exploitation, 30(5): 819~836.

    • Ji Huali, He Zhongbo, Wei Sanyuan, Cao Jianhui, Yang Fan. 2020. Indicative significance of trace element analysis in Early Cretaceous sedimentary environment of Hegang basin. Mineral Exploration, 11(1): 21~27 (in Chinese with English abstract).

    • Jia Zhiyong, Zhang Hujun, Chen Wenzheng, Zhang Lei, Qiu Yubo. 2020. Ore-control factors of Honghaigou coal type uranium deposit in the southern margin of Yili basin, Xinjiang. Mineral Exploration, 11(11): 2417~2423 (in Chinese with English abstract).

    • Jiao Chunquan, Li Zhen. 1995. Genesis and distribution regularity of isolate barrier beds in channel reservoir sandbody. Petroleum Exploration and Development, 22(4): 78~81 (in Chinese with English abstract).

    • Jones B, Manning D A. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111~129.

    • Ketris M P, Yudovich Y E. 2009. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2): 135~148.

    • Lauer N, Vengosh A, Dai Shifeng. 2017. Naturally occurring radioactive materials in uranium-rich coals and associated coal combustion residues from China. Environmental Science & Technology, 51(22): 13487~13493.

    • Liu Jingjing, Dai Shifeng, Song Hongjian, Nechaev V P, French D, Spiro B F, Graham I T, Hower J C, Shao Longyi, Zhao Jingtao. 2021. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong coalfield, western Guizhou, China. International Journal of Coal Geology, 247: 103855.

    • Liu Shuangshuang, Wang Wenfeng, Wang Wenlong, Lu Qingfeng, Shao Fengjun, Wang Yulong. 2022. Distribution regularity and occurrence characteristics of critical metal elements in Yili coals. Journal of China Coal Society, 47(5): 1761~1772 (in Chinese with English abstract).

    • Luo Xinggang, Wang Shouyu, Wang Fangxia, Liu Fuqiang. 2022. Sedimentary characteristics of sand body and uranium mineralization controlling factors of the lower member of Toutunhe Formation in Honghaigou deposit. Uranium Geology, 38(4): 707~716 (in Chinese with English abstract).

    • Michard A, Albarede F, Michard G, Minster J F, Charlou J L. 1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 N). Nature, 303(5920): 795~797.

    • Min Maozhong, Chen Jia, Wang Jinpeng, Wei Guanhui, Fayek M. 2005. Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China. Ore Geology Reviews, 26(1-2): 51~69.

    • Qin Mingkuan, Zhao Ruiquan. 1997. The geochemistry and significance of rhenium inuranium deposit No. 512. Uranium Geology, 13(5): 273~278 (in Chinese with English abstract).

    • Qiu Yubo, Yi Haisheng, Luo Xinggang, Wang Maomao, Qiao Qi, Liu Jie. 2015. Lithophase characteristics of Toutunhe Formation and its control on uranium mineralization in Honghaigou uranium deposit. Metal Mine, (1): 90~93 (in Chinese with English abstract).

    • Quan Zhigao, Li Zhanshuang. 2002. Geological characteristics and genesis of the Shihongtan sandstone-type uranium deposit, Xinjiang. Geological Review, 48(4): 430~436 (in Chinese with English abstract).

    • Seredin V V, Finkelman R B. 2008. Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76(4): 253~289.

    • Seredin V V, Dai Shifeng. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94: 67~93.

    • Song Hao, Fan Yuanqing, Zhang Chengjiang, Tan Yahui, Xu Zhengqi, Hou Mingcai, Wen Zhenqian, Duan Meiling, Zhou Jing, Li Mei, Du Qianmin, Yu Huijie, Huang Xiaodong, Xu Xifeng, Tian Zenghui, Wang Zexin, Xiao Tao. 2024. Advances in the study of process mineralogy of sandstone-type uranium deposits in northern China. Mineralogy and Petrology, 44(1): 11~29 (in Chinese with English abstract).

    • Sun Yuzhuang, Zhao Cunliang, Li Yanheng, Wang Jinxi. 2014. Minimum mining grade of the selected trace elements in Chinese coal. Journal of China Coal Society, 39(4): 744~748 (in Chinese with English abstract).

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1~328.

    • Wang Fudong, Zhang Lei, Chen Cheng, Wei Xianzhen. 2021. Analysis of hydrochemical condition and uranium sources about uranium deposit in Ⅶ cycle Honghaigou. Mineral Exploration, 12(6): 1332~1338 (in Chinese with English abstract).

    • Wang Guandong, Jing Jidong, Zhang Peng. 2014. Study on effective exploitation model of resources under coal-uranium symbiosis in Yili basin, Xinjiang. Modern Business, (9): 118 (in Chinese).

    • Wang Guo, Hua Renmin, Qin Lifeng. 2000. Study on fluid interaction of the sandstone-type uranium deposits in the Mesozoic-Cenozoic terrestrial sedimentary basins. Geological Journal of China Universities, (3): 437~446 (in Chinese with English abstract).

    • Wang Junning, Yang Junfeng. 2006. Valence state characteristics of uranium at a sandstone type uranium deposit and its significance in in situ leaching. Uranium Mining and Metallurgy, 25(1): 50~52 (in Chinese with English abstract).

    • Wang Maomao, Li Hua, Qiu Yubo. 2015. Coal-type uranium metallogenic analysis in Honghaigou area, Ili basin, Xinjiang. Coal Geology of China, 27(12): 12~16(in Chinese with English abstract).

    • Wang Maomao, Qiu Yubo, Chang Jingtao, Du Mo, Wang Mingli, Zhang Hujun, Wang Qiangqiang. 2016. Valence uranium characteristics of Middle Jurassic Xishanyao Formation in the southern margin of Ili basin. Modern Mining, 32(7): 137~140 (in Chinese with English abstract).

    • Wang Wenfeng, Qin Yong, Song Dangyu. 2003. Modes of occurrence on hazardous trace elements in coal. Coal Geology of China, 15(4): 10~13 (in Chinese with English abstract).

    • Wang Wenfeng, Wang Wenlong, Liu Shuangshuang, Bai Hongyang, Wang Yulong, Duan Piaopiao, Qin Kemin, Chen Yilin. 2021. Distribution and occurrence of uranium in coal and its migration behavior during the coal utilization. Coal Geology & Exploration, 49(1): 65~80 (in Chinese with English abstract).

    • Wei Yingchun, Hua Fanghui, He Wenbo, Ning Shuzheng, Zhang Ning, Qin Yunhu, Cao Daiyong. 2020. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area. Journal of China Coal Society, 45(4): 1473~1487 (in Chinese with English abstract).

    • Xing Dongxu, Kang Yon, Wang Bing, Qiu Yubo, Zhang Hujun. 2014. Main ore-bearing aquifer and hydrogeochemical characteristics of the Uranium deposit in Honghaigou area, southern margin of Yili basin. Xinjiang Geology, 32(2): 240~243 (in Chinese with English abstract).

    • Yang Jianye. 2007. Concentration and distribution of uranium in Chinese coals. Energy, 32(3): 203~212.

    • Yang Jianye, Di Yongqiang, Zhang Weiguo, Liu Shande. 2011a. Geochemistry study of its uranium and other element of brown coal of ZK0161 well in Yili basin. Journal of China Coal Society, 36(6): 945~952 (in Chinese with English abstract).

    • Yang Jianye, Wang Guo, Shi Zhilong, Ren Manchuan, Zhang Weiguo, Liu Shande. 2011b. Geochemistry study of uranium and other element in brown coal of ZK0407 well in Yili basin. Journal of Fuel Chemistry and Technology, 39(5): 340~346 (in Chinese with English abstract).

    • Yudovich Y E. 2003. Notes on the marginal enrichment of germanium in coal beds. International Journal of Coal Geology, 56(3-4): 223~232.

    • Zhang Guowei, Li Sanzhong, Liu Junxia, Teng Zhihong, Jin Hailong, Li Wei, Huang Xianxiong, Wu Yahong. 1999. Structural feature and evolution of Yili basin, Xinjiang. Earth Science Frontiers, 6(4): 203~214 (in Chinese with English abstract).

    • Zhou Xianqing, Qin Yong, Lu Lu. 2019. Advances on geological-geochemical research of coal-type uranium in China. Coal Geology & Exploration, 47(4): 45~53 (in Chinese with English abstract).

    • 白洪阳. 2022. 伊犁高铀煤的地球化学特征和成因机理. 中国矿业大学博士学位论文.

    • 曹庆一, 任文颖, 梁朝铭, 张宇飞, 杨柳. 2022. 中国煤中有害微量元素含量的空间分布. 煤田地质与勘探, 50(5): 13~22.

    • 陈奋雄, 聂逢君, 张成勇, 张占峰. 2016. 伊犁盆地南缘洪海沟矿床富大矿体地质特征与成因机制研究. 地质学报, 90(12): 3324~3336.

    • 程相虎. 2019. 伊犁盆地南缘乌库尔其-蒙其古尔地区砂岩铀矿地质特征与成因分析. 西北大学硕士学位论文.

    • 代世峰, 任德贻, 孙玉壮, 唐跃刚. 2004. 鄂尔多斯盆地晚古生代煤中铀和钍的含量与逐级化学提取. 煤炭学报, 29(B10): 56~60.

    • 杜默, 邱余波, 陈文彬, 张占峰, 刘俊平. 2014. 伊犁盆地扎吉斯坦北部西山窑组下段砂体发育特征与铀成矿的关系. 沉积与特提斯地质, 34(1): 55~60.

    • 黄炳香, 赵兴龙, 余斌, 贺桂成, 岳中文, 杨成祥, 王长申, 孟庆彬, 杨玉贵, 刘江峰, 冯秀娟, 陈大勇, 邢岳堃, 朱卫兵, 段晓恒, 鞠金峰. 2022. 煤与共伴生战略性金属矿产协调开采理论与技术构想. 煤炭学报, 47(7): 2516~2533.

    • 黄炳香, 赵兴龙, 韩晓克, 吴占伟, 袁国栋, 张青林. 2024. 煤系共伴生矿产协同开发. 采矿与安全工程学报, 41(1): 1~14.

    • 黄文辉, 杨起, 汤达祯, 唐修义, 赵志根. 2000. 潘集煤矿二叠纪主采煤层中微量元素亲和性研究. 地学前缘, 7(B08): 263~270.

    • 黄文辉, 唐修义. 2002. 中国煤中的铀、钍和放射性核素. 中国煤田地质, 14(B07): 55~63.

    • 冀华丽, 何中波, 卫三元, 曹建辉, 杨帆. 2020. 微量元素在鹤岗盆地早白垩世沉积环境分析中的应用. 矿产勘查, 11(1): 21~27.

    • 贾智勇, 张虎军, 陈文正, 张磊, 邱余波. 2020. 新疆伊犁盆地南缘洪海沟煤岩型铀矿控矿因素研究. 矿产勘查, 11(11): 2417~2423.

    • 焦春泉, 李祯. 1995. 河道储层砂体中隔挡层的成因与分布规律. 石油勘探与开发, 22(4): 78~81.

    • 刘双双, 王文峰, 王文龙, 陆青锋, 邵峰军, 王昱龙. 2022. 伊犁盆地煤中关键金属的分布赋存特征. 煤炭学报, 47(5): 1761~1772.

    • 罗星刚, 王守玉, 王芳霞, 刘富强. 2022. 洪海沟铀矿床头屯河组下段砂体沉积特征及铀矿化控因. 铀矿地质, 38(4): 707~716.

    • 秦明宽, 赵瑞全. 1997. 512铀矿床Re的地球化学及其研究意义. 铀矿地质, 13(5): 273~278.

    • 邱余波, 伊海生, 罗星刚, 王毛毛, 乔淇, 刘杰. 2015. 洪海沟铀矿床头屯河组岩相特征及对铀成矿的控制. 金属矿山, (1): 90~93.

    • 权志高, 李占双. 2002. 新疆十红滩砂岩型铀矿床基本特征及成因分析. 地质论评, 48(4): 430~436.

    • 宋昊, 范元清, 张成江, 谭亚辉, 徐争启, 侯明才, 闻振乾, 段美铃, 周靖, 李梅, 杜钱敏, 于慧杰, 黄晓东, 许喜凤, 田增辉, 王泽鑫, 肖涛. 2024. 中国北方砂岩型铀矿床工艺矿物学研究若干进展. 矿物岩石, 44(1): 11~29.

    • 孙玉壮, 赵存良, 李彦恒, 王金喜. 2014. 煤中某些伴生金属元素的综合利用指标探讨. 煤炭学报, 39(4): 744~748.

    • 王福东, 张磊, 陈程, 魏显珍. 2021. 洪海沟铀矿床Ⅶ旋回水化学条件与铀源分析. 矿产勘查, 12(6): 1332~1338.

    • 王贯东, 景继东, 张鹏. 2014. 新疆伊犁盆地煤铀共生条件下资源有效开发模式研究. 现代商业, (9): 118.

    • 王果, 华仁民, 秦立峰. 2000. 中、新生代陆相沉积盆地砂岩型铀矿床流体作用研究. 高校地质学报, (3): 437~446.

    • 王军宁, 杨军锋. 2006. 某砂岩型铀矿床铀的价态特征及在地浸开采中的意义. 铀矿冶, 25(1): 50~52.

    • 王毛毛, 李华, 邱余波. 2015. 新疆伊犁盆地洪海沟地区煤岩型铀成矿分析. 中国煤炭地质, 27(12): 12~16.

    • 王毛毛, 邱余波, 常京涛, 杜默, 王明力, 张虎军, 王强强. 2016. 伊犁盆地南缘中侏罗统西山窑组价态铀特征. 现代矿业, 32(7): 137~140.

    • 王文峰, 秦勇, 宋党育. 2003. 煤中有害微量元素的赋存状态. 中国煤田地质, 15(4): 10~13.

    • 王文峰, 王文龙, 刘双双, 白洪阳, 王昱龙, 段飘飘, 秦可敏, 陈义林. 2021. 煤中铀的赋存分布及其在利用过程中的迁移特征. 煤田地质与勘探, 49(1): 65~80.

    • 魏迎春, 华芳辉, 何文博, 宁树正, 张宁, 秦云虎, 曹代勇. 2020. 峰峰矿区 2 号煤中微量元素富集特征差异性研究. 煤炭学报, 45(4): 1473~1487.

    • 邢东旭, 康勇, 王冰, 秋余波, 张虎军. 2014. 伊犁盆地南缘洪海沟地区铀矿主要含矿含水层及水文地球化学特征. 新疆地质, 32(2): 240~243.

    • 杨建业, 狄永强, 张卫国, 刘善德. 2011a. 伊犁盆地ZK0161井褐煤中铀及其它元素的地球化学研究. 煤炭学报, 36(6): 945~952.

    • 杨建业, 王果, 师志龙, 任满船, 张卫国, 刘善德. 2011b. 伊犁盆地ZK0407井褐煤中铀及其他元素的地球化学研究. 燃料化学学报, 39(5): 340~346.

    • 张国伟, 李三忠, 刘俊霞, 滕志宏, 金海龙, 李伟, 黄先雄, 吴亚红. 1999. 新疆伊犁盆地的构造特征与形成演化. 地学前缘, 6(4): 203~214.

    • 周贤青, 秦勇, 陆鹿. 2019. 中国煤型铀地质-地球化学研究进展. 煤田地质与勘探, 47(4): 45~53.