en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李晶,女,1985年生。副教授,博士生导师,主要从事煤地质学、煤系战略性金属、煤地球化学及环境效应、燃煤废弃物资源化利用等领域的研究。E-mail: jingli@cug.edu.cn。

参考文献
Bohor B F, Triplehorn D M. 1993. Tonsteins: Altered volcanic-ash layers in coal-bearing sequences. The Geological Society of America, 285: 44.
参考文献
Chen Quanhong, Li Wenhou, Hu Xiaolin, Li Keyong, Pang Jungang, Guo Yanqin. 2012. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos basin. Acta Geologica Sinica, 86(7): 1150~1162 (in Chinese with English abstract).
参考文献
Dai Shifeng, Ren Deyi, Chou Chenlin, Li Shengsheng, Jiang Yaofa. 2006. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger coalfield, Ordos basin, China. International Journal of Coal Geology, 66(4): 253~270.
参考文献
Dai Shifeng, Li Dan, Chou Chenlin, Zhao Lei, Zhang Yong, Ren Deyi, Ma Yuwen, Sun Yunyun. 2008. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu surface mine, Jungar coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74(3-4): 185~202.
参考文献
Dai Shifeng, Jiang Yaofa, Ward C R, Gu Landing, Seredin V V, Liu Huidong, Zhou Dao, Wang Xiaobo, Sun Yunzhuang, Zou Jianhua, Ren Deyi. 2012a. Mineralogical and geochemical compositions of the coal in the Guanbanwusu mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and Ree) ore deposit in the Jungar oalfield. International Journal of Coal Geology, 98: 10~40.
参考文献
Dai Shifeng, Zou Jianhua, Jiang Yaofa, Colin R ward, Wang Xiaobo, Li Tian, Xue Weifeng, Liu Shande, Tian Heming, Sun Xinhao, Zhou Dao. 2012b. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai mine, Daqingshan coalfield, Inner mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology, 94: 250~270.
参考文献
Dai Shifeng, Ren Deyi, Chou Chenlin, Finkelman R B, Seredin V V, Zhou Yiping. 2012c. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94: 3~21.
参考文献
Dai Shifeng, Ren Deyi, Zhou Yiping, Seredin V V, Li Dahua, Zhang Mingquan, Hower J C, Ward C R, Wang Xibo, Zhao Lei, Song Xiaolin. 2014. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation. Journal of China Coal Society, 39(8): 1707~1715 (in Chinese with English abstract).
参考文献
Dai Shifeng, Hower J C, Ward C R, Guo Wenmu, Song Hongjian, O'Keefe J M K, Xie Panpan, Hood M M, Yan Xiaoyun. 2015. Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli coalfield on the Tibetan Plateau. International Journal of Coal Geology, 144-145: 23~47.
参考文献
Dai Shifeng, Graham I T, Ward C R. 2016. A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159: 82~95.
参考文献
Dai Shifeng, Xie Panpan, Jia Shaohui, Ward C R, Hower J C, Yan Xiaoyun, French D. 2017. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geology Reviews, 80: 1~17.
参考文献
Dai Shifeng, Finkelman R B. 2018. Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 186: 155~164.
参考文献
Dai Shifeng, Lei Zhao, Wei Qiang, Song Xiaolin, Wang Wenfeng, Liu Jingjing, Duan Piaopiao. 2020. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution. Chinese Science Bulletin, 65(33): 3715~3729 (in Chinese with English abstract).
参考文献
Dai Shifeng, Liu Chiyang, Lei Zhao, Liu Jingjing, Wang Xibo, Ren Deyi. 2022. Strategic metal resources in coal-bearing strata: Significance and challenges. Journal of China Coal Society, 47(5): 1743~1749 (in Chinese with English abstract).
参考文献
Dai Shifeng, Zhao Lei, Wang Ning, Wei Qiang, Liu Jingjing. 2024. Advance and prospect of research on the mineralization of critical elements in coal-bearing sequences. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 49~63.
参考文献
Di Shaobo, Dai Shifeng, Nechaev V P, French D, Graham I T, Zhao Lei, Finkelman R B, Wang Hongdong, Zhang Shaowei, Hou Yongjie. 2023. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao surface mine, Shanxi Province, China: Derivation of pyroclastics and sediment-source regions. International Journal of Coal Geology, 273: 104262.
参考文献
Feng Baohua. 1989. Carboniferous-Permiantonsteins formed by hydrolytic reformation of volcanic ash sediments in northern China. Acta Sedimentologica Sinica, 7(1): 101~108 (in Chinese with English abstract).
参考文献
Hayashi K I, Fujisawa H, Holland H D, Hiroshi O. 1997. Geochemistry of 1. 9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4115~4137.
参考文献
Jian Ping, Kröner A, Windley B F, Zhang Qi, Zhang Wei, Zhang Liqao. 2012. Episodic mantle melting-crustal reworking in the Late Neoarchean of the northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan block. Precambrian Research, 222: 230~254.
参考文献
Jiang Shaoyong, Wen Hanjie, Xu Cheng, Wang Yan, Su Huimin, Sun Weidong. 2019. Earth sphere cycling enrichment mechanism of critical metals: Major scientific issues for future research. Bulletin of National Natural Science Foundation of China, 33(2): 112~118 (in Chinese with English abstract).
参考文献
Ketris M P, Yudovich Y E. 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2): 135~148.
参考文献
Li Baoqing, Zhuang Xinguo, Xavier Q, Nataila M, Zhang Feng. 2020. Geological controls on the distribution of REY-Zr (Hf)-Nb (Ta) enrichment horizons in Late Permian coals from the Qiandongbei coalfield, Guizhou Province, SW China. International Journal of Coal Geology, 231: 103604.
参考文献
Li Jing, Zhuang Xinguo, Yuan Wei, Liu Bo, Xavier Queral, Oriol Front, Natalia Moreno, Li Jianfu, Gang Temuer, Liang Guankao. 2016. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar coalfield, Inner Mongolia. Journal of Coal Geology, 167: 157~175.
参考文献
Liang Shaoxian, Wang Shuili, Yao Gaihuan. 1995. Study of synsedimentary volcanic-ash-derived clayrock bands in Carboniferous-Permian coal-bearing formation of North China. International Journal of Coal Geology, (1): 59~63 (in Chinese).
参考文献
Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715~727.
参考文献
Permana A K, Ward C R, Li Zhongsheng, Gurba L W. 2013. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen basin, Australia. International Journal of Coal Geology, 116: 185~207.
参考文献
Qin Guohong. 2020. Enrichment characteristics and genetic types of trace elements in the Late Paleozoiccoal from Ordos basin. Doctoral dissertation of China University of Mining and Technology (Beijing) (in Chinese with English abstract).
参考文献
Querol X, Whateley M K G, Fernández-Turiel J L, Tuncai E. 1997. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, Central Anatolia, Turkey. International Journal of Coal Geology, 33(3): 255~271.
参考文献
Shangguan Yunfei, Zhuang Xinguo, Li Jing, Li Baoqing, Xavier Querol, Liu Bo, Natalia Moreno, Yuan Wei, Yang Guanghua, Pan Lei. 2020. Geological controls on mineralogy and geochemistry of the Permian and Jurassic coals in the Shanbei coalfield, Shaanxi Province, North China. Minerals, 10(2): 138.
参考文献
Sun Yuzhuang, Zhao Cunliang, Li Yanheng, Wang Jingxi, Liu Shiming. 2012. Li distribution and mode of occurrences in Li-bearing coal seam #6 from the Guanbanwusu mine, Inner Mongolia, northern China. Exploration & Exploitation, 30(1): 109~130.
参考文献
Sun Yuzhuang, Zhao Cunliang, Li Yanheng, Wang Jianxi, Lin Mingyue, Kalkreuth Wolfgang. 2013. Further information of the associated Li deposits in the No. 6 coal seam at Jungar coalfield, Inner Mongolia, northern China. Acta Geologica Sinica (English Edition), 87(4): 1097~1108.
参考文献
Wang Xibo, Dai Shifeng, Ren Deyi, Yang Jianye. 2011. Mineralogy and geochemistry of Al-hydroxide/oxyhydroxide mineral-bearing coals of Late Paleozoic age from the Weibei coalfield, southeastern Ordos basin, North China. Applied Geochemistry, 26(7): 1086~1096.
参考文献
Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Zheng Guodong. 2013. The progress in the strategic research and survey of rare earth, rare mental and rare-scattered elements mineral resources. Geology in China, 40(2): 361~370 (in Chinese with English abstract).
参考文献
Wang Rucheng, Che Xudong, Wu Bin, Xie Lei. 2020. Critical mineral resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 3763~3777 (in Chinese with English abstract).
参考文献
Wang Shuangming, Zhang Yuping. 1999. Study on the formation, evolution and coal-accumulating regularity of the Jurassic Ordos basin. Earth Science Frontiers, 6(5): 147~155 (in Chinese with English abstract).
参考文献
Ward C R, Corcoran J F, Saxby J D, Read H W. 1996. Occurrence of phosphorus minerals in Australian coal seams. International Journal of Coal Geology, 30(3): 185~210.
参考文献
Xu Jing, Sun Yuzhuang, Kalkreuyh W. 2011. Characteristics of trace elements of the No. 6 Coal in the Guanbanwusu mine, Junger coalfield, Inner Mongolia. Energy Exploration & Exploitation, 29(6): 827~842.
参考文献
Zhao Lei, Ward C R, French D, Graham I T. 2013. Mineralogical composition of late permian coal seams in the Songzao coalfield, southwestern China. International Journal of Coal Geology, 116-117: 208~226.
参考文献
Zhao Lei, Dai Shifeng, Nechaev V P, Nechaeva E V, Graham I T, French D, Sun Jihua. 2019. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan coalfield, northern China. Ore Geology Reviews, 111: 102951.
参考文献
Zhao Lei, Wang Xibo, Dai Shifeng. 2022. Lithium resources in coal-bearing strata: Occurrence, mineralization, and resource potential. Journal of China Coal Society, 47(5): 1750~1760 (in Chinese with English abstract).
参考文献
Zhao Lixin, Dai Shifeng, Graham I T, Li Xiao, Liu Huidong, Song Xiaolin, Hower J C, Zhou Yiping. 2017. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geology Reviews, 80: 116~140.
参考文献
Zhao Zhenyu, Guo Yanru, Wang Yan, Lin Dongjuan. 2012. Study progress in tectonic evolution and paleogeography of Ordos basin. Special Oil &Gas Reservoirs, 19(5): 15~20 (in Chinese with English abstract).
参考文献
Zheng Xue, Dai Shifeng, Nechaev V P, Sun Ruoyu. 2020. Environmental perturbations during the latest Permian: Evidence from organic carbon and mercury isotopes of a coal-bearing section in Yunnan Province, southwestern China. Chemical Geology, 549: 119680.
参考文献
Zhou Mingxuan, Zhao Lei, Wang Xibo, Nechaev V P, French D, Spiro B F, Graham I T, Hower J C, Dai Shifeng. 2021. Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan basin, China, with emphasis on the enrichment of the critical element lithium. Ore Geology Reviews, 139: 104582.
参考文献
陈全红, 李文厚, 胡孝林, 李克永, 庞军刚, 郭艳琴. 2012. 鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析. 地质学报, 86(7): 1150~1162.
参考文献
代世峰, 任徳贻, 周义平, Vladimir V Seredin, 李大华, 张名泉, James C Hower, Colin R Ward, 王西勃, 赵蕾, 宋晓林. 2014. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价. 煤炭学报, 39(8): 1707~1715.
参考文献
代世峰, 赵蕾, 魏强, 宋晓林, 王文峰, 刘晶晶, 段飘飘. 2020. 中国煤系中关键金属资源: 富集类型与分布. 科学通报, 65(33): 3715~3729.
参考文献
代世峰, 刘池洋, 赵蕾, 刘晶晶, 王西勃, 任德贻. 2022. 煤系中战略性金属矿产资源: 意义和挑战. 煤炭学报, 47(5): 1743~1749.
参考文献
代世峰, 赵蕾, 王宁, 魏强, 刘晶晶. 2024. 煤系中关键金属元素的成矿作用研究进展与展望. 矿物岩石地球化学通报, 43(1): 49~63.
参考文献
冯宝华. 1989. 我国北方石炭-二叠纪火山灰沉积水解改造而成的高岭岩. 沉积学报, 7(1): 101~108.
参考文献
蒋少涌, 温汉捷, 许成, 王焰, 苏慧敏, 孙卫东. 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 112~118.
参考文献
梁绍暹, 王水利, 姚改焕. 1995. 华北聚煤区火山灰蚀变黏土岩夹矸的研究. 中国煤田地质, (1): 59~63.
参考文献
秦国红. 2020. 鄂尔多斯盆地晚古生代煤中微量元素富集特征与成因类型. 中国矿业大学(北京)博士学位论文.
参考文献
王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361~370.
参考文献
王汝成, 车旭东, 邬斌, 谢磊. 2020. 中国铌钽锆铪资源. 科学通报, 65(33): 3763~3777.
参考文献
王双明, 张玉平. 1999. 鄂尔多斯侏罗纪盆地形成演化和聚煤规律. 地学前缘, 6(5): 147~155.
参考文献
赵蕾, 王西勃, 代世峰. 2022. 煤系中的锂矿产: 赋存分布、成矿与资源潜力. 煤炭学报, 47(5): 1750~1760.
参考文献
赵振宇, 郭彦如, 王艳, 林冬娟. 2012. 鄂尔多斯盆地构造演化及古地理特征研究进展. 特种油气藏, 19(5): 15~20.
目录contents

    摘要

    内蒙古准格尔煤田石炭纪—二叠纪煤系蕴含丰富的铝、镓、锂及稀土等多种战略性金属。为明确该煤系Al-Ga-Li-Nb(Ta)-Zr(Hf)等战略性金属富集的成因机制,本文以准格尔煤田老三沟外围勘查区典型钻孔石炭纪—二叠纪煤系为研究对象,采用X射线衍射分析(XRD)、X射线荧光光谱仪(XRF)、电感耦合等离子体质谱仪(ICP-MS)、带能谱的扫描电镜和基于Tescan Mira 扫描电镜的TIMA-X综合矿物分析仪等系统分析了煤的矿物学和元素地球化学特征。研究区太原组和山西组煤系中普遍存在Al-Li-Ga以及Nb-Ta-Zr-Hf的共富集,其中太原组煤系主可采6号煤中Li、Ga、Zr以及局部层位Nb、Ta均达工业利用品位,具有重要的成矿潜力和开发利用价值。煤中富集的Li和Ga主要赋存于高岭石、勃姆石中,部分Li还赋存于绿泥石中。煤中Al-Ga-Li-Nb(Ta)-Zr(Hf)的富集受控于陆源区母岩的化学风化、火山碎屑的输入、流体活动以及成岩过程中复杂的水/岩作用过程。华北地台前石炭系沉积基底和阴山古陆中元古代钾长花岗岩长期的强烈风化淋滤,形成富Ga-Li的铝土质古风化壳残积物,为研究区煤中铝、镓、锂的初步富集提供了物质来源。富集的铝、镓、锂随地下水等流体迁移,在水动力相对较弱的潟湖、泥炭沼泽等水体沉淀富集。在泥炭化和成岩阶段,富集Li、Ga、Nb、Ta等战略性金属的中性—长英质碱性火山灰的输入以及地下水、低温热液、酸性流体的迁移导致了煤系Li、Ga等战略性金属的二次富集。

    Abstract

    The Permo-Carboniferous coal-bearing sequences of the Jungar coalfield, Inner Mongolia, exhibit significant enrichment of strategic metals, including Al, Ga, Li, and rare earth elements. This study investigates the enrichment mechanism of Al-Ga-Li-Nb (Ta)-Zr (Hf) strategic metal assemblages in these coal-bearing sequences, focusing on the Permo-Carboniferous coal-bearing sequence from the Laosangou peripheral exploration area. Systematic mineralogical and trace element geochemical analyses were employed, encompassing optical microscopy, X-ray diffraction (XRD), scanning electron microscope with energy dispersive spectroscopy (SEM-EDS), X-ray fluorescence spectrometer (XRF), a TIMA-X comprehensive mineral analyzer based on a Tescan Mira scanning electron microscope, and inductively coupled plasma-mass spectrometer (ICP-MS). The Taiyuan and Shanxi Formation coals in the Laosangou area display co-enrichment of Al-Li-Ga and Nb-Ta-Zr-Hf assemblages. In particular, concentrations of Li, Ga, and Zr in the entire coal seam, and those of Nb and Ta in specific sections of the main recoverable No.6 coal seam, reach levels that meet industrial utilization grades. This suggests significant metallogenic potential and value for development and utilization. The enriched Li and Ga in the coal exhibit a clear affinity for aluminosilicates, predominantly occurring in kaolinite and boehmite, and Li may also occur in chlorite. The enrichment of Al, Ga, and Li in the Taiyuan and Shanxi Formation coal-bearing sequence is a consequence of a complex interplay of geological processes. Firstly, weathering and denudation of Mesoproterozoic moyite in the Yinshan Oldland provide a primary source for Al, Ga, and Li enrichment. Terrigenous detritus derived from this source was initially enriched in the weathering crust of the Upper Carboniferous Benxi Formation, located in the northeastern part of the basin, serving as a direct material source of Al, Ga, and Li enrichment in the coal-bearing sequences. Secondly, fluid activity and water/rock interactions played a crucial role. Al, Ga and Li migrated along with groundwater and were subsequently deposited and enriched in the coal-bearing sequence. Lastly, the input of Li, Ga, Nb and Ta-rich intermediate-felsic alkaline volcanic ash, coupled with the migration of hydrothermal fluids, led to secondary enrichment of these elements in the studied coals during the coalification process.

  • 近年来,随着经济和新兴产业的迅速发展,全球对镓、锂和稀土等战略性金属的需求日益增加,世界各国正面临着严峻的战略性金属供需矛盾,寻找和研究新型战略性金属矿产资源已成为国家重大战略要求和大力支持方向(王登红等,2013代世峰等,201420202022蒋少涌等,2019)。煤型战略性金属矿床的发现和研究对国家战略性金属资源增储具有重大的战略经济意义。煤系中已发现的战略性金属矿床有锗矿床、镓铝矿床、锂矿床、稀土矿床、铀矿床、钒矿床、硒矿床、铌-锆-稀土-镓多金属矿床等(代世峰等,20222024)。近年研究表明,内蒙古准格尔煤田石炭纪—二叠纪煤系普遍存在镓、锂和稀土等战略性金属的异常,诸多学者先后对准格尔煤田不同矿区石炭纪—二叠纪煤系Al、Ga、Li及REY等战略性金属的分布赋存状态、富集地质因素、资源潜力等开展了研究(Dai Shifeng et al.,20082012b; Xu Jing et al.,2011; Sun Yunzhuang et al.,2012a,2013a; Li Jing et al.,2016),部分矿区煤系Al、Ga、Li及REY含量等可达煤伴生镓、锂和稀土元素的工业品位(Dai Shifeng and Finkelman,2018)。为进一步查明该煤系Al、Ga、Li共富集的成因机制,本文以准格尔煤田老三沟外围勘查区石炭纪—二叠纪煤系为研究对象,系统开展煤系战略性关键金属的时空分布、赋存状态及富集成矿过程的研究。在此基础上,结合当前的经济、技术条件及伴生锂、镓等矿床的工业指标(包括边界品位、工业品位等),合理评价勘查区石炭纪—二叠纪煤系战略性金属的含矿品位和成矿前景,为研究区煤系Al、Ga、Li等多金属的综合开发利用提供理论依据。

  • 1 地质背景

  • 准格尔煤田位于鄂尔多斯盆地的东北缘、河东断褶带(图1a),总体构造形态为走向南北、向西倾斜的大型单斜构造,其上发育许多次级南北向褶皱。老三沟外围勘查区位于准格尔煤田中深部矿区北部边缘(图1b)。地层总体走向近南北向,向西倾斜,区内构造线与区域构造线基本一致,构造形态为向西至南西西缓倾的单斜构造,局部区域发育有规模较小的缓波状起伏。

  • 准格尔煤田沉积特征和含煤性与华北地区相似,早中奥陶世,地壳沉降,海水入侵,全区都处于浅海沉积环境。受早期区域构造运动的影响,奥陶系上统、志留系、泥盆系、石炭系下统缺失;从晚石炭世开始,连续沉积了二叠系至下三叠统;而后区域上发生阶段性沉积间断,侏罗系、白垩系上统、古近系及中新统缺失(赵振宇等,2012)。主要含煤地层为上石炭统太原组,其次为下二叠统山西组(图2)。太原组为一套海陆交互相-陆相含煤细碎屑沉积,发育6上#、6#、7#、8#、9#和10#煤层;山西组为一套陆相含煤碎屑沉积,发育1#、2#、3#、4#和5#煤层。

  • 2 样品采集与测试

  • 此次分析样品系统采自于内蒙古准格尔煤田中深部矿区北部边缘老三沟外围勘查区的ZK18-2勘探钻孔(图1b),采样层位为上石炭统太原组和下二叠统山西组煤系(图2)。钻孔ZK18-2共采集样品56件,其中山西组3#煤共采集煤样2件,底板砂质泥岩样品1件;太原组6上#煤共采集煤样2件,顶板砂质泥岩和碳质泥岩样品各1件,底板砂质泥岩样品1件,砂质泥岩夹矸1件;太原组主可采6#煤共采集煤样22件,顶板和底板砂质泥岩各1件,砂质泥岩夹矸16件,泥岩夹矸1件,碳质泥岩夹矸2件,火山灰黏土岩夹矸4件(图2)。

  • 图1 鄂尔多斯盆地构造分区图(a)及老三沟采样点位置图(b)

  • Fig.1 Tectonic zoning map of Ordos basin (a) and sampling location of Laosangou exploration (b)

  • 图2 准格尔煤田老三沟外围勘查区ZK18-2钻孔岩性及采样柱状图

  • Fig.2 Lithological and sampling column of borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield

  • 对所采煤层煤样进行逐级破碎缩分后,分别进行工业分析、全硫分析、矿物学分析以及微量元素地球化学分析。分别按照国家标准《煤的工业分析方法》(GB/T212—2008)和《煤中全硫测定方法》(GB/T214—2017)对所采煤样的水分含量、灰分产率及挥发分产率和全硫含量进行测定。使用D/max-2500/PC衍射仪对煤岩样品进行X射线衍射(XRD)图谱扫描,XRD图谱使用2θ间隔2.6°~70°,步长为0.01°参数来记录,用 Siroquant对煤的X射线衍射图进行矿物半定量分析。采用X射线荧光光谱仪(XRF)测定煤中常量元素的含量;依据Querol et al.(1997)提出的两步消解法对煤岩样品进行消解,然后采用电感耦合等离子体质谱(ICP-MS)测定煤中微量元素含量。借助扫描电镜观察矿物形态及共生组合关系,系统分析矿物的成因。使用基于Tescan Mira扫描电镜的TIMA-X综合矿物分析仪分析和鉴别矿物,通过获取的矿物图像确定矿物质浓度、元素分布和矿物特性(晶粒尺寸、结合形式和包裹程度等)。

  • 3 结果与讨论

  • 3.1 煤系Al-Ga-Li-Nb(Ta)-Zr(Hf)等战略性金属的富集特征

  • 与中国煤中常量元素平均含量(Dai Shifeng et al.,2012)相比,ZK18-2孔山西组3#煤及太原组6上#煤和6#煤中Al2O3平均含量(8.1%、8.6%和9.5%)均较高;3#煤和6上#煤中SiO2含量(21.7%、11.3%)较高,而6#煤中SiO2含量(7.1%)略低于中国煤均值。煤层中SiO2/Al2O3比值平均1.0,略低于高岭石中SiO2/Al2O3的理论值(1.2)及中国煤中SiO2/Al2O3均值(1.4),与准格尔煤田东部矿区(如官板乌素和哈尔乌素矿)和大青山煤田(阿刀亥矿)煤中SiO2/Al2O3比值(分别为0.74、0.69和0.84)接近。通常情况下,煤中高的SiO2/Al2O3比值反映了富硅矿物(如石英)的存在,而低的SiO2/Al2O3比值则是富铝矿物(如三水铝石、勃姆石和硬水铝石)存在的重要指示。准格尔煤中较低的SiO2/Al2O3比值主要归因于煤中较低的石英含量和富Al矿物(勃姆石或者硬水铝石)的存在(Dai Shifeng et al.,20082012a2012b)。

  • Dai Shifeng et al.(2015)根据富集系数(CC,所研究煤中微量元素的丰度与中国煤或世界煤中微量元素平均含量的比值),将煤中微量元素的富集程度分为异常富集(CC>100)、高度富集(10<CC<100)、富集(5<CC<10)、轻度富集(2<CC<5)、正常(0.5<CC<2)和亏损(CC<0.5)。将各煤层微量元素的平均含量与世界煤中微量元素的平均含量(Ketris and Yudovich,2009)相比,ZK18-2孔山西组和太原组煤系都存在不同程度的Li、Ti、Ga、Zr、Hf等战略性金属的共富集,但不同煤层中元素的富集程度不同。山西组3#煤中整体富集Be、Zn、Zr和Pb(5<CC<10);轻度富集Ti、Ga、Y、Nb、Mo、Hf、Ta和Th及La、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Er、Yb等稀土元素(2<CC<5);Li元素丰度与世界煤均值相似(图3)。太原组6上#煤中整体富集Be、Zr、Hf和Pb(5<CC<10);Li、Ti、Ga、Nb、Ta和Th轻度富集(2<CC<5)(图3)。太原组主可采6#煤中富集Li、Sr、Zr、Hf和Pb(5<CC<10);轻度富集Ti、Zn、Ga、Y、Nb、Ta、Th 及La、Ce、Pr、Nd、Sm、Eu、Er等稀土元素(2<CC<5)(图3)。整体上,太原组主可采6#煤中Al-Ga-Li及Nb-Ta-Zr-Hf的富集程度最高。

  • 3.2 煤系Al-Ga-Li-Nb(Ta)-Zr(Hf)等战略性金属的分布赋存状态

  • 3.2.1 煤系战略性金属的垂向分布

  • 山西组3#煤和太原组6上#煤煤层较薄,煤中Li和Ga等战略性金属含量无明显垂向变化趋势,但煤层顶底板及夹矸中Li、Ga、Nb(Ta)-Zr(Hf)和Al2O3含量明显较煤中含量高,并在3#煤和6上#煤底板处(B1、B2)达到最大值(图4)。此外,煤系Ga、Nb(Ta)-Zr(Hf)及Al2O3含量的垂向变化与灰分产率和高岭石含量的垂向变化相似。

  • 太原组主可采6#煤顶部Li、Ga等战略性金属含量偏低,中下部火山灰黏土岩夹矸(P15-P18)邻近层段Li和Ga含量明显较高,并在火山灰黏土岩夹矸下部碳质泥岩夹矸层(P20)中Li含量达到最大值(850 μg/g,图4)。整体上,6#煤中Li含量的垂向变化与灰分产率变化近似,且夹矸中Li含量高于煤中Li含量(图4)。Nb(Ta)-Zr(Hf)的含量垂向变化相似,整体在煤层夹矸和顶底板中含量较高。

  • 3.2.2 煤系战略性金属的赋存状态

  • 前人研究一致认为煤中Li主要赋存于铝硅酸盐矿物,尤其是黏土矿物中,Li的载体矿物可能是高岭石、含Li的锂绿泥石、云母和电气石等(Dai Shifeng et al.,2012a; Sun Yunzhuang et al.,2012a;Zhou Mingxuan et al.,2021赵蕾等,2022)。煤中Ga同样具有无机亲和性,主要赋存在高岭石和勃姆石等含铝矿物中(Dai Shifeng et al.,20062012bDi Shaobo et al.,2023)。

  • 研究区ZK18-2钻孔石炭纪—二叠纪煤系,尤其是太原组6#煤富Li火山灰蚀变黏土岩层段Li含量与灰分产率及Al2O3含量具有显著的正相关性(图5a、b),推测Li具有明显的铝硅酸盐亲和性,可能赋存于煤中的铝硅酸盐矿物,如高岭石中。此外,煤系富Li层段绿泥石含量明显升高(图4),表明含锂绿泥石可能是煤中Li的另一重要载体。

  • 图3 准格尔煤田老三沟外围勘查区ZK18-2孔3#煤(a)、6上#煤(b)和6#煤(c)中微量元素的富集系数

  • Fig.3 Concentration coefficients (CC) of trace elements in the No.3 (a) , No.6 upper (b) and No.6 coal (c) of borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield

  • 如前所述,煤系Ga、Nb(Ta)-Zr(Hf)及Al2O3含量与灰分产率和高岭石含量具有相似的垂向分布特征,推测Ga等战略性金属可能赋存于煤系高岭石中。TIMA扫描电镜分析可见煤系火山灰黏土岩中勃姆石共生于高岭石表面(图6)。平面上,Ga元素含量在高岭石和勃姆石分布区中含量较高(图6d),进一步表明高岭石和勃姆石为研究区煤系Ga的重要载体。

  • 煤中Nb(Ta)-Zr(Hf)等高场强元素通常被认为具有无机亲和性(Zhao Lixin et al.,2017),通常赋存于煤中的黏土矿物、锆石或锐钛矿等含钛矿物中(Zhao Lei et al.,2019; Li Baoqing et al.,2020)。研究区煤中Nb、Ta、Zr、Hf与Li、Ga及高岭石含量呈现正相关关系(图5c~i),且在垂向上具有相似的分布特征(图4),推测研究区煤中Nb、Ta、Zr、Hf可能也赋存于黏土矿物高岭石中。同时,Zr和Hf呈现显著的正相关关系(图7a),表明Zr和Hf赋存于相同载体,成煤过程中无明显分异作用;此外Zr和TiO2也呈明显的正相关性(图7b),表明Zr和Hf主要赋存在锆石中,其次赋存在锐钛矿中。煤中Nb和Ta呈现显著正相关关系(图7c),表明Nb和Ta赋存于相同载体,成煤过程中无明显分异作用;Nb与Zr呈正相关关系(图7d),而与TiO2无明显相关关系(图7e),表明Nb和Ta主要赋存在锆石中,此外,煤中Zr(Hf)与高岭石含量呈现正相关关系,但与Al2O3含量并无明显正相关关系(图7f~i),表明Nb(Ta)-Zr(Hf)的载体矿物不为高岭石,但其载体矿物可能与高岭石等黏土矿物共生。结合扫描电镜镜下观察,可见细碎屑锆石、锐钛矿分布于高岭石中(图8a、b),表明Nb、Ta、Zr、Hf的载体矿物锆石、含Ti矿物(锐钛矿)以细碎屑的形式与高岭石等黏土矿物共生。

  • 图4 准格尔煤田老三沟外围勘查区ZK18-2孔煤层的矿物和地球化学剖面(全煤基)

  • Fig.4 Mineralogical and geochemical profiles of coal seam from borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield (on a whole coal basis)

  • 图5 准格尔煤田老三沟外围勘查区煤系富锂样品中Li与灰分产率(a)、Al2O3(b)及Ga等战略性金属(c~i)的相关性

  • Fig.5 Correlation of Li concentration with ash yield (a) , Al2O3 (b) content and other strategic metals (c~i) in Li-rich samples in Laosangou coal exploration area, Jungar coalfield

  • 3.3 煤系Al-Ga-Li-Nb(Ta)-Zr(Hf)等战略性金属的富集成因

  • 煤中微量元素的富集往往受泥炭化作用过程中陆源区母岩性质、沉积环境、成煤植物类型、气候和水文地质条件、微生物作用以及煤化作用阶段煤层顶板沉积成岩作用、构造作用、岩浆热液活动和地下水活动等多种地质因素的共同影响(Dai Shifeng et al.,2012c)。结合准格尔煤田及周边、区域构造演化史,研究区煤中战略性金属富集明显受蚀源区碎屑供给、同沉积火山碎屑输入及流体活动的共同影响。

  • 3.3.1 蚀源区母岩风化

  • 准格尔煤田位于鄂尔多斯盆地东北缘,鄂尔多斯盆地位于华北克拉通西部,其晚古生代的构造演化与华北陆块相一致。华北板块北侧的俯冲作用从寒武纪末期开始,到晚古生代中期,古阴山褶皱造山带已大面积隆升并波及到鄂尔多斯地区北缘,形成新的增生造山带物源供给区。阴山造山带广泛分布的中元古代花岗岩和中晚古生代碳酸盐在长期的风化作用下形成石炭系—二叠系盆地基底富铝、锂和镓的铝土质风化壳残积物,为晚石炭世时期华北地台地壳缓慢下降,海水入侵,接受沉积提供了主要物源。

  • 王双明等(1999)研究认为,阴山古陆是准格尔煤田6号煤聚集的主要物源区,在泥炭积累初始阶段,准格尔煤田以及整个鄂尔多斯盆地的陆源碎屑物质主要来源于北西方向阴山古陆中广泛分布的中元古代钾长花岗岩。许多学者研究一致认为,准格尔煤田官板乌素、哈尔乌素、黑岱沟煤矿及其北部大青山煤田阿刀亥煤矿石炭纪—二叠纪煤系Li-Ga-REY富集的主要物源来自于其北侧阴山古陆的花岗岩及本溪组铝土质风化壳(Dai Shifeng et al.,20082012a2012b)。

  • 图6 准格尔煤田老三沟外围勘查区ZK18-2钻孔P17 火山灰黏土岩样品的TIMA扫描电镜图像

  • Fig.6 TIMA mineral identification map in sample P17 from borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield

  • (a)—背散射图像;(b)—矿物相图像;(c)—二次电子图像;(d)—Ga元素平面分布图

  • (a) —backscatter image; (b) —mineral facies image; (c) —secondary electron image; (d) —distribution diagram of gallium

  • 研究区ZK18-2钻孔石炭纪—二叠纪煤系中岩石样品和煤样的Al2O3/TiO2比值分别介于19.6~115以及5~38.3之间,均值分别为45.1以及24.4(图9),表明研究区煤系的源岩以长英质源岩为主(Hayashi et al.,1997; Dai Shifeng et al.,2016)。此外,ZK18-2钻孔煤样、夹矸和顶底板均表现为Eu负异常(δEu均值分别为0.96、0.89和0.90),煤中稀土元素富集类型主要为轻稀土富集型(图10a),这与煤田北部阴山古陆的稀土富集类型及Eu的负异常一致(Jian Ping et al.,2012),与前人对准格尔煤田官板乌素,哈尔乌素等煤矿沉积物源的研究类似;进一步证实煤田北部阴山古陆中的元古代钾长花岗岩是研究区煤中铝、镓、锂富集的初始物质来源。

  • 化学蚀变指数(CIA)可以反映陆源区母岩的化学风化程度及沉积物沉积时气候条件(Nesbitt and Young,1982)。

  • CIA=100×XAl2O3/XAl2O3+XCaO*+XNa2O+XK2O

  • 式中,X为元素的摩尔含量,CaO*为硅酸盐组分中的CaO。

  • ZK18-2钻孔煤层顶底板、夹矸泥岩和含炭泥岩的化学蚀变指数平均98.7(94.3~99.7),反映成煤期源区岩石强烈的化学风化程度。富铝、镓、锂的花岗质源岩经强烈的化学风化剥蚀、分选搬运,形成富Ga-Li的铝土质古风化壳残积物,为研究区煤中铝、镓、锂的初步富集提供了物质来源。富集的铝、镓、锂等元素随着水体搬运至泥炭沼泽,形成初步富集。

  • 3.3.2 火山碎屑输入

  • 前人研究认为,在华北石炭纪—二叠纪煤中广泛发育有高岭石火山灰蚀变黏土岩层(tonstein)(冯宝华,1989梁绍暹等,1995),这些含煤岩系中广泛分布的火山灰蚀变黏土岩夹矸的原始物质绝大部分是同沉积的酸性和中酸性火山灰(Bohor and Triplehorn,1993; Dai Shifeng et al.,2017)。Wang Xibo et al.(2011)秦国红(2020)等学者先后在渭北、陕北煤田石炭纪—二叠纪含煤岩系中发现了高温石英和锆石及锆石-磷铝锶石-高温石英-磷灰石(六边形)-蠕虫状高岭石等矿物组合,证实了石炭纪—二叠纪聚煤期长英质火山灰碎屑物质的输入,这些火山碎屑物质对该区煤系Li、Ga、Zr等战略性金属的富集具有重要影响(Wang Xibo et al.,2011秦国红,2020; Shangguan Yunfei et al.,2020)。

  • 本研究在ZK18-2孔太原组底部发现多层稳定分布的火山灰蚀变黏土岩夹矸层,厚度不等(图11a、b)。火山灰黏土岩夹矸层以单一的高岭石为主,夹矸层中高岭石有序度较高,属于自生成因,多由火山灰玻璃物质发生脱玻作用或由黑云母、长石、角闪石等原生矿物蚀变形成,镜下可以观察到高岭石呈蠕虫状(图11c),还可见散落的火山灰碎屑颗粒及碎屑状棱角状港湾状石英(图11d),均为火山灰碎屑输入的产物。

  • 图7 准格尔煤田老三沟外围勘查区钻孔18-2煤系样品中Nb(Ta)-Zr(Hf)与选定因子的相关性(a~i)

  • Fig.7 Correlations between Nb (Ta) -Zr (Hf) concentrations and selected factors (a~i) in samples from borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield

  • 图8 准格尔煤田老三沟外围勘查区ZK18-2钻孔中锐钛矿和锆石形貌图

  • Fig.8 Topography of anatase and zircon from borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield

  • (a)—高岭石表面的碎屑状锐钛矿;(b)—高岭石空隙中的锆石

  • (a) —clastic anatase on the surface of kaolinite; (b) —zircon in the void of kaolinite

  • 依据Al2O3/TiO2与Nb/Yb岩浆源判别图,可将火成岩/火山碎屑区分为铁镁质(高钛和低钛)和中长英质(碱性和钙碱性)成分的火山碎屑(Zheng Xue et al.,2020)。其中,高钛铁镁质和碱性中长英质区域反映了板内来源(与地幔柱相关)的火成岩物质,而钙碱性中长英质区域则指示了与俯冲/碰撞有关的火成岩。研究区部分煤及大部分夹矸落入碱性中长英质区域,反映了其物质来源为地幔柱相关的火山碎屑物质;另一部分煤及顶底板落入了钙碱性中长英质区域,反映了其俯冲/碰撞相关的物质来源(图12)。另一方面,除Al、Li、Ga外,研究区煤系同时富集Nb、Ta、Zr、Hf等战略性金属。Nb、Ta、Zr、Hf等均为高场强元素,地球化学性质相似、不太活泼,通常共生,一般来自深源碱性岩;我国铌钽和锆铪矿床一般与铝质花岗岩(过铝和准铝)、花岗伟晶岩、碱性—过碱性花岗岩和碳酸岩有关(王汝成等,2020)。鄂尔多斯盆地位于华北克拉通西部,晚古生代的构造演化同时受到特提斯构造域和太平洋构造域的双重作用(陈全红等,2012),大地构造位置上与我国铌钽和锆铪矿床的空间分布一致(王汝成等,2020),也反映了Nb、Ta、Zr、Hf等战略性金属成矿源岩的碱性岩属性。

  • 图9 准格尔煤田老三沟外围勘查区ZK18-2钻孔含煤岩系Al2O3/TiO2二元图解

  • Fig.9 The Al2O3/TiO2 ratio in the coal-bearing sequence from borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield

  • 此外,与正常沉积夹矸和代表其物源的岩石不同,火山灰黏土岩夹矸层中稀土元素呈中—重富集(图9b、c),而且火山灰黏土岩具有很高的Nb/Yb比(54)和灰分产率(80.0%),进一步证实了富Nb碱性火山碎屑物质的存在,与Di Shaobo et al.(2022)在宁武安太堡露天矿太原组9号煤中的发现类似。据此,研究区石炭纪—二叠纪煤系Li、Ga、Nb、Ta等战略性金属的富集除受蚀源区陆源碎屑及古风化壳铝土质碎屑供给的影响外,同时也受同中长英质碱性火山灰碎屑输入的影响。

  • 3.3.3 流体活动

  • 研究区ZK18-2孔煤系一些特征矿物,如硫磷铝锶石、绿泥石、萤石和氟钙铈矿等的存在为流体活动提供了证据(图13)。煤中自生型的高岭石是由长石和酸性流体反应,产生的铝离子和硅酸根离子过饱和进而从孔隙中析出,通常呈细胞或裂隙充填状(图13a)。硫磷铝锶石为一种磷锶铝石族磷酸盐矿物,Ward et al.(1996)认为磷锶铝石族矿物主要由来源于落入成煤泥炭沼泽中的火山灰或泥炭沼泽中有机质释放的磷被富铝溶液捕获并在有机质空隙沉淀形成(图13b)。氟钙铈矿为一种稀土矿物,通常是由火山岩浆冷却过程中分离出来的氟气水溶液沿裂隙上升过程中捕捉周围岩石中的钙离子,冷却结晶后形成;氟钙铈矿常与萤石,重晶石,石英等矿物共生。研究区煤系中存在的自生方铅矿及萤石颗粒均为低温热液型矿物,并可见氟钙铈矿与方铅矿共生(图13c、d)。此外,XRD分析在富Li火山灰黏土岩中发现了绿泥石的存在,而绿泥石是热液蚀变的特征指示矿物,通常由高岭石等黏土矿物绿泥石化形成(Zhao Lei et al.,2013; Permana et al.,2013)。

  • 图10 准格尔煤田老三沟外围勘查区ZK18-2钻孔煤样(a)、砂质泥岩(b)和火山灰黏土岩(c)中稀土配分模式

  • Fig.10 UCC-normalized REY distribution patterns for coal samples (a) , sandy mudstone samples (b) and tonstein samples (c) from borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield

  • 图11 准格尔煤田老三沟外围勘查区ZK18-2孔煤系火山灰蚀变黏土岩夹矸(a、b)及镜下特征(c、d)

  • Fig.11 Tonstein parting from borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield and its micro morphology (a, b) tonstein parting (c) worm-shape kaolinite (d) angular quartz

  • 图12 准格尔煤田老三沟外围勘查区钻孔ZK18-2中煤岩样品中Al2O3/TiO2与Nb/Yb岩浆源辨别图

  • Fig.12 Magmatic source identification image of Al2O3/TiO2 and Nb/Yb from coal and rock samples from borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield

  • 除了特征型热液流体矿物的存在,ZK18-2孔太原组6#煤正常沉积砂质泥岩夹矸样品以轻—中稀土富集型为主,且多为Gd正异常(图10b)。通常情况下,铁镁质火山灰、高Ti或低Ti玄武岩的输入以及盆地内循环的酸性流体会造成煤中出现中稀土富集;结合之前的分析,准格尔煤田的物源主要来自于中长英质岩浆岩而非铁镁质火山灰或玄武岩的输入(图12),因此煤系中稀土富集模式及Gd的明显正异常来源于成煤盆地中的酸性流体活动。来源于物源区风化细碎屑及碱性火山灰中的Li、Ga及Nb(Ta)、Zr(Hf)在成煤作用过程中的水/岩作用(地下水、低温热液、酸性流体)下迁移带入煤中,吸附在煤中的黏土矿物(高岭石、锂绿泥石等)、勃姆石、锆石等矿物中形成富集。

  • 3.3.4 煤系战略性金属共富集成因模式

  • 综上所述,老三沟外围勘查区石炭纪—二叠纪煤系Al-Ga-Li等战略性金属的共富集受到了蚀源区陆源碎屑供给、火山灰输入和流体侵入的共同影响,为陆源碎屑供给-火山灰-流体的复合富集成因模式(图14)。通常,花岗岩中Li元素的含量为26.0 μg/g,Ga在中酸性岩中含量范围为19.0~21.0 μg/g,可为镓、锂的富集提供了基础物质来源。来自于蚀源区阴山古陆抬升造山风化剥蚀产生的中性—长英质碎屑为准格尔煤田煤系铝、镓、锂的富集提供了基础物质来源,造成了Li、Ga等元素的初步富集。随后,来自于阴山古陆中元古界钾长花岗岩的含铝、镓、锂的陆源碎屑经地表长期风化、剥蚀、搬运和分选等一系列过程,初步富集于盆地北偏东隆起的海陆交互斜坡沉积带的上石炭统本溪组风化壳中。在有机酸及后期强烈的风化淋滤作用下,泥质及黏土质碎屑中的CaO、Na2O、K2O、MgO、SiO2等活泼组分流失,Al、Ga、Li及稀土元素等相对不活动元素具有较大的惰性,绝大部分原地聚集保留,并转到风化壳的残积物中,形成富Ga-Li的铝土矿,成为煤系铝、镓、锂的直接来源。富铝、镓、锂的花岗质源岩及铝土质古风化壳残积物经强烈的化学风化剥蚀、分选搬运,富集的铝、镓、锂等元素随着地下水搬运至泥炭沼泽,形成初步富集。

  • 图13 准格尔煤田老三沟外围勘查区钻孔ZK18-2中高岭石、锐钛矿、硫磷铝锶石、方铅矿、氟钙铈矿、方解石和萤石矿形貌图

  • Fig.13 Topography of kaolinite, anatase, svanbergite, gelenite, fluocerite, calciteand fluor from borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield

  • (a)—细胞充填状高岭石;(b)—硫磷铝锶石及锐钛矿;(c)—氟钙铈矿和方铅矿;(d)—与方解石共生的萤石

  • (a) —cell-filling kaolinite; (b) —svanbergite and anatase; (c) —fluocerite and gelenite; (d) —fluorite associated with calcite

  • 图14 准格尔煤田老三沟外围勘查区煤系战略性金属共富集成因模式图

  • Fig.14 Composite enrichment genetic model diagram in exploration area in Laosangou coal exploration area, Jungar coalfield

  • 此外,富集Li、Ga、Nb、Ta、Zr、Hf的中性—长英质碱性火山灰的输入以及热液流体的迁移导致了煤中微量元素的二次富集。富集Li、Ga、Nb、Ta、Zr、Hf等元素的中性—长英质碱性火山灰飘落到泥炭沼泽中,经过地下水或者低温热液流体的迁移淋滤作用及复杂的有机质-无机质相互作用将这些元素转移到煤层中(图14)。

  • 3.4 煤系战略金属的前景评价

  • 如前所述,老三沟外围勘查区石炭纪—二叠纪煤系普遍存在Al-Ga-Li及Nb-Ta-Zr-Hf的共富集,且太原组主可采6#煤中的富集程度最高。评价煤系中关键金属矿产的开发,要求关键金属元素要达到一定的品位和成矿规模(代世峰等,2014)。由于目前煤中战略性金属的提取,均是从粉煤灰中提取,而不是从原煤中提取。因此,Dai Shifeng and Finkelman(2018)总结提出了灰基中煤和煤系中部分关键金属矿产的开发利用品位,并指出对多种金属共富集的矿产和对提取技术要求不高的矿产,其品位要求可有所降低(代世峰等,2022)。综合参考该煤系灰基关键金属品位标准及《矿产地质勘查规范稀有金属类》(DZ/T 0203—2020)中规定的Al2O3、伴生Li2O及风化壳类(Nb,Ta)2O5和(Zr,Hf)O2的边界品位(DZ/T 0203—2020),对老三沟外围勘查区太原组主可采6#煤煤系战略性金属的含矿品位进行评价。

  • 研究区ZK18-2孔主可采6#煤层中Al2O3的灰基平均含量为48.7%,除个别层位(LSG-23)外,均超过Al2O3的工业回收标准(40%)。6#煤层全层Li2O的灰基平均含量为0.13%,未达到《稀有金属矿产地质勘查规范》规定的伴生氧化锂(Li2O)的工业回收指标(0.2%),但已超过赵蕾等(2022)提出的煤系中锂工业开发的边界品位(0.08%)。而且,6#煤层中下部火山灰凝灰岩层段约5 m(583.0~588.0 m)煤系中Li2O的灰基含量范围为0.24%~0.33%,平均值为0.28%,超过《稀有金属矿产地质勘查规范》规定的伴生氧化锂(Li2O)的工业回收指标(0.2%)。6#煤层中全层Ga的灰基平均含量为139 μg/g,ZrO2的灰基平均含量为2041 μg/g,均达到其工业回收利用标准(图15)。6#煤层个别层位(LSG-13)Nb2O5灰基含量达到315 μg/g,达到其工业回收利用标准(图15)。

  • 综上,考虑Al、Li、Ga等多金属元素的综合提取利用,研究区太原组煤系主可采6#煤中全层Al、Li、Ga、Zr及局部层位Nb、Ta均达工业利用品位,具重要的成矿潜力和开发利用价值。

  • 4 结论

  • 内蒙古准格尔煤田老三沟外围勘查区石炭系—二叠系太原组和山西组煤系中普遍存在Al-Li-Ga及Nb-Ta-Zr-Hf共富集特征,太原组主可采6#煤中富集程度最高。煤系中Li、Ga具有明显的铝硅酸盐亲和性,Ga主要赋存于煤系中高岭石和勃姆石中,Li主要赋存于高岭石,部分赋存于绿泥石中。煤系中Nb、Ta、Zr和Hf主要赋存在锆石中,部分Zr和Hf还赋存在锐钛矿中。

  • 煤系Al、Ga、Li等战略性金属的共富集同时受控于蚀源区陆源碎屑供给、火山灰输入和流体侵入,为陆源碎屑供给-火山灰输入-流体活动耦合作用的复合富集模式。煤田北部阴山古陆中元古代钾长花岗岩的风化碎屑为煤系铝、镓、锂等的初步富集提供了基础来源;富铝、镓、锂的花岗质源岩及铝土质古风化壳残积物经强烈的化学风化剥蚀、分选搬运,富集的铝、镓、锂等元素随着地下水等流体迁移至泥炭沼泽,形成初步富集。中性—长英质碱性火山灰的输入以及低温热液、酸性流体的迁移导致了煤系Al、Li、Ga及Nb、Ta、Zr、Hf的二次富集。

  • 考虑Al、Li、Ga等战略性金属的综合提取利用,研究区太原组煤系主可采6#煤全层Al、Li、Ga、Zr以及局部层位Nb、Ta均达工业利用品位,具有重要的成矿潜力和开发利用价值。

  • 图15 准格尔煤田老三沟外围勘查区ZK18-2钻孔6#煤煤岩样品中LiO2、ZrO2、Nb2O5、Ga和Al2O3灰基含量的垂向分布

  • Fig.15 Vertical distribution of LiO2, ZrO2, Nb2O5, Ga and Al2O3 concentration in ashes in coal and rock samples from borehole ZK18-2 in Laosangou coal exploration area, Jungar coalfield

  • 参考文献

    • Bohor B F, Triplehorn D M. 1993. Tonsteins: Altered volcanic-ash layers in coal-bearing sequences. The Geological Society of America, 285: 44.

    • Chen Quanhong, Li Wenhou, Hu Xiaolin, Li Keyong, Pang Jungang, Guo Yanqin. 2012. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos basin. Acta Geologica Sinica, 86(7): 1150~1162 (in Chinese with English abstract).

    • Dai Shifeng, Ren Deyi, Chou Chenlin, Li Shengsheng, Jiang Yaofa. 2006. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger coalfield, Ordos basin, China. International Journal of Coal Geology, 66(4): 253~270.

    • Dai Shifeng, Li Dan, Chou Chenlin, Zhao Lei, Zhang Yong, Ren Deyi, Ma Yuwen, Sun Yunyun. 2008. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu surface mine, Jungar coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74(3-4): 185~202.

    • Dai Shifeng, Jiang Yaofa, Ward C R, Gu Landing, Seredin V V, Liu Huidong, Zhou Dao, Wang Xiaobo, Sun Yunzhuang, Zou Jianhua, Ren Deyi. 2012a. Mineralogical and geochemical compositions of the coal in the Guanbanwusu mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and Ree) ore deposit in the Jungar oalfield. International Journal of Coal Geology, 98: 10~40.

    • Dai Shifeng, Zou Jianhua, Jiang Yaofa, Colin R ward, Wang Xiaobo, Li Tian, Xue Weifeng, Liu Shande, Tian Heming, Sun Xinhao, Zhou Dao. 2012b. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai mine, Daqingshan coalfield, Inner mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology, 94: 250~270.

    • Dai Shifeng, Ren Deyi, Chou Chenlin, Finkelman R B, Seredin V V, Zhou Yiping. 2012c. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94: 3~21.

    • Dai Shifeng, Ren Deyi, Zhou Yiping, Seredin V V, Li Dahua, Zhang Mingquan, Hower J C, Ward C R, Wang Xibo, Zhao Lei, Song Xiaolin. 2014. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation. Journal of China Coal Society, 39(8): 1707~1715 (in Chinese with English abstract).

    • Dai Shifeng, Hower J C, Ward C R, Guo Wenmu, Song Hongjian, O'Keefe J M K, Xie Panpan, Hood M M, Yan Xiaoyun. 2015. Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli coalfield on the Tibetan Plateau. International Journal of Coal Geology, 144-145: 23~47.

    • Dai Shifeng, Graham I T, Ward C R. 2016. A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159: 82~95.

    • Dai Shifeng, Xie Panpan, Jia Shaohui, Ward C R, Hower J C, Yan Xiaoyun, French D. 2017. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geology Reviews, 80: 1~17.

    • Dai Shifeng, Finkelman R B. 2018. Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 186: 155~164.

    • Dai Shifeng, Lei Zhao, Wei Qiang, Song Xiaolin, Wang Wenfeng, Liu Jingjing, Duan Piaopiao. 2020. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution. Chinese Science Bulletin, 65(33): 3715~3729 (in Chinese with English abstract).

    • Dai Shifeng, Liu Chiyang, Lei Zhao, Liu Jingjing, Wang Xibo, Ren Deyi. 2022. Strategic metal resources in coal-bearing strata: Significance and challenges. Journal of China Coal Society, 47(5): 1743~1749 (in Chinese with English abstract).

    • Dai Shifeng, Zhao Lei, Wang Ning, Wei Qiang, Liu Jingjing. 2024. Advance and prospect of research on the mineralization of critical elements in coal-bearing sequences. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 49~63.

    • Di Shaobo, Dai Shifeng, Nechaev V P, French D, Graham I T, Zhao Lei, Finkelman R B, Wang Hongdong, Zhang Shaowei, Hou Yongjie. 2023. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao surface mine, Shanxi Province, China: Derivation of pyroclastics and sediment-source regions. International Journal of Coal Geology, 273: 104262.

    • Feng Baohua. 1989. Carboniferous-Permiantonsteins formed by hydrolytic reformation of volcanic ash sediments in northern China. Acta Sedimentologica Sinica, 7(1): 101~108 (in Chinese with English abstract).

    • Hayashi K I, Fujisawa H, Holland H D, Hiroshi O. 1997. Geochemistry of 1. 9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4115~4137.

    • Jian Ping, Kröner A, Windley B F, Zhang Qi, Zhang Wei, Zhang Liqao. 2012. Episodic mantle melting-crustal reworking in the Late Neoarchean of the northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan block. Precambrian Research, 222: 230~254.

    • Jiang Shaoyong, Wen Hanjie, Xu Cheng, Wang Yan, Su Huimin, Sun Weidong. 2019. Earth sphere cycling enrichment mechanism of critical metals: Major scientific issues for future research. Bulletin of National Natural Science Foundation of China, 33(2): 112~118 (in Chinese with English abstract).

    • Ketris M P, Yudovich Y E. 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2): 135~148.

    • Li Baoqing, Zhuang Xinguo, Xavier Q, Nataila M, Zhang Feng. 2020. Geological controls on the distribution of REY-Zr (Hf)-Nb (Ta) enrichment horizons in Late Permian coals from the Qiandongbei coalfield, Guizhou Province, SW China. International Journal of Coal Geology, 231: 103604.

    • Li Jing, Zhuang Xinguo, Yuan Wei, Liu Bo, Xavier Queral, Oriol Front, Natalia Moreno, Li Jianfu, Gang Temuer, Liang Guankao. 2016. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar coalfield, Inner Mongolia. Journal of Coal Geology, 167: 157~175.

    • Liang Shaoxian, Wang Shuili, Yao Gaihuan. 1995. Study of synsedimentary volcanic-ash-derived clayrock bands in Carboniferous-Permian coal-bearing formation of North China. International Journal of Coal Geology, (1): 59~63 (in Chinese).

    • Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715~727.

    • Permana A K, Ward C R, Li Zhongsheng, Gurba L W. 2013. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen basin, Australia. International Journal of Coal Geology, 116: 185~207.

    • Qin Guohong. 2020. Enrichment characteristics and genetic types of trace elements in the Late Paleozoiccoal from Ordos basin. Doctoral dissertation of China University of Mining and Technology (Beijing) (in Chinese with English abstract).

    • Querol X, Whateley M K G, Fernández-Turiel J L, Tuncai E. 1997. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, Central Anatolia, Turkey. International Journal of Coal Geology, 33(3): 255~271.

    • Shangguan Yunfei, Zhuang Xinguo, Li Jing, Li Baoqing, Xavier Querol, Liu Bo, Natalia Moreno, Yuan Wei, Yang Guanghua, Pan Lei. 2020. Geological controls on mineralogy and geochemistry of the Permian and Jurassic coals in the Shanbei coalfield, Shaanxi Province, North China. Minerals, 10(2): 138.

    • Sun Yuzhuang, Zhao Cunliang, Li Yanheng, Wang Jingxi, Liu Shiming. 2012. Li distribution and mode of occurrences in Li-bearing coal seam #6 from the Guanbanwusu mine, Inner Mongolia, northern China. Exploration & Exploitation, 30(1): 109~130.

    • Sun Yuzhuang, Zhao Cunliang, Li Yanheng, Wang Jianxi, Lin Mingyue, Kalkreuth Wolfgang. 2013. Further information of the associated Li deposits in the No. 6 coal seam at Jungar coalfield, Inner Mongolia, northern China. Acta Geologica Sinica (English Edition), 87(4): 1097~1108.

    • Wang Xibo, Dai Shifeng, Ren Deyi, Yang Jianye. 2011. Mineralogy and geochemistry of Al-hydroxide/oxyhydroxide mineral-bearing coals of Late Paleozoic age from the Weibei coalfield, southeastern Ordos basin, North China. Applied Geochemistry, 26(7): 1086~1096.

    • Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Zheng Guodong. 2013. The progress in the strategic research and survey of rare earth, rare mental and rare-scattered elements mineral resources. Geology in China, 40(2): 361~370 (in Chinese with English abstract).

    • Wang Rucheng, Che Xudong, Wu Bin, Xie Lei. 2020. Critical mineral resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 3763~3777 (in Chinese with English abstract).

    • Wang Shuangming, Zhang Yuping. 1999. Study on the formation, evolution and coal-accumulating regularity of the Jurassic Ordos basin. Earth Science Frontiers, 6(5): 147~155 (in Chinese with English abstract).

    • Ward C R, Corcoran J F, Saxby J D, Read H W. 1996. Occurrence of phosphorus minerals in Australian coal seams. International Journal of Coal Geology, 30(3): 185~210.

    • Xu Jing, Sun Yuzhuang, Kalkreuyh W. 2011. Characteristics of trace elements of the No. 6 Coal in the Guanbanwusu mine, Junger coalfield, Inner Mongolia. Energy Exploration & Exploitation, 29(6): 827~842.

    • Zhao Lei, Ward C R, French D, Graham I T. 2013. Mineralogical composition of late permian coal seams in the Songzao coalfield, southwestern China. International Journal of Coal Geology, 116-117: 208~226.

    • Zhao Lei, Dai Shifeng, Nechaev V P, Nechaeva E V, Graham I T, French D, Sun Jihua. 2019. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan coalfield, northern China. Ore Geology Reviews, 111: 102951.

    • Zhao Lei, Wang Xibo, Dai Shifeng. 2022. Lithium resources in coal-bearing strata: Occurrence, mineralization, and resource potential. Journal of China Coal Society, 47(5): 1750~1760 (in Chinese with English abstract).

    • Zhao Lixin, Dai Shifeng, Graham I T, Li Xiao, Liu Huidong, Song Xiaolin, Hower J C, Zhou Yiping. 2017. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geology Reviews, 80: 116~140.

    • Zhao Zhenyu, Guo Yanru, Wang Yan, Lin Dongjuan. 2012. Study progress in tectonic evolution and paleogeography of Ordos basin. Special Oil &Gas Reservoirs, 19(5): 15~20 (in Chinese with English abstract).

    • Zheng Xue, Dai Shifeng, Nechaev V P, Sun Ruoyu. 2020. Environmental perturbations during the latest Permian: Evidence from organic carbon and mercury isotopes of a coal-bearing section in Yunnan Province, southwestern China. Chemical Geology, 549: 119680.

    • Zhou Mingxuan, Zhao Lei, Wang Xibo, Nechaev V P, French D, Spiro B F, Graham I T, Hower J C, Dai Shifeng. 2021. Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan basin, China, with emphasis on the enrichment of the critical element lithium. Ore Geology Reviews, 139: 104582.

    • 陈全红, 李文厚, 胡孝林, 李克永, 庞军刚, 郭艳琴. 2012. 鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析. 地质学报, 86(7): 1150~1162.

    • 代世峰, 任徳贻, 周义平, Vladimir V Seredin, 李大华, 张名泉, James C Hower, Colin R Ward, 王西勃, 赵蕾, 宋晓林. 2014. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价. 煤炭学报, 39(8): 1707~1715.

    • 代世峰, 赵蕾, 魏强, 宋晓林, 王文峰, 刘晶晶, 段飘飘. 2020. 中国煤系中关键金属资源: 富集类型与分布. 科学通报, 65(33): 3715~3729.

    • 代世峰, 刘池洋, 赵蕾, 刘晶晶, 王西勃, 任德贻. 2022. 煤系中战略性金属矿产资源: 意义和挑战. 煤炭学报, 47(5): 1743~1749.

    • 代世峰, 赵蕾, 王宁, 魏强, 刘晶晶. 2024. 煤系中关键金属元素的成矿作用研究进展与展望. 矿物岩石地球化学通报, 43(1): 49~63.

    • 冯宝华. 1989. 我国北方石炭-二叠纪火山灰沉积水解改造而成的高岭岩. 沉积学报, 7(1): 101~108.

    • 蒋少涌, 温汉捷, 许成, 王焰, 苏慧敏, 孙卫东. 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 112~118.

    • 梁绍暹, 王水利, 姚改焕. 1995. 华北聚煤区火山灰蚀变黏土岩夹矸的研究. 中国煤田地质, (1): 59~63.

    • 秦国红. 2020. 鄂尔多斯盆地晚古生代煤中微量元素富集特征与成因类型. 中国矿业大学(北京)博士学位论文.

    • 王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361~370.

    • 王汝成, 车旭东, 邬斌, 谢磊. 2020. 中国铌钽锆铪资源. 科学通报, 65(33): 3763~3777.

    • 王双明, 张玉平. 1999. 鄂尔多斯侏罗纪盆地形成演化和聚煤规律. 地学前缘, 6(5): 147~155.

    • 赵蕾, 王西勃, 代世峰. 2022. 煤系中的锂矿产: 赋存分布、成矿与资源潜力. 煤炭学报, 47(5): 1750~1760.

    • 赵振宇, 郭彦如, 王艳, 林冬娟. 2012. 鄂尔多斯盆地构造演化及古地理特征研究进展. 特种油气藏, 19(5): 15~20.

  • 参考文献

    • Bohor B F, Triplehorn D M. 1993. Tonsteins: Altered volcanic-ash layers in coal-bearing sequences. The Geological Society of America, 285: 44.

    • Chen Quanhong, Li Wenhou, Hu Xiaolin, Li Keyong, Pang Jungang, Guo Yanqin. 2012. Tectonic setting and provenance analysis of Late Paleozoic sedimentary rocks in the Ordos basin. Acta Geologica Sinica, 86(7): 1150~1162 (in Chinese with English abstract).

    • Dai Shifeng, Ren Deyi, Chou Chenlin, Li Shengsheng, Jiang Yaofa. 2006. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger coalfield, Ordos basin, China. International Journal of Coal Geology, 66(4): 253~270.

    • Dai Shifeng, Li Dan, Chou Chenlin, Zhao Lei, Zhang Yong, Ren Deyi, Ma Yuwen, Sun Yunyun. 2008. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu surface mine, Jungar coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74(3-4): 185~202.

    • Dai Shifeng, Jiang Yaofa, Ward C R, Gu Landing, Seredin V V, Liu Huidong, Zhou Dao, Wang Xiaobo, Sun Yunzhuang, Zou Jianhua, Ren Deyi. 2012a. Mineralogical and geochemical compositions of the coal in the Guanbanwusu mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and Ree) ore deposit in the Jungar oalfield. International Journal of Coal Geology, 98: 10~40.

    • Dai Shifeng, Zou Jianhua, Jiang Yaofa, Colin R ward, Wang Xiaobo, Li Tian, Xue Weifeng, Liu Shande, Tian Heming, Sun Xinhao, Zhou Dao. 2012b. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai mine, Daqingshan coalfield, Inner mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology, 94: 250~270.

    • Dai Shifeng, Ren Deyi, Chou Chenlin, Finkelman R B, Seredin V V, Zhou Yiping. 2012c. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94: 3~21.

    • Dai Shifeng, Ren Deyi, Zhou Yiping, Seredin V V, Li Dahua, Zhang Mingquan, Hower J C, Ward C R, Wang Xibo, Zhao Lei, Song Xiaolin. 2014. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation. Journal of China Coal Society, 39(8): 1707~1715 (in Chinese with English abstract).

    • Dai Shifeng, Hower J C, Ward C R, Guo Wenmu, Song Hongjian, O'Keefe J M K, Xie Panpan, Hood M M, Yan Xiaoyun. 2015. Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli coalfield on the Tibetan Plateau. International Journal of Coal Geology, 144-145: 23~47.

    • Dai Shifeng, Graham I T, Ward C R. 2016. A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159: 82~95.

    • Dai Shifeng, Xie Panpan, Jia Shaohui, Ward C R, Hower J C, Yan Xiaoyun, French D. 2017. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geology Reviews, 80: 1~17.

    • Dai Shifeng, Finkelman R B. 2018. Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 186: 155~164.

    • Dai Shifeng, Lei Zhao, Wei Qiang, Song Xiaolin, Wang Wenfeng, Liu Jingjing, Duan Piaopiao. 2020. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution. Chinese Science Bulletin, 65(33): 3715~3729 (in Chinese with English abstract).

    • Dai Shifeng, Liu Chiyang, Lei Zhao, Liu Jingjing, Wang Xibo, Ren Deyi. 2022. Strategic metal resources in coal-bearing strata: Significance and challenges. Journal of China Coal Society, 47(5): 1743~1749 (in Chinese with English abstract).

    • Dai Shifeng, Zhao Lei, Wang Ning, Wei Qiang, Liu Jingjing. 2024. Advance and prospect of research on the mineralization of critical elements in coal-bearing sequences. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 49~63.

    • Di Shaobo, Dai Shifeng, Nechaev V P, French D, Graham I T, Zhao Lei, Finkelman R B, Wang Hongdong, Zhang Shaowei, Hou Yongjie. 2023. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao surface mine, Shanxi Province, China: Derivation of pyroclastics and sediment-source regions. International Journal of Coal Geology, 273: 104262.

    • Feng Baohua. 1989. Carboniferous-Permiantonsteins formed by hydrolytic reformation of volcanic ash sediments in northern China. Acta Sedimentologica Sinica, 7(1): 101~108 (in Chinese with English abstract).

    • Hayashi K I, Fujisawa H, Holland H D, Hiroshi O. 1997. Geochemistry of 1. 9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61: 4115~4137.

    • Jian Ping, Kröner A, Windley B F, Zhang Qi, Zhang Wei, Zhang Liqao. 2012. Episodic mantle melting-crustal reworking in the Late Neoarchean of the northwestern North China Craton: Zircon ages of magmatic and metamorphic rocks from the Yinshan block. Precambrian Research, 222: 230~254.

    • Jiang Shaoyong, Wen Hanjie, Xu Cheng, Wang Yan, Su Huimin, Sun Weidong. 2019. Earth sphere cycling enrichment mechanism of critical metals: Major scientific issues for future research. Bulletin of National Natural Science Foundation of China, 33(2): 112~118 (in Chinese with English abstract).

    • Ketris M P, Yudovich Y E. 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2): 135~148.

    • Li Baoqing, Zhuang Xinguo, Xavier Q, Nataila M, Zhang Feng. 2020. Geological controls on the distribution of REY-Zr (Hf)-Nb (Ta) enrichment horizons in Late Permian coals from the Qiandongbei coalfield, Guizhou Province, SW China. International Journal of Coal Geology, 231: 103604.

    • Li Jing, Zhuang Xinguo, Yuan Wei, Liu Bo, Xavier Queral, Oriol Front, Natalia Moreno, Li Jianfu, Gang Temuer, Liang Guankao. 2016. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar coalfield, Inner Mongolia. Journal of Coal Geology, 167: 157~175.

    • Liang Shaoxian, Wang Shuili, Yao Gaihuan. 1995. Study of synsedimentary volcanic-ash-derived clayrock bands in Carboniferous-Permian coal-bearing formation of North China. International Journal of Coal Geology, (1): 59~63 (in Chinese).

    • Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715~727.

    • Permana A K, Ward C R, Li Zhongsheng, Gurba L W. 2013. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen basin, Australia. International Journal of Coal Geology, 116: 185~207.

    • Qin Guohong. 2020. Enrichment characteristics and genetic types of trace elements in the Late Paleozoiccoal from Ordos basin. Doctoral dissertation of China University of Mining and Technology (Beijing) (in Chinese with English abstract).

    • Querol X, Whateley M K G, Fernández-Turiel J L, Tuncai E. 1997. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, Central Anatolia, Turkey. International Journal of Coal Geology, 33(3): 255~271.

    • Shangguan Yunfei, Zhuang Xinguo, Li Jing, Li Baoqing, Xavier Querol, Liu Bo, Natalia Moreno, Yuan Wei, Yang Guanghua, Pan Lei. 2020. Geological controls on mineralogy and geochemistry of the Permian and Jurassic coals in the Shanbei coalfield, Shaanxi Province, North China. Minerals, 10(2): 138.

    • Sun Yuzhuang, Zhao Cunliang, Li Yanheng, Wang Jingxi, Liu Shiming. 2012. Li distribution and mode of occurrences in Li-bearing coal seam #6 from the Guanbanwusu mine, Inner Mongolia, northern China. Exploration & Exploitation, 30(1): 109~130.

    • Sun Yuzhuang, Zhao Cunliang, Li Yanheng, Wang Jianxi, Lin Mingyue, Kalkreuth Wolfgang. 2013. Further information of the associated Li deposits in the No. 6 coal seam at Jungar coalfield, Inner Mongolia, northern China. Acta Geologica Sinica (English Edition), 87(4): 1097~1108.

    • Wang Xibo, Dai Shifeng, Ren Deyi, Yang Jianye. 2011. Mineralogy and geochemistry of Al-hydroxide/oxyhydroxide mineral-bearing coals of Late Paleozoic age from the Weibei coalfield, southeastern Ordos basin, North China. Applied Geochemistry, 26(7): 1086~1096.

    • Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Zheng Guodong. 2013. The progress in the strategic research and survey of rare earth, rare mental and rare-scattered elements mineral resources. Geology in China, 40(2): 361~370 (in Chinese with English abstract).

    • Wang Rucheng, Che Xudong, Wu Bin, Xie Lei. 2020. Critical mineral resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 3763~3777 (in Chinese with English abstract).

    • Wang Shuangming, Zhang Yuping. 1999. Study on the formation, evolution and coal-accumulating regularity of the Jurassic Ordos basin. Earth Science Frontiers, 6(5): 147~155 (in Chinese with English abstract).

    • Ward C R, Corcoran J F, Saxby J D, Read H W. 1996. Occurrence of phosphorus minerals in Australian coal seams. International Journal of Coal Geology, 30(3): 185~210.

    • Xu Jing, Sun Yuzhuang, Kalkreuyh W. 2011. Characteristics of trace elements of the No. 6 Coal in the Guanbanwusu mine, Junger coalfield, Inner Mongolia. Energy Exploration & Exploitation, 29(6): 827~842.

    • Zhao Lei, Ward C R, French D, Graham I T. 2013. Mineralogical composition of late permian coal seams in the Songzao coalfield, southwestern China. International Journal of Coal Geology, 116-117: 208~226.

    • Zhao Lei, Dai Shifeng, Nechaev V P, Nechaeva E V, Graham I T, French D, Sun Jihua. 2019. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan coalfield, northern China. Ore Geology Reviews, 111: 102951.

    • Zhao Lei, Wang Xibo, Dai Shifeng. 2022. Lithium resources in coal-bearing strata: Occurrence, mineralization, and resource potential. Journal of China Coal Society, 47(5): 1750~1760 (in Chinese with English abstract).

    • Zhao Lixin, Dai Shifeng, Graham I T, Li Xiao, Liu Huidong, Song Xiaolin, Hower J C, Zhou Yiping. 2017. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geology Reviews, 80: 116~140.

    • Zhao Zhenyu, Guo Yanru, Wang Yan, Lin Dongjuan. 2012. Study progress in tectonic evolution and paleogeography of Ordos basin. Special Oil &Gas Reservoirs, 19(5): 15~20 (in Chinese with English abstract).

    • Zheng Xue, Dai Shifeng, Nechaev V P, Sun Ruoyu. 2020. Environmental perturbations during the latest Permian: Evidence from organic carbon and mercury isotopes of a coal-bearing section in Yunnan Province, southwestern China. Chemical Geology, 549: 119680.

    • Zhou Mingxuan, Zhao Lei, Wang Xibo, Nechaev V P, French D, Spiro B F, Graham I T, Hower J C, Dai Shifeng. 2021. Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan basin, China, with emphasis on the enrichment of the critical element lithium. Ore Geology Reviews, 139: 104582.

    • 陈全红, 李文厚, 胡孝林, 李克永, 庞军刚, 郭艳琴. 2012. 鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析. 地质学报, 86(7): 1150~1162.

    • 代世峰, 任徳贻, 周义平, Vladimir V Seredin, 李大华, 张名泉, James C Hower, Colin R Ward, 王西勃, 赵蕾, 宋晓林. 2014. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价. 煤炭学报, 39(8): 1707~1715.

    • 代世峰, 赵蕾, 魏强, 宋晓林, 王文峰, 刘晶晶, 段飘飘. 2020. 中国煤系中关键金属资源: 富集类型与分布. 科学通报, 65(33): 3715~3729.

    • 代世峰, 刘池洋, 赵蕾, 刘晶晶, 王西勃, 任德贻. 2022. 煤系中战略性金属矿产资源: 意义和挑战. 煤炭学报, 47(5): 1743~1749.

    • 代世峰, 赵蕾, 王宁, 魏强, 刘晶晶. 2024. 煤系中关键金属元素的成矿作用研究进展与展望. 矿物岩石地球化学通报, 43(1): 49~63.

    • 冯宝华. 1989. 我国北方石炭-二叠纪火山灰沉积水解改造而成的高岭岩. 沉积学报, 7(1): 101~108.

    • 蒋少涌, 温汉捷, 许成, 王焰, 苏慧敏, 孙卫东. 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 112~118.

    • 梁绍暹, 王水利, 姚改焕. 1995. 华北聚煤区火山灰蚀变黏土岩夹矸的研究. 中国煤田地质, (1): 59~63.

    • 秦国红. 2020. 鄂尔多斯盆地晚古生代煤中微量元素富集特征与成因类型. 中国矿业大学(北京)博士学位论文.

    • 王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361~370.

    • 王汝成, 车旭东, 邬斌, 谢磊. 2020. 中国铌钽锆铪资源. 科学通报, 65(33): 3763~3777.

    • 王双明, 张玉平. 1999. 鄂尔多斯侏罗纪盆地形成演化和聚煤规律. 地学前缘, 6(5): 147~155.

    • 赵蕾, 王西勃, 代世峰. 2022. 煤系中的锂矿产: 赋存分布、成矿与资源潜力. 煤炭学报, 47(5): 1750~1760.

    • 赵振宇, 郭彦如, 王艳, 林冬娟. 2012. 鄂尔多斯盆地构造演化及古地理特征研究进展. 特种油气藏, 19(5): 15~20.