-
海洋沉积物是地球表面各圈层中最大的甲烷储库(Sala et al.,2021),甲烷以游离态、溶解态和固态水合物等相态存在于沉积物的孔隙与裂隙中(Terzariol et al.,2021)。天然气水合物在自然界中主要分布于大陆边缘地区的海洋沉积物中,储量十分巨大,是一种极具开采潜力的新型能源资源,也是一种潜在的气候致变因素,有可能加剧全球气温升高进程(Ruppel et al.,2017; Li Yanlong et al.,2021)。受全球气候变暖影响,陆地干旱和海洋风暴潮等极端天气近期频发,导致海水入侵对沿海地下淡水资源的污染程度明显增加(Elsayed et al.,2018)。无论是气候变化还是人为开采引起的天然气水合物分解,不仅能够改变海洋沉积物局部的水化学环境,还能够改变局部的水饱和状态。这主要是因为天然气水合物具有排盐效应,单位体积的天然气水合物在标准状态下分解能够释放出大约0.8体积的纯水和超过160体积的甲烷气(Xia Zhiming et al.,2022)。释放出的甲烷气与海水在沉积物的孔隙和裂隙中流动,或聚集于井筒,或逃逸出海床,形成海洋沉积物的两相渗流过程,并伴随着孔隙水盐度等水化学指标的变化。类似的现象在海水入侵地区的地下淡水补给过程中同样存在(何岚轩等,2024)。
-
海洋沉积物的透气与透水能力不仅受其固有的本征渗透率(又称绝对渗透率)影响,还与流体的相对渗透率有关。其中,绝对渗透率受海洋沉积物的微观孔隙结构控制,与流体的性质无关,而流体的相对渗透率是海洋沉积物饱和状态指标(即流体饱和度)相关的函数,习惯采用相对渗透率曲线进行描述。大陆边缘地区的海洋沉积物通常含有丰富的黏土矿物,例如美国墨西哥湾天然气水合物赋存区沉积物的黏土矿物含量超过50%(Francisca et al.,2005),印度孟加拉湾天然气水合物赋存区沉积物的黏土矿物含量超过70%(Phillips et al.,2014),韩国郁陵盆地(Ulleung basin)和日本南开海槽(Nankai trough)天然气水合物赋存区沉积物的黏土矿物含量均超过25%( Lee et al.,2013; Egawa et al.,2015),中国南海北部天然气水合物赋存区沉积物的黏土矿物含量超过20%(Liu Changling et al.,2015),不同海域的黏土矿物种类不同,主要有蒙脱石、伊利石、绿泥石和高岭石等。由于黏土矿物的结构与组构受孔隙水离子浓度、离子类型和酸碱度等水化学指标的影响显著,沉积物的渗流与压缩等物理力学特性在不同的水化学环境下明显不同(Palomino et al.,2005; Horpibulsuk et al.,2011; Ye Weimin et al.,2014; Aksu et al.,2015)。例如,孔隙水盐度(定义为孔隙水溶解盐与孔隙水的质量比)降低会导致黏土矿物表面双电层结构增厚,造成更多的孔隙水被束缚而无法流动,最终导致沉积物的绝对渗透率减小(Yilmaz et al.,2008; Mishra et al.,2009; Zhu Chunming et al.,2013),这种盐度敏感效应在有效应力增大时有减弱的趋势(宋德坤等,2024)。
-
水和气的相对渗透率曲线即可由试验测得,又能通过沉积物的水分特征曲线(soil water characteristics curve)计算获得(刘乐乐等,2021; 王自豪等,2022)。水分特征曲线又称土水特征曲线、持水曲线和保水曲线等,描述了沉积物的孔隙水饱和度与吸力之间的关系,对于评价非饱和沉积物的相对渗透率、抗剪强度和体积变形等工程性质至关重要(Hu Ran et al.,2013; Zhou Annan et al.,2016; Wang Jipeng et al.,2017)。土体水分特征曲线的影响因素有干密度、温度、应力历史、应力状态、表面张力和接触角等(刘艳华等,2002; 栾茂田等,2005; 王铁行等,2008; 汪东林等,2009; Zhou Chao et al.,2014; Cheng Qing et al.,2019),对于含天然气水合物沉积物,还与水合物饱和度有关(Dai Sheng et al.,2019; Liu Lele et al.,2020; 颜荣涛等,2023)。试验研究表明,孔隙水盐度能够抑制黏土扩散双电层的形成,从而改变土体的持水性能(Musso et al.,2013)。但是孔隙水盐度对土体水分特征曲线的影响规律目前还不够清楚。例如,Thyagaraj et al.(2010)发现,在孔隙水饱和度相同时,孔隙水盐度越高则黏土的基质吸力越小。He Yong et al.(2019)指出,在孔隙水饱和度相同时,孔隙水盐度越高则黏土的吸力越大。Ying Zi et al.(2021a,2021b)认为,在孔隙水饱和度相同的条件下,黏土的基质吸力不受孔隙水盐度的影响。土体基质吸力的测量方法主要有张力计法、轴平移法、接触式滤纸法和离心机法等,其测量原理不尽相同,适用范围也有所差异(Khanzode et al.,2002; Lu Ning et al.,2004)。其中,离心机法通过高速旋转土样将孔隙水甩出,通过调整离心机转速实现基质吸力不同大小的控制,具有操作简单且测定时间相对较短等优点,更适用于黏粒和粉粒含量较高的土体(周卓丽等,2022)。
-
本文采用我国南海北部天然气水合物赋存区的海洋沉积物以及人工配置的混合沉积物,在不同的孔隙水盐度条件下重塑样品,采用离心机法获得不同转速对应的孔隙水含量数据,分析黏土矿物类型和孔隙水盐度对沉积物样品水分特征曲线的影响,选取被广泛使用的van Genuchten模型,通过拟合给出经验系数的取值,为海洋沉积物非饱和渗透率的计算提供参考。
-
1 研究区概况
-
南海北部分布在典型的张裂大陆边缘,在大陆岩石圈伸展和海底扩张过程的共同控制下,形成了复杂的地形地貌特征,海底麻坑、海底丘状体、大型海底圆丘、泥火山、泥底辟、气烟囱等微地貌发育(朱俊江等,2020)。中国大陆与南海之间存在海量的物质输送与频繁的能量交换,周边河流入海及陆地风化剥蚀物质沉积过程受河流冲淡水、外海洋流、季风环流和沿岸流等因素的共同影响(高水土等,2008),大量的陆源物质中含有丰富的有机质(吴必豪等,2003)。南海北部陆架区黏土矿物中伊利石含量最高而蒙脱石含量最低,半深海环境下伊利石含量最高,蒙脱石和高岭石的含量均较少,深海环境中伊利石相对减少,而蒙脱石则有所增加(姚伯初,2001)。晚第四纪南海陆坡以深的沉积物主要以黏土质粉砂和粉砂质黏土为主,中粗砂含量极少,并且黏土含量随着水深增加而增加(孙运宝,2011)。
-
南海北部是我国海域天然气水合物勘探开发的重点区域,2007年、2013年和2015年在神狐等海域发现和获取到天然气水合物实物样品(苏明等,2014; 杨胜雄等,2017),2017年和2020年在神狐海域开展了天然气水合物降压法试采,创造多项世界纪录(Li Jinfa et al.,2018; 叶建良等,2020)。神狐海域在构造上隶属于珠江口盆地二坳陷,在地理上位于西沙海槽与东沙群岛之间的海域,新生代发生过多次区域性构造活动,自下而上依次发育陆相、海陆过渡相和海相沉积地层,并且在上覆地层中形成高角度断裂和垂向裂隙等便于流体运移和渗漏的通道(崔莎莎等,2009; 付少英等,2010)。使用箱式取样器在该海域采集到表层沉积物作为本文的海洋沉积物样品,取样区域的位置如图1所示。
-
图1 南海北部海域取样区域位置(据Li Jing et al.,2019; Zhang Qian et al.,2022修改)
-
Fig.1 Location map of the sampling area in the northern South China Sea (modified after Li Jing et al., 2019; Zhang Qian et al., 2022)
-
2 试验材料、装置与方法
-
现场获取的海洋沉积物在运输至实验室后,取其适量与去离子水在量筒中充分搅拌混合均匀,静置后抽取量筒上部较为清澈的液体,但应避免悬浊液被抽出,随后多次加入去离子水搅拌、静置、抽液直到上部液体电导率达到稳定,可认为原位的盐分已被去除,最后再进行烘干、研磨和过筛处理以备后续试验使用。按照国家标准,比重瓶法测得的颗粒比重为2.66。采用激光粒度仪测得的粒径级配曲线如图2所示,其有效粒径(d10)、连续粒径(d30)、中值粒径(d50)和控制粒径(d60)分别为1.2 μm、4.1 μm、7.8 μm和9.3 μm,可计算出颗粒级配不均匀系数(Cu)为7.75,级配曲线的曲率系数(Cc)为1.51,属于级配不良的黏土质粉砂。由X射线衍射仪测得的矿物组分构成如图3所示,黏土矿物、石英和方解石三者的质量含量总和超过92%,其中黏土矿物以伊利石为主,伊蒙混层和绿泥石的质量含量均超过了20%。为了探讨黏土矿物种类对海洋沉积物水分特征曲线的影响,选取纯的蒙脱石、伊利石和高岭石与纯石英砂混合均匀制备沉积物样品。试验用盐溶液由去离子水和分析纯度氯化钠按照特定质量浓度进行配置。
-
图2 南海北部海洋沉积物样品粒径级配曲线
-
Fig.2 Grain size distribution of marine sediments from the northern South China Sea
-
采用离心机法测定海洋沉积物水分特征曲线的试验在自然资源部天然气水合物重点实验室完成,所采用的装置如图4所示。高速离心机是由Hitachi Koki公司生产的CR22GⅡ型,最高转速为15000 r/min,选用的转头型号为R15A-0529,转头内放置试管的直径为30.0 mm,高度为116.5 mm,容积为50 mL,离心时试管上端与低端距竖直转轴的水平距离分别为79.9 mm和128.4 mm。试管内放置测试瓶,测试瓶内装填被测的海洋沉积物样品,测试瓶的内径为13.0 mm,有效高度为75.9 mm,其底部设置有透水孔,离心时样品内水分在离心力的作用下经透水孔流入圆锥形的集水腔,试验时放置滤纸防止细颗粒进入集水腔。该试验装置已被用于海洋沉积物束缚水含量研究(葛成红,2020)。
-
在离心力和重力的共同作用下,沉积物样品内的水分被甩出。由于样品的长细比远远大于1,可认为水分排出过程为一维问题,沿样品轴向对体积力进行积分后可将离心转速换算为吸力(Khanzode et al.,2002; Reatto et al.,2008),如公式(1)所示:
-
图3 南海北部海洋沉积物样品矿物组成
-
Fig.3 Mineral components of marine sediments from the northern South China Sea
-
式中,Ψ表示样品吸力(Pa),ω为离心机的转速(1/s),ρw为水的密度(kg/m3),θ为样品轴线与竖直线的夹角(°),g为重力加速度(m/s2),r1和r2分别为土样顶端与底端距竖直线的水平距离,如图4所示,对应取为74.4 mm和112.3 mm。需要说明的是,由式(1)转换而来的吸力存在一定程度的近似,主要是因为未考虑测定过程中土体密度变化等因素造成的影响(任健等,2020)。
-
试验时首先将沉积物与不同盐度的孔隙水混合,然后装填入测试瓶并用相应盐度的孔隙水饱和,装填过程控制样品的干密度,接下来对装有饱和样品的测试瓶称重,放入试管密封后放入离心机。设定不同的转速进行离心,每个转速下离心120 min后停机,取出试管对样品与测试瓶一并称重,称重后再放回试管进行更快转速的离心。离心试验结束后烘干被测样品并称得总质量,对盐分进行修正后(宋德坤等,2024)获得真实的沉积物质量。根据样品与测试瓶的总质量变化可确定每级转速下被排出的水量,根据烘干后的样品修正质量和饱和样品质量可确定离心前饱和状态下样品的初始水量。试验工况如表1所示。
-
3 试验结果与分析
-
含不同类型黏土矿物沉积物水分特征曲线测试结果如图5所示。可以看出,基质吸力约为1200 kPa时对应的孔隙水饱和度介于0.75~0.85之间; 当基质吸力增加至大约2400 kPa时,孔隙水饱和度已快速减小至0.05~0.15之间;基质吸力再增加则孔隙水饱和度减小的速率有所放缓。含蒙脱石沉积物的基质吸力在孔隙水饱和度相同时,略大于含高岭石沉积物的基质吸力,即含蒙脱石沉积物的持水能力略强。但是整体而言,在黏土矿物质量含量为20%时,黏土矿物类型对其沉积物水分特征曲线的影响基本可以忽略。
-
图4 离心法测定南海北部海洋沉积物水分特征曲线试验装置
-
Fig.4 An apparatus for measuring the soil water characteristics curve of marine sediments from the northern South China Sea by using centrifuge method
-
注:所用石英砂的粒径范围在150~200 mm之间。
-
图5 含不同类型黏土矿物沉积物水分特征曲线变化情况
-
Fig.5 The soil water characteristics curve of artificial sediments with different clay minerals
-
含蒙脱石沉积物在不同孔隙水盐度条件下的水分特征曲线测试结果如图6所示。可以看出,基质吸力约为1600 kPa时对应的孔隙水饱和度介于0.60~0.80之间;当基质吸力增加至大约2400 kPa时,孔隙水饱和度已快速减小至0.05~0.15之间;基质吸力再增加则孔隙水饱和度减小的速率明显放缓。在相同的基质吸力条件下,不同孔隙水盐度对应的孔隙水饱和度最大差异在低吸力范围(小于2000 kPa)内较为明显,但随着基质吸力的增大而趋于不明显。整体而言,孔隙水盐度对含蒙脱石沉积物水分特征曲线变化的影响规律不明显,并且在基质吸力较大(即孔隙水饱和度较小)时,可以认为孔隙水盐度对沉积物水分特征曲线的影响可以忽略。
-
图6 不同孔隙水盐度条件下含蒙脱石沉积物水分特征曲线变化情况
-
Fig.6 The soil water characteristics curve of artificial sediments containing montmorillonite under different water salinities
-
不同孔隙水盐度条件下南海北部天然气水合物赋存区沉积物水分特征曲线测试结果如图7所示,图中孔隙水饱和度数据均为平均值。可以看出,基质吸力约为20 kPa时对应的孔隙水饱和度介于0.55~0.60之间;当基质吸力增加至大约200 kPa时孔隙水饱和度在0.45左右;当基质吸力继续增加至大约2000 kPa时孔隙水饱和度在0.15左右。整体而言,孔隙水盐度在相同的基质吸力条件下对孔隙水饱和度的影响不明显,即南海北部海洋沉积物水分特征曲线基本不受孔隙水盐度变化的影响。
-
综合图5、图6和图7不同类型沉积物测试结果可以看出,人为配置的混合沉积物在孔隙水饱和度为0.60时对应的基质吸力在1600 kPa量级,而南海北部海洋沉积物相应的基质吸力仅为20 kPa。此外,人为配置的混合沉积物在孔隙水饱和度为0.10时对应的基质吸力在2400 kPa量级,而南海北部海洋沉积物相应的基质吸力明显大于2400 kPa。说明人为配置的混合沉积物较天然采集沉积物具有更“陡”的水分特征曲线,反映出人为配置的混合沉积物具有更集中的孔径分布特征(蔡国庆等,2022),与人为配置的混合沉积物由两种单一粒径沉积物混合而来的事实相符。据测试数据推断人为配置的混合沉积物的进气值(孔隙水开始被排出时对应的基质吸力)应大于天然采集沉积物的进气值,这主要是因为由天然采集沉积物重塑样品的初始孔隙度大于人为配置的混合沉积物重塑样品的初始孔隙度(表1),导致天然采集沉积物重塑样品的最大孔隙直径更大而毛细作用力越小。
-
图7 不同孔隙水盐度条件下南海北部海洋沉积物水分特征曲线变化情况
-
Fig.7 The soil water characteristics curve of marine sediments from the northern South China Sea under different water salinities
-
4 讨论
-
目前典型的土体水分特征曲线模型主要有Brooks-Corey模型(Brooks et al.,1964)、van Genuchten模型(Genuchten,1980)和Fredlund-Xing模型(Fredlund et al.,1994)。其中,Brooks-Corey模型比较适用于粗粒土,并且在数学表述上存在不连续点,应用于数值计算时容易出现不稳定现象(Lu Ning et al.,2004)。Fredlund-Xing模型适用的土体类型更为广泛,但是其参数拟合过程相对更为复杂(谭晓慧等,2013; 高游等,2017)。应用最为广泛的是van Genuchten模型,在拟合水分特征曲线测试数据确定模型经验系数后,可直接用于计算沉积物内水和气的相对渗透率,在天然气水合物等研究领域被广泛使用(Mahabadi et al.,2014,2016; Dai Sheng et al.,2019; 颜荣涛等,2023)。van Genuchten模型具有以下形式:
-
式中,Sw表示孔隙水饱和度,Sr表示束缚水饱和度,a、n和m为拟合系数。其中,系数a的单位是Pa-1,有的学者认为其取值与进气值有关系(Schaap et al.,2006; Benson et al.,2014),有的学者认为其取值与特征曲线拐点处的负压相关,但并未达成统一的认识(陈卫金等,2017)。参数n和m为无量纲,其取值与孔隙尺寸分布特征有关(Lenhard et al.,1989),Dai Sheng et al.(2019)在拟合时对系数进行如下约束:
-
但本文中并未采用该约束关系,主要是出于保持模型较好泛化能力的考虑。
-
图8、图9和图10分别给出了含不同黏土矿物沉积物、含蒙脱石沉积物、南海北部海洋沉积物水分特征曲线测试数据的拟合情况。可以看出,对于人工的混合配置沉积物而言,van Genuchten模型拟合系数a的取值为0.00059 kPa-1,拟合系数n的取值为5.5和10,拟合系数m的取值为1.2和0.9,束缚水饱和度Sr为0.03和0.08。对于天然采集沉积物而言,van Genuchten模型拟合系数a的取值为0.00023 kPa-1,拟合系数n和m的取值与之前明显不同,为0.51和4.9,束缚水饱和度Sr更高,为0.12。这些拟合曲线均能够较好地描述沉积物水分特征曲线的基本特点,并且本文获得的系数a拟合数值与前人的研究结果在量级上具有良好的一致性(谭晓慧等,2013; Garakani et al.,2018; Sadeghi et al.,2021)。
-
图8 含不同黏土矿物沉积物水分特征曲线拟合情况
-
Fig.8 The soil characteristics curve fitting for artificial sediments with different clay minerals
-
自然界中海水的盐度通常为3.5%(朱俊江等,2020),对于本文中1%、2%和3%的海水盐度,相当于饱和度为76.6%、49.5%和17.9%的天然气水合物完全分解后的孔隙水被稀释情况(宋德坤等,2024)。大量的地球物理调查与钻探取芯数据表明,我国南海北部神狐海域的天然气水合物饱和度平均值在40%左右,最高值通常也不会超过80%(Li Jinfa et al.,2018; Wang Jiliang et al.,2018; Zhang Wei et al.,2020)。因而在天然气水合物开采过程中,需要重点考虑孔隙水盐度变化对井周泥质粉砂沉积物绝对渗透率的影响(宋德坤等,2024),而对泥质粉砂沉积物水分特征曲线的影响基本可以不用考虑。类似地,在海水入侵背景下探讨地下淡水补给过程中包气带水分及溶解盐分运移问题时,需要考虑孔隙水盐度变化引起的含黏土沉积物绝对渗透率的变化,但是对其相对渗透率曲线的影响无需特别考虑。
-
图9 含蒙脱石沉积物水分特征曲线拟合情况
-
Fig.9 The soil characteristics curve fitting for artificial sediments containing montmorillonite
-
图10 南海北部海洋沉积物水分特征曲线拟合情况
-
Fig.10 The soil characteristics curve fitting for marine sediments from the northern South China Sea
-
5 结论
-
本文采用离心机法测定了南海北部天然气水合物赋存区的海洋沉积物与配置的混合沉积物在不同基质吸力条件下的孔隙水饱和度,分析了黏土矿物类型和孔隙水盐度等因素对沉积物水分特征曲线的影响,率定了van Genuchten模型的拟合系数,为海洋天然气水合物开采与海水入侵等沉积物相对渗透率计算提供了参考。主要结论如下:
-
(1)含20%黏土石英砂的水分特征曲线基本不受黏土矿物类型的影响,在低基质吸力条件下受孔隙水盐度的影响较为明显,而在高基质吸力条件下受孔隙水盐度的影响逐渐减弱。通过拟合确定的van Genuchten模型系数a的取值为0.00059 kPa-1,系数n的取值明显大于系数m的取值,束缚水饱和度小于0.1。
-
(2)南海北部天然气水合物赋存区海洋沉积物的黏土含量超过35%,黏土矿物以伊利石为主,其水分特征曲线在两倍海水盐度范围内基本不受影响。通过拟合确定的van Genuchten模型系数a的取值为0.00023 kPa-1,系数n的取值明显小于系数m的取值,束缚水饱和度大于0.1。
-
参考文献
-
Aksu I, Bazilevskaya E, Karpyn Z T. 2015. Swelling of clay minerals in unconsolidated porous media and its impact on permeability. GeoResJ, 7: 1~13.
-
Benson C H, Chiang I, Chalermyanont T, Sawangsuriya A. 2014. Estimating van Genuchten parameters α and n for clean sands from particle size distribution data. From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering: Honoring Roy E. Olson. Proceedings of Geo-Congress 2014, Atlanta, Georgia.
-
Brooks R H, Corey A T. 1964. Hydraulic Properties of Porous Media. Colorado: Colorado State University.
-
Cai Guoqing, Han Bowen, Wang Yanan, Jiang Tian, Xie Lin, Zhang Ce. 2022. SWCC model for double-pore structured unsaturated clay. Chinese Journal of Geotechnical Engineering, 44(S1): 1~5 (in Chinese with English abstract).
-
Chen Weijin, Cheng Donghui, Tao Wei. 2017. Physical significance of the parameters in the van Genuchten model. Hydrogeology & Engineering Geology, 44(6): 147~153 (in Chinese with English abstract).
-
Cheng Qing, Ng Charles Wang Wai, Zhou Chao, Tang Chaosheng. 2019. A new water retention model that considers pore non-uniformity and evolution of pore size distribution. Bulletin of Engineering Geology and the Environment, 78(7): 5055~5065.
-
Cui Shasha, He Jiaxiong, Chen Shenghong, Zou Heping, Cui Jie. 2009. Development characteristics of Pearl River Mouth basin and its geological conditions for oil and gas accumulation. Natural Gas Geoscience, 20(3): 384~391 (in Chinese with English abstract).
-
Dai Sheng, Kim J, Xu Yue, Waite W F, Jang J, Yoneda J, Collett T S, Kumar P. 2019. Permeability anisotropy and relative permeability in sediments from the National Gas Hydrate Program Expedition 02, offshore India. Marine and Petroleum Geology, 108: 705~713.
-
Egawa K, Nishimura O, Izumi S, Fukami E, Jin Y, Kida M, Konno Y, Yoneda J, Ito T, Suzuki K, Nakatsuka Y, Nagao J. 2015. Bulk sediment mineralogy of gas hydrate reservoir at the East Nankai offshore production test site. Marine and Petroleum Geology, 66(Part 2): 379~387.
-
Elsayed S M, Oumeraci H. 2018. Modelling and mitigation of storm-induced saltwater intrusion: Improvement of the resilience of coastal aquifers against marine floods by subsurface drainage. Environmental Modelling & Software, 100: 252~277.
-
Fu Shaoying, Lu Jing'an. 2010. The characteristics and origin of gas hydrate in Shenhu area, South China Sea. Marine Geology Frontiers, 26(9): 6~10 (in Chinese with English abstract).
-
Francisca F, Yun T S, Ruppel C, Santamarina J C. 2005. Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province. Earth and Planetary Science Letters, 237(3-4): 924~939.
-
Fredlund D G, Xing A. 1994. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4): 521~532.
-
Gao Shuitu, Zhang Deyu, Chen Ronghua, Zhao Qingying. 2008. Comparison of clay and detrital minerals in surface sediment of the northern South China Sea and geological significance. Acta Oceanologic Sinica, 30(1): 86~92 (in Chinese with English abstract).
-
Gao You, Sun De'an. 2017. Determination of basic parameters of unimodal and bimodal soil water characteristic curves. Chinese Journal of Geotechnical Engineering, 39(10): 1884~1891 (in Chinese with English abstract).
-
Garakani A A, Haeri S M, Cherati D Y, Givi F A, Tadi M K, Hashemi A H, Chiti N, Qahremani F. 2018. Effect of road salts on the hydro-mechanical behavior of unsaturated collapsible soils. Transportation Geotechnics, 17(Part A): 77~90.
-
Ge Chenghong. 2020. Study on irreducible water saturation in silty sand reservoirs containing hydrate. Master's thesis of China University of Petroleum (East China) (in Chinese with English abstract).
-
He Lanxuan, Yang Yun, Song Jian, Yu Xuan. 2024. Advancements in seawater vertical intrusion research. Marine Science, 48(1): 85~97 (in Chinese with English abstract).
-
He Yong, Zhang Keneng, Wu Dongyu. 2019. Experimental and modeling study of soil water retention curves of compacted bentonite considering salt solution effects. Geofluids, 2019: 4508603.
-
Horpibulsuk S, Yangsukkaseam N, Chinkulkijniwat A, Du Yanjun. 2011. Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Applied Clay Science, 52(1-2): 150~159.
-
Hu Ran, Chen Yifeng, Liu Huihai, Zhou Chuangbing. 2013. A water retention curve and unsaturated hydraulic conductivity model for deformable soils: Consideration of the change in pore-size distribution. Géotechnique, 63(16): 1389~1405.
-
Khanzode R M, Vanapalli S K, Fredlund D G. 2002. Measurement of soil-water characteristic curves for fine-grained soils using a small-scale centrifuge. Canadian Geotechnical Journal, 39(5): 1209~1217.
-
Lee J Y, Kim G Y, Kang N K, Yi B Y, Jung J W, Im J H, Son B K, Bahk J J, Chun J H, Ryu B J, Kim D S. 2013. Physical properties of sediments from the Ulleung basin, East Sea: Results from Second Ulleung basin gas hydrate drilling expedition, East Sea (Korea). Marine and Petroleum Geology, 47: 43~55.
-
Lenhard R J, Parker J C, Mishra S. 1989. On the correspondence between Brooks-Corey and van Genuchten models. Journal of Irrigation and Drainage Engineering, 115(4): 744~751.
-
Li Jinfa, Ye Jianliang, Qin Xuwen, Qiu Haijun, Wu Nengyou, Lu Hailong, Xie Wenwei, Lu Jing'an, Peng Fei, Xu Zhenqiang, Lu Cheng, Kuang Zenggui, Wei Jiangong, Liang Qianyong, Lu Hongfeng, Kou Beibei. 2018. The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1): 5~16.
-
Li Jing, Lu Jing'an, Kang Dongju, Ning Fulong, Lu Hongfeng, Kuang Zenggui, Wang Dongdong, Liu Changling, Hu Gaowei, Wang Jiasheng, Liang Jinqiang. 2019. Lithological characteristics and hydrocarbon gas sources of gas hydrate-bearing sediments in the Shenhu area, South China Sea: Implications from the W01B and W02B sites. Marine Geology, 408: 36~47.
-
Li Yanlong, Liu Lele, Jin Yurong, Wu Nengyou. 2021. Characterization and development of marine natural gas hydrate reservoirs in marine clayey-silt reservoirs: A review and discussion. Advances in Geo-Energy Research, 5(1): 75~86.
-
Liu Changling, Meng Qingguo, He Xingliang, Li Chengfeng, Ye Yuguang, Zhang Guangxue, Liang Jinqiang. 2015. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea. Marine and Petroleum Geology, 61: 14~21.
-
Liu Lele, Zhang Zhun, Li Chengfeng, Ning Fulong, Liu Changling, Wu Nengyou, Cai Jianchao. 2020. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic, mechanical, and electrical properties of hydrate-bearing sediments. Journal of Natural Gas Science and Engineering, 75: 103109.
-
Liu Lele, Liu Changling, Wu Nengyou, Ruan Hailong, Zhang Yongchao, Hao Xiluo, Bu Qingtao. 2021. Advances in pressure core transfer and testing technology of offshore hydrate-bearing sediments. Geological Bulletin of China, 40(2/3): 408~422 (in Chinese with English abstract).
-
Liu Yanhua, Gong Biwei, Su Hong. 2002. Soil water characteristic curve of unsaturated soil. Geotechnical Investigation & Surveying, 30(3): 8~11 (in Chinese with English abstract).
-
Lu Ning, Likos W. 2004. Unsaturated Soil Mechanics. New Jersey: Wiley.
-
Luan Maotian, Li Shunqun, Yang Qing. 2005. Theoretical soil-water characteristic curve for unsaturated soils. Chinese Journal of Geotechnical Engineering, 27(6): 611~615 (in Chinese with English abstract).
-
Mahabadi N, Jang J. 2014. Relative water and gas permeability for gas production from hydrate-bearing sediments. Geochemistry, Geophysics, Geosystems, 15(6): 2346~2353.
-
Mahabadi N, Zheng Xianglei, Jang Jaewon. 2016. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments. Geophysical Research Letters, 43(9): 4279~4287.
-
Mishra A K, Ohtsubo M, Li L Y, Higashi T, Park J. 2009. Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil-bentonite mixtures. Environmental Geology, 57(5): 1145~1153.
-
Musso G, Romero E, Vecchia G D. 2013. Double-structure effects on the chemo-hydro-mechanical behavior of a compacted active clay. Géotechnique, 63(3): 206~220.
-
Palomino A M, Santamarina J C. 2005. Fabric map for kaolinite: Effects of pH and ionic concentration on behavior. Clays and Clay Minerals, 53(3): 211~223.
-
Phillips S C, Johnson J E, Underwood M B, Guo J, Giosan L, Rose K. 2014. Long-timescale variation in bulk and clay mineral composition of Indian continental margin sediments in the Bay of Bengal, Arabian Sea, and Andaman Sea. Marine and Petroleum Geology, 58(Part A): 117~138.
-
Reatto A, da Silva E M, Bruand A, Martins E S, Lima J E F W. 2008. Validity of the centrifuge method for determining the water retention properties of tropical soils. Soil Science Society of America Journal, 72(6): 1547~1553.
-
Ren Jian, Zhang Wuping, Wang Guofang, Huang Mingjing, Qiao Lei. 2020. Method to adjust the soil water retention curve measured using centrifuge apparatus. Journal of Irrigation and Drainage, 39(1): 84~90 (in Chinese with English abstract).
-
Ruppel C D, Kessler J D. 2017. The interaction of climate change and methane hydrates. Reviews of Geophysics, 55(1): 126~168.
-
Sadeghi H, Darzi A G. 2021. Modelling of soil-water retention curve considering the effects of existing salt solution in the pore fluid. MATEC Web Conferences, 337: 02001.
-
Sala E, Mayorga J, Bradley D, Cabral R B, Atwood T B, Auber A, Cheung W, Costello C, Ferretti F, Friedlander A M, Gaines S D, Garilao C, Goodell W, Halpern B S, Hinson A, Kaschner K, Kesner-Reyes K, Leprieur F, McGowan J, Morgan L E, Mouillot D, Palacios-Abrantes J, Possingham H P, Rechberger K D, Worm B, Lubchenco J. 2021. Protecting the global ocean for biodiversity, food and climate. Nature, 592(7854): 397~402.
-
Schaap M G, Van Genuchten M T. 2006. A modified Mualem-van Genuchten formulation for improved description of the hydraulic conductivity near saturation. Vadose Zone Journal, 5(1): 27~34.
-
Song Dekun, Liu Lele, Wang Dong. 2024. Experimental study on the sensitivity of hydraulic permeability of fine-grained sediments from a gas hydrate distribution area in the northern South China Sea. Earth Science Frontiers, doi: 10. 13745/j. esf. sf. 2024. 4. 25 (in Chinese with English abstract).
-
Su Ming, Yang Rui, Wu Nengyou, Wang Hongbin, Liang Jinqiang, Sha Zhibin, Cong Xiaorong, Qiao Shaohua. 2014. Structural characteristics and the influences on gas hydrate in Shenhu area in northern continental slope of the South China Sea. Acta Geologica Sinica, 88(3): 318~326 (in Chinese with English abstract).
-
Sun Yunbao. 2011. The mechanism and prediction of deepwater geohazard in the northern of South China Sea. Doctoral dissertation of Institute of Oceanology, Chinese Academy of Sciences (in Chinese with English abstract).
-
Tan Xiaohui, Yu Wei, Shen Mengfen, Hu Na. 2013. Experimental study and curve fitting of soil-water characteristic curve. Rock and Soil Mechanics, 34(S2): 51~56 (in Chinese with English abstract).
-
Terzariol M, Sultan N, Apprioual R, Garziglia S. 2021. Porehabit of gas in gassy sediments. Journal of Geophysical Research: Solid Earth, 126(5): e2020JB021511.
-
Thyagaraj T, Rao S M. 2010. Influence of osmotic suction on the soil-water characteristic curves of compacted expansive clay. Journal of Geotechnical and Geoenvironmental Engineering, 136(12): 1695~1702.
-
Van Genuchten M T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5): 892~898.
-
Wang Donglin, Luan Maotian, Yang Qing. 2009. Experimental study of soil-water characteristic curve of remolded unsaturated clay. Rock and Soil Mechanics, 30(3): 751~756 (in Chinese with English abstract).
-
Wang Jiliang, Wu Shiguo, Yao Yongjian. 2018. Quantifying gas hydrate from microbial methane in the South China Sea. Journal of Asian Earth Sciences, 168: 48~56.
-
Wang Jipeng, Hu Nian, François B, Lambert P. 2017. Estimating water retention curves and strength properties of unsaturated sandy soils from basic soil gradation parameters. Water Resources Research, 53(7): 6069~6088.
-
Wang Tiehang, Lu Jing, Yue Caikun. 2008. Soil-water characteristic curve for unsaturated loess considering temperature and density effect. Rock and Soil Mechanics, 29(1): 1~5 (in Chinese with English abstract).
-
Wang Zihao, Wan Yizhao, Liu Lele, Bu Qingtao, Wang Zhuangzhuang, Mao Peixiao, Hu Gaowei. 2022. Research advances in gas-water relative permeability of hydrate-bearing sediments. Marine Geology Frontiers, 38(2): 14~29 (in Chinese with English abstract).
-
Wu Bihao, Zhang Guangxue, Zhu Youhai, Lu Zhenquan, Chen Bangyan. 2003. Progress of gas hydrate investigation in China offshore. Earth Science Frontiers, 10(1): 177~189 (in Chinese with English abstract).
-
Xia Zhiming, Zhao Qi, Chen Zhaoyang, Li Xiaosen, Zhang Yu, Xu Chungang, Yan Kefeng. 2022. Review of methods and applications for promoting gas hydrate formation process. Journal of Natural Gas Science and Engineering, 101: 104528.
-
Yan Rongtao, Xu Yubo, Yan Mengqiu. 2023. Soil-water characteristic curve and permeability of hydrate-bearing soils. Chinese Journal of Geotechnical Engineering, 45(5): 921~930 (in Chinese with English abstract).
-
Yang Shengxiong, Liang Jinqiang, Lu Jing'an, Qu Changwei, Liu Bo. 2017. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea. Earth Science Frontiers, 24(4): 1~14 (in Chinese with English abstract).
-
Yao Bochu. 2001. The gas hydrate in the South China Sea. Journal of Tropical Oceanography, 20(2): 20~28 (in Chinese with English abstract).
-
Ye Jianliang, Qin Xuwen, Xie Wenwei, Lu Hailong, Ma Baojin, Qiu Haijun, Liang Jinqiang, Lu Jing'an, Kuang Zenggui, Lu Cheng, Liang Qianyong, Wei Shipeng, Yu Yanjiang, Liu Chunsheng, Li Bin, Shen Kaixiang, Shi Haoxian, Lu Qiuping, Li Jing, Kou Beibei, Song Gang, Li Bo, Zhang He'en, Lu Hongfeng, Ma Chao, Dong Yifei, Bian Hang. 2020. Main progress of the second gas hydrate trial production in the South China Sea. Geology in China, 47(3): 557~568 (in Chinese with English abstract).
-
Ye Weimin, Zheng Z J, Chen Bao, Chen Yonggui, Cui Yujun, Wang Ju. 2014. Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Applied Clay Science, 101: 192~198.
-
Yilmaz G, Yetimoglu T, Arasan S. 2008. Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions. Waste Management & Research, 26(5): 464~473.
-
Ying Zi, Cui Yujun, Benahmed N, Duc M. 2021a. Investigating the salinity effect on water retention property and microstructure changes along water retention curves for lime-treated soil. Construction and Building Materials, 303: 124564.
-
Ying Zi, Cui Yujun, Benahmed N, Duc M. 2021b. Salinity effect on the compaction behaviour, matric suction, stiffness and microstructure of a silty soil. Journal of Rock Mechanics and Geotechnical Engineering, 13(4): 855~863.
-
Zhang Qian, Qin Xuwen, Zhang Hong, Dong Yanhui, Lu Cheng, Li Shouding, Xiao Luokun, Ma Chao, Bian Hang. 2022. Experimental insights into the in-situ formation and dissociation of gas hydrate in sediments of Shenhu, South China Sea. Frontiers in Earth Science, 10: 882701.
-
Zhang Wei, Liang Jinqiang, Wan Zhifeng, Su Pibo, Huang Wei, Wang Lifeng, Lin Lin. 2020. Dynamic accumulation of gas hydrates associated with the channel-levee system in the Shenhu area, northern South China Sea. Marine and Petroleum Geology, 117: 104354.
-
Zhou Annan, Huang Ruiqiu, Sheng Daichao. 2016. Capillary water retention curve and shear strength of unsaturated soils. Canndian Geotechnical Journal, 53(6): 974~987.
-
Zhou Chao, Ng C W W. 2014. A new and simple stress-dependent water retention model for unsaturated soil. Computers and Geotechnics, 62: 216~222.
-
Zhou Zhuoli, Zhang Zhuodong, Gao Xiaofei, Qu Xinmiao, He Enpei. 2022. Comparison of centrifuge and pressure plate on soil water retention curve determination. Science of Soil and Water Conservation, 20(4): 101~108 (in Chinese with English abstract).
-
Zhu Chunming, Ye Weimin, Chen Yonggui, Chen Bao, Cui Yujun. 2013. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Engineering Geology, 166: 74~80.
-
Zhu Junjiang, Li Sanzhong, Lu Jing'an, Kang Dongju, Mu Zelin, Zhao Yanyan, Chen Zhaohui, Zhang Xiaohua, Yang Guoming, Wu Jiaqing, Song Delei, Wang Changsheng, Xiong Zixiang. 2020. Scientific implications and preliminary surveying results of geological and physical oceanography environment in the Shenhu area of the northern South China Sea. Earth Science, 45(4): 1416~1426 (in Chinese with English abstract).
-
蔡国庆, 韩博文, 王亚南, 江天, 谢琳, 张策. 2022. 双孔结构非饱和红黏土土水特征曲线模型. 岩土工程学报, 44(S1): 1~5.
-
陈卫金, 程东会, 陶伟. 2017. van Genuchten模型参数的物理意义. 水文地质工程地质, 44(6): 147~153.
-
崔莎莎, 何家雄, 陈胜红, 邹和平, 崔洁. 2009. 珠江口盆地发育演化特征及其油气成藏地质条件. 天然气地球科学, 20(3): 384~391.
-
付少英, 陆敬安. 2010. 神狐海域天然气水合物的特征及其气源. 海洋地质动态, 26(9): 6~10.
-
高水土, 张德玉, 陈荣华, 赵庆英. 2008. 南海北部表层沉积物中黏土和碎屑矿物组成及其地质意义. 海洋学报, 30(1): 86~92.
-
高游, 孙德安. 2017. 单峰和双峰土水特征曲线基本参数的确定. 岩土工程学报, 39(10): 1884~1891.
-
葛成红. 2020. 泥质粉砂含水合物储层束缚水饱和度赋存机理研究. 中国石油大学(华东)硕士学位论文.
-
何岚轩, 杨蕴, 宋健, 俞烜. 2024. 海水垂向入侵问题研究进展. 海洋科学, 48(1): 85~97.
-
刘乐乐, 刘昌岭, 吴能友, 阮海龙, 张永超, 郝锡荦, 卜庆涛. 2021. 天然气水合物储层岩芯保压转移与测试进展. 地质通报, 40(2-3): 408~422.
-
刘艳华, 龚壁卫, 苏鸿. 2002. 非饱和土的土水特征曲线研究. 工程勘察, 30(3): 8~11.
-
栾茂田, 李顺群, 杨庆. 2005. 非饱和土的理论土-水特征曲线. 岩土工程学报, 27(6): 611~615.
-
任健, 张吴平, 王国芳, 黄明镜, 乔磊. 2020. 基于离心机法获取定体积质量下的土壤水分特征曲线. 灌溉排水学报, 39(1): 84~90.
-
宋德坤, 刘乐乐, 王栋. 2024. 南海北部天然气水合物赋存区沉积物渗透性敏感规律试验研究. 地学前缘, doi: 10. 13745/j. esf. sf. 2024. 4. 25.
-
苏明, 杨睿, 吴能友, 王宏斌, 梁金强, 沙志彬, 丛晓荣, 乔少华. 2014. 南海北部陆坡区神狐海域构造特征及对水合物的控制. 地质学报, 88(3): 318~326.
-
孙运宝. 2011. 南海北部陆坡深水区地质灾害机理与钻前预测. 中国科学院研究生院(海洋研究所)博士学位论文.
-
谭晓慧, 余伟, 沈梦芬, 胡娜. 2013. 土-水特征曲线的试验研究及曲线拟合. 岩土力学, 34(S2): 51~56.
-
汪东林, 栾茂田, 杨庆. 2009. 重塑非饱和黏土的土-水特征曲线及其影响因素研究. 岩土力学, 30(3): 751~756.
-
王铁行, 卢靖, 岳彩坤. 2008. 考虑温度和密度影响的非饱和黄土土-水特征曲线研究. 岩土力学, 29(1): 1~5.
-
王自豪, 万义钊, 刘乐乐, 卜庆涛, 王壮壮, 毛佩筱, 胡高伟. 2022. 含水合物沉积物相对渗透率研究进展. 海洋地质前沿, 38(2): 14~29.
-
吴必豪, 张光学, 祝有海, 卢振权, 陈邦彦. 2003. 中国近海天然气水合物的研究进展. 地学前缘, 10(1): 177~189.
-
颜荣涛, 徐玉博, 颜梦秋. 2023. 含水合物土体的土水特征曲线及渗透系数. 岩土工程学报, 45(5): 921~930.
-
杨胜雄, 梁金强, 陆敬安, 曲长伟, 刘博. 2017. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识. 地学前缘, 24(4): 1~14.
-
姚伯初. 2001. 南海的天然气水合物矿藏. 热带海洋学报, 20(2): 20~28.
-
叶建良, 秦绪文, 谢文卫, 卢海龙, 马宝金, 邱海峻, 梁金强, 陆敬安, 匡增桂, 陆程, 梁前勇, 魏士鹏, 于彦江, 刘春生, 李彬, 申凯翔, 史浩贤, 卢秋平, 李晶, 寇贝贝, 宋刚, 李博, 张贺恩, 陆红锋, 马超, 董一飞, 边航. 2020. 中国南海天然气水合物第二次试采主要进展. 中国地质, 47(3): 557~568.
-
周卓丽, 张卓栋, 高晓飞, 曲新苗, 何恩佩. 2022. 离心机与压力板仪测定土壤水分特征曲线比较. 中国水土保持科学, 20(4): 101~108.
-
朱俊江, 李三忠, 陆敬安, 康冬菊, 牟泽霖, 赵彦彦, 陈朝晖, 张晓华, 杨国明, 吴佳庆, 宋德磊, 王长盛, 熊梓翔. 2020. 南海北部神狐海域地质环境综合调查及科学意义. 地球科学, 45(4): 1416~1426.
-
摘要
海洋沉积物在天然气水合物分解或海水入侵过程中会出现孔隙水盐度及水饱和状态不断变化的现象,其透气和透水能力与沉积物水分特征曲线有关,然而孔隙水盐度变化对沉积物水分特征曲线的影响规律目前仍不够清楚。本文采用南海北部天然气水合物赋存区的海洋沉积物与实验室配置的混合沉积物进行试验,使用相对快速的离心机法,测定了不同基质吸力条件下的孔隙水饱和度,分析了黏土矿物类型和孔隙水盐度等因素对沉积物水分特征曲线的影响,选用被广泛使用的van Genuchten模型,率定了模型的拟合参数。结果表明:含黏土石英砂水分特征曲线基本不受黏土矿物种类的影响;南海北部海洋沉积物的黏土质量含量超过35%,但其水分特征曲线在两倍海水盐度范围内也几乎不受影响;对于南海北部海洋沉积物,van Genuchten模型系数a取值为0.00023 kPa-1,系数n和m取值分别为0.51和4.9。
Abstract
The dynamics of pore water salinity and sediment saturation degree are critical factors influencing fluid flow during gas hydrate production and seawater intrusion in marine environments. The percolation capacity of pore fluids is closely related to the soil water characteristics curve (SWCC). However, the influence of pore water salinity and clay mineral type on the SWCC of marine sediments remains poorly understood. This study investigates these effects through centrifuge tests on laboratory sand-clay mixtures and desalted marine sediments collected from the northern South China Sea (SCS), a region with natural gas hydrate occurrences. Pore water saturation was meticulously measured under varying matrix suctions conditions. Subsequently, the influence of pore water salinity and clay mineral type on the SWCC were systematically analyzed, followed by curve fitting using the van Genuchten model. The findings revealed that the SWCC of artificial quartz sands containing 20% clay by weight exhibited negligible dependence on the clay mineral type. Despite the clay content exceeding 35%, the SWCC of natural marine sediments from the northern SCS exhibited minimal variation when subjected to changes in pore water salinity. Upon applying the van Genuchten model to these natural marine sediments, the following parameter values were obtained: a=0.00023 kPa-1, n=0.51, and m=4.9.
Keywords
natural gas hydrate ; hydraulic permeability ; seawater intrusion ; salinity ; clay mineral ; matrix suction