en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张俊爽,男,2000年生。硕士研究生,主要从事煤地质学、煤系共伴生矿产资源等方面研究。E-mail: zhangjunshuang1226@163.com。

通讯作者:

孙蓓蕾,女,1984年生。教授,博士生导师,从事煤系共伴生矿产资源成矿(藏)理论研究。E-mail: sunbeilei@tyut.edu.cn。

参考文献
Bish D L. 1993. Rietveld refinement of the kaolinite structure at 1. 5 K. Clays and Clay Minerals, 41(6): 738~744.
参考文献
Cao Daiyong, Wei Yingchun, Li Yang, Liu Zhifei, Li Huantong, Wang Lu, Wu Guoqiang, Ning Shuzheng, Xu Xiang. 2021. Determination of identification index and construction of classification and classification system of coal measures graphite. Journal of China Coal Society, 46(6) : 1833~1846(in Chinese with English abstract).
参考文献
Cao Daiyong, Liu Zhifei, Wang Anmin, Wang Lu, Ding Zhengyun, Li Yang. 2022. Control of coal metamorphism by tectonic physicochemical conditions. Earth Science Frontiers, 29(1): 439~448(in Chinese with English abstract).
参考文献
Cao Renyi, Huang Tao, Cheng Linsong, Gao Zhanwu, Jia Zhihao. 2021. Influence of polar substance of crude oil on adsorption and wettability in water flooding reservoir: Molecular simulation. Chinese Journal of Computational Physics, 38(5): 595~602(in Chinese with English abstract).
参考文献
Chen Yu, Zhao Hao, Xia Mingzhe, Cheng Hongfei. 2023. Insights into lithium adsorption by coal-bearing strata kaolinite. Frontiers of Earth Science, 17(1): 251~261.
参考文献
Dai Shifeng, Ren Deyi, Li Shengsheng. 2006. Discovery of super-large gallium deposit in Jungar, Inner Mongolia. Chinese Science Bulletin, (2): 177~185(in Chinese with English abstract).
参考文献
Dai Shifeng, Li Dan, Chou Chenlin, Zhao Lei, Zhang Yong, Ren Deyi, Ma Yuwen, Sun Yingying. 2009. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu surface mine, Jungar coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74(3-4): 185~202.
参考文献
Dai Shifeng, Liu Chiyang, Zhao Lei, Liu Jingjing, Wang Xibo, Ren Deyi. 2022. Strategic metal resources in coal-bearing strata: Significance and challenges. Journal of China Coal Society, 47(5): 1743~1749(in Chinese with English abstract).
参考文献
Di Shaobo, Dai Shifeng, Nechaev V P, French D, Graham I T, Zhao Lei, Finkelman R B, Wang Hongdong, Zhang Shaowei, Hou Yongjie. 2023. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao surface mine, Shanxi Province, China: Derivation of pyroclastics and sediment-source regions. International Journal of Coal Geology, 273: 104262.
参考文献
Fang Qian, Zhang Xi, Guo Bangjun, Liu Yisheng. 2022. Determination of Li+ diffusion coefficient and its influencing factors. Battery Bimonthly, 52(3): 277~280(in Chinese with English abstract).
参考文献
Finkelman R B, Palmer C A, Wang Peipei. 2018. Quantification of the modes of occurrence of 42 elements in coal. International Journal of Coal Geology, 185: 138~160.
参考文献
He Hongtao, Wang Jinxi, Xing Lecai, Zhao Shanshan, He Maoyong, Zhao Cunliang, Sun Yuzhuang. 2020. Enrichment mechanisms of lithium in the No. 6 coal seam from the Guanbanwusu mine, Inner Mongolia, China: Explanations based on Li isotope values and density functional theory calculations. Journal of Geochemical Exploration, 213: 106510.
参考文献
Jia Jinzhang, Xing Yinghuan, Li Bin, Jia Peng, Wu Yumo, Yang Qiang, Wang Dongming. 2024. Research on the adsorption-diffusion mechanism of hydrogen sulfide based on monte carlo simulation. Journal of China Coal Society, 49(2): 845~864(in Chinese with English abstract).
参考文献
Jiu Bo, Huang Wenhui, Spiro B, Hao Ruilin, Mu Nana, Wen Long, Hao Huidi. 2023. Distribution of Li, Ga, Nb, and REEs in coal as determined by LA-ICP-MS imaging: A case study from Jungar coalfield, Ordos basin, China. International Journal of Coal Geology, 267: 104184.
参考文献
Kesler S E, Gruber P W, Medina P A, Keoleian G A, Everson M P, Wallington T J. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48: 55~69.
参考文献
Lewińska-Preis L, Fabiańska M J, Ćmiel S, Kita A. 2009. Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. International Journal of Coal Geology, 80(3~4): 211~223.
参考文献
Li Baoqing, Zhuang Xinguo, Li Jing, Querol X, Font O, Moreno N. 2017. Enrichment and distribution of elements in the Late Permian coals from the Zhina coalfield, Guizhou Province, Southwest China. International Journal of Coal Geology, 171: 111~129.
参考文献
Li Guangyue, Xie Quanan, Zhang Hang, Guo Rui, Wang Feng, Liang Yinghua. 2014. Pyrolysis mechanism of metal-ion-exchanged lignite: A combined reactive force field and density functional theory study. Energy & Fuels, 28(8): 5373~5381.
参考文献
Marques M, Suárez-Ruiz I, Flores D, Guedes A, Rodrigues S. 2010. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite. International Journal of Coal Geology, 77(3~4): 377~382.
参考文献
Meng Lingqiang. 2022. Preparation and low-temperature electrochemical performance of amorphous carbon cathode materials for lithium-ion batteries. Master's thesis of Liaoning Technical University(in Chinese with English abstract).
参考文献
Meng Zikai, Meng Zhichao, Gao Changyuan, Guo Hui, Chen Hansen, Chen Liutao, Xu Dongsheng, Yang Rui. 2023. Molecular dynamics simulation of creep mechanism in nanocrystalline α-zirconium under various conditions. Acta Metallurgica Sinica, 60(5): 699~712(in Chinese with English abstract).
参考文献
Neder R B, Burghammer M, Grasl T, Schulz H, Bram A, Fiedler S. 1999. Refinement of the kaolinite structure from single-crystal synchrotron data. Clays and Clay Minerals, 47(4): 487~494.
参考文献
Peng Chenliang, Min Fanfei, Liu Lingyun. 2017. Effect of pH on the adsorption of dodecylamine on montmorillonite: Insights from experiments and molecular dynamics simulations. Applied Surface Science, 425: 996~1005.
参考文献
Peng Zhilong. 2012. The molecular simulation of the combined forms of metal ions in coal structure. Master's thesis of Taiyuan University of Technical(in Chinese with English abstract).
参考文献
Qin Shenjun, Zhao Cunliang, Li Yanheng, Zhang Yong. 2015. Review of coal as a promising source of lithium. International Journal of Oil, Gas and Coal Technology, (2): 215~229.
参考文献
Sun Beilei, Liu Yunxia, Tajcmanova L, Liu Chao, Wu Jie. 2022. In-situ analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district, Ningwu coalfield, northern China. Ore Geology Reviews, 144: 104825.
参考文献
Sun Beilei, Wang Yao, Li Baoqing, Liu Chao, Guo Zhanming, Zhang Xingxing. 2024. In-situ microanalysis of critical metals in high-lithium coal. Acta Geologica Sinica, doi: 10. 19762/j. cnki. dizhixuebao. 2024094 (in Chinese with English abstract).
参考文献
Sun Jianchun. 2012. Investigation of surface nanocrystallinzation and alloying of commercial iron and diffusion behavior. Doctoral dissertation of Chongqing University(in Chinese with English abstract).
参考文献
Swaine D J. 1990. Trace Elements in Coal. Oxford: Butterworth-Heinemann.
参考文献
Wang Lu. 2022. Study on the efficiency of electric field enhanced graphene material for removing Hg(II) in water. Master's thesis of Yanshan University(in Chinese with English abstract).
参考文献
Wang Xiaomei, Wang Xiaoming, Pan Zhejun, Pan Wenhao, Yin Xuebo, Chai Pancun, Pan Sidong, Yang Qin. 2019. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui basin, northern China, with emphasis on lithium enrichment. International Journal of Coal Geology, 214: 103254.
参考文献
Xu Qianjin. 2013. Molecular dynamics simulations of the adsorption of starch on diaspore (10) surface. Master's thesis of Central South University (in Chinese with English abstract).
参考文献
Zhao Lei, Ward C R, French D, Graham I T, Dai Shifeng, Yang Chao, Xie Panpan, Zhang Siyu. 2018. Origin of a kaolinite-NH 4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng coalfield, Qinshui basin, northern China. International Journal of Coal Geology, 185: 61~78.
参考文献
Zhao Lei, Dai Shifeng, Nechaev V P, Nechaeva E V, Graham I T, French D. 2019. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng coalfield, southeastern Qinshui basin, northern China. Ore Geology Reviews, 115: 103184.
参考文献
Zhang Bin, Sun Beilei, Wang Dezhang, Kang Tianhe, Ma Xin, Zhang Xiaoyu, Li Ligong, Li Haoyang, Liang Xiaomin, Zhu Wenqing, Zhang Junshuang. 2023. Molecular dynamics study on the effect of minerals on the mechanical heterogeneity of anthracite coal: A case study of kaolinite in the southern part of the Qinshui basin. Journal of China Coal Society, doi: 10. 13225/j. cnki. jccs. 2023. 1339 (in Chinese with English abstract).
参考文献
Zhang Dengfeng, Cui Yongjun, Li Songgeng, Song Wenli, Lin Weigang. 2011. Adsorption and diffusion behaviors of methane and carbon dioxide on various rank coals. Journal of China Coal Society, 36(10): 1693~1698(in Chinese with English abstract).
参考文献
Zhang Qidao, Jiang Shaoyong, Wang Wei, Ge Wen. 2024. Current status and prospect of researches on sediment-hosted Li deposits in bauxite formations and coal-bearing stratain China. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 90~101(in Chinese with English abstract).
参考文献
Zuo Jiaqi. 2023. Construction of structure models and parameter evolution characteristics at different scales for coals with different ranks. Master's thesis of Taiyuan University of Technical(in Chinese with English abstract).
参考文献
曹代勇, 魏迎春, 李阳, 刘志飞, 李焕同, 王路, 吴国强, 宁树正, 徐祥. 2021. 煤系石墨鉴别指标厘定及分类分级体系构建. 煤炭学报, 46(6): 1833~1846.
参考文献
曹代勇, 刘志飞, 王安民, 王路, 丁正云, 李阳. 2022. 构造物理化学条件对煤变质作用的控制. 地学前缘, 29(1): 439~448.
参考文献
曹仁义, 黄涛, 程林松, 高占武, 贾志豪. 2021. 水驱油藏中原油极性物质对吸附和润湿性影响的分子模拟. 计算物理, 38(5): 595~602.
参考文献
代世峰, 任德贻, 李生盛. 2006. 内蒙古准格尔超大型镓矿床的发现. 科学通报, (2): 177~185.
参考文献
代世峰, 刘池洋, 赵蕾, 刘晶晶, 王西勃, 任德贻. 2022. 煤系中战略性金属矿产资源: 意义和挑战. 煤炭学报, 47(5): 1743~1749.
参考文献
方乾, 张希, 郭邦军, 刘一晟. 2022. 锂离子扩散系数的测定及影响因素. 电池, 52(3): 277~280.
参考文献
贾进章, 邢迎欢, 李斌, 贾鹏, 吴禹默, 杨强, 王东明. 2024. 基于蒙特卡罗的硫化氢吸附-扩散机理. 煤炭学报, 49(2): 845~864.
参考文献
孟令强. 2022. 锂离子电池无定形炭负极材料制备及低温电化学性能研究. 辽宁工程技术大学硕士学位论文.
参考文献
孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 2023. 不同条件下纳米晶α-Zr蠕变行为的分子动力学模拟. 金属学报, 60(5): 699~712.
参考文献
彭志龙. 2012. 金属离子在煤结构中赋存形态的分子模拟. 太原理工大学硕士学位论文.
参考文献
孙蓓蕾, 王瑶, 李宝庆, 刘超, 郭沾明, 张星星.2024. 原位微区分析华北典型富锂煤中关键金属赋存规律. 地质学报, doi: 10. 19762/j. cnki. dizhixuebao. 2024094.
参考文献
孙建春. 2012. 工业纯铁表面纳米合金化改性及原子扩散行为研究. 重庆大学博士学位论文.
参考文献
王璐. 2022. 电场强化石墨烯材料去除水中Hg(Ⅱ)效能研究. 燕山大学硕士学位论文.
参考文献
徐前进. 2013. 淀粉在一水硬铝石(010)面吸附的分子动力学模拟. 中南大学硕士学位论文.
参考文献
张彬, 孙蓓蕾, 王德璋, 康天合, 马鑫, 张晓雨, 李立功, 李昊洋, 梁晓敏, 朱文庆, 张俊爽. 2023. 矿物对无烟煤力学非均质性影响的分子动力学研究——以沁水盆地南部主要黏土矿物高岭石为例. 煤炭学报, doi: 10. 13225/j. cnki. jccs. 2023. 1339.
参考文献
张登峰, 崔永君, 李松庚, 宋文立, 林伟刚. 2011. 甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为. 煤炭学报, 36(10): 1693~1698.
参考文献
张七道, 蒋少涌, 王微, 葛文. 2024. 铝土岩系和煤系地层中沉积黏土型锂矿床: 研究现状与展望. 矿物岩石地球化学通报, 43(1): 90~101.
参考文献
左家琦. 2023. 不同尺度下不同煤级煤结构模型构建及参数演化特征研究. 太原理工大学硕士学位论文.
目录contents

    摘要

    煤是特殊的沉积有机岩石,在其形成过程中可以富集战略性金属,并在煤系中形成大型或超大型金属矿床,成为矿产资源勘探的重要领域。温度是影响煤化作用及其过程中锂等关键金属赋存方式变化的重要因素。为了研究升温过程对煤中锂吸附特征的影响,本文以内蒙古准格尔煤田典型高锂煤为研究对象,构建锂-煤可视化模型,通过分子动力学方法计算了不同温度点锂在煤结构中的径向分布函数、扩散系数,分析了锂与有机大分子结构和高岭石相互作用能的变化,探讨了煤结构对锂的吸附特征。结果表明:锂在吸附过程中与氮原子、有机结构中的氧原子和硅原子存在较强的相互作用,与其他原子相互作用较弱或者不存在相互作用。锂与氮原子和有机结构中的氧原子主要是通过氢键作用吸附,而与硅原子则存在静电力和范德华力作用。从20℃升温到300℃的过程中,锂扩散系数受到温度和煤结构变化的影响,呈现出先升高后降低的趋势;煤结构对锂的吸附作用能以静电能为主。

    Abstract

    Coal, an important organic sedimentary rock, can become enriched with strategic metals during its formation process. The discovery of coal-related metal deposits has highlighted the increasing importance of strategic metals in coal for mineral resource exploration. Temperature plays a key role in the behavior of metals during coalification. To understand the adsorption characteristics of lithium in coal as temperature increases, a visualization macromolecular model of a typical high-lithium coal from the Jungar coalfield was constructed. Molecular dynamics modeling was then employed to investigate the adsorption characteristics of lithium in coal across a range of temperatures. We calculated the radial distribution function and diffusion coefficient, and analyzed the energy variations associated with lithium interactions with the macromolecule and kaolinite in the coal structure at different temperatures. Our results show that lithium exhibits strong interactions with nitrogen, oxygen, and silicon atoms in the macromolecule structure, while showing weak or no interactions with other atoms. Hydrogen bonding is responsible for the strong interaction between Li and nitrogen and oxygen atoms, whereas the interaction between Li and Si could be a result of van der Waals forces. The diffusion coefficient of Li initially increases then decreases as temperature rises from 20℃ to 300℃. The adsorption of Li onto the coal macromolecular is predominantly controlled by electrostatic energy.

  • 锂(Li)被称为“21世纪新能源”,是我国高新产业发展的保障资源和战略性资源。目前,世界上已探明的锂矿床主要有伟晶岩型、盐湖卤水型和沉积黏土型三大类(Kesler et al.,2012)。其中沉积黏土型锂矿床包括碳酸盐黏土型、火山岩型黏土型、煤系黏土型等(张七道等,2024)。煤是一种特殊的沉积有机岩石,在其形成过程的特定地质条件下,可以富集多种金属元素,并在煤系中形成大型或超大型金属矿床(代世峰等,2022)。如内蒙古准格尔煤田6号煤层预计锂资源量可达240.66万t,宁武煤田平朔矿区预计锂资源量可达107.25万t(Qin Shenjun et al.,2015),由于其资源总量较大,在近些年来已经引起了较多重视。

  • 目前,已有大量关于煤中锂赋存状态的研究,这些研究表明,煤中Li主要以矿物结合态(Dai Shifeng et al.,2009; Li Baoqing et al.,2017; Wang Xiaomei et al.,2019; Zhao Lei et al,2018,2019; Di Shaobo et al.,2023)和有机结合态两种形态赋存(Lewińska-Preis et al.,2009Finkelman et al.,2018),且不同变质程度的煤中锂的赋存形式存在差异性(Finkelman et al.,2018; Sun Beilei et al.,2022)。Finkelman et al.(2018)等研究结果表明高变质程度的煤中90%的锂与黏土和云母类矿物结合,10%与有机质结合;但是在低变质程度的煤中,平均30%的锂与有机质结合,这个比例最高可达到50%。温度是控制煤变质程度升高的关键因素,也间接控制了不同变质程度煤中锂赋存状态的不同。Swaine(1990)认为,煤中的微量元素可能与有机质上的—OH、—COOH、—NH等官能团结合,以静电引力或者共价键的方式相连,与无机矿物可能以吸附态、类质同象、分散矿物等形式结合。

  • 随着计算机和计算方法的不断发展,分子模拟成为了研究金属元素在煤中赋存及其演化特征的重要手段之一,可以在分子尺度获取实验中难以观测的信息。Li Guangyue et al.(2014)采用ReaxFF反应力场探讨了Ca(OH)2与褐煤的相互作用,发现Ca2+与煤中的桥碳发生离子交换,使得羧基和酚羟基脱落,降低了键能和煤分子模型的能量,形成稳定结构。He Hongtao et al.(2020)采用密度泛函理论模拟计算了煤中Li与高岭石的相互作用关系,结果表明:Li在水溶液中以稳定的四面体水配合物 Li(H2O)4(H2O)n+存在,吸附的Li与Al(OH)2在高岭石八面体位点上形成络合物。彭志龙(2012)采用分子模拟的方法研究了金属离子在煤结构中的赋存形态,结构表明K+的吸附主要与含氧官能团有关,煤结构对K+和Mg2+的吸附主要是静电力的作用。

  • 锂的原子序数低且在煤中含量低,导致锂的赋存状态认识尚不明确,且关于锂在煤中的吸附与扩散研究更少。目前对于金属离子在煤中吸附的研究主要是对有机结构或者单一矿物分子结构进行研究。本文以准格尔煤田含锂煤作为研究对象,建立有机结构和无机矿物共存的结构,运用分子动力学研究煤中Li在升温过程中的吸附特征,分析不同温度影响下Li与煤中有机质和矿物的相互作用关系,从分子角度揭示升温过程中煤结构对Li吸附的行为。这有助于理解煤化作用过程中锂的地球化学行为,为阐明煤系锂资源富集机理提供依据。

  • 1 模型构建及模拟方法

  • 1.1 模型构建

  • 选取内蒙古准格尔煤田6号煤层为研究对象,该煤层锂含量达到275.2 μg/g,且高岭石为6号煤层锂的主要载体(代世峰等,2006Jiu Bo et al.,2023孙蓓蕾等,2024)。6号煤水分为5.19%,灰分为17.72%,挥发分为33.5%,平均镜质体反射率为0.58%,属于低变质程度烟煤(代世峰等,2006)。本文煤结构模型以左家琦(2023)构建的有机大分子结构平面模型结构为基础,其分子式为C186H184O23N2(图1)。高岭石是1∶1型片层状硅酸盐黏土矿物,理论化学式为Al4Si4O10(OH)8,结构由Al-O八面体和Si-O四面体组成。高岭石结构模型见图2,高岭石结构参数来自美国Bish(1993)低温(1.5 K)中子衍射数据:a=0.51535 nm, b= 0.89419 nm, c=0.73906 nm,α=91.926°, β=105.046°, γ=89.797°,该数据被后续实验和理论研究证明是合理可行的(Neder et al.,1999)。

  • 图1 准格尔煤田6号煤的结构平面模型(据左家琦,2023

  • Fig.1 Structural planar model of No.6 coal in Jungar coalfield (after Zuo Jiaqi, 2023)

  • 图2 准格尔煤田6号煤中高岭石的分子模型(据Bish,1993

  • Fig.2 Molecular modeling of kaolinite in No.6 coal from the Jungar coalfield (after Bish, 1993)

  • 1.2 模拟研究方法

  • 采用张彬等(2023)建立的有机质平面模型和矿物模型组合构建煤结构模型的方法,通过Materials Studio分子模拟软件中的Amorphous Cell模块将5个有机质片段和2个高岭石分子沿三维周期性组合,得到黏土矿物含量为12.5%的煤结构模型,接近于准格尔6号煤黏土矿物真实含量(11.4%;代世峰等,2006)。利用Forcite模块进行退火(anneal)和结构优化(geometry optimization),得到煤结构最稳定构型(图3)。模拟计算过程中,选取能够统一有机分子体系和无机分子体系的Compass力场,采用NVT系综,模拟了293.15~573.15 K(20~300℃)范围内煤结构对Li吸附的7个状态点。为了减少分子间不合理的接触,采用共轭梯度法对煤分子模型体系进行几何结构优化,平衡时间为1 ns,步长为1 ps,监测体系中温度和能量随时间变化的收敛曲线,以确保体系达到平衡状态。在体系达到平衡状态后,继续1 ns结果输出计算,每1 ps采集一次数据用于性质计算。计算过程中,采用Nose函数进行温度控制,系统计算时间步长为2 ns,图4展示了20℃时,煤结构对Li的吸附模型。分子间长程静电作用和范德华作用的加和计算分别采用Ewald和Atom based方法(Peng Chenliang et al.,2017),模拟计算过程中的截断半径为1.85 nm。

  • 图3 准格尔6号煤结构最稳定构型

  • Fig.3 The stablest structure configuration of No.6 coal in Jungar coalfield

  • 2 结果与讨论

  • 2.1 径向分布函数

  • 径向分布函数能够分析升温过程中煤分子结构的变化以及Li与有机质和高岭石分子相互作用力的变化,径向分布函数的峰值越大,其相互作用力和结构有序性越强(孟子凯等,2023)。

  • 通过径向分布函数(RDF)可以反映体系中粒子之间的运动规律。RDF表示某一粒子相对参考粒子的分布密度gr),可通过式1进行计算:

  • g(r)=14πρr2dndr
    (1)
  • 其中,ρ表示粒子数密度,g/cm3r表示相对中心原子另一原子出现的距离,cm;n为中心原子周围rr+dr范围内存在的配位原子数量。

  • 图4 准格尔6号煤吸附Li模型(20℃)

  • Fig.4 The coal macromolecule model of No.6 coal in Jungar coalfield showing lithium adsorption at the temperature of 20℃

  • 不同温度下的径向分布函数曲线(图5)表明:温度20℃时,峰值最低,为1.29。随着温度的升高,径向分布函数曲线峰值逐渐增加,在最高温度为300℃时,峰值达到最高,达到1.49。这也说明随着温度的升高,煤结构有序性逐渐增大,Li与煤结构相互作用增强。这是由于煤结构在温度升高的情况下,分子结构逐渐有序化,趋向石墨化发展(曹代勇等,2022)。

  • 图5 Li和煤在不同温度下的径向分布函数曲线

  • Fig.5 Radial distribution function curves of lithium and coal at different temperature

  • Li和有机大分子结构在不同温度下的径向分布函数曲线(图6)表明:随着温度从20℃升高到300℃,径向分布函数呈增加的趋势,峰值从1.29增高到1.49,说明有机质结构和Li的相互作用随着温度的升高而增强。

  • 图6 Li和有机质在不同温度下的径向分布函数曲线

  • Fig.6 Radial distribution function curves of lithium and organic matter at different temperatures

  • Li和高岭石结构在不同温度下的径向分布函数曲线(图7)显示:随着温度的升高,径向分布函数峰值从1.02逐渐增加到1.19,表明矿物结构和Li的相互作用强度也随着温度的升高而增大。通过对比图6和图7的峰值,可以看出,Li与有机质径向分布函数曲线峰值略大于Li与矿物结构径向分布函数曲线峰值,说明Li与煤中有机质的相互作用强度略高于矿物。

  • 为了进一步探究煤中各原子在吸附过程中与Li的相互作用,采用分子动力学Forcite模块分析了煤中7种原子(H、C、N、Si、Al、O-高岭石、O-有机质)周围Li的分布规律,如图8所示。

  • 图7 Li和高岭石在不同温度下径向分布函数曲线

  • Fig.7 Radial distribution function curves of lithium and kaolinite at different temperatures

  • 在初始阶段较小的距离范围内,gr)=0,表明Li与各原子之间存在着较强的排斥力。在这个截断距离范围内,原子周围不存在Li,截断距离越长,斥力越大。当Li与各原子之间的吸引力大于斥力时,原子周围就会出现Li,当分布密度gr)达到最大峰值时,Li和原子距离为r处概率密度最大。可以根据gr)峰值处的位置判断Li和各原子相互作用力的类型。径向分布函数峰值位置小于0.35 nm,主要由化学键和氢键共同作用,径向分布函数峰值大于0.35 nm而小于0.5 nm时,由静电力和范德华力共同作用,大于0.5 nm时,主要为静电力作用(徐前进,2013)。

  • 由图8可见,Li和不同原子的径向分布函数在无限远处gr)均收敛趋近于1,表现出短程有序,长程无序的分布特征。锂与氮原子的径向分布函数曲线峰值最大,且呈现双峰特征,其次为有机质中的氧原子,硅原子,说明锂与煤有机质结构中的含氧官能团、吡咯氮、吡啶氮、高岭石分子中的硅原子有较强的相互作用。锂在铝原子和高岭石分子中的氧原子附近有较低的峰值,说明与其有着较弱的相互作用。

  • 锂与碳原子和氢原子的径向分布函数曲线无明显峰值,gr)≈1,说明苯环和氢原子对锂吸引力较弱,基本不存在相互作用。锂与氮原子,有机质中的氧原子径向分布函数第一峰值位置相同,均为0.185 nm,说明锂在吸附过程中与氮原子和有机质中的氧原子存在氢键作用。锂与硅原子径向分布函数第一峰值位置为0.405 nm,说明锂在吸附过程中与硅原子存在静电力和范德华力作用。温度为180℃时,锂和不同原子径向分布函数曲线参数见表1。由表1可见,截断距离最大的原子为铝原子,其次为硅原子和高岭石中的氧原子,截断距离分别为0.515 nm、0.345 nm、0.295 nm。截断距离较大的原子均为组成高岭石分子的原子,与之相比,其余有机质片段组成原子的截断距离较小,说明高岭石分子对锂的斥力大于有机质片段对锂的斥力。

  • 2.2 扩散系数

  • 为了了解Li在煤结构升温过程中的相互作用以及扩散运移机制,对Li在煤结构中的运动的微观现象进行分子动力学计算。均方根位移(MSD)是描述粒子运动的统计量,指的是体系中粒子随时间运动后的空间位置相对于初始位置偏差的量度。根据式2进行计算:

  • 图8 Li和不同原子的径向分布函数曲线

  • Fig.8 Radial distribution function curves of lithium and individual atoms

  • (a) —20℃; (b) —180℃; (c) —300℃

  • 表1 锂和不同原子径向分布函数曲线参数表(180℃)

  • Table1 Parameters of radial distribution function curves for lithium and individual atoms (180℃)

  • MSD=1Ni=1N ri(t)-ri(0)2
    (2)
  • 根据爱因斯坦扩散定律,可以通过分子动力学计算MSD曲线斜率得到体系中粒子的扩散系数D,扩散系数越大,表明粒子在体系中活动性越强,越容易扩散。根据公式3计算扩散系数:

  • D=16limt ddt(MSD)
    (3)
  • 式中,N表示体系中目标粒子的总数量,rit)表示第i个粒子在t时刻的空间位置;ri(0)表示第i个粒子在初始时刻的空间位置。

  • Li在20~300℃升温过程中扩散系数的变化(图9)表明:Li的扩散系数呈现出先增高后降低的趋势。在20℃时,Li扩散系数为6.6×10-14 m2/s,温度升高到60℃时,扩散系数增大为15×10-14 m2/s,之后随着温度的升高,扩散系数持续降低。温度在140~300℃范围内,扩散系数降低较小,在300℃时,扩散系数最低为0.17×10-14 m2/s。由此可见,温度对煤中Li扩散系数变化具有明显的影响。

  • 通常情况下,随着温度的升高,分子内能不断增大,根据能量守恒定律,这部分内能会转化为动能促使分子运动,增大扩散系数(张登峰等,2011)。贾进章等(2024)在研究煤中H2S吸附扩散机理时,发现当温度从0℃升高到40℃的过程中,H2S分子的扩散系数从1.066×10-10 m2/s升高到2.025×10-10 m2/s。方乾等(2022)在Li扩散系数的测定及影响因素实验中,发现温度从20℃升高到55℃时,Li的扩散系数随之增大。然而,本文所得到的Li的扩散系数随温度的升高先增大后减小,并不是递增的趋势,这也说明除了温度条件以外,其他条件同样会对物质的扩散产生较大的影响。孟令强(2022)在研究无定形炭材料Li的扩散规律时,发现除了温度以外,炭材料的比表面积、层间距、无定形程度等结构方面的因素同样会影响Li的扩散。孙建春(2012)在计算纳米晶的扩散系数时,发现升温过程中结构的变化会导致扩散系数的降低。Chen Yu et al.(2023)在研究高岭石对Li的吸附时,发现结构会对Li的吸附产生较大影响,比表面积增加会增大Li的吸附量。由此可见,除了温度以外,结构的差异也是影响扩散系数变化的重要因素。根据Li和煤结构径向分布函数结果,随着温度的升高,煤结构有序性增强。随着温度的升高,煤分子结构有序化程度增大,成分结构单一化的趋势演变(曹代勇等,2021)。与高阶无烟煤相比,低阶煤具有层间距大,结构无序,比表面积较大的特点(Marques et al.,2010)。因此,20~60℃时,温度对Li的扩散占主导作用,促使扩散系数升高;60~300℃过程中,升温后分子结构的有序化是导致Li在煤中扩散系数减小的主要原因,此时温度对扩散系数的促进不足以弥补结构变化对扩散系数的削弱。

  • 图9 Li扩散系数随温度的变化曲线

  • Fig.9 Curve of lithium diffusion coefficient with temperature

  • 通过扩散活化能可以表示体系中吸附物质扩散的难易程度,煤各类吸附质扩散的本质就是扩散活化过程(贾进章等,2024),物质从一个平衡位置跃迁到另一个平衡位置所需要克服的额外能量就称为扩散活化能ED。扩散活化能越大,表示体系中原子扩散的难度越大,通过公式4计算扩散活化能:

  • D=D0e-EDRT
    (4)
  • 式中,D0为指前因子,m2/s;ED为扩散活化能,kJ/mol;R为理想气体常数,取8.314 J/(mol·K)。

  • 根据图10计算可得,Li在煤结构中的扩散活化能为18.6 kJ/mol。方乾等(2022)在研究Li在固体电池材料中扩散时计算得到的扩散活化能为7.061 kJ/mol。与之相比,本文计算得到的Li扩散活化能较大,这也说明在Li在煤中扩散难度较大。

  • 图10 Li在不同温度下lnDT-1之间的关系

  • Fig.10 Relationship between lnD and T-1 at different temperatures for lithium

  • 2.3 相互作用能

  • 相互作用能(ΔE)可以反映同一体系中两种物质之间相互作用的能量强弱。Li与体系中有机质和高岭石之间的相互作用能,分别通过公式5和公式6进行计算:

  • ΔELi/ 有机质 =ELi/ 有机质 -ELi-E有机质
    (5)
  • ΔELi/ 高岭石 =ELi/ 高岭石 -ELi-E高岭石
    (6)
  • 式中,ΔELi/高岭石、ΔELi/有机质分别表示Li与高岭石和有机质之间的相互作用能,kJ/mol;ELi/高岭石ELi/有机质分别表示Li-高岭石和Li-有机质总内能,kJ/mol;ELi表示Li的内能,E高岭石E有机质分别表示高岭石和有机质的总内能,kJ/mol。

  • Li与有机质和高岭石在不同温度点的相互作用能变化(图11)表明:Li与高岭石分子相互作用能范围在1.67~25.08 kJ/mol,与有机结构相互作用能范围在1.92~28.84 kJ/mol。Li与有机质和高岭石的相互作用能与温度呈正相关性,且Li与有机质的相互作用能略大于高岭石。

  • 图12是Li在煤结构吸附过程中范德华能和静电能随温度的变化示意图。在温度升高过程中,范德华能的变化范围为122.07~148.02 kJ/mol,静电能的变化范围为-1729.20~-1704.51 kJ/mol。范德华能为正值表示分子之间距离大于一定值时,范德华力为排斥力(王璐,2022)。静电能为负值表示Li处于较低能量的稳定状态(曹仁义等,2021)。因此,Li吸附过程中以静电能为主,范德华能较弱。当温度升高到60℃时,范德华能降低,静电能升高;在60℃后,范德华能和静电能均出现波动,说明Li在煤体系中的吸附是不稳定的过程,当到达一定温度后,系统处于吸附和解吸的动态平衡过程。

  • 图11 Li与有机质和高岭石的相互作用能随温度的变化曲线

  • Fig.11 Interaction energy curves of lithium with organic matter and kaolinite as a function of temperature

  • 3 结论

  • (1)温度从20℃升高到300℃,Li对煤中有机质和高岭石片段的相互作用强度均逐渐增强,有机质片段对Li的吸引力大于高岭石片段。

  • (2)温度从20℃升高到60℃时,Li扩散系数从6.6×10-14 m2/s升高到15×10-14 m2/s,之后随着温度的升高,扩散系数逐渐降低,Li在该体系中的扩散活化能为18.6 kJ/mol。

  • (3)Li在吸附过程中与有机结构上的氮原子,氧原子存在氢键作用,而与硅原子存在较强的静电力和范德华力作用。温度从20℃升高到300℃,范德华能的变化范围为122.07~148.02 kJ/mol,静电能的变化范围为-1704.51~-1729.20 kJ/mol,相互作用能以静电能为主。

  • 图12 吸附过程中范德华能和静电能随温度变化的曲线

  • Fig.12 Curves of van der Waals energy and electrostatic energy versus temperature during the adsorption process

  • 参考文献

    • Bish D L. 1993. Rietveld refinement of the kaolinite structure at 1. 5 K. Clays and Clay Minerals, 41(6): 738~744.

    • Cao Daiyong, Wei Yingchun, Li Yang, Liu Zhifei, Li Huantong, Wang Lu, Wu Guoqiang, Ning Shuzheng, Xu Xiang. 2021. Determination of identification index and construction of classification and classification system of coal measures graphite. Journal of China Coal Society, 46(6) : 1833~1846(in Chinese with English abstract).

    • Cao Daiyong, Liu Zhifei, Wang Anmin, Wang Lu, Ding Zhengyun, Li Yang. 2022. Control of coal metamorphism by tectonic physicochemical conditions. Earth Science Frontiers, 29(1): 439~448(in Chinese with English abstract).

    • Cao Renyi, Huang Tao, Cheng Linsong, Gao Zhanwu, Jia Zhihao. 2021. Influence of polar substance of crude oil on adsorption and wettability in water flooding reservoir: Molecular simulation. Chinese Journal of Computational Physics, 38(5): 595~602(in Chinese with English abstract).

    • Chen Yu, Zhao Hao, Xia Mingzhe, Cheng Hongfei. 2023. Insights into lithium adsorption by coal-bearing strata kaolinite. Frontiers of Earth Science, 17(1): 251~261.

    • Dai Shifeng, Ren Deyi, Li Shengsheng. 2006. Discovery of super-large gallium deposit in Jungar, Inner Mongolia. Chinese Science Bulletin, (2): 177~185(in Chinese with English abstract).

    • Dai Shifeng, Li Dan, Chou Chenlin, Zhao Lei, Zhang Yong, Ren Deyi, Ma Yuwen, Sun Yingying. 2009. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu surface mine, Jungar coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74(3-4): 185~202.

    • Dai Shifeng, Liu Chiyang, Zhao Lei, Liu Jingjing, Wang Xibo, Ren Deyi. 2022. Strategic metal resources in coal-bearing strata: Significance and challenges. Journal of China Coal Society, 47(5): 1743~1749(in Chinese with English abstract).

    • Di Shaobo, Dai Shifeng, Nechaev V P, French D, Graham I T, Zhao Lei, Finkelman R B, Wang Hongdong, Zhang Shaowei, Hou Yongjie. 2023. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao surface mine, Shanxi Province, China: Derivation of pyroclastics and sediment-source regions. International Journal of Coal Geology, 273: 104262.

    • Fang Qian, Zhang Xi, Guo Bangjun, Liu Yisheng. 2022. Determination of Li+ diffusion coefficient and its influencing factors. Battery Bimonthly, 52(3): 277~280(in Chinese with English abstract).

    • Finkelman R B, Palmer C A, Wang Peipei. 2018. Quantification of the modes of occurrence of 42 elements in coal. International Journal of Coal Geology, 185: 138~160.

    • He Hongtao, Wang Jinxi, Xing Lecai, Zhao Shanshan, He Maoyong, Zhao Cunliang, Sun Yuzhuang. 2020. Enrichment mechanisms of lithium in the No. 6 coal seam from the Guanbanwusu mine, Inner Mongolia, China: Explanations based on Li isotope values and density functional theory calculations. Journal of Geochemical Exploration, 213: 106510.

    • Jia Jinzhang, Xing Yinghuan, Li Bin, Jia Peng, Wu Yumo, Yang Qiang, Wang Dongming. 2024. Research on the adsorption-diffusion mechanism of hydrogen sulfide based on monte carlo simulation. Journal of China Coal Society, 49(2): 845~864(in Chinese with English abstract).

    • Jiu Bo, Huang Wenhui, Spiro B, Hao Ruilin, Mu Nana, Wen Long, Hao Huidi. 2023. Distribution of Li, Ga, Nb, and REEs in coal as determined by LA-ICP-MS imaging: A case study from Jungar coalfield, Ordos basin, China. International Journal of Coal Geology, 267: 104184.

    • Kesler S E, Gruber P W, Medina P A, Keoleian G A, Everson M P, Wallington T J. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48: 55~69.

    • Lewińska-Preis L, Fabiańska M J, Ćmiel S, Kita A. 2009. Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. International Journal of Coal Geology, 80(3~4): 211~223.

    • Li Baoqing, Zhuang Xinguo, Li Jing, Querol X, Font O, Moreno N. 2017. Enrichment and distribution of elements in the Late Permian coals from the Zhina coalfield, Guizhou Province, Southwest China. International Journal of Coal Geology, 171: 111~129.

    • Li Guangyue, Xie Quanan, Zhang Hang, Guo Rui, Wang Feng, Liang Yinghua. 2014. Pyrolysis mechanism of metal-ion-exchanged lignite: A combined reactive force field and density functional theory study. Energy & Fuels, 28(8): 5373~5381.

    • Marques M, Suárez-Ruiz I, Flores D, Guedes A, Rodrigues S. 2010. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite. International Journal of Coal Geology, 77(3~4): 377~382.

    • Meng Lingqiang. 2022. Preparation and low-temperature electrochemical performance of amorphous carbon cathode materials for lithium-ion batteries. Master's thesis of Liaoning Technical University(in Chinese with English abstract).

    • Meng Zikai, Meng Zhichao, Gao Changyuan, Guo Hui, Chen Hansen, Chen Liutao, Xu Dongsheng, Yang Rui. 2023. Molecular dynamics simulation of creep mechanism in nanocrystalline α-zirconium under various conditions. Acta Metallurgica Sinica, 60(5): 699~712(in Chinese with English abstract).

    • Neder R B, Burghammer M, Grasl T, Schulz H, Bram A, Fiedler S. 1999. Refinement of the kaolinite structure from single-crystal synchrotron data. Clays and Clay Minerals, 47(4): 487~494.

    • Peng Chenliang, Min Fanfei, Liu Lingyun. 2017. Effect of pH on the adsorption of dodecylamine on montmorillonite: Insights from experiments and molecular dynamics simulations. Applied Surface Science, 425: 996~1005.

    • Peng Zhilong. 2012. The molecular simulation of the combined forms of metal ions in coal structure. Master's thesis of Taiyuan University of Technical(in Chinese with English abstract).

    • Qin Shenjun, Zhao Cunliang, Li Yanheng, Zhang Yong. 2015. Review of coal as a promising source of lithium. International Journal of Oil, Gas and Coal Technology, (2): 215~229.

    • Sun Beilei, Liu Yunxia, Tajcmanova L, Liu Chao, Wu Jie. 2022. In-situ analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district, Ningwu coalfield, northern China. Ore Geology Reviews, 144: 104825.

    • Sun Beilei, Wang Yao, Li Baoqing, Liu Chao, Guo Zhanming, Zhang Xingxing. 2024. In-situ microanalysis of critical metals in high-lithium coal. Acta Geologica Sinica, doi: 10. 19762/j. cnki. dizhixuebao. 2024094 (in Chinese with English abstract).

    • Sun Jianchun. 2012. Investigation of surface nanocrystallinzation and alloying of commercial iron and diffusion behavior. Doctoral dissertation of Chongqing University(in Chinese with English abstract).

    • Swaine D J. 1990. Trace Elements in Coal. Oxford: Butterworth-Heinemann.

    • Wang Lu. 2022. Study on the efficiency of electric field enhanced graphene material for removing Hg(II) in water. Master's thesis of Yanshan University(in Chinese with English abstract).

    • Wang Xiaomei, Wang Xiaoming, Pan Zhejun, Pan Wenhao, Yin Xuebo, Chai Pancun, Pan Sidong, Yang Qin. 2019. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui basin, northern China, with emphasis on lithium enrichment. International Journal of Coal Geology, 214: 103254.

    • Xu Qianjin. 2013. Molecular dynamics simulations of the adsorption of starch on diaspore (10) surface. Master's thesis of Central South University (in Chinese with English abstract).

    • Zhao Lei, Ward C R, French D, Graham I T, Dai Shifeng, Yang Chao, Xie Panpan, Zhang Siyu. 2018. Origin of a kaolinite-NH 4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng coalfield, Qinshui basin, northern China. International Journal of Coal Geology, 185: 61~78.

    • Zhao Lei, Dai Shifeng, Nechaev V P, Nechaeva E V, Graham I T, French D. 2019. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng coalfield, southeastern Qinshui basin, northern China. Ore Geology Reviews, 115: 103184.

    • Zhang Bin, Sun Beilei, Wang Dezhang, Kang Tianhe, Ma Xin, Zhang Xiaoyu, Li Ligong, Li Haoyang, Liang Xiaomin, Zhu Wenqing, Zhang Junshuang. 2023. Molecular dynamics study on the effect of minerals on the mechanical heterogeneity of anthracite coal: A case study of kaolinite in the southern part of the Qinshui basin. Journal of China Coal Society, doi: 10. 13225/j. cnki. jccs. 2023. 1339 (in Chinese with English abstract).

    • Zhang Dengfeng, Cui Yongjun, Li Songgeng, Song Wenli, Lin Weigang. 2011. Adsorption and diffusion behaviors of methane and carbon dioxide on various rank coals. Journal of China Coal Society, 36(10): 1693~1698(in Chinese with English abstract).

    • Zhang Qidao, Jiang Shaoyong, Wang Wei, Ge Wen. 2024. Current status and prospect of researches on sediment-hosted Li deposits in bauxite formations and coal-bearing stratain China. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 90~101(in Chinese with English abstract).

    • Zuo Jiaqi. 2023. Construction of structure models and parameter evolution characteristics at different scales for coals with different ranks. Master's thesis of Taiyuan University of Technical(in Chinese with English abstract).

    • 曹代勇, 魏迎春, 李阳, 刘志飞, 李焕同, 王路, 吴国强, 宁树正, 徐祥. 2021. 煤系石墨鉴别指标厘定及分类分级体系构建. 煤炭学报, 46(6): 1833~1846.

    • 曹代勇, 刘志飞, 王安民, 王路, 丁正云, 李阳. 2022. 构造物理化学条件对煤变质作用的控制. 地学前缘, 29(1): 439~448.

    • 曹仁义, 黄涛, 程林松, 高占武, 贾志豪. 2021. 水驱油藏中原油极性物质对吸附和润湿性影响的分子模拟. 计算物理, 38(5): 595~602.

    • 代世峰, 任德贻, 李生盛. 2006. 内蒙古准格尔超大型镓矿床的发现. 科学通报, (2): 177~185.

    • 代世峰, 刘池洋, 赵蕾, 刘晶晶, 王西勃, 任德贻. 2022. 煤系中战略性金属矿产资源: 意义和挑战. 煤炭学报, 47(5): 1743~1749.

    • 方乾, 张希, 郭邦军, 刘一晟. 2022. 锂离子扩散系数的测定及影响因素. 电池, 52(3): 277~280.

    • 贾进章, 邢迎欢, 李斌, 贾鹏, 吴禹默, 杨强, 王东明. 2024. 基于蒙特卡罗的硫化氢吸附-扩散机理. 煤炭学报, 49(2): 845~864.

    • 孟令强. 2022. 锂离子电池无定形炭负极材料制备及低温电化学性能研究. 辽宁工程技术大学硕士学位论文.

    • 孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 2023. 不同条件下纳米晶α-Zr蠕变行为的分子动力学模拟. 金属学报, 60(5): 699~712.

    • 彭志龙. 2012. 金属离子在煤结构中赋存形态的分子模拟. 太原理工大学硕士学位论文.

    • 孙蓓蕾, 王瑶, 李宝庆, 刘超, 郭沾明, 张星星.2024. 原位微区分析华北典型富锂煤中关键金属赋存规律. 地质学报, doi: 10. 19762/j. cnki. dizhixuebao. 2024094.

    • 孙建春. 2012. 工业纯铁表面纳米合金化改性及原子扩散行为研究. 重庆大学博士学位论文.

    • 王璐. 2022. 电场强化石墨烯材料去除水中Hg(Ⅱ)效能研究. 燕山大学硕士学位论文.

    • 徐前进. 2013. 淀粉在一水硬铝石(010)面吸附的分子动力学模拟. 中南大学硕士学位论文.

    • 张彬, 孙蓓蕾, 王德璋, 康天合, 马鑫, 张晓雨, 李立功, 李昊洋, 梁晓敏, 朱文庆, 张俊爽. 2023. 矿物对无烟煤力学非均质性影响的分子动力学研究——以沁水盆地南部主要黏土矿物高岭石为例. 煤炭学报, doi: 10. 13225/j. cnki. jccs. 2023. 1339.

    • 张登峰, 崔永君, 李松庚, 宋文立, 林伟刚. 2011. 甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为. 煤炭学报, 36(10): 1693~1698.

    • 张七道, 蒋少涌, 王微, 葛文. 2024. 铝土岩系和煤系地层中沉积黏土型锂矿床: 研究现状与展望. 矿物岩石地球化学通报, 43(1): 90~101.

    • 左家琦. 2023. 不同尺度下不同煤级煤结构模型构建及参数演化特征研究. 太原理工大学硕士学位论文.

  • 参考文献

    • Bish D L. 1993. Rietveld refinement of the kaolinite structure at 1. 5 K. Clays and Clay Minerals, 41(6): 738~744.

    • Cao Daiyong, Wei Yingchun, Li Yang, Liu Zhifei, Li Huantong, Wang Lu, Wu Guoqiang, Ning Shuzheng, Xu Xiang. 2021. Determination of identification index and construction of classification and classification system of coal measures graphite. Journal of China Coal Society, 46(6) : 1833~1846(in Chinese with English abstract).

    • Cao Daiyong, Liu Zhifei, Wang Anmin, Wang Lu, Ding Zhengyun, Li Yang. 2022. Control of coal metamorphism by tectonic physicochemical conditions. Earth Science Frontiers, 29(1): 439~448(in Chinese with English abstract).

    • Cao Renyi, Huang Tao, Cheng Linsong, Gao Zhanwu, Jia Zhihao. 2021. Influence of polar substance of crude oil on adsorption and wettability in water flooding reservoir: Molecular simulation. Chinese Journal of Computational Physics, 38(5): 595~602(in Chinese with English abstract).

    • Chen Yu, Zhao Hao, Xia Mingzhe, Cheng Hongfei. 2023. Insights into lithium adsorption by coal-bearing strata kaolinite. Frontiers of Earth Science, 17(1): 251~261.

    • Dai Shifeng, Ren Deyi, Li Shengsheng. 2006. Discovery of super-large gallium deposit in Jungar, Inner Mongolia. Chinese Science Bulletin, (2): 177~185(in Chinese with English abstract).

    • Dai Shifeng, Li Dan, Chou Chenlin, Zhao Lei, Zhang Yong, Ren Deyi, Ma Yuwen, Sun Yingying. 2009. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu surface mine, Jungar coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74(3-4): 185~202.

    • Dai Shifeng, Liu Chiyang, Zhao Lei, Liu Jingjing, Wang Xibo, Ren Deyi. 2022. Strategic metal resources in coal-bearing strata: Significance and challenges. Journal of China Coal Society, 47(5): 1743~1749(in Chinese with English abstract).

    • Di Shaobo, Dai Shifeng, Nechaev V P, French D, Graham I T, Zhao Lei, Finkelman R B, Wang Hongdong, Zhang Shaowei, Hou Yongjie. 2023. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao surface mine, Shanxi Province, China: Derivation of pyroclastics and sediment-source regions. International Journal of Coal Geology, 273: 104262.

    • Fang Qian, Zhang Xi, Guo Bangjun, Liu Yisheng. 2022. Determination of Li+ diffusion coefficient and its influencing factors. Battery Bimonthly, 52(3): 277~280(in Chinese with English abstract).

    • Finkelman R B, Palmer C A, Wang Peipei. 2018. Quantification of the modes of occurrence of 42 elements in coal. International Journal of Coal Geology, 185: 138~160.

    • He Hongtao, Wang Jinxi, Xing Lecai, Zhao Shanshan, He Maoyong, Zhao Cunliang, Sun Yuzhuang. 2020. Enrichment mechanisms of lithium in the No. 6 coal seam from the Guanbanwusu mine, Inner Mongolia, China: Explanations based on Li isotope values and density functional theory calculations. Journal of Geochemical Exploration, 213: 106510.

    • Jia Jinzhang, Xing Yinghuan, Li Bin, Jia Peng, Wu Yumo, Yang Qiang, Wang Dongming. 2024. Research on the adsorption-diffusion mechanism of hydrogen sulfide based on monte carlo simulation. Journal of China Coal Society, 49(2): 845~864(in Chinese with English abstract).

    • Jiu Bo, Huang Wenhui, Spiro B, Hao Ruilin, Mu Nana, Wen Long, Hao Huidi. 2023. Distribution of Li, Ga, Nb, and REEs in coal as determined by LA-ICP-MS imaging: A case study from Jungar coalfield, Ordos basin, China. International Journal of Coal Geology, 267: 104184.

    • Kesler S E, Gruber P W, Medina P A, Keoleian G A, Everson M P, Wallington T J. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48: 55~69.

    • Lewińska-Preis L, Fabiańska M J, Ćmiel S, Kita A. 2009. Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. International Journal of Coal Geology, 80(3~4): 211~223.

    • Li Baoqing, Zhuang Xinguo, Li Jing, Querol X, Font O, Moreno N. 2017. Enrichment and distribution of elements in the Late Permian coals from the Zhina coalfield, Guizhou Province, Southwest China. International Journal of Coal Geology, 171: 111~129.

    • Li Guangyue, Xie Quanan, Zhang Hang, Guo Rui, Wang Feng, Liang Yinghua. 2014. Pyrolysis mechanism of metal-ion-exchanged lignite: A combined reactive force field and density functional theory study. Energy & Fuels, 28(8): 5373~5381.

    • Marques M, Suárez-Ruiz I, Flores D, Guedes A, Rodrigues S. 2010. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite. International Journal of Coal Geology, 77(3~4): 377~382.

    • Meng Lingqiang. 2022. Preparation and low-temperature electrochemical performance of amorphous carbon cathode materials for lithium-ion batteries. Master's thesis of Liaoning Technical University(in Chinese with English abstract).

    • Meng Zikai, Meng Zhichao, Gao Changyuan, Guo Hui, Chen Hansen, Chen Liutao, Xu Dongsheng, Yang Rui. 2023. Molecular dynamics simulation of creep mechanism in nanocrystalline α-zirconium under various conditions. Acta Metallurgica Sinica, 60(5): 699~712(in Chinese with English abstract).

    • Neder R B, Burghammer M, Grasl T, Schulz H, Bram A, Fiedler S. 1999. Refinement of the kaolinite structure from single-crystal synchrotron data. Clays and Clay Minerals, 47(4): 487~494.

    • Peng Chenliang, Min Fanfei, Liu Lingyun. 2017. Effect of pH on the adsorption of dodecylamine on montmorillonite: Insights from experiments and molecular dynamics simulations. Applied Surface Science, 425: 996~1005.

    • Peng Zhilong. 2012. The molecular simulation of the combined forms of metal ions in coal structure. Master's thesis of Taiyuan University of Technical(in Chinese with English abstract).

    • Qin Shenjun, Zhao Cunliang, Li Yanheng, Zhang Yong. 2015. Review of coal as a promising source of lithium. International Journal of Oil, Gas and Coal Technology, (2): 215~229.

    • Sun Beilei, Liu Yunxia, Tajcmanova L, Liu Chao, Wu Jie. 2022. In-situ analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district, Ningwu coalfield, northern China. Ore Geology Reviews, 144: 104825.

    • Sun Beilei, Wang Yao, Li Baoqing, Liu Chao, Guo Zhanming, Zhang Xingxing. 2024. In-situ microanalysis of critical metals in high-lithium coal. Acta Geologica Sinica, doi: 10. 19762/j. cnki. dizhixuebao. 2024094 (in Chinese with English abstract).

    • Sun Jianchun. 2012. Investigation of surface nanocrystallinzation and alloying of commercial iron and diffusion behavior. Doctoral dissertation of Chongqing University(in Chinese with English abstract).

    • Swaine D J. 1990. Trace Elements in Coal. Oxford: Butterworth-Heinemann.

    • Wang Lu. 2022. Study on the efficiency of electric field enhanced graphene material for removing Hg(II) in water. Master's thesis of Yanshan University(in Chinese with English abstract).

    • Wang Xiaomei, Wang Xiaoming, Pan Zhejun, Pan Wenhao, Yin Xuebo, Chai Pancun, Pan Sidong, Yang Qin. 2019. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui basin, northern China, with emphasis on lithium enrichment. International Journal of Coal Geology, 214: 103254.

    • Xu Qianjin. 2013. Molecular dynamics simulations of the adsorption of starch on diaspore (10) surface. Master's thesis of Central South University (in Chinese with English abstract).

    • Zhao Lei, Ward C R, French D, Graham I T, Dai Shifeng, Yang Chao, Xie Panpan, Zhang Siyu. 2018. Origin of a kaolinite-NH 4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng coalfield, Qinshui basin, northern China. International Journal of Coal Geology, 185: 61~78.

    • Zhao Lei, Dai Shifeng, Nechaev V P, Nechaeva E V, Graham I T, French D. 2019. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng coalfield, southeastern Qinshui basin, northern China. Ore Geology Reviews, 115: 103184.

    • Zhang Bin, Sun Beilei, Wang Dezhang, Kang Tianhe, Ma Xin, Zhang Xiaoyu, Li Ligong, Li Haoyang, Liang Xiaomin, Zhu Wenqing, Zhang Junshuang. 2023. Molecular dynamics study on the effect of minerals on the mechanical heterogeneity of anthracite coal: A case study of kaolinite in the southern part of the Qinshui basin. Journal of China Coal Society, doi: 10. 13225/j. cnki. jccs. 2023. 1339 (in Chinese with English abstract).

    • Zhang Dengfeng, Cui Yongjun, Li Songgeng, Song Wenli, Lin Weigang. 2011. Adsorption and diffusion behaviors of methane and carbon dioxide on various rank coals. Journal of China Coal Society, 36(10): 1693~1698(in Chinese with English abstract).

    • Zhang Qidao, Jiang Shaoyong, Wang Wei, Ge Wen. 2024. Current status and prospect of researches on sediment-hosted Li deposits in bauxite formations and coal-bearing stratain China. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 90~101(in Chinese with English abstract).

    • Zuo Jiaqi. 2023. Construction of structure models and parameter evolution characteristics at different scales for coals with different ranks. Master's thesis of Taiyuan University of Technical(in Chinese with English abstract).

    • 曹代勇, 魏迎春, 李阳, 刘志飞, 李焕同, 王路, 吴国强, 宁树正, 徐祥. 2021. 煤系石墨鉴别指标厘定及分类分级体系构建. 煤炭学报, 46(6): 1833~1846.

    • 曹代勇, 刘志飞, 王安民, 王路, 丁正云, 李阳. 2022. 构造物理化学条件对煤变质作用的控制. 地学前缘, 29(1): 439~448.

    • 曹仁义, 黄涛, 程林松, 高占武, 贾志豪. 2021. 水驱油藏中原油极性物质对吸附和润湿性影响的分子模拟. 计算物理, 38(5): 595~602.

    • 代世峰, 任德贻, 李生盛. 2006. 内蒙古准格尔超大型镓矿床的发现. 科学通报, (2): 177~185.

    • 代世峰, 刘池洋, 赵蕾, 刘晶晶, 王西勃, 任德贻. 2022. 煤系中战略性金属矿产资源: 意义和挑战. 煤炭学报, 47(5): 1743~1749.

    • 方乾, 张希, 郭邦军, 刘一晟. 2022. 锂离子扩散系数的测定及影响因素. 电池, 52(3): 277~280.

    • 贾进章, 邢迎欢, 李斌, 贾鹏, 吴禹默, 杨强, 王东明. 2024. 基于蒙特卡罗的硫化氢吸附-扩散机理. 煤炭学报, 49(2): 845~864.

    • 孟令强. 2022. 锂离子电池无定形炭负极材料制备及低温电化学性能研究. 辽宁工程技术大学硕士学位论文.

    • 孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 2023. 不同条件下纳米晶α-Zr蠕变行为的分子动力学模拟. 金属学报, 60(5): 699~712.

    • 彭志龙. 2012. 金属离子在煤结构中赋存形态的分子模拟. 太原理工大学硕士学位论文.

    • 孙蓓蕾, 王瑶, 李宝庆, 刘超, 郭沾明, 张星星.2024. 原位微区分析华北典型富锂煤中关键金属赋存规律. 地质学报, doi: 10. 19762/j. cnki. dizhixuebao. 2024094.

    • 孙建春. 2012. 工业纯铁表面纳米合金化改性及原子扩散行为研究. 重庆大学博士学位论文.

    • 王璐. 2022. 电场强化石墨烯材料去除水中Hg(Ⅱ)效能研究. 燕山大学硕士学位论文.

    • 徐前进. 2013. 淀粉在一水硬铝石(010)面吸附的分子动力学模拟. 中南大学硕士学位论文.

    • 张彬, 孙蓓蕾, 王德璋, 康天合, 马鑫, 张晓雨, 李立功, 李昊洋, 梁晓敏, 朱文庆, 张俊爽. 2023. 矿物对无烟煤力学非均质性影响的分子动力学研究——以沁水盆地南部主要黏土矿物高岭石为例. 煤炭学报, doi: 10. 13225/j. cnki. jccs. 2023. 1339.

    • 张登峰, 崔永君, 李松庚, 宋文立, 林伟刚. 2011. 甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为. 煤炭学报, 36(10): 1693~1698.

    • 张七道, 蒋少涌, 王微, 葛文. 2024. 铝土岩系和煤系地层中沉积黏土型锂矿床: 研究现状与展望. 矿物岩石地球化学通报, 43(1): 90~101.

    • 左家琦. 2023. 不同尺度下不同煤级煤结构模型构建及参数演化特征研究. 太原理工大学硕士学位论文.