-
近年来随着关键金属矿产的增长量与市场需求失衡,寻找和开发新型矿产资源对保障我国资源安全具有重要意义。煤型关键金属矿产资源是当前国际前沿问题,也是煤地质学和矿床学的重要研究方向(代世峰等,2020)。目前,煤系中已发现的关键金属矿床有锗矿床(Zhuang Xinguo et al.,2006; Du Guang et al.,2009; Seredin et al.,2013; Dai Shifeng and Finkelman,2018)、镓铝矿床(Dai Shifeng et al.,2012)、铌-锆-稀土-镓矿床等(Dai Shifeng et al.,2010; Zhao Lixin et al.,2016)。现阶段煤型锗和镓铝矿产已被开发利用,煤型铌-锆-稀土多金属矿床具有非常广阔的开发利用前景(代世峰等,2020)。
-
晚二叠世煤系是我国南方最主要的含煤地层,近年来其关键金属矿产资源是重要的研究方向(杨瑞东等,2006; Dai Shifeng et al.,2010,2018; Liu Jingjing et al.,2019,2021; Shen Minglian et al.,2021; Yang Tianyang et al.,2024a)。滇东宣威组底部的铌-锆-稀土-镓多金属矿床是一个分布广泛、具有很高工业价值的新型关键金属矿床(Dai Shifeng et al.,2016; Zhao Lixin et al.,2016; Wang Ning et al.,2022,2023)。黔西煤层及一些泥岩层中也高度富集铌-钽-锆-铪-稀土等关键金属元素(Liu Jingjing et al.,2021; Yang Tianyang et al.,2024a)。目前滇东黔西地区煤型关键金属富集的成因主要包括:峨眉山地幔柱活动衰退期的火山喷发产物、沉积源区供给、热液和淋滤作用等(Dai Shifeng et al.,2017; Liu Jingjing et al.,2019; Wang Ning et al.,2022,2023; Yang Tianyang et al.,2024a)。尽管煤系关键金属元素富集的成因方面取得了大量的成果,但主要围绕在物质来源和富集过程等方面,而煤系关键金属元素富集层在地层中的分布规律尚缺乏关注。煤系关键金属富集层在地层中的分布规律蕴含了丰富的地质信息,如可以反映聚煤盆地和区域地质构造演化(代世峰等,2014; 黄文辉等,2019),可以指示华南地区西南缘晚二叠世地质事件及其活动规律。本文在前人的研究基础上,着重分析了关键金属富集层在地层中的时空分布规律,探讨其韵律性形成的地质控制因素,并构建了富集矿化模型。
-
1 地质背景
-
研究区位于贵州西部地区(图1)。西南地区是中国晚二叠世重要的成煤区。贵州地区从震旦纪开始到晚三叠世中期是贵州地区稳定盖层发育的主要阶段。中二叠世晚期,沉积盆地西部和南部形成了康滇裂谷带,以及紫云、右江、南盘江等裂陷槽系统,沿断裂带附近出现大规模岩浆喷溢,形成了康滇古陆。中二叠世晚期—晚二叠世海盆不断变迁,沿康滇古陆边缘发育海陆交互环境。受康滇古陆发育的影响,形成了黔西地区西高东低、北高南低的古地理格局,造就了西南地区晚二叠世含煤盆地。乐平统是该区具有代表性的上二叠统含煤层序,自西向东沉积环境多样,包括陆相、过渡相和海相环境(Wang Hao et al.,2011; 沈玉林等,2012,2017)。黔西地区乐平统自下而上分为龙潭组和长兴组。龙潭组总体为一套碎屑岩、碳酸盐岩和煤层沉积,发育多层海相标志层和区域稳定煤层,以深灰色泥质粉砂岩、砂质泥岩为主,碳酸盐岩为脉动式海侵事件的产物,可作为良好的对比标志层(Wang Hao et al.,2011; 邵龙义等,2013)。龙潭组含煤十至几十层,属于不稳定至较稳定的煤层,可采煤层10~15层。长兴组以灰、深灰色泥质粉砂岩、粉砂岩和细砂岩为主,夹泥岩、钙质泥岩、泥灰岩、灰岩,含煤6~20层,可采煤层3~5层煤。
-
2 样品及方法
-
研究样品采集自威宁Y9井、鸡场坪J3井及金沙M2井(图1),为了对比关键金属富集层垂向展布特征,对晚二叠世煤系进行系统采样,样品主要包括泥岩、砂岩及灰岩。全岩微量元素含量在武汉上谱分析科技有限责任公司利用Agilent 7700e ICP-MS分析完成。具体分析方法参照GB/T14506.30—2010《硅酸盐岩石化学分析方法第30部分44种元素的测定》。全岩主量元素含量在武汉上谱分析科技有限责任公司利用日本理学 PrimusⅡ X射线荧光光谱仪(XRF)分析完成。具体分析方法参照GB/T14506.28—2010《硅酸盐岩石化学分析方法第28部分:16种主、次组分的测定》。J3和M2井部分数据见Yang Tianyang et al.(2024a),Y9井数据详细见Yang Tianyang et al.(2024b)。主量测试结果及微量测试结果见附表1。微区原位主、微量元素含量在北京科荟测试公司利用LA-ICP-MS完成,GeolasPro激光剥蚀系统由COMPexPro 102 ArF193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7500。本次分析的激光束斑和频率分别为44 μm和5 Hz。微量元素含量处理中采用玻璃标准物质BHVO-2G,BCR-2G和BIR-1G进行多外标无内标校正。对分析数据的离线处理采用软件ICPMSDataCal完成。
-
图1 华南地块西南缘晚二叠世古地理格局及钻孔位置(改自Wang Xuetian et al.,2020)
-
Fig.1 Late Permian paleogeography and boreholes location in the southwestern margin of South China block (modified after Wang Xuetian et al., 2020)
-
3 结果
-
3.1 全岩主微量元素垂向变化规律
-
3.1.1 Y9井全岩主微量元素垂向变化规律
-
垂向上Y9井的Al2O3/TiO2比值和Th值具有相同的变化趋势,高Th含量层具有GR值高异常的特征(图2)。SiO2/Al2O3的变化与GR和Al2O3/TiO2无显著相关性,通常情况下Zr、Nb等关键金属元素相对富集的层位具有较低的SiO2/Al2O3比值(图2)。Zr、Nb、稀土元素和钇(REY)在垂向上具有非常相似的波动趋势。除去图2中具有高Th低Nb-Zr两层外(图2标注绿色的层位),关键金属元素Zr、Nb和REY与Al2O3/TiO2和Th呈相似的变化趋势(图2标注黄色的层位)。关键金属元素富集层位具有较低的Sr/Ba及较高的CIAcorr(化学蚀变指数,[Al2O3/(Al2O3+CaO*+Na2O+K2Ocorr)]×100)和Rb/Sr,表明其形成于海平面相对较低且气候相对较热的时期(Panahi et al.,2000; Roy and Roser,2013; Armstrong-Altrin et al.,2015; 徐小涛和邵龙义,2018),而且也具有相对较高的V/Ni和V/(V+Ni)(图2),反映了富集层主要发育于水体相对较深的缺氧环境中(Dill,1986; 李广之等,2008; Galarraga et al.,2008; Xie Guoliang et al.,2018)。
-
图2 Y9井垂向地球化学参数变化特征(Al2O3/TiO2、Sr/Ba、REY 和 V/Ni为对数坐标)
-
Fig.2 Variation characteristics of vertical geochemical parameters of well Y9 (Al2O3/TiO2, Sr/Ba, REY and V/Ni are log coordinates)
-
3.1.2 J3井全岩主微量元素垂向变化规律
-
根据前人的研究成果,碎屑物源主要来自沉积区西部的康滇古陆(Liu Jingjing et al.,2019; Shen Minglian et al.,2023; Yang Tianyang et al.,2024a)。J3井处于Y9井东南区域(图1)。J3井相较于Y9井距离物源区更远,其相同层位的关键金属元素含量与Y9井相比含量较低(图3),可能与物源区的距离有关。Al2O3/TiO2值与Th含量具有相似的波动规律,除底部TiO2富集层(图3最底部关键金属富集层)。底部TiO2富集层具有Li、Zr和Nb富集的特征,但REY含量相对较低(图3)。除去图3中高Th低Zr-Nb层,Ga、Zr和Nb与Th具有相同的变化规律。与Y9井相似,J3井的关键金属富集层位也具有Sr/Ba较低、CIAcorr和Rb/Sr相对较高的特征,表明其形成于低海平面且相对较热时期。富集层位具有相对较高的V/Ni和V/(V+Ni)(除去底部关键金属富集层位),反映了其主要形成于水体相对较深的缺氧环境(Galarraga et al.,2008; Xie Guoliang et al.,2018)。
-
3.1.3 M2井全岩主微量元素垂向变化规律
-
M2井位于贵州北部,其长兴组Ga-Zr-Nb-REY的含量相对较低,龙潭组则远高于长兴组(图4)。龙潭组中关键金属Ga-Zr-Nb-REY富集层主要为GR高异常岩层,Al2O3/TiO2比值相对较高。相对于Y9和J3井,M2井的富集样品具有更高的Al2O3/TiO2比值和关键金属元素的含量(图4),如部分层位Zr含量接近5000×10-6,Nb含量超过300×10-6,REY超过2500×10-6(图4)。Li元素在龙潭组底部和长兴组泥岩中也具有较高的含量。M2井关键金属富集层位的Sr/Ba较低,Rb/Sr相对较高。除去少数关键金属富集层的V/Ni和V/(V+Ni)相对较低,M2井其余富集层与Y9和J3井具相同变化规律(图4)。
-
图3 J3井垂向地球化学参数变化特征(Al2O3/TiO2、Li、Zr、Sr/Ba、REY和V/Ni为对数坐标)
-
Fig.3 Variation characteristics of vertical geochemical parameters of well J3 (Al2O3/TiO2, Li, Zr, Sr/Ba, REY and V/Ni are log coordinates)
-
3.2 关键金属元素富集层沉积序列
-
研究区晚二叠世主要处于三角洲到障壁—潟湖沉积环境(沈玉林等,2012; 邵龙义等,2013; Shen Yulin et al.,2019; Yang Tianyang et al.,2021),受周期性海平面变化影响,上二叠统煤系具有明显的节律性(宗毅等,2019)。根据沉积旋回、古环境特征及关键金属类型,总结了6种含Ga-Zr-Nb-REY关键金属富集层沉积序列以及3种含Li富集层沉积序列。
-
3.2.1 Ga-Zr-Nb-REY富集层沉积序列
-
(1)细砂岩—粉砂质泥岩—煤层—泥岩—煤层的沉积序列(图5a)。序列底部为灰绿色细砂岩,与下伏地层冲刷接触,发育交错层理,见植物化石。之后为粉砂质泥岩,发育波状层理,向上变为水平层理,夹薄层细砂岩。序列中部为粉砂质泥岩和薄煤层,见较多菱铁矿结核和植物化石。序列顶部为煤层。富集层主要发育于序列中上部,表现为粉砂质泥岩、泥岩和煤层夹矸。整体上表现为分流间湾—水下分流河道—分流间湾—湿原—沼泽的沉积组合,偶见河道冲刷。
-
(2)粉砂质泥岩—泥岩—煤层—泥岩的沉积组合(图5b)。序列中下部为灰色到深灰色泥岩和粉砂质泥岩,见菱铁矿结核和植物化石,序列上部为泥岩和煤层,顶部为泥岩—细砂岩—泥岩的沉积组合。富集层主要为煤层底板和煤层夹矸。垂向上沉积组合表现为分流间湾—沼泽—分流间湾沉积环境。
-
图4 M2井垂向地球化学参数变化特征(Al2O3/TiO2、Li、Zr、Sr/Ba、REY和V/Ni为对数坐标)
-
Fig.4 Variation characteristics of vertical geochemical parameters of well M2 (Al2O3/TiO2, Li, Zr, Sr/Ba, REY and V/Ni are log coordinates)
-
(3)细砂岩—泥质粉砂岩—泥岩—煤层—泥岩的沉积组合(图5c)。序列下部为灰绿色细砂岩,发育交错层理,可见植物化石和菱铁矿结核,与下伏地层冲刷接触,向上为深灰色含火山灰泥岩。序列中部为粉砂岩,发育交错层理和菱铁矿结核,向上为碳质泥岩和煤层,之后为粉砂质泥岩和泥岩。关键金属富集层为序列上部泥岩,发育水平层理,见菱铁矿结核和植物化石。整体上表现为水下分流河道—席状砂—分流间湾—沼泽—分流间湾的沉积组合。
-
(4)细砂岩—泥岩—煤层的沉积序列(图5d)。该序列底部为深灰色细砂岩,见植物化石和菱铁矿结核,发育交错层理,之后发育含植物化石和菱铁矿结核的深灰色含火山灰泥岩和煤层。向上为细砂岩—泥岩—煤层—泥岩的沉积旋回,发育较多的深灰色到灰黑色碳质泥岩,见丰富的植物化石。垂向上表现为分流间湾—水下分流河道—湿原—沼泽的沉积组合。
-
(5)粉砂岩—泥岩—粉砂岩—煤层沉积序列(图5e)。序列底部为粉砂岩,发育交错层理,可见动物化石,向上发育粉砂质泥岩及硅质岩。之后发育粉砂岩和粉砂质泥岩。序列上部为含动物化石粉砂岩,发育交错层理。序列顶部发育煤层和泥岩。整体沉积组合为砂坪—混合坪—泥坪—沼泽—泥坪。
-
(6)粉砂岩—粉砂质泥岩—煤层沉积组合(图5f)。序列底部为深灰色粉砂岩,发育水平层理,可见动物化石,向上发育泥质粉砂岩,见植物化石和动物化石,之后发育薄煤层及含火山灰粉砂岩。序列中上部表现为煤层—粉砂岩—粉砂质泥岩—粉砂岩的沉积旋回。富集层主要为粉砂岩和粉砂质泥岩,处于混合坪和泥坪的沉积环境中。整体表现为砂坪—混合坪—泥坪的沉积组合。
-
3.2.2 Li富集层沉积序列
-
(1)细砂岩—泥岩—细砂岩—泥岩—煤层—细砂岩沉积序列。序列底部为深灰色细砂岩,含动物化石,向上为棕灰色到深灰色含植物化石泥岩,序列中部为深灰色细砂岩,发育交错层理,向上为深灰色富Li泥岩,序列顶部为煤层和含动物化石粉砂岩(图6a)。垂向上表现为分流间湾—湿原—水下分流河道—沼泽的沉积组合。
-
图5 黔西上二叠统关键金属Ga-Zr-Nb-REY富集层垂向组合方式
-
Fig.5 Vertical combination sequence of Ga-Zr-Nb-REY enrichment layers in Upper Permian in western Guizhou
-
(a~c)—钻孔Y9;(d)—J3井;(e、f)—钻孔M2
-
(a~c) —borehole Y9; (d) —borehole J3; (e, f) —borehole M2
-
(2)煤层—粉砂岩—粉砂质泥岩—煤层—细砂岩沉积序列。序列底为煤层,下段主要为粉砂岩和泥质粉砂岩,发育动物化石,向上为泥岩和煤层,序列上段为发育交错层理的含动物化石细砂岩(图6b)。整体表现为沼泽—混合坪—沼泽—泥坪—砂坪的沉积组合。
-
(3)粉砂岩—灰岩—泥岩—灰岩—泥岩—灰岩沉积序列。序列底部为含动物化石粉砂岩,向上为灰岩夹薄层泥岩的沉积组合(图6c)。整体表现为潟湖—局限台地的沉积特征。
-
4 讨论
-
4.1 关键金属富集层分布规律
-
沉积相和关键金属富集层的分布特征表明绝大多数富集层主要分布在较弱的水动力条件环境中。除J3井底部及M2井龙潭组下段一层富集层具有较低的V/Ni和V/(V+Ni)比值外(图3、图4),其余均具有相对较高的比值,反映了相对较深和缺氧的水体环境(Dill,1986; 李广之等,2008)。图2~4中Ga-Zr-Nb-REY富集层均具有较低的Sr/Ba比值,表明其形成于海平面相对较低时期(Armstrong-Altrin et al.,2015)。地球化学垂向分布及沉积序列特征表明Ga-Zr-Nb-REY富集层垂向分布规律与沉积旋回具有很好的耦合关系。Ga-Zr-Nb-REY富集层主要为煤层顶底板、煤层夹矸、灰岩间泥岩夹层以及泥岩夹层(图5、图6),表明其主要分布在煤层附近或者沉积旋回内的大致相同的层位。火山灰输入被认为是关键金属富集的重要因素之一(Dai Shifeng et al.,2010,2017; Liu Jingjing et al.,2019; Yang Tianyang et al.,2024a),Ga-Zr-Nb-REY富集层主要为GR高异常岩层,这与同沉积板内火山灰的输入有关(图2~4)。关键金属富集层垂向展布的节律性可能与火山活动的周期相关。海平面周期性变化引起区域地壳应力的改变进而协调了火山活动(Kutterolf et al.,2013; Sternai et al.,2017; Satow et al.,2021; Yang Tianyang et al.,2024b),形成了周期性分布的含火山灰层。气候和海平面周期性演化控制了沉积旋回及影响了含火山灰层的分布特征,进而控制了Ga-Zr-Nb-REY富集层的垂向分布规律(沈玉林等,2022; 杨天洋等,2024; Yang Tianyang et al.,2024b)。
-
垂向上,Ga-Zr-Nb-REY关键金属元素富集层都表现出富集层的厚度逐渐减薄和关键金属元素的含量逐渐降低的变化趋势,这表明与火山灰的输入强度逐渐降低有关。M2井龙潭组下段关键金属富集层具相对较高的Al2O3/TiO2比值,表明其火山灰含量相对较高,混入的其他物质较少,其关键金属元素如Ga、Zr(Hf)、Nb(Ta)和REY含量极高,但富集层厚度较薄(图2~4)。横向上,相同Ga-Zr-Nb-REY关键金属富集层中,Y9井的富集层具有更高的关键金属元素含量,J3井含量相对较低,而M2井长兴组几乎未保存含板内火山灰层(Yang Tianyang et al.,2024a)。相同层位的关键金属富集层厚度变化在横向上具有西部厚东部薄的特征,关键金属的含量也具有西部高、东部低的特征。板内火山灰主要来自沉积区西部及西北部(Liu Jingjing et al.,2019; Shen Minglian et al.,2023; Yang Tianyang et al.,2024a),物源输入及与搬运距离控制了这种变化规律。
-
图6 黔西上二叠统Li元素富集层沉积序列
-
Fig.6 Sedimentary sequence of Li element enrichment layers in the Upper Permian in western Guizhou
-
(a)—J3井Li富集层沉积序列;(b、c)—M2井Li富集层沉积序列
-
(a) —sedimentary sequence of Li enrichment layers in well J3; (b, c) —the sedimentary sequence of Li enrichment layer in well M2
-
Ga-Zr-Nb-REY富集层沉积序列特征表明富集层主要处于沉积旋回内大致相同的层位,具有很强的韵律性,依据岩性变化可有效判识关键金属富集层位。黔西上二叠统及黔北龙潭组以碎屑岩为主,Li富集层主要为煤层底板,但发育层数较少,未能形成显著的垂向分布规律。M2井长兴组Li富集层为灰岩间泥岩夹层,这种发育规律可能与局限环境有关。
-
4.2 关键金属富集的地质控制因素
-
前人研究认为关键金属富集的成因主要包括陆源碎屑输入、火山灰沉降、热液活动及沉积环境等(Dai Shifeng et al.,2010,2017; Zhao Lixin et al.,2016; Liu Jingjing et al.,2019,2021; Wang Ning et al.,2022,2023; Yang Tianyang et al.,2024a)。黔西上二叠统煤系关键金属富集层主要为含板内火山灰层,在垂向上节律性分布,其形成过程受板内火山活动规律及强度、沉积控制因素及热液活动的影响(Dai Shifeng et al.,2017; Liu Jingjing et al.,2019; Yang Tianyang et al.,2021,2024a,2024b; 杨天洋等,2024)。
-
4.2.1 火山活动强度及规律
-
复杂的地质过程中大部分活泼元素已经发生迁移,矿物组分也发生了变化,但高场强元素因其稳定残留了下来(Hayashi et al.,1997; Spears,2012; Kiipli et al.,2013,2017; Dai Shifeng et al.,2017)。研究区上二叠统保存的火山灰的锆石年龄与地层沉积时限基本一致(Yang Tianyang et al.,2024a,2024b),表明火山灰主要为同沉积火山喷发产物。锆石微量元素结果表明Ga-Zr-Nb-REY关键金属富集层中的火山灰为板内火山喷发产物(Yang Tianyang et al.,2024a)。因此板内火山活动规律和强度也约束了关键金属富集的程度和垂向分布规律。一般而言,火山灰在地层中的占比会影响到地球化学和地球物理的数据差异。相对于其他来源,板内火山灰具有更高含量的Zr、Hf、Nb和Ta,因此在Al归一化[XN=(X样品/Al样品)/(XUCC/AlUCC)]处理后这些元素的Al归一化值可以反映出板内火山灰在地层中的占比。GR高异常值与ThN呈正相关关系(图7),表明火山灰在地层中占比越高,GR数据的幅值也越高,也可以反映出火山灰在地层中的占比。因此地球化学和GR数据结合分析可以反映出晚二叠世煤系关键金属元素的富集程度。火山活动强度越强,往往会产出更多的喷发产物,可以形成火山灰层或火山灰占比高的含火山灰层。
-
火山活动规律影响到(含)火山灰层在地层中的分布。除龙潭组底部的关键金属元素富集层外,其余层位在地层中分布具有周期性(杨天洋等,2024; Yang Tianyang et al.,2024b),含板内火山灰层主要分布在泥岩、煤层顶底板和煤层夹矸之中,在旋回内部具有明显的规律性(图5、图6)。火山活动与海平面和气候之间变化关系表明火山活动主要发生在海平面快速上升阶段(Yang Tianyang et al.,2024b),在沉积旋回内可以通过岩性变化和垂向组合关系判断含火山灰层分布的位置,进而识别Ga-Zr-Nb-REY关键金属富集层位。
-
图7 黔西到黔北地区Y9(a)、J3(b)和M2(c)井上二叠统GR和ThN的相关性分析(峨眉山高钛玄武岩数据引自Xu Yigang et al.,2001)
-
Fig.7 Correlation analysis of GR and ThN of Upper Permian in wells Y9 (a) , J3 (b) and M2 (c) in western to northern Guizhou (the data of Emeishan high-Ti basalt are cited from Xu Yigang et al., 2001)
-
4.2.2 淋滤作用及沉积环境
-
古地理格局和沉积环境对火山灰的保存和运移是影响关键金属富集的重要影响因素。关键金属如Nb、Ta、Hf、Zr等都是高场强元素,在沉积和成岩过程中几乎不发生迁移。但存在一部分样品具有较低的Nb、Ta、Y和REE,而Zr和Hf的含量却相对较高的特征(Yang Tianyang et al.,2021)。根据物源分析结果,这些层位的物质来源均为峨眉山大火成岩省衰退期的火山喷发产物(Zhao Lixin et al.,2016,2017; Dai Shifeng et al.,2018; Yang Tianyang et al.,2021,2024a; Shen Minglian et al.,2023; 杨天洋等,2024),表明这些特征并不是因物质来源不同造成的。尤其是龙潭组底部的凝灰岩段,部分区域发生了明显的关键金属Nb、Ta、Y和REE迁移的现象(Yang Tianyang et al.,2021),滇东地区也发生了关键金属迁移,但其Nb和Ta元素并未发生较为明显的迁移(Dai Shifeng et al.,2018)。这些现象被认为受到了强烈的淋滤作用以及大气降水与低温热液混合作用(Dai Shifeng et al.,2018; Yang Tianyang et al.,2021),即古地理格局影响到沉积物中Nb(Ta)-REY等元素在地表的地质过程。J901井龙潭组底部凝灰岩段的上部发生了强烈的淋滤作用,并形成了硬水铝石和勃姆石,其包含的Nb、Ta和REY等关键金属元素发生了迁移(Yang Tianyang et al.,2021)。其他地区并未发生剧烈的淋滤作用,凝灰岩段的关键金属元素保存完好。除龙潭组底部凝灰岩段外,J3井存在个别层位发生了REY迁移的现象(图3)。这表明在晚二叠世仍存在部分区域遭受淋滤作用,并使得活性比Nb和Ta较高的REY发生迁移。因此,在分析关键金属是否富集时,除了考虑地层中是否含有板内火山灰,也需综合沉积期古地理特征,关注淋滤作用造成关键金属元素迁移。
-
古地理格局可造成关键金属元素的淋滤迁移,沉积环境的水动力强弱将制约关键金属元素的保存。晚二叠世黔西整体以三角洲平原、三角洲前缘、障壁—潟湖及碳酸盐台地沉积为主,由西向东为陆相向海相转变(Wang Xuetian et al.,2020),黔西到黔北地区沉积环境更适合沉积物的保存,但距离火山灰源区更远,板内火山灰层的厚度和数量也从西向东逐渐变薄变少,进而影响关键金属富集层的厚度及层数。M2井为障壁—潟湖到碳酸盐台地环境,但保存的含板内火山灰层数量相对于黔西的钻孔明显减少。黔西地区的沉积环境整体具有相对较弱的水动力条件(Yang Tianyang et al.,2024b),火山灰可以得到较好的保存。
-
除M2井长兴组的Li富集层在垂向上具有一定的规律,其余富集层的分布未显示出显著的分布规律。J3井及M2井龙潭组的Li富集层为煤层底板(图6a、b),其形成受到了热液活动及沉积环境的影响。M2井长兴组的Li富集层为灰岩间泥岩层(图6c),依据沉积序列特征,Li富集层形成于相对局限的潟湖环境中。在局限环境下,活泼的Li元素难以迁移并逐渐富集形成富集层。
-
4.2.3 热液活动
-
热液活动也被认为是关键金属富集层形成的重要原因之一(Dai Shifeng et al.,2018; Liu Jingjing et al.,2019,2021; Wang Ning et al.,2022,2023)。叶腊石(Al2[Si4O10](OH)2)主要由中酸性喷出岩和凝灰岩等经热液作用蚀变形成(Watanabe and Hedenquist,2001),这强有力地证明了热液活动存在。除去M2井长兴组形成于局限环境的Li富集层外,其余主要为煤层底板(图6)。Li元素富集层位主要分布在少量的含火山灰层中,火山灰可能是Li的来源之一,但黔西地区沉积环境不利于Li的保存和富集,因此大多数含火山灰层的Li并不富集。J3井中Li富集层及围岩鉴定出热液成因的叶腊石,并且具有异常高的Li含量(图8,表1)。因此,热液流体可能是黔西地区及M2井龙潭组Li富集层形成的原因之一(Yang Tianyang et al.,2024a)。对于更多的地层而言,其地球化学性质并未表现出更为显著的富集,更为重要的是热液活动可能是促进了矿物中的元素重组(Zhao Lixin et al.,2017; Dai Shifeng et al.,2018)。热液活动对关键金属元素富集和元素重组的影响需要更多的证据。
-
4.3 煤系关键金属元素富集成矿模型
-
综上所述,黔西晚二叠世煤系关键金属元素富集层形成受火山活动强度及节律、沉积控制及热液活动的综合影响。依据煤系关键金属元素富集的地质控制因素总结了其富集成矿模型(图9)。
-
火山活动强度影响了火山灰喷发量,控制了火山灰在地层中的占比,进而影响到关键金属的富集程度。根据全岩地球化学结果及GR数据变化,关键金属含量和GR幅值向上逐渐变低,反映了板内火山活动强度逐渐下降(图4; Yang Tianyang et al.,2024b)。龙潭组中下段的含火山灰层中的关键金属含量相对较高,层厚相对较厚,是潜在的多金属富集矿床。黔西煤系关键金属元素富集层主要为煤层及其顶底板、夹矸、灰岩中泥岩夹层等(图5),其垂向上展布具显著的节律性。火山活动规律控制了含火山灰层在地层中的分布(杨天洋等,2024; Yang Tianyang et al.,2024b),进而在黔西晚二叠世煤系中形成具有周期性分布的关键金属富集层(图9)。古地理格局控制沉积物是否受到淋滤作用,进而影响关键金属元素的保存和迁移,如J3井存在REY的浸出和迁移(图3)。沉积控制因素对关键金属元素的富集和保存起到了极为关键的作用。根据垂向序列特征,黔西地区关键金属富集层主要发育于沼泽及分流间湾环境,少量层位为三角洲前缘席状砂环境,黔西北主要为泥坪和沼泽环境(图5)。沉积环境影响到火山灰的保存,合适的沉积环境下板内火山灰的保存将形成Ga-Zr-Nb-REY关键金属富集层位。局限环境下Li元素被保存下来并富集成矿。叶腊石的地球化学特征表明热液活动可能是Li元素的主要来源之一,附近层位中的Ti、Gd的富集可能与热液流体相关(附表1)。
-
图8 黔西J3井样品3-20叶腊石微区成分分析选点位置
-
Fig.8 In-situ component analysis spots of pyrophyllite of sample 3-20 from borehole J3 in western Guizhou
-
(a)—叶腊石单偏光;(b)—叶腊石正交偏光
-
(a) —plane polarized light of pyrophyllite; (b) —cross polarized light of pyrophyllite
-
黔西上二叠统煤系关键金属元素富集层的发育在沉积旋回内具有明显的规律,根据沉积组合特征可以有效判识关键金属富集层在地层中的时空分布规律。
-
5 结论
-
基于地球化学及沉积旋回特征总结了6种含Ga-Zr-Nb-REY关键金属富集层沉积序列及3种Li富集层沉积序列。Ga-Zr-Nb-REY关键金属富集层主要为煤层顶底板、夹矸、灰岩间夹层等,处于沉积旋回内的大致相同的层位,主要发育在海平面相对较低的时期。
-
图9 黔西晚二叠世煤系关键金属富集成矿模型
-
Fig.9 Metallogenic model of critical metal elements enrichment in Late Permian coal measures in western Guizhou
-
垂向上火山活动规律控制了火山灰沉降的时间进而影响Ga-Zr-Nb-REY关键金属富集层在地层中的分布规律,火山活动强度影响了火山喷发量,在垂向上富集层逐渐变薄及含量变低。古环境控制了沉积物的保存和迁移,在地表过程中遭受不同程度的淋滤作用导致关键金属元素发生不同程度的迁移,进而影响了关键金属富集层的富集特征。Li元素富集层主要为含火山灰层,其富集可能受到了火山灰、热液及局限环境的共同影响。
-
附件:本文附件(附表1)详见https://www.geojournals.cn/dzxb/dzxb/article/abstract/202408091?st=article_issue
-
参考文献
-
Armstrong-Altrin J, Machain-Castillo M, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza J, Carolina Ruiz-Fernandez A. 2015. Provenance and depositional history of continental slope sediments in the southwesterngulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95: 15~26.
-
Dai Shifeng, Zhou Yiping, Zhang Mingquan, Wang Xibo, Wang Juming, Song Xiaolin, Jiang Yaofa, Luo Yangbing, Song Zhentao, Yang Zong, Ren Deyi. 2010. A new type of Nb (Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. International Journal of Coal Geology, 83(1): 55~63.
-
Dai Shifeng, Ren Deyi, Chou Chenlin, Finkelman R, Seredin V, Zhou Yiping. 2012. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94(3): 3~21.
-
Dai Shifeng, Ren Deyi, Zhou Yiping, Seredin V, Li Dahua, Zhang Mingquan, Hower J, Ward C, Wang Xibo, Zhao Lei, Song Xiaolin. 2014. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation. Journal of China Coal Society, 39(8): 1707~1715 (in Chinese with English abstract).
-
Dai Shifeng, Graham I, Ward C. 2016. A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159: 82~95.
-
Dai Shifeng, Ward C, Graham I, French D, Hower J, Zhao Lei, Wang Xibo. 2017. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Reviews, 175: 44~74.
-
Dai Shifeng, Nechaev V, Chekryzhov I, Zhao Lixin, Vysotskiy S, Graham I, Ward C, Ignatiev A, Velivetskaya T, Zhao Lei, French D, Hower J. 2018. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos, 302: 359~369.
-
Dai Shifeng, Finkelman R. 2018. Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 186: 155~164.
-
Dai Shifeng, Zhao Lei, Wei Qiang, Song Xiaolin, Wang Wenfeng, Liu Jingjing, Duan Piaopiao. 2020. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution. Chinese Science Bulletin, 65(33): 3715~3729 (in Chinese with English abstract).
-
Dill H. 1986. Metallogenesis of early Paleozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany). Economic Geology, 81(4): 889~903.
-
Du Guang, Zhuang Xinguo, Querol X, Izquierdo M, Alastuey A, Moreno T, Font O. 2009. Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. International Journal of Coal Geology, 78(1): 16~26.
-
Galarraga F, Llamas J, Martinez A, Martinez M, Marquez G, Reategui K. 2008. V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins. Journal of Petroleum Science and Engineering, 61(1): 9~14.
-
Hayashi K, Fujisawa H, Holland H, Ohmoto H. 1997. Geochemistry of approximately 1. 9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61(19): 4115~4137.
-
Huang Wenhui, Jiu Bo, Li Yuan. 2019. Distribution characteristics of rare earth elements in coal and its prospects on development and exploitation. Journal of China Coal Society, 44(1): 287~294 (in Chinese with English abstract).
-
Kiipli T, Kallaste T, Kiipli E, Radzevicius S. 2013. Correlation of Silurian bentonites based on the immobile elements in the east Baltic and Scandinavia. GFF, 135(2): 152~161.
-
Kiipli T, Hints R, Kallaste T, Vers E, Voolma M. 2017. Immobile and mobile elements during the transition of volcanic ash to bentonite-An example from the early Palaeozoic sedimentary section of the Baltic basin. Sedimentary Geology, 347: 148~159.
-
Kutterolf S, Jegen M, Mitrovica J, Kwasnitschka T, Freundt A, Huybers P. 2013. A detection of Milankovitch frequencies in global volcanic activity. Geology, 41 (2): 227~230.
-
Li Guangzhi, Hu Bin, Deng Tianlong, Yuan Ziyan. 2008. Petroleum geological significance of microelements V and Ni. Natural Gas Geoscience, 19(1): 13~17 (in Chinese with English abstract).
-
Liu Jingjing, Song Hongjian, Dai Shifeng, Nechaev V, Graham I, French D, Nechaeva E. 2019. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input. Ore Geology Reviews, 115: 103190.
-
Liu Jingjing, Dai Shifeng, Song Hongjian, Nechaev V, French D, Spiro B, Graham I, Hower J, Shao Longyi, Zhao Jingtao. 2021. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong coalfield, western Guizhou, China. International Journal of Coal Geology, 247: 103855.
-
Panahi A, Young G, Rainbird R. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochimica et Cosmochimica Acta, 64(13): 2199~2220.
-
Roy D, Roser B. 2013. Climatic control on the composition of Carboniferous Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Research, 23(3): 1163~1171.
-
Satow C, Gudmundsson A, Gertisser R, Ramsey C, Bazargan M, Pyle D, Wulf S, Miles A, Hardiman M. 2021. Eruptive activity of the Santorini volcano controlled by sea-level rise and fall. Nature Geoscience, 14(8): 586~592.
-
Seredin V, Dai Shifeng, Sun Yuzhuang, Cheryzhov I. 2013. Coal deposits as promising sources of rare metal for alternative power and energy-efficient technologies. Applied Geochemistry, 31: 1~11.
-
Shao Longyi, Gao Caixia, Zhang Chao, Wang Hao, Guo Lijun, Gao Caihong. 2013. Sequence-palaeogeography and coal accumulation of late Permian in southwestern China. Acta Sedimentologica Sinica, 31(5): 856~866 (in Chinese with English abstract).
-
Shen Minglian, Dai Shifeng, Graham I, Nechaev V, French D, Zhao Fenghua, Shao Longyi, Liu Shande, Zuo Jianping, Zhao Jingtao, Chen Kun, Xie Xuanhao. 2021. Mineralogical and geochemical characteristics of altered volcanic ashes (tonsteins and K-bentonites) from the latest Permian coal-bearing strata of western Guizhou Province, southwestern China. International Journal of Coal Geology, 237: 103707.
-
Shen Minglian, Dai Shifeng, Nechaev V, French D, Graham I, Liu Shande, Chekryzhov I, Tarasenko I, Zhang Shaowei. 2023. Provenance changes for mineral matter in the latest Permian coals from western Guizhou, southwestern China, relative to tectonic and volcanic activity in the Emeishan large igneous province and Paleo-Tethys region. Gondwana Research, 113: 71~88.
-
Shen Yulin, Qin Yong, Guo Yinghai, Yi Tongsheng, Shao Yubao, Jin Hongbo. 2012. Sedimentary controlling factor of unattached multiple superimposed coalbed-methane system formation. Earth Science, 37(3): 573~579 (in Chinese with English abstract).
-
Shen Yulin, Qin Yong, Li Zhuangfu, Jin Jun, Wei Zhanhang, Zheng Jun, Zhang Tao, Zong Yi, Wang Xiaohao. 2017. The sedimentary origin and geological significance of siderite in the Longtan Formation of western Guizhou Province. Earth Science Frontiers, 24(6): 152~161 (in Chinese with English abstract).
-
Shen Yulin, Qin Yong, Wang G, Xiao Qian, Shen Jian, Jin Jun, Zhang Tao, Zong Yi, Liu Jinbang, Zhang Yijie, Zheng Jun. 2019. Sealing capacity of siderite-bearing strata: The effect of pore dimension on abundance and micromorphology type of siderite in the Lopingian (Late Permian) coal-bearing strata, western Guizhou Province. Journal of Nature Gas Science and Engineering, 178: 180~192.
-
Shen Yulin, Zhang Yunfei, Yang Tianyang, Hu Jiangchen, Jin Jun, Mu Xiwei, Huang Wen, Li Fayue, Zhao Yong, Zhang Yijie. 2022. Enrichment of strategic metals constrained by astronomical orbits in Late Permian coal measures in Panxian, Guizhou. Journal of China Coal Society, 47(5): 1840~1850 (in Chinese with English abstract).
-
Spears D. 2012. The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks. International Journal of Coal Geology, 94(S1): 22~31.
-
Sternai P, Caricchi L, Garcia-Castellanos D, Jolivet L, Sheldrake T, Castelltort S. 2017. Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis. Nature Geoscience, 10(10): 783~787.
-
Wang Hao, Shao Longyi, Hao Liming, Zhang Pengfei, Glasspool I, Wheeley J, Wignall P, Yi Tongsheng, Zhang Mingquan, Hilton J. 2011. Sedimentology and sequence stratigraphy of the Lopingian (Late Permian) coal measures in southwestern China. International Journal of Coal Geology, 85(1): 168~183.
-
Wang Ning, Dai Shifeng, Wang Xibo, Nechaev V, French D, Graham I, Zhao Lei, Song Xiaolin. 2022. New insights into the origin of Middle to Late Permian volcaniclastics (Nb-Zr-REY-Ga-rich horizons) from eastern Yunnan, SW China. Lithos, 420~421: 106702.
-
Wang Ning, French D, Dai Shifeng, Graham I, Zhao Lei, Song Xiaolin, Zheng Jintian, Gao Yan, Wang Yan. 2023. Origin of chamosite and berthierine: Implications for volcanic-ash derived Nb-Zr-REY-Ga mineralization in the Lopingian sequences from eastern Yunnan, SW China. Journal of Asian Earth Science, 253: 105703.
-
Wang Xuetian, Shao Longyi, Eriksson K, Yan Zhiming, Wang Jumin, Li Hui, Zhou Ruxian, Lu Jing. 2020. Evolution of a plume-influenced source-to-sink system: An example from the coupled central Emeishan large igneous province and adjacent western Yangtze cratonic basin in the Late Permian, SW China. Earth Science Reviews, 207: 103224.
-
Watanabe Y, Hedenquist J. 2001. Mineralogic and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile. Economic Geology, 96(8): 1775~1797.
-
Xie Guoliang, Shen Yulin, Liu Shugen, Hao Weiduo. 2018. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu sag, East China Sea basin: Implications for provenance, depositional conditions and paleoclimate. Marine and Petroleum Geology, 92: 20~36.
-
Xu Xiaotao, Shao Longyi. 2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography, 20(3): 515~522(in Chinese with English abstract).
-
Xu Yigang, Chung S, Jahn B, Wu Genyao. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalt in southwestern China. Lithos, 58(3~4): 145~168.
-
Yang Ruidong, Wang Wei, Bao Miao, Wang Qiang, Wei Huairui. 2006. Geochemical character of rare earth mineral from the top of Permian basalt, Hezhang County, Guizhou Province. Mineral Deposits, 25(S1): 205~208 (in Chinese with English abstract).
-
Yang Tianyang, Shen Yulin, Qin Yong, Jin Jun, Zhang Yijie, Tong Gencheng, Liu Jinbang. 2021. Distribution of radioactive elements (Th, U) and formation mechanism of the bottom of the Lopingian (Late Permian) coal-bearing series in western Guizhou, SW China. Journal of Petroleum Science and Engineering, 205: 108779.
-
Yang Tianyang, Shen Yulin, Jin Jun, Huang Wen, Mu Xiwei, Li Fayue, Zhang Yunfei, Hu Jiangchen. 2024. Rhythmicity and geological significance of positive anomalous natural gamma layers in Late Permian coal-bearing series in western Guizhou. Earth Science, https: //link. cnki. net/urlid/42. 1874. P. 20240405. 1500. 002 (in Chinese with English abstract).
-
Yang Tianyang, Shen Yulin, Lu Lu, Jin Jun, Huang Wen, Li Fayue, Zhang Yunfei, Hu Jiangchen, Zeng Lijun. 2024a. Geological factors for the enrichment of critical elements within the Lopingian (Late Permian) coal-bearing strata in western Guizhou, southwestern China: Constrained with whole-rock and zircon geochemistry. International Journal of Coal Geology, 282: 104441.
-
Yang Tianyang, Shen Yulin, Lu Lu, Jin Jun, Zhang Yunfei, Zeng Lijun, Jiang Fan, Zhao Ya. 2024b. Milankovitch cycles recorded by the Late Permian volcanic ash layers in southwestern China. Marine and Petroleum Geology, 161: 106671.
-
Zhao Lixin, Dai Shifeng, Graham I, Li Xiao, Zhang Beibei. 2016. New insights into the lowest Xuanwei Formation in eastern Yunnan Province, SW China: Implications for Emeishan large igneous province felsic tuff deposition and the cause of the end-Guadalupian mass extinction. Lithos, 264: 375~391.
-
Zhao Lixin, Dai Shifeng, Graham I, Li Xiao, Liu Huidong, Song Xiaolin, Hower J, Zhou Yiping. 2017. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geology Reviews, 80: 116~140.
-
Zhuang Xinguo, Querol X, Alastuey A, Juan R, Plana F, Lopez-Soler A, Du Guang, Martynov V. 2006. Geochemistry and mineralogy of the Cretaceous Wulantuga high germanium coal deposit in Shengli coal field, Inner Mongolia, Northeastern China. International Journal of Coal Geology, 66(1~2): 119~136.
-
Zong Yi, Shen Yulin, Qin Yong, Jin Jun, Liu Jinbang, Tong Gencheng, Zheng Jun, Zhang Yijie. 2019. High frequency cyclic sequence based on the Milankovitch cycles in upper Permian coal measures in Panxian, western Guizhou Province. Geological Journal of China Universities, 25(4): 598~560.
-
代世峰, 任德贻, 周义平, Seredin V, 李大华, 张名泉, Hower J, Ward C, 王西勃, 赵蕾, 宋晓林. 2014. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价. 煤炭学报, 39(8): 1707~1715.
-
代世峰, 赵蕾, 魏强, 宋晓林, 王文峰, 刘晶晶, 段飘飘. 2020. 中国煤系中关键金属资源: 富集类型与分布. 科学通报, 65(33): 3715~3729.
-
黄文辉, 久博, 李媛. 2019. 煤中稀土元素分布特征及其开发利用前景. 煤炭学报, 44(1): 287~294.
-
李广之, 胡斌, 邓天龙, 等, 2008. 微量元素V和Ni的油气地质意义. 天然气地球科学, 19(1): 13~17.
-
邵龙义, 髙彩霞, 张超, 王浩, 郭立君, 高彩红. 2013. 西南地区晚二叠世层序古地理及聚煤特征. 沉积学报, 31(5): 856~866.
-
沈玉林, 秦勇, 郭英海, 易同生, 邵玉宝, 金洪波. 2012. “多层叠置独立含煤层气系统”形成的沉积控制因素. 地球科学, 37(3): 573~579.
-
沈玉林, 秦勇, 李壮福, 金军, 魏展航, 郑俊, 张涛, 宗毅, 王晓豪. 2017. 黔西上二叠统龙潭组菱铁矿层的沉积成因及地质意义. 地学前缘, 24(6): 152~161.
-
沈玉林, 张云飞, 杨天洋, 胡江晨, 金军, 慕熙玮, 黄文, 李发跃, 赵勇, 张一杰. 2022. 贵州盘县晚二叠世煤系天文轨道约束的战略性金属富集. 煤炭学报, 47(5): 1840~1850.
-
徐小涛, 邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515~522.
-
杨瑞东, 王伟, 鲍淼, 王强, 魏怀瑞. 2006. 贵州赫章二叠系玄武岩顶部稀土矿床地球化学特征. 矿床地质, 25(S1): 205~208.
-
杨天洋, 沈玉林, 金军, 黄文, 慕熙玮, 李发跃, 张云飞, 胡江晨. 2024. 黔西晚二叠世煤系自然伽马高异常岩层周期性及地质意义. 地球科学, https: //link. cnki. net/urlid/42. 1874. P. 20240405. 1500. 002.
-
宗毅, 沈玉林, 秦勇, 金军, 刘近帮, 仝根成, 郑俊, 张一杰. 2019. 基于米氏旋回的黔西盘县上二叠统煤系高频层序研究. 高校地质学报, 25(4): 598~609.
-
摘要
黔西晚二叠世煤系关键金属元素富集层在垂向上叠置分布,但其在地层中的时空分布规律尚不清楚。详细研究关键金属富集层的时空分布规律可以预测其分布特征及了解该时期富集成矿规律与地质事件的联系。本文分析了煤系关键金属富集层的地球化学特征及垂向分布规律,探讨了其形成的地质控制因素。结果表明煤系Ga-Zr-Nb-REY关键金属富集层为自然伽马高异常岩层,具有低Sr/Ba、较高的Rb/Sr和CIAcorr值,以及相对较高的V/Ni和V/(V+Ni),表明在气候相对炎热、海平面仍相对较低时期形成于水体相对较深的缺氧环境中。根据富集层垂向分布特征总结了6种Ga-Zr-Nb-REY富集层沉积序列及3种Li富集层沉积序列,其中Ga-Zr-Nb-REY富集层垂向分布特征表明富集层在沉积旋回内处于相对一致的层位。M2井长兴组的Li富集层在垂向上有显著的旋回性。Ga-Zr-Nb-REY关键金属富集层为含板内火山灰层,其垂向叠置规律及关键金属元素含量受板内火山活动规律及强度控制。古地理格局控制了沉积物在地表遭受淋滤作用的强度,经历较弱或未经历淋滤作用的含板内火山灰层具有关键金属元素富集的特征。弱水动力条件利于火山灰的保存,局限环境可能是形成Li富集层的重要原因。在热液流体的影响下形成了黔西地区偶现的Li、Ti富集层。这种富集成矿规律及分布模式可以有效地预测关键金属元素富集层位的时空分布规律。
Abstract
The Late Permian coal measures of western Guizhou exhibit vertically superimposed critical metal element enrichment layers,yet their spatiotemporal distribution in the strata remains unclear. Understanding the spatial and temporal distribution of these critical metal-rich layers is crucial for predicting their distribution characteristics and elucidating the relationship between enrichment mineralization patterns and geological events during this period. This study analyzes the geochemical characteristics and vertical distribution of critical metal enrichment layers in these coal measures, aiming to identify the underlying geological controlling factors. The results show that the critical metal enrichment layers in the coal measures are characterized by a natural gamma-positive anomaly, low Sr/Ba ratios, elevated Rb/Sr and CIA corrvalues, and relatively high V/Ni and V/(V+Ni) ratios, indicating that they were formed in a relatively deep, anoxic environment during a period of relatively hot climate and low sea level. According to the observed vertical distribution patterns, we delineate six distinct depositional sequences for Ga-Zr-Nb-REY enrichment layers and three for Li enrichment layers. The vertical distribution consistently favors critical metal enrichment layers within coal seam roofs and floors, dirt bands, limestone interlayers, and mudstone interlayers. This consistent positioning in the sedimentary cycle suggests a shared depositional environment. The Ga-Zr-Nb-REY enrichment layers are mainly attributed to intraplate volcanic ash layers. Their vertical superposition pattern and critical metal element content are directly controlled by the pattern and intensity of intraplate volcanic activity. The paleogeographic setting influences the intensity of surface leaching, with intraplate volcanic ash layers experiencing weak or no leaching exhibiting enriched critical metal element characteristics. Weak hydrodynamic conditions are conducive to the preservation of volcanic ash, and the limited environment may be an important reason for the formation of Li-enriched layers. Hydrothermal fluidactivity is also implicated in the enrichment of Ti and Li in certain layers. The metallogenic regularity and distribution model can effectively predict the spatiotemporal distribution of critical metal element enrichment layers.