-
关键金属(critical metals)指的是现今社会必需,但安全供应存在较高风险的一类矿产的总称(侯增谦等,2020),在新材料、新能源和信息技术等领域具有不可替代的用途,是重要的战略资源(翟明国等,2019)。含煤岩系是关键金属赋存的重要载体之一,目前已发现多个大型或超大型关键金属矿床,如内蒙古准格尔和大青山煤田的煤-镓(铝)矿床(Dai Shifeng et al.,2006,2015)、山西宁武煤田平朔矿区和沁水盆地晋城矿区、阳泉矿区等地的煤-锂矿床(孙蓓蕾等,2022;Sun Beilei et al.,2022a,2022b,2023)和云南临沧煤-锗矿床(魏强等,2020)等,是传统金属矿产的重要补充(代世峰等,2022)。Dai Shifeng et al.(2010)在我国滇东—黔西地区上二叠统煤系底部,发现富集Nb、Zr、REY和Ga等关键金属的矿层,并命名为煤系Nb-Zr-REY-Ga多金属共富集矿床。根据已有钻孔和露头剖面资料,该矿床累积厚度一般2~8 m(局部10 m以上),主要关键金属浓度是其相应的工业品位的2~5倍,并在自然伽马测井曲线上表现出明显的正异常,是我国最有开发潜力的煤系关键金属资源之一。
-
目前关于滇东地区Nb-Zr-REY-Ga矿层的研究多集中在其物质来源、赋存状态和成矿模式等方面(Dai Shifeng et al.,2010,2012,2021;Zhao Lixin et al.,2016,2017;代世峰等,2020,2024;Wang Ning et al.,2022a,2022b,2023,2024),而对该矿床关键金属浓度和厚度的垂向和空间分布规律的精细勘探方法还缺少研究,尽管它们对下一步该关键金属矿床的资源评价、勘探、开发和靶区优选具有重要意义。当前,通过钻井和探槽等工程,采取岩石样品,开展岩石地球化学测试,是获取矿层位置、厚度及关键金属浓度的最直接和最准确的手段。但该勘查方法也存在钻(槽)探和地球化学测试耗时长和成本高等问题。地球物理测井数据以分辨率高和连续性好为特征,它们在地层岩性、煤质、储层物性识别、分析和预测等方面获得了广泛应用(Passey et al.,1990;孟召平等,2011;段忠义等,2023)。由于自然伽马测井曲线在Nb-Zr-REY-Ga矿层上表现出明显的正异常,这为利用自然伽马测井数据进行矿层关键金属浓度和矿层厚度预测提供了基础条件。
-
当前利用测井曲线定性识别其他矿层(如煤层)的研究较多(曹代勇等,2021),但利用测井曲线识别研究区Nb-Zr-REY-Ga矿层位置和厚度的方法尚未见报道。在利用测井数据和基于数学方法,开展定量识别矿层位置和厚度的方法方面,还需要进一步研究。小波分析作为一种重要的数学工具,在利用地球物理测井数据进行岩性(矿层)界面识别等方面具有显著优势、并获得广泛应用(Prokoph et al.,1999;余继峰等,2003;房大志等,2023)。滇东地区Nb-Zr-REY-Ga矿层与围岩岩性差异不明显,仅利用自然伽马测井数据直接观测,难以准确识别矿层位置和厚度,这为利用小波变换进行矿层界面和厚度识别提供了条件。
-
由于滇东地区Nb-Zr-REY-Ga矿层中,Nb、Zr和REY属于高场强元素,具有相似的浓度变化趋势。Ga属于分散元素,与高场强元素可能存在显著差异。因此,本次研究以Zr和Ga 两种关键金属为研究对象,利用关键金属浓度及其对应的自然伽马数据,进行拟合分析,建立Zr和Ga浓度预测模型。同时探索利用小波变换自动确定矿层位置和厚度的方法。
-
1 地质背景
-
晚二叠世,滇东—黔西地区位于华南板块西部(图1a),发育一套以峨眉山玄武岩为基底、以宣威组/龙潭组—长兴组为代表的含煤岩系。该时期研究区地势西高东低,西部边缘为物源区川滇古陆,自西向东,依次发育冲积平原(滇东)和海岸平原(黔西)煤系沉积,以及浅海陆棚碳酸盐沉积(图1b;Wang Χuetian et al.,2020)。宣威组为一套主要分布在滇东的陆相煤系,其上部为陆源碎屑岩夹煤层沉积,下部为不含煤层的含Nb-Zr-REY-Ga关键金属矿层的陆源碎屑岩沉积。该含矿序列一般30~50 m厚(图1c)、含矿层2~5层,单矿层厚度一般0.5~3.5 m(平均约1.3 m),累计厚度2~8 m(局部可达10 m),是本次研究的目标含矿地层。该含矿序列岩性主要为灰色—灰绿色致密状黏土岩,与围岩岩性差异不明显。此外,在测井曲线上,该矿层还具有明显的自然伽马测井数值正异常的特征(Dai Shifeng et al.,2010)。
-
至黔西,晚二叠世煤系过渡为一套过渡相含煤岩系(陆源碎屑岩夹煤层和海相灰岩的龙潭组—长兴组),煤系底部不含煤层的潜在含矿序列减薄到5~20 m,岩性相变为较单一的灰白色铝土质泥岩,其含矿不稳定性增强。
-
2 研究材料与方法
-
研究材料来自研究区7个钻孔矿层和围岩的Zr与Ga浓度及对应的自然伽马值,共计243组数据。具体包括收集的滇东地区6个钻孔共223组公开发表数据和黔西地区ZK10钻孔本次研究实测的20组数据(图2;李霄,2015;Zhao Lixin et al.,2017;Wang Ning et al.,2022b)。滇东地区6个钻孔自然伽马值变化在0.20~4.90 pA/kg(均值2.13 pA/kg),关键金属Ga浓度变化在20.1~96.4 μg/g(均值53.32 μg/g),关键金属Zr浓度变化在147.00~5083.00 μg/g(均值1564.24 μg/g)。
-
本次研究采用301、1001、701和YJ1201井数据,根据关键金属浓度与自然伽马测井数值正相关的关系,利用指数、乘幂、多项式(二阶)、线性和对数函数进行关键金属浓度与其对应的自然伽马数值拟合分析(图3a、b),绘制不同函数散点图及对应趋势线,确定拟合度(R2)。选取拟合度最高的拟合曲线方程作为关键金属浓度预测模型。参考现有煤系关键金属开发利用最低浓度标准(灰基Zr为2000 μg/g、镓铝合采Ga为50 μg/g;代世峰等,2020),根据关键金属预测模型函数和开发临界浓度的关系,确定关键金属(Zr和Ga)矿层对应的最低自然伽马值(图3)。将YL1201、802和ZK10钻孔59个自然伽马数据分别带入新建立的Zr和Ga浓度预测模型,计算出样品的预测浓度。利用预测浓度和实测浓度的数据,计算样品预测浓度的相对误差(公式1),对浓度预测模型可靠性进行检验。
-
图1 滇东—黔西地区晚二叠世地质背景和钻孔资料点分布位置
-
Fig.1 Late Permian geological setting and drillhole distribution in eastern Yunnan and western Guizhou
-
(a)—晚二叠世全球古地理位置(Scotese,2014);(b)—沉积环境及钻孔位置(Wang Xuetian et al.,2020);(c)—矿层分布(Zhao Lixin et.al.,2017; Wang Ning et.al.,2022b);GR—自然伽马测井(pA/kg);EMS.—峨眉山玄武岩组
-
(a) —Late Permian global paleogeographic location (Scotese, 2014) ; (b) —sedimentary environment and the location of drillhole (Wang Xuetian et al., 2020) ; (c) —typical drillhole histogram in the study area (Zhao Lixin et al., 2017; Wang Ning et al., 2022b) ;GR—natural gamma-ray logging (pA/kg) ; EMS.—Emeishan basalt Formation
-
本研究选取代表性的301、701和1001井自然伽马测井曲线数据(数据间距为0.05 m)为例,进行小波变换来识别矿层位置和厚度。利用MATLAB软件对自然伽马曲线进行正交小波(紧支集)变换,利用Haar小波、2阶的daubechies小波(简写为db2,2表示阶数)、2阶symlet小波(简写为sym2)和2阶的coiflets小波(简写为coif2)4种小波类型进行分析。根据研究区单矿层厚度特征(一般0.5~3.0 m,平均约1.3 m)进行2~5层次的小波分解试验,其对应的岩层厚度范围为0.5~4.0 m。然后将小波变换确定的矿层位置和厚度结果,与利用实测浓度数据确定的矿层位置和厚度进行对比,评价该预测方法的可靠性。
-
为了检验本文建立的预测模型在不同沉积环境矿层关键金属浓度预测的效果,本研究对黔西过渡相ZK10井煤系底部不含煤潜在矿层进行了等间距样品采集和关键金属浓度测试工作。该潜在矿层厚10.5 m,岩性为均一的灰白色、块状铝土质泥岩。共等间距采集20件样品(采样间距0.5 m)、每件样品约200 g重。首先将样品粉碎至74 μm以下,然后根据国家标准(GB/T14506.30—2010)、利用电感耦合等离子体质谱仪(ICP-MS)进行关键金属Zr和Ga浓度测试,测试相对误差小于±5%,该测试在中国石油勘探开发研究院完成。
-
3 研究结果与分析
-
3.1 ZK10井关键金属浓度测试结果
-
ZK10井关键金属Zr和Ga浓度测试结果及其对应的自然伽马如图2所示。自然伽马数值变化在0.70~1.40 pA/kg(均值1.09 pA/kg),Zr的浓度变化在545.86~1086.29 μg/g(均值830.89 μg/g),Ga的浓度变化在40.69~52.16 μg/g(均值46.53 μg/g)。与滇东陆相YL1201和802井两个验证井比较,ZK10井潜在矿层样品平均自然伽马值较低,Zr浓度(最大值1086.29 μg/g)全部低于现有的最低开发利用浓度(2000 μg/g)以下,Ga平均浓度(46.53 μg/g)也低于最低开发利用浓度(50 μg/g)。
-
图2 滇东—黔西地区钻孔样品的Zr和Ga浓度及其对应的自然伽马数据(据李霄,2015; Zhao Lixin et al.,2017;Wang Ning et al.,2022b)
-
Fig.2 Zr and Ga concentrations data and their corresponding natural gamma-ray data collected in eastern Yunnan and western Guizhou (after Li Xiao, 2015; Zhao Lixin et al., 2017; Wang Ning et al., 2022b)
-
3.2 关键金属浓度预测模型建立结果
-
Zr和Ga关键金属浓度和自然伽马值拟合结果如图3所示。分别获得Zr和Ga指数、幂函数、二阶多项式、线性和对数函数5个拟合曲线方程(图3)。其中,Zr的二阶多项式(公式2)和Ga的指数函数(公式3)拟合度(R2)最高,因此,将它们确定为关键金属Zr和Ga的浓度预测模型。
-
式中,x表示样品伽马测井数值(pA/kg),y表示预测的关键金属Zr和Ga浓度(μg/g)。将Zr和Ga临界品位(2000 μg/g和50 μg/g)分别代入公式2和3,进而可以求得研究区Zr和Ga元素成矿时对应的临界自然伽马值分别为2.8 pA/kg和2.0 pA/kg(图3)。
-
3.3 小波变换确定矿层位置和厚度研究结果
-
利用自然伽马曲线进行不同类型和不同尺度小波变换分析结果表明(图4,以301井为例),db2小波、coif2小波和sym2小波分解自然伽马曲线后,对矿层识别效果均较差,只有Haar小波分解的自然伽马曲线的突变点与实测获得的关键金属矿层边界吻合度最高,说明Haar小波是识别研究区关键金属矿层界面的最优小波函数。然后再对Haar小波进行不同层次的分解,其中Haar小波2层分解时,曲线突变点区分不明显,4层分解时突变点位置明显超出矿层边界位置,5层分解时不能区分不同矿层界线点位置。只有3层分解时,利用曲线突变点识别出的矿层位置和厚度与实测的矿层位置和厚度拟合最好,指示Haar小波3层分解是研究区关键金属矿层位置和厚度最好的识别方法。
-
4 预测方法检验效果与讨论
-
4.1 关键金属浓度预测模型检验效果
-
将YL1201、802和ZK-10三口钻井潜在矿层的自然伽马值分别代入关键金属Zr和Ga浓度预测模型,获得的预测浓度和计算的相对误差结果如图5所示。在滇东陆相煤系含矿序列YL1201井Zr预测浓度变化在1055.80~4712.77 μg/g(均值2464.34 μg/g),预测相对误差变化在0.17%~24.66%(均值8.25%)。Ga预测浓度变化在46.49~96.21 μg/g(均值65.75 μg/g),预测相对误差变化在0.14%~44.89%(均值12.04%)。802井Zr预测浓度变化在885.48~3622.53 μg/g(均值1641.96 μg/g),预测相对误差变化在2.65%~23.61%(均值14.95%);Ga预测浓度变化在45.00~853.06 μg/g(均值675.13 μg/g),预测相对误差变化在0.26%~21.61%(均值7.84%)(去除异常点802-5)。ZK10井Zr预测浓度变化在473.37~821.60 μg/g(均值665.61 μg/g),预测相对误差变化在9.48%~25.02%(均值19.43%);Ga预测浓度变化在37.03~43.93 μg/g(均值40.38 μg/g),预测相对误差变化在3.22%~25.64%(均值13.02%)。
-
图3 滇东地区样品自然伽马数值和Zr(a)和Ga(b)浓度拟合分析图
-
Fig.3 Fitting analysis of natural gamma-ray value and concentration of critical metals Zr (a) and Ga (b) in eastern Yunnan
-
图4 滇东地区不同小波类型和不同分解层次的Haar小波识别矿层位置和厚度的结果对比图(以301井为例)
-
Fig.4 Comparative results of different wavelet types and different decomposition levels of Haar wavelet in eastern Yunnan (taking 301 as an example)
-
综合以上预测结果,研究区滇东陆相2个钻井Zr和Ga预测平均相对误差分别为11.60%和9.94%,预测平均精度在85%以上。说明论文建立的关键金属浓度预测模型可靠性较好。在黔西过渡相煤系含矿序列,ZK10钻井Zr和Ga预测平均相对误差分别为19.43%和13.02%,预测平均精度在80%以上。说明基于滇东陆相环境数据建立的浓度预测模型在黔西过渡相地区应用效果也较好。
-
相比较而言,该预测模型在滇东地区预测精度要比黔西地区高约5%。同时,黔西地区矿层自然伽马值和关键金属浓度比滇东地区放射性和关键金属Zr和Ga浓度都偏低(Yang Tianyang et al.,2021,2024;沈玉林等,2022)。其原因与离川滇古陆峨眉山大火成岩省的距离和成矿环境相关。当前,研究区晚二叠世煤系成矿物质普遍被认为来自与峨眉山大火成岩省相关的碱性火山灰喷发后自西而东的沉降,或川滇古陆峨眉山玄武岩风化产物经流水自西向东的搬运和沉积(Dai Shifeng et al.,2018;Wang Ning et al.,2020)。滇东距离川滇古陆更近,所以成矿物质供应更充足,矿产关键金属浓度和自然伽马值更高。
-
此外,沉积环境也是影响矿层关键金属浓度和自然伽马值升高的因素之一。因为成矿物质沉降或沉积之后的淋滤和元素迁移,也是关键金属富集成矿的重要环节之一。滇东地区地势较高、主要为陆相的冲积平原环境,成矿物质沉降或沉积的泛滥盆地环境大多位于浅水面以上的渗流带。它们会经历显著的与火山活动伴随的酸雨(Dai Shifeng et al.,2018)和地下水的淋滤作用,导致活动性元素流失和相对稳定的高场强元素(例如Zr、Th和U等)残留富集(Dai Shifeng et al.,2018;杜远生等,2020),进而造成矿层关键金属浓度和放射性的进一步富集和正异常。比较而言,黔西地区主要位于滨海平原的过渡相湿地环境,地势较低(潜水面接近沉积界面)。成矿物质多沉降或沉积在地下水潜流带,淋滤作用较弱、潜在矿层关键金属再富集作用不明显。
-
4.2 小波变换确定矿层位置和厚度检验效果
-
小波变换预测矿层位置和厚度结果如图5d~f所示。3个钻井Haar小波3层分解自然伽马曲线的突变点位置和实测矿层界面对应良好,对13个矿层的识别率达到100%。从矿层厚度预测结果看,Zr矿层厚度预测相对误差变化在0.70%~15.85%(均值4.16%);Ga矿层厚度预测相对误差变化在0.70%~18.29%(均值4.82%)。矿层厚度识别平均精度在95%以上。说明基于Haar小波三层分解的小波变换方法,在预测研究区关键金属矿层位置和厚度方面可靠性较高,具有较好的应用前景。
-
图5 滇东—黔西地区关键金属Zr和Ga矿层浓度预测模型和小波变换识别矿层位置和厚度方法的效果验证
-
Fig.5 The prediction results of critical metals Zr and Ga concentration prediction models and the results of the wavelet transform to identify the location and thickness of the ore beds in eastern Yunnan and western Guizhou
-
(a)~(c)—YL1201、802和ZK10井关键金属Zr和Ga矿层浓度预测模型预测结果;(d)~(f)—301、1001和701井小波变换预测矿层位置和厚度结果
-
(a) ~ (c) —the prediction results of critical metals Zr and Ga concentration prediction models in YL1201, 802 and ZK10 wells; (d) ~ (f) —the results of wavelet transform to identify the location and thickness of the ore beds in 301, 1001 and 701 wells
-
图6 滇东地区自然伽马值与Th/U/K元素浓度相关性分析
-
Fig.6 Correlation analysis of natural gamma value with Th/U/K elements concentration in eastern Yunnan
-
4.3 Nb-Zr-REY-Ga矿层放射性异常原因
-
放射性元素Th、U和K及其同位素浓度升高被认为是煤系自然伽马测井显示正异常的主要原因(张晓慧等,2024)。研究区含矿岩系自然伽马测井数值与其对应的Th、U和K2O浓度含量相关系数分别为0.87、0.79和0.56(临界相关系数0.17,n=223,99%置信水平),说明Th、U和K元素共同引起了研究区Nb-Zr-REY-Ga矿层放射性异常。由于研究区Nb-Zr-REY-Ga型矿层赋存的主要关键金属元素Nb、Zr、REY和Ga等均不具有放射性,说明具有放射性的元素与关键金属Nb、Zr、REY和Ga宿主矿物在空间上重叠。
-
逐级化学提取实验表明,研究区矿层锆石是Zr元素的最主要宿主矿物(Yang Pan et al.,2023)。同时,Th、U与Zr元素的强烈的相关性,指示锆石也是Th和U的主要宿主矿物(王宁,2023)。作为K2O载体矿物的伊蒙混层和伊利石,是研究区矿层中含量最丰富的矿物(均值40.43%)。由于和Al相似的原子半径,Ga通过置换Al而进入黏土矿物晶格,使黏土矿物成为研究区Ga的主要宿主矿物(Dai Shifeng et al.,2021)。这已经被研究区矿层中黏土矿物与Ga的相关性分析所证实。而进一步的相关性分析表明,Ga更可能赋存在伊蒙混层(或伊利石)矿物中(王宁,2023)。综上分析表明,研究区Nb-Zr-REY-Ga型矿层中丰富的锆石、伊蒙混层和伊利石矿物,不仅是关键金属Zr和Ga的主要宿主矿物,同时也是放射性元素(Th、U和K)的主要宿主矿物,是引起矿层放射性异常最可能的潜在原因。
-
5 结论
-
(1)以Zr和Ga为例,建立了滇东—黔西地区晚二叠煤系底部Nb-Zr-REY-Ga 型矿层关键金属浓度预测模型(预测精度高于85%),并计算出矿层边界品位对应的自然伽马值分别为2.8 pA/kg和2.0 pA/kg。
-
(2)发现研究区Haar小波3层分解获得的预测矿层位置与地球化学实测的矿层位置吻合度最高。利用该方法,矿层识别率为100%,预测的Zr和Ga矿层厚度平均相对误差为4.16%和4.82%,预测精度在95%以上。
-
(3)本次研究建立的关键金属(Zr和Ga)精细勘探方法,能够较为准确地预测关键金属矿层浓度和厚度,这对滇东—黔西地区晚二叠世煤系底部Nb-Zr-REY-Ga型关键金属矿层未来的资源计算与评价、勘探和开发具有重要意义。
-
参考文献
-
Cao Daiyong, Wei Yingchun. 2021. Coal Geological Exploration and Evaluation (Second Edition). Xuzhou: China University of Mining and Technology Press (in Chinese with English abstract).
-
Dai Shifeng, Ren Deyi, Chou Chenli, Li Shengsheng, Jiang Yaofa. 2006. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger coalfield, Ordos basin, China. International Journal of Coal Geology, 66(4): 253~270.
-
Dai Shifeng, Zhou Yiping, Zhang Mingquan, Wang Xibo, Wang Jumin, Song Xiaolin, Jiang Yaofa, Luo Yangbing, Song Zhentao, Yang Zong, Ren Deyi. 2010. A new type of Nb (Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the Late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. International Journal of Coal Geology, 83(1): 55~63.
-
Dai Shifeng, Ren Deyi, Chou Chenli, Finkelman R B, Seredin V V, Zhou Yiping. 2012. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94: 3~21.
-
Dai Shifeng, Li Tianjiao, Jiang Yaofa, Ward C R, Hower J C, Sun Jihua, Liu Jingjing, Song Hongjian, Wei Jianpeng, Li Qingqian, Xie Panpan, Huang Qing. 2015. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu mine, Daqingshan coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. International Journal of Coal Geology, 137: 92~110.
-
Dai Shifeng, Nechaev V P, Chekryzhov I Y, Zhao Linxin, Vysotskiy S V, Graham I, Ward C R, Ignatiev A V, Velivetskaya T A, Zhao Lei, French D, Hower J C. 2018. A model for Nb-Zr-REE-Ga enrichment in lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos, 302-303: 359~369.
-
Dai Shifeng, Zhao Lei, Wei Qiang, Song Xiaolin, Wang Wenfeng, Liu Jingjing, Duan Piaopiao. 2020. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution. Chinese Science Bulletin, 65(33): 3715~3729 (in Chinese with English abstract).
-
Dai Shifeng, Finkelman R B, French D, Hower J C, Graham I T, Zhao Fenghua. 2021. Modes of occurrence of elements in coal: A critical evaluation. Earth-Science Reviews, 222: 103815.
-
Dai Shifeng, Liu Chiyang, Zhao Lei, Liu Jingjing, Wang Xibo, Ren Deyi. 2022. Strategic metals resources in coal-bearing strata: Significance and challenges. Journal of China Coal Society, 47(5): 1743~1749(in Chinese with English abstract).
-
Dai Shifeng, Zhao Lei, Wang Ning, Wei Qiang, Liu Jingjing. 2024. Advance and prospect of researches on the mineralization of critical elements in coal-bearing sequences. Bulletin of Mineralogy, Petrology and Geochemistry, 43(1): 49~63 (in Chinese with English abstract).
-
Du Yuansheng, Yu Wenchao. 2020. Subaerial leaching process of sedimentary bauxite and the discussion on classifications of bauxite deposits. Journal of Palaeogeography, 22(5): 812~826 (in Chinese with English abstract).
-
Duan Zhongyi, Xiao Kun, Yang Yaxin, Huang Xiao, Wang Dianxue, Xu Yichen, Jiao Changwei. 2023. Logging identification of borehole lithology of sandstone-type uranium deposit in Songliao basin. Progress in Geophysics, 38(6): 2490~2501.
-
Fang Dazhi, Ma Weijun, Yan Xu, Mao Zheng, Gao Yang. 2023. Lithology Recognition research based on wavelet transform and artificial intelligence. Well Logging Technology, 47(4): 438~446.
-
Hou Zengqian, Chen Jun, Zhai Mingguo. 2020. Current status and frontiers of research on critical mineral resources. Chinese Science Bulletin, 65(33): 3651~3652 (in Chinese with English abstract).
-
Li Xiao. 2015. Mineral matter characteristic and sources of volcanic ash in the Late Permian coal-bearing strata from Xuanwei, eastern Yunnan. Doctoral dissertation of China University of Mining Technology (Beijing) (in Chinese with English abstract).
-
Meng Zhaoping, Zhu Shaojun, Jia Lilong, Shen Hengming. 2011. Relationship between approximate analysis of coal and log parameters and its models. Coal Geology & Exploration, 39(2): 1~6(in Chinese with English abstract).
-
Passey Q R, Creaney S, Kulla J B, Moretti F J, Stroud J D. 1990. A practical model for organic richness from porosity and resistivity logs1. AAPG Bulletin, 74(12): 1777~1794.
-
Prokoph A, Agterberg F P. 1999. Detection of sedimentary cyclicity and stratigraphic completeness by wavelet analysis: An application to late Albian cyclostratigraphy of the western Canada sedimentary basin. Journal of Sedimentary Research, 69(4): 862~875.
-
Scotese C. 2014. Atlas of Permo-Triassic paleogeographic maps (mollweide projection), maps 43-52, volumes 3 & 4 of the paleomap atlas for arcgis, paleomap project, evanston, il.
-
Shen Yulin, Zhang Yunfei, Yang Tianyang, Hu Jiangchen, Jin Jun, Mu Xiwei, Huang Wen, Li Fayue, Zhao Yong, Zhang Yijie. 2022. Enrichment of strategic metals constrained by astronomical orbits in Late Permian coal measures in Panxian, Guizhou. Journal of China Coal Society, 47(5): 1840~1850(in Chinese with English abstract).
-
Sun Beilei, Zeng Fangui, Moore Tim A, Rodrigues Sandra, Liu Chao, Wang Guoquan. 2022a. Geochemistry of two high-lithium content coal seams, Shanxi Province, China. International Journal of Coal Geology, 260: 104059.
-
Sun Beilei, Liu Yunxia, Tajcmanova Lucie, Liu Chao, Wu Jie. 2022b. In-situ analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district, Ningwu coalfield, northern China. Ore Geology Reviews, 144: 104825.
-
Sun Beilei, Kong Yanlei, Wang Guoquan, Liu Chao, Tobechukwu Ikeh Justin. 2022. Convergence and its mechanism of lithium isotopic composition with different occurrence states in Li-rich anthracite. Journal of Coal Society, 47(5): 1773~1781 (in Chinese with English abstract).
-
Sun Beilei, Guo Zhanming, Liu Chao, Kong Yanlei, French David, Zhu Zhenli. 2023. Lithium isotopic composition of two high-lithium coals and their fractions with different lithium occurrence modes, Shanxi Province, China. International Journal of Coal Geology, 277: 104338.
-
Wang Ning. 2023. Enrichment mechanism of critical metals Nb-Zr-REY-Ga in Upper Permian coal-bearing strata, eastern Yunnan. Doctoral dissertation of China University of Mining and Technology (Beijing).
-
Wang Ning, Dai Shifeng, Nechaev V P, French D, Graham I T, Zhao Fenghua, Zuo Jianping. 2022a. Isotopes of carbon and oxygen of siderite and their genetic indications for the Late Permian critical-metals tuffaceous deposits (Nb-Zr-REY-Ga) from Yunnan, southwestern China. Chemical Geology, 592: 120727.
-
Wang Ning, Dai Shifeng, Wang Xibo, Nechaev V P, French D, Graham I T, Zhao Lei, Song Xiaolin. 2022b. New insights into the origin of Middle to Late Permian volcaniclastics (Nb-Zr-REY-Ga-rich horizons) from eastern Yunnan, SW China. Lithos, 420-421: 106702.
-
Wang Ning, French D, Dai Shifeng, Graham I T, Zhao Lei, Song Xiaolin, Zheng Jintian, Gao Yan, Wang Yan. 2023. Origin of chamosite and berthierine: Implications for volcanic-ash-derived Nb-Zr-REY-Ga mineralization in the Lopingian sequences from eastern Yunnan, SW China. Journal of Asian Earth Sciences, 253: 105703.
-
Wang Ning, Dai Shifeng, Nechaev V P, French D, Graham I T, Song Xiaolin, Chekryzhov I Y, Tarasenko I A, Budnitskiy S Y. 2024. Detrital U-Pb zircon geochronology, zircon Lu-Hf and Sr-Nd isotopic signatures of the Lopingian volcanic-ash-derived Nb-Zr-REY-Ga mineralized horizons from eastern Yunnan, SW China. Lithos, 468-469: 107494.
-
Wang Xuetian, Shao Longyi, Eriksson K A, Yan Zhiming, Wang Jumin, Li Hui, Zhou Ruxian, Lu Jing. 2020. Evolution of a plume-influenced source-to-sink system: An example from the coupled central Emeishan large igneous province and adjacent western Yangtze cratonic basin in the Late Permian, SW China. Earth-Science Reviews, 207: 103224.
-
Wei Qiang, Dai Shifeng. 2020. Critical metals and hazardous elements in the coal-hosted germanium ore deposits of China: Occurrence characteristics and enrichment causes. Journal of China Coal Society, 45(1): 296~303(in Chinese with English abstract).
-
Yang Pan, Dai Shifeng, Nechaev V P, Song X, Yu Chekryzhov I, Tarasenko I A, Tian Xiao, Yao Mengda, Kang Shuai, Zheng Jintian. 2023. Modes of occurrence of critical metals (Nb-Ta-Zr-Hf-REY-Ga) in altered volcanic ashes in the Xuanwei Formation, eastern Yunnan Province, SW China: A quantitative evaluation based on sequential chemical extraction. Ore Geology Reviews, 160: 105617.
-
Yang Tianyang, Shen Yulin, Qin Yong, Jin Jun, Zhang Yijie, Tong Gencheng, Liu Jinbang. 2021. Distribution of radioactive elements (Th, U) and formation mechanism of the bottom of the Lopingian (Late Permian) coal-bearing series in western Guizhou, SW China. Journal of Petroleum Science and Engineering, 205: 108779.
-
Yang Tianyang, Shen Yulin, Lu Lu, Jin Jun, Zhang Yunfei, Zeng Lijun, Jiang Fan, Zhao Ya. 2024. Milankovitch cycles recorded by the Late Permian volcanic ash layers in southwestern China. Marine and Petroleum Geology, 161: 106671.
-
Yu Jifeng, Li Zeng. 2003. Wavelet transform of Logging Data and its geological significance. Journal of China University of Mining & Technology, 32(3): 127~130(in Chinese with English abstract).
-
Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metals mineral resources: Current research status and scientific issues. Science Foundation of China, 33(2): 106~111(in Chinese with English abstract).
-
Zhang Xiaohui, Zhang Shangqing, Liu Dongna, Zhao Fenghua, Zhao Jun, Zhong Zhuanghua, Hou Xuqin. 2024. Enrichment characteristics of uranium and thorium in the coal measure bauxite and its corresponding natural gamma response. Coal Geology & Exploration, 52(3): 64~78(in Chinese with English abstract).
-
Zhao Lixin, Dai Shifeng, Graham I T, Li Xiao, Zhang Beibei. 2016. New insights into the lowest Xuanwei Formation in eastern Yunnan Province, SW China: Implications for Emeishan large igneous province felsic tuff deposition and the cause of the End-Guadalupian mass extinction. Lithos, 264: 375~391.
-
Zhao Lixin, Dai Shifeng, Graham I T, Li Xiao, Liu Huidong, Song Xiaolin, Hower J C, Zhou Yiping. 2017. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geology Reviews, 80: 116~140.
-
曹代勇, 魏迎春. 2021. 煤炭地质勘查与评价(第二版). 徐州: 中国矿业大学出版社.
-
代世峰, 赵蕾, 魏强, 宋晓林, 王文峰, 刘晶晶, 段飘飘. 2020. 中国煤系中关键金属资源: 富集类型与分布. 科学通报, 65(33): 3715~3729.
-
代世峰, 刘池洋, 赵蕾, 刘晶晶, 王西勃, 任德贻. 2022. 煤系中战略性金属矿产资源: 意义和挑战. 煤炭学报, 47(5): 1743~1749.
-
代世峰, 赵蕾, 王宁, 魏强, 刘晶晶. 2024. 煤系中关键金属元素的成矿作用研究进展与展望. 矿物岩石地球化学通报, 43(1): 49~63.
-
杜远生, 余文超. 2020. 沉积型铝土矿的陆表淋滤成矿作用: 兼论铝土矿床的成因分类. 古地理学报, 22(5): 812~826.
-
段忠义, 肖昆, 杨亚新, 黄笑, 王殿学, 徐艺宸, 焦常伟. 2023. 松辽盆地砂岩型铀矿钻孔岩性的测井识别. 地球物理学进展, 38(6): 2490~2501.
-
房大志, 马伟竣, 阎续, 毛峥, 高杨. 2023. 基于小波降噪与人工智能的岩性识别研究. 测井技术, 47(4): 438~446.
-
侯增谦, 陈骏, 翟明国. 2020. 战略性关键矿产研究现状与科学前沿. 科学通报, 65(33): 3651~3652.
-
李霄. 2015. 滇东宣威晚二叠世含煤岩系中火山灰的物质组成与来源. 中国矿业大学(北京)博士学位论文.
-
孟召平, 朱绍军, 贾立龙, 申恒明. 2011. 煤工业分析指标与测井参数的相关性及其模型. 煤田地质与勘探, 39(2): 1~6.
-
沈玉林, 张云飞, 杨天洋, 胡江晨, 金军, 慕熙玮, 黄文, 李发跃, 赵勇, 张一杰. 2022. 贵州盘县晚二叠世煤系天文轨道约束的战略性金属富集. 煤炭学报, 47(5): 1840~1850.
-
孙蓓蕾, 孔艳磊, 王国权, 刘超, Ikeh Justin Tobechukwu, 2022. 高锂无烟煤中不同赋存态锂同位素组成趋同特征及其机理. 煤炭学报, 47(5): 1773~1781.
-
王宁. 2023. 滇东上二叠统煤系铌-锆-稀土-镓等关键金属富集机制. 中国矿业大学(北京) 博士学位论文.
-
魏强, 代世峰. 2020. 中国煤型锗矿床中的关键金属和有害元素: 赋存特征与富集成因. 煤炭学报, 45(1): 296~303.
-
余继峰, 李增学. 2003. 测井数据小波变换及其地质意义. 中国矿业大学学报, 32(3): 127~130.
-
翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106~111.
-
张晓慧, 张尚清, 刘东娜, 赵峰华, 赵军, 钟庄华, 侯旭勤. 2024. 煤系铝土矿中铀与钍富集特征及其自然伽马异常响应. 煤田地质与勘探, 52(3): 64~78.
-
摘要
滇东—黔西上二叠统煤系底部赋存着累积厚度达数米、以自然伽马测井正异常为特征的Nb-Zr-REY-Ga 型关键金属矿层,是我国最有开发潜力的煤系关键金属资源之一。当前对该矿层的研究主要聚焦于关键金属物质来源、赋存状态和成矿模式等方面,而利用自然伽马测井数据对该矿层进行定量识别和浓度计算等工作还未开展过,尽管这项工作对将来这些矿层关键金属的勘探和开发具有重要意义。论文以Zr和Ga两种元素为例,利用收集和实测的关键金属浓度及其对应的自然伽马值等数据,进行了基于自然伽马测井的关键金属矿层精细勘探技术研究。结果表明:研究区Zr和Ga元素浓度的预测模型分别为y=133.42x2+262.23x+224.43和y=31.587 e0.2273x,指示两者最低开发利用浓度(2000 μg/g和50 μg/g)对应的自然伽马值分别为2.8 pA/kg和2.0 pA/kg。发现Haar小波3层分解获得的预测矿层位置与地球化学实测的矿层位置吻合度最高。预测模型验证结果表明,Zr和Ga元素浓度预测平均相对误差分别为14.21%和10.97%,矿层厚度预测平均相对误差分别为4.16%和4.82%,说明论文建立的关键金属精细勘探技术可以精确识别研究区关键金属矿层浓度和厚度,对滇东—黔西地区Nb-Zr-REY-Ga 型关键金属矿层的精细勘探具有较好的应用价值。
Abstract
The critical metals ore bed, characterized by its enrichment in Nb, Zr, REY, and Ga, is situated at the bottom of the Upper Permian coal measures in eastern Yunnan-western Guizhou, China. This ore bed, with a consistent thickness of several meters and a distinctive positive anomaly in natural gamma-ray data, represents a significant potential resource of critical metals. Previous research on these ore beds mainly focuses on the sources of ore-forming materials, critical metal hosts, and metallogenic models. However, the identification and quantitative calculation of critical metal concentration in these ore beds using logging data remains unexplored, despite the crucial role this analysis plays in guiding future exploration and development of critical metals. Focusing on Zr and Ga as representative elements, we developed concentration prediction models using comprehensive datasets comprising critical metal concentrations and corresponding natural gamma-ray values. The models for Zr and Ga are represented by the equations: y=133.42x2+262.23x+224.43 for Zr and y=31.587 e0.2273x for Ga. These models were then utilized to determine the natural gamma-ray values corresponding to the minimum exploitation concentrations of 2000 μg/g for Zr and 50 μg/g for Ga, yielding values of 2.8 pA/kg and 2.0 pA/kg, respectively. The predicted boundary of the ore bed, obtained through a 3-order decomposition of the Haar wavelet, exhibits a strong correlation with the geochemically determined boundary. Validation of these models demonstrates their efficacy in predicting critical metal concentrations and ore bed thickness. Average relative errors in concentration prediction were found to be 14.21% for Zr and 10.97% for Ga. Similarly, average relative errors in ore bed thickness prediction for Zr and Ga were 4.16% and 4.82%, respectively. These findings underscore the accuracy and potential of this fine exploration technology in accurately predicting critical metal concentrations and ore bed thickness, thereby offering significant promise for future exploration and development of critical metal resources in the study area.