en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

朱碧,女,1985年生。博士,副研究员,从事现代-古代海洋环境重构相关研究。E-mail: zhubi@hhu.edu.cn。

参考文献
Archer D, Buffett B, Brovkin V. 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 106: 20596~20601.
参考文献
Boetius A, Ravenschlag K, Schubert C J, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen B B, Witte U, Pfannkuche O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623~626.
参考文献
Böning P, Brumsack H J, Böttcher M E, Schnetger B, Kriete C, Kallmeyer J, Borchers S L. 2004. Geochemistry of Peruvian near-surface sediments. Geochimica et Cosmochimica Acta, 68: 4429~4451.
参考文献
Böttcher M E, Neubert N, von Allmen K, Samankassou E, Nägler T F. 2018. Barium isotope fractionation during the experimental transformation of aragonite to witherite and of gypsum to barite, and the effect of ion (de)solvation. Isotopes in Environmental and Health Studies, 54: 324~335.
参考文献
Bridgestock L, Hsieh Y T, Porcelli D, Homoky W B, Bryan A, Henderson G M. 2018. Controls on the barium isotope compositions of marine sediments. Earth and Planetary Science Letters, 481: 101~110.
参考文献
Canfield D E, Thamdrup B. 2010. Towards a consistent classification scheme for geochemical environments, or, why we wish the term “suboxic” would go away. Geobiology, 7: 385~392.
参考文献
Chen Chensheng, Qin Shengfei, Wang Yunpeng, Holland G, Wynn P, Zhong Wanyu, Zhou Zheng. 2022. High temperature methane emissions from Large Igneous Provinces as contributors to late Permian mass extinctions. Nature Communications, 3: 6893.
参考文献
Chen Fang, Su Xin, Nurnberg D, Lu Hongfeng, Zhu Youhua, Liu Jiang, Liao Zhiliang. 2006. Lithologic features of sediments characterized by high sedimentation rates since the last glacial maximum from Dongsha area of the South China Sea. Marine Geology & Quaternary Geology, 26: 9~17 (in Chinese with English abstract).
参考文献
Chen Fang, Hu Yu, Feng Dong, Zhang Xin, Cheng Shihai, Cao Jun, Lu Hongfeng, Chen Duofu. 2016. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chemical Geology, 443: 173~181.
参考文献
Creech J B, Paul B. 2015. IsoSpike: Improved double-spike inversion software. Geostandards and Geoanalytical Research, 39: 7~15.
参考文献
Dickens G R. 2001. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta, 65: 529~543.
参考文献
Dymond J, Suess E, Lyle M. 1992. Barium indeep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7: 163~181.
参考文献
Egger M, Hagens M, Sapart C J, Dijkstra N, van Helmond N A G M, Mogollón J M, Risgaard-Petersen N, van der Veen C, Kasten S, Riedinger N, Böttcher M E, Röckmann T, Jørgensen B B, Slomp C P. 2017. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochimica et Cosmochimica Acta, 207: 256~276.
参考文献
Erickson B E, Helz G R. 2000. Molybdenum (VI) speciation in sulfidic waters. Geochimica et Cosmochimica Acta, 64: 1149~1158.
参考文献
Feng Dong, Qiu Jianwen, Hu Yu, Peckmann J, Guan Hongxiang, Tong Hongpeng, Chen Chong, Chen Jiangxin, Gong Shanggui, Li Niu, Chen Duofu. 2018. Cold seep systems in the South China Sea: An overview. Journal of Asian Earth Sciences, 168: 3~16.
参考文献
Froelich P N, Klinkhammer G P, Bender M L, Luedtke N A, Heath G R, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075~1090.
参考文献
Gong Zaisheng, Huang L F, Chen P H. 2011. Neotectonic controls on petroleum accumulations, offshore China. Journal of Petroleum Geology, 34: 5~27.
参考文献
Han Xiqiu, Suess E, Huang Yongyang, Wu Nengyou, Bohrmann G, Su Xin, Eisenhauer A, Rehder G, Fang Yinxia. 2008. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea. Marine Geology, 249: 243~256.
参考文献
Han Xiqiu, Yang Kehong, Huang Yongyang. 2013. Origin and nature of cold seep in northeastern Dongsha area, South China Sea: Evidence from chimney-like seep carbonates. Chinese Science Bulletin, 58: 3689~3697.
参考文献
Helz G R, Miller C V, Charnock J M, Mosselmans J F W, Pattrick R A D, Garner C D, Vaughan D J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60: 3631~3642.
参考文献
Joseph C, Campbell K A, Torres M E, Martin R A, Pohlman J W, Riedel M, Rose K. 2013. Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals. Palaeogeography, Palaeoclimatology, Palaeoecology, 390: 52~67.
参考文献
Li Lun, Liu Haojie, Zhang Xin, Lei Xinhua, Sha Zhibin. 2015. BSRs, estimated heat flow, hydrate-related gas volume and their implications for methane seepage and gas hydrate in the Dongsha region, northern South China Sea. Marine and Petroleum Geology, 67: 785~794.
参考文献
Li Yating. 2021. On the distributions, fractionation, and controls of stable barium isotopic compositions in the upper water column of the South China Sea. Master's thesis of Xiamen University (in Chinese with English abstract).
参考文献
Lin Zhiyong, Sun Xiaoming, Strauss H, Lu Yang, Gong Junli, Xu Li, Lu Hongfeng, Teichert B M A, Peckmann J. 2017. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea. Geochimica et Cosmochimica Acta, 211: 153~173.
参考文献
Little S H, Vance D, Lyons T W, McManus J. 2015. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings. American Journal of Science, 315: 77~119.
参考文献
Liu Charshine S, Schnurle P, Wang Yunshuen, Chung Sanhsiung, Chen Songchuen, Hsiuan Tahen. 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17: 615~644.
参考文献
Lu Yang, Liu Yufei, Sun Xiaoming, Hao Xinrong, Peckmann J, Lin Zhiyong, Xu Li, Lu Hongfeng. 2017. Intensity of methane seepage reflected by relative enrichment of heavy magnesium isotopes in authigenic carbonates: A case study from the South China Sea. Deep Sea Research Part I Oceanographic Research Papers, 129: 10~21.
参考文献
McDonnell S L, Max M D, Cherkis N Z, Czarnecki M F. 2000. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan. Marine and Petroleum Geology, 17: 929~936.
参考文献
McManus J, Berelson W M, Klinkhammer G P, Hammond D E, Holm C. 2005. Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta, 69: 95~108.
参考文献
Middleton J T, Paytan A, Auro M, Saito M A, Horner T J. 2023. Barium isotope signatures of barite-fluid ion exchange in Equatorial Pacific sediments. Earth and Planetary Science Letters, 612: 118150.
参考文献
Morford J L, Emerson S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63: 1735~1750.
参考文献
Morley C K. 2012. Late Cretaceous-Early Palaeogene tectonic development of SE Asia. Earth-Science Reviews, 115: 37~75.
参考文献
Nan Xiaoyun, Yu Huimin, Rudnick R L, Gaschnig R M, Xu Juan, Li Wangye, Zhang Qun, Jin Zhandong, Li Xianhua, Huang Fang. 2018. Barium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 233: 33~49.
参考文献
Paull C K, Dillon W P. 2001. Natural gas hydrates: Occurrence, distribution, and detection. Washington DC American Geophysical Union Geophysical Monograph Series, 124~124.
参考文献
Paytan A, Griffith E M. 2007. Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54: 687~705.
参考文献
Peketi A, Mazumdar A, Joshi R K, Patil D J, Srinivas P L, Dayal A M. 2012. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics. Geochemistry, Geophysics, Geosystems, 13: 2012GC004288.
参考文献
Riedinger N, Kasten S, Gröger J, Franke C, Pfeifer K. 2006. Active and buried authigenic barite fronts in sediments from the Eastern Cape basin. Earth and Planetary Science Letters, 241: 876~887.
参考文献
Riedinger N, Formolo M J, Lyons T W, Henkel S, Beck A, Kasten S. 2014. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology, 12: 172~181.
参考文献
Sha Zhibin, Liang Jinqing, Zhang Guangxue, Yang Shengxiong, Lu Jingan, Zhang Zijian, McConnell D R, Humphrey G. 2015. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations. Marine Geology, 366: 69~78.
参考文献
Suess E. 2005. RV SONNE cruise report SO 177, Sino-German cooperative project, South China Sea continental margin: Geological methane budget and environmental effects of methane emissions and gas hydrates. IFM-GEOMAR Reports.
参考文献
Tanner L H, Lucas S G, Chapman M G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews, 65: 103~139.
参考文献
Taylor S, McLennan S. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 28~29.
参考文献
Tian Lanlan, Wei Wei, Dong Linhui, Pan Songqi, Jing Zhenhua, Huang Fang. 2023. Diagenetic effect on barium isotope compositions of barites in the lower Cambrian successions. Chemical Geology, 635: 121631.
参考文献
Torres M E, Brumsack H J, Bohrmann G, Emeis K C. 1996. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127: 125~139.
参考文献
Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232: 12~32.
参考文献
Van Zuilen K, Müller T, Nägler T F, Dietzel M, Küsters T. 2016. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures. Geochimica et Cosmochimica Acta, 186: 226~241.
参考文献
Von Allmen K, Böttcher M E, Samankassou E, Nägler T F. 2010. Barium isotope fractionation in the global barium cycle: First evidence from barium minerals and precipitation experiments. Chemical Geology, 277: 70~77.
参考文献
Wan Zhifeng, Xu Xing, Wang Xianqing, Xia Bin, Sun Yuefeng. 2017. Geothermal analysis of boreholes in the Shenhu gas hydrate drilling area, northern South China Sea: Influence of mud diapirs on hydrate occurrence. Journal of Petroleum Science and Engineering, 158: 424~432.
参考文献
Wang Shuhong, Yan Wen, Song Haibin. 2006. Mapping the thickness of the gas hydrate stability zone in the South China Sea. Terrestrial, Atmospheric and Oceanic Sciences, 17: 815~828.
参考文献
Wu Lushan, Yang Shengxiong, Liang Jinqing, Su Xin, Fu Shaoying, Sha Zhibin, Yang Tao. 2013. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu area, the South China Sea. Science China: Earth Sciences, 56: 530~540 (in Chinese with English abstract).
参考文献
Wu Shiguo, Zhang Guangxue, Huang Yongyang, Liang Jinqiang, Wong H K. 2005. Gas hydrate occurrence on the continental slope of the northern South China Sea. Marine and Petroleum Geology, 22: 403~412.
参考文献
Wu Shiguo, Wang Xiujuan, Wong H K, Zhang Guangxue. 2007. Low-amplitude BSRs and gas hydrate concentration on the northern margin of the South China Sea. Marine Geophysical Research, 28: 127~138.
参考文献
Xie Lei, Wang Jiasheng, Lin Qi. 2012. The characteristics and formation mechanism of authigenic minerals in shallow sediments of Shenhu area, northern South China Sea. Acta Petrologica et Mineralogica. 31: 382~392 (in Chinese with English abstract).
参考文献
Xie Lei, Wang Jiashan, Wu Nengyou, Wu Daidai, Wu Zhou, Zhu Xiaowei, Hu Jun, Chen Hongren, Lin Qi. 2013. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea: Implications for a possible mud volcano environment. Science China: Earth Sciences, 56: 541~548 (in Chinese with English abstract).
参考文献
Yang Kehong, Chu Fengyou, Ye Liming, Zhang Weiyan, Xu Dong, Zhu Jihao, Yang Haili, Ge Qian. 2014. Implication of methane seeps from sedimentary geochemical proxies (Sr/Ca & Mg/Ca) in the northern South China Sea. Journal of Jilin University (Earth Science Edition), 44(2): 469~479 (in Chinese with English abstract).
参考文献
Yang Tao, Jiang Shaoyong, Ge Lu, Wu Nengyou, Zhang Guangxue, Liu Jian. 2009. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence. Chinese Science Bulletin, 54: 3231~3240 (in Chinese with English abstract).
参考文献
Yang Tao, Jiang Shaoyong, Ge Lu, Yang Jinghong, Wu Nnengyou, Liu Jian. 2013. Geochemistry of pore waters from HQ-1PC of the Qiongdongnanbasin, northern South China Sea, and its implications for gas hydrate exploration. Science China: Earth Sciences, 56: 521~529.
参考文献
Ye Hong, Yang Tao, Zhu Guorong, Jiang Shaoyong, Wu Lushan. 2016. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China sea. Marine and Petroleum Geology, 75: 68~82.
参考文献
Zhang Guangxue, Liang Jinqiang, Lu Jingan, Yang Shengxiong, Zhang Ming, Su Xin, Xu Huaning, Fu Shaoying, Kuang Zenggui. 2014. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea. Natural Gas Industry, 34: 1~10 (in Chinese with English abstract).
参考文献
Zhang Guangxue, Liang Jinqing, Lu Jingan, Yang Shengxiong, Zhang Ming, Holland M, Schultheiss P, Su Xin, Sha Zhibin, Xu Huaning, Gong Yuehua, Fu Shaoying, Wang Lifeng, Kuang Zenggui. 2015. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth basin, South China Sea. Marine and Petroleum Geology, 67: 356~367.
参考文献
Zhang Mei, Lu Hongfeng, Wu Daidai, Liu Lihua, Wu Nengyou. 2017. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea. Marine Geology & Quaternary Geology, 37(6): 178~188 (in Chinese with English abstract).
参考文献
Zhong Guangfa, Liang Jinqiang, Guo Yiqun, Kuang Zenggui, Su Pibo, Lin Lin. 2017. Integrated core-log facies analysis and depositional model of the gas hydrate-bearing sediments in the northeastern continental slope, South China Sea. Marine and Petroleum Geology, 86: 1159~1172.
参考文献
Zhu Weilin, Zhong Kai, Li Youchuan, Xu Qiang, Fang Dianyong. 2012. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins. Chinese Science Bulletin, 57: 3121~3129.
参考文献
陈芳, 苏新, Nurnberg D, 陆红峰, 祝幼华, 刘坚, 廖志良. 2006. 南海东沙海域末次冰期最盛期以来的沉积特征. 海洋地质与第四纪, 26: 9~17.
参考文献
李雅婷. 2021. 南海上层水体钡稳定同位素组成的分布, 分馏与控制. 厦门大学硕士学位论文.
参考文献
吴庐山, 杨胜雄, 梁金强, 苏新, 付少英, 沙志彬, 杨涛. 2013. 南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义. 中国科学: 地球科学, 43: 339~350.
参考文献
谢蕾, 王家生, 林杞. 2012. 南海北部神狐水合物赋存区浅表层沉积物自生矿物特征及其成因探讨. 岩石矿物学杂志, 31: 382~392.
参考文献
谢蕾, 王家生, 吴能友, 邬黛黛, 王舟, 朱小畏, 胡军, 陈洪仁, 林杞. 2013. 南海北部神狐海域浅表层沉积物中自生黄铁矿及其泥火山指示意义. 中国科学: 地球科学, 43: 351~359.
参考文献
杨克红, 初凤友, 叶黎明, 章伟艳, 许冬, 朱继浩, 杨海丽, 葛倩. 2014. 南海北部甲烷渗漏的沉积地球化学指标(Sr/Ca和Mg/Ca)识别. 吉林大学学报(地球科学版), 44(2): 469~479.
参考文献
杨涛, 葛璐, 杨红, 吴能友, 张光学, 刘坚. 2009. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义. 科学通报, 54: 3231~3240.
参考文献
张光学, 梁金强, 陆敬安, 杨胜雄, 张明, 苏新, 徐华宁, 付少英, 匡增桂. 2014. 南海东北部陆坡天然气水合物藏特征. 天然气工业, 34: 1~10.
参考文献
张美, 陆红锋, 邬黛黛, 刘丽华, 吴能友. 2017. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示. 海洋地质与第四纪地质, 37(6): 178~188.
目录contents

    摘要

    甲烷渗漏活动及甲烷厌氧氧化作用(AOM)不仅导致特定自生矿物的形成,更会引起沉积物-孔隙水体系中元素和同位素组成的变化。本研究对南海北部水合物赋存区HD109站位开展了沉积物-孔隙水的Ba同位素及微量元素特征研究,综合分析了沉积物-孔隙水的氧化还原敏感元素(Mo、U)、Ba及Ba同位素特征对古今硫酸盐-甲烷转换带(SMTZ)及甲烷渗漏事件的指示。HD109站位孔隙水元素变化特征显示了清晰的地球化学分带,由上至下包括Fe-Mn还原带、硫酸盐还原带和硫酸盐-甲烷过渡带。沉积物Ba元素特征显示现今SMTZ上方有较为明显的钡峰(Ba/Al高值)发育,沉积物浅部Mo、U富集层位及相邻层位Ba/Al值特征综合指示了浅部古钡峰及古SMTZ的存在,代表沉积历史上甲烷渗漏通量较高事件。孔隙水δ138/134Ba值普遍高于海洋颗粒钡及碎屑钡的δ138/134Ba值,反映了沉积物中成岩重晶石溶解的贡献,其中,现代钡峰附近孔隙水具有明显的δ138/134Ba峰值,显示孔隙水δ138/134Ba对自生重晶石沉淀过程有较显著的响应。

    Abstract

    Methane seeps and methane anaerobic oxidation (AOM) not only lead to the precipitation of authigenic minerals but also impact the elemental and isotopic compositions of sediment-pore water systems. This study investigated the Ba isotopes and trace element characteristics of sediments and pore waters at station HD109 in the northern South China Sea gas hydrate area. The research aimed to explore the utility of integrating redox-sensitive elements (Mo, U), Ba, and Ba isotopes to trace the sulfate-methane transition zone (SMTZ) and methane seep events in both ancient and modern settings. The elemental variations in pore water at station HD109 show a clear geochemical zonation, encompassing the Fe-Mn reduction zone, the sulfate reduction zone, and the sulfate-methane transition zone in an ascending sequence. The Ba characteristics of sediments indicate a prominent barium front above the SMTZ. The interval with Mo and U enrichment at shallow depths, coupled with the Ba/Al characteristics in adjacent intervals, suggests the presence of a past barium front and a past SMTZ, representing periods of more intense methane seeping during sedimentation. Compared to particulate and detrital Ba, pore waters generally display higher δ138/134 Ba values, suggesting the dissolution of diagenetic barite in sediments. Porewater near the current barium front has even higher δ138/134 Ba values, indicating a significant response to the precipitation of authigenic barite.

  • 甲烷是重要的温室气体,对全球气候变化有着重要影响。甲烷在地球系统中广泛存在,地质储库中甲烷的最大储库来自海底沉积物中的甲烷水合物,资源量约合1.8×1016~2.1×1016 m3Paull and Dillon,2001)。海底沉积物中的甲烷水合物在失稳的情况下,会以渗漏或喷出的形式向上运移(Archer et al.,2009)。地质历史上的甲烷释放事件对地球的大气-海洋-生态系统有着深远的影响,例如二叠纪末期和三叠纪晚期的生物灭绝事件都可能与当时的海底甲烷大量释放存在联系(Tanner et al.,2004; Chen Chensheng et al.,2022)。探寻地质历史时期水合物失稳引起的甲烷释放记录对于全球气候变化和碳循环研究意义重大。

  • 我国南海北部是天然气水合物调查的重点区域,自20世纪末在南海开展天然气水合物资源调查工作以来,已通过对该地区开展的地球物理、地球化学、沉积及构造特征在内的多项调查和研究(Liu et al.,2006; Wang Shuhong et al.,2006; 杨涛等,2009; 吴庐山等,2013; Yang Tao et al.,2013; Lu Yang et al.,2017; Wan Zhifeng et al.,2017),在多个站点发现了九龙礁在内的冷泉喷出系统和古冷泉系统活动的证据,并多次勘探到天然气水合物样品(Han Xiqiu et al.,20082013; Zhang Guangxue et al.,2015; Zhong Guangfa et al.,2017; Feng Dong et al.,2018)。目前,包含地球化学手段在内的多种研究手段已用于对该区域甲烷渗漏历史的示踪,如孔隙水的硫酸根梯度,沉积物中自生矿物类型、形态及分布特点,沉积物主微量元素特征,自生矿物的C、O、S同位素组成(如碳酸盐、黄铁矿等)特点,微生物群落等(Han Xiqiu et al.,2008; 杨涛等,2009; 谢蕾等,20122013; 吴庐山等,2013; 杨克红等,2014; Lin Zhiyong et al.,2017; 张美等,2017),从不同角度对该区域地质历史上的甲烷渗漏事件及其与构造的联系、触发机制等进行了探讨。

  • 甲烷渗漏的地球化学示踪原理是基于甲烷渗漏对沉积物-孔隙水体系中元素地球化学行为的影响。在甲烷渗漏区,甲烷与孔隙水中硫酸根在甲烷厌氧氧化古菌和硫酸盐还原细菌等参与下发生甲烷厌氧氧化反应(Anaerobic Oxidation of Methane,AOM)(Boetius et al.,2000)。甲烷通量的变化不光引发孔隙水总碱度和自生矿物沉淀的变化(Joseph et al.,2013),还会影响沉积物剖面的地球化学分带深度,造成沉积物中的硫酸盐-甲烷转换带(Sulfate-Methane Transition Zone,SMTZ)深度的升高或下降(杨涛等,2009),导致沉积物氧化还原条件的变化。在这种情况下,氧化还原敏感元素(如Mo、U、V)会发生价态改变并往往伴随溶解度的变化,影响它们在沉积物-孔隙水中的富集/贫化状态(Peketi et al.,2012; Chen Fang et al.,2016);除了氧化还原敏感元素,Ba元素在沉积物-孔隙水中的分布情况也受甲烷渗漏过程影响,AOM过程本身对硫酸根的消耗会引起孔隙水中硫酸根浓度的变化,造成沉积物中重晶石发生溶解—迁移—再沉淀,导致Ba元素富集特征在纵向上分布特征的变化(Riedinger et al.,2006)。目前的无机沉淀实验显示Ba在重晶石的沉淀过程中存在较为显著的同位素分馏(von Allmen et al.,2010; Böttcher et al.,2018),因此沉积物-孔隙水体系的Ba同位素组成对上述溶解—迁移—再沉淀的循环过程有较大的示踪潜力。在本文研究区的HD109站位,前人通过沉积物中黄铁矿形态及硫同位素研究,认为该站点可能经历多次甲烷渗漏事件,沉积物中黄铁矿硫同位素异常可能指示了现今和数个古SMTZ的存在(Lin Zhiyong et al.,2017),不过,沉积物-孔隙水体系Ba元素丰度及其同位素组成对甲烷渗漏事件的响应,沉积物的氧化还原敏感元素对甲烷渗漏历史的记录,目前还未见报道。鉴于上述原因,本文重点探讨了HD109站位的孔隙水-沉积物的Ba同位素及氧化还原敏感元素(Mo,U)特征,旨在探讨这些元素和同位素对甲烷渗漏历史的响应和记录。

  • 1 地质背景

  • 中国南海是西太平洋最大的边缘海盆之一,位于欧亚板块、太平洋板块和印度-澳大利亚板块的交汇处,构造环境较为复杂(Morley,2012)。南海边缘的构造特征不尽相同,西北部为典型的被动大陆边缘,东北部为主动汇聚边缘(McDonnell et al.,2000; Wu Shiguo et al.,2005; Wang Shuhong et al.,2006),其间发育了一系列拉张/走滑拉张型沉积盆地,包括琼东南盆地、珠江口盆地、台西南盆地等。盆地中积累了巨厚的沉积物,厚度可达到10 km以上,蕴含着丰富的包括天然气水合物在内的油气资源(McDonnell et al.,2000; Suess,2005; Gong Zaisheng et al.,2011; Zhu Weilin et al.,2012)。自2004年九龙甲烷礁冷泉系统的首次报道以来,在中国南海的西沙海域、神狐海域、台西南海域均陆续发现了现代冷泉系统和古冷泉遗迹(Suess,2005; Han Xiqiu et al.,20082013; Feng Dong et al.,2018)。

  • HD109站位位于南海海盆东北部的台西南盆地,该区域一直以来被认为是南海北部最有潜力的天然气水合物赋存区域之一(Ye Hong et al.,2016)(图1)。台西南盆地呈北东-南西走向,长宽分别为480 km和240 km,裂隙、褶皱和火山底辟构造广泛分布,有利于富甲烷流体的渗流和天然气水合物的发育(McDonnell et al.,2000; Suess,2005; Wu Shiguo et al.,2007; Han Xiqiu et al.,2008)。地震剖面资料显示该区域广泛分布似海底反射层(BSR)(Suess,2005; Liu et al.,2006; Li Lun et al.,2015)。2013年中国地质调查局广州海洋地质调查局第二次天然气水合物调查在该区域钻探了13个站位,发现了大量不同形态赋存的天然气水合物(张光学等,2014; Sha Zhibin et al.,2015; Zhang Guangxue et al.,2015)。九龙甲烷礁的冷泉碳酸盐岩显示该区域在地质历史时期爆发过强烈的甲烷喷发事件,该海域表层沉积物中也记录了多次的甲烷渗漏事件。

  • 图1 南海北部水合物赋存区HD109站位地理位置(据Ye Hong et al.,2016修改)

  • Fig.1 Location of station HD109 in gas hydrate area of the northern South China Sea (after Ye Hong et al., 2016)

  • 2 样品及分析方法

  • 2.1 样品采集和预处理

  • 本文样品由中国地质调查局广州海洋地质调查局“海洋四号”调查船于2003年完成采集,取样采用大型重力活塞管,采样水深为3218 m,沉积柱样品长度为771 cm。沉积物主要由深绿色、黏土质粉砂和粉砂质黏土组成,含黏土矿物、石英、长石和钙质生物(陈芳等,2006)。以20 cm为间距对沉积物和孔隙水进行现场采集,其中,孔隙水使用自真空抽提装置进行提取,抽提后使用聚四氟乙烯瓶密封保存。

  • 在进行元素和同位素分析前,需对样品进行预处理。对于沉积物样品,首先使用去离子水反复清洗以去除其中盐分,清洗完成后,将沉积物低温(60℃)烘干,研磨至小于200目;对于孔隙水样品,使用45 μm滤膜过滤后再用于化学分析。

  • 所有地球化学分析均在南京大学内生金属矿床成矿机制研究国家重点实验室完成。

  • 2.2 沉积物和孔隙水微量元素分析

  • 对于沉积物样品,用Teflon溶样罐称取约50 mg样品粉末,加入氢氟酸后在120℃条件下蒸发至湿盐状,随后加入浓氢氟酸和浓硝酸,将溶样罐放入钢套并转移到烘箱中加热,温度设置为190℃;72 h后,将样品取出蒸干,加入浓硝酸并放入钢套,于120℃烘箱中再加热12 h以达到完全消解;所得溶液经稀释后,加入Rh作为内标。孔隙水样品无需消解,直接使用2%硝酸进行稀释并加入Rh作为内标。

  • 所得溶液的微量元素测试由电感耦合等离子体质谱仪(ICP-MS)完成,仪器型号为Thermo Scientific公司的Element-XR,测试精度优于10%,其中大部分元素精度优于5%。

  • 2.3 孔隙水硫酸根含量分析

  • 孔隙水经稀释至合适倍数后,采用离子色谱测定其硫酸根含量,使用仪器型号为瑞士万通883 Basic IC plus,分析精度小于3%。

  • 2.4 沉积物和孔隙水Ba同位素分析

  • 在消解溶液(消解方法见2.2)/孔隙水样品中加入合适数量的Ba双稀释剂,蒸干溶液后溶于1 mol/L HCl中,现将分离过程简述如下:

  • (1)使用AG50W-X12树脂提取Ba和Sr:树脂用4 mL 1 mol/L HCl平衡后上样,将1.5 mol/L HCl按照体积为0.5 mL、1 mL、1 mL、1 mL、1 mL的顺序依次进行淋洗,随后用3 mL 3 mol/L HNO3分3次进行洗脱。

  • (2)使用Sr特效树脂纯化Ba:树脂用2 mL 3 mol/L HNO3平衡后,将步骤(1)中接收的溶液加入,随后使用1 mL 3 mol/L HNO3淋洗两次,最后,使用10 mL的7 mol/L HNO3接受Ba(分4次按照1 mL、2 mL、3 mL、4 mL的顺序依次加入溶液)。

  • (3)步骤(2)中得到的溶液蒸干后,加入2%硝酸并定容至Ba含量为100×10-9。Ba同位素的测试使用多接收电感耦合等离子体质谱仪(MC-ICP-MS),型号为Thermo Scientific的 Neptune Plus。使用Iolite软件插件IsoSpike对双稀释剂数据进行计算处理(Creech and Paul,2015),同位素结果以δ138/134Ba形式表示(相对于NIST3104a),测试精度小于0.03‰(2SE)。

  • 3 结果

  • 样品的测试数据,包括微量元素(Mo、U、Ba)、Al、Fe、Mn和硫酸根含量及Ba同位素数据列于表1和表2。为消除沉积物中碳酸盐及硅质组分的稀释,使用富集系数或元素/铝含量比值以评估元素实际富集/亏损程度(Tribovillard et al.,2006),富集系数计算公式为:XEF =(X/Al)样品/(X/ Al)PAAS,其中,X代表微量元素,PAAS为澳大利亚后太古宙平均页岩(Taylor and McLennan,1985)。

  • 3.1 孔隙水主量元素(Fe、Mn)及硫酸根变化特征

  • 孔隙水样品的溶解Fe和Mn含量分别介于6.6×10-9~79.4×10-9(均值34.2×10-9)和0~3923×10-9之间(均值744×10-9)。溶解Fe含量总体随深度增加呈下降趋势,除410~550 cmbsf区段较为稳定外,其余部分含量均变化较大(图2),在90 cmbsf和330 cmbsf左右表现为峰值;Mn含量在0~133 cmbsf随深度增加呈先升后降的特点,峰值出现在50~90 cmbsf处;往下至410 cmbsf,Mn含量表现出较为稳定的下降趋势;410 cmbsf以下,Mn含量趋于稳定(图2)。硫酸根含量在浅部较为稳定,自330 cmbsf左右往下开始呈现单调的下降趋势;690 cmbsf以下,硫酸根含量波动增加,在5.7×10-3 mol/L和15.2×10-3 mol/L之间变化(图2)。

  • 3.2 沉积物和孔隙水微量元素(Mo、U、Ba)变化特征

  • 孔隙水的Mo、U含量分别在3.8×10-9~172.2×10-9(均值32.9×10-9)和1.1×10-9~15.6×10-9(均值5.7×10-9)之间(表2)。Mo在250~290 cmbsf、610~670 cmbsf区段具有高值,其余区段Mo值稳定在10.0×10-9~30.0×10-9左右(表2);相比之下,U含量数据较为震荡,两个较高的值出现在250 cmbsf和740 cmbsf附近。Ba含量在浅部较低,稳定在100×10-9~300×10-9之间,在500 cmbsf左右开始小幅增加,自600 cmbsf以下,明显升高,峰值达到6784 ×10-9(表1,图2)。

  • 表1 南海北部水合物赋存区HD109站位孔隙水硫酸根、元素及Ba同位素特征

  • Table1 SO2-4, trace elements and Ba isotopic composition of porewaters at station HD109 in gas hydrate area of the northern South China Sea

  • 表2 南海北部水合物赋存区HD109站位沉积物元素及Ba同位素特征

  • Table2 Trace elements and Ba isotopic composition of sediments at station HD109 in gas hydrate area of the northern South China Sea

  • 沉积物MoEF为0.5~3.7(表2,图3),MoEF值在200 cmbsf以上数值较低(0.5~0.8),往下在210 cmbsf左右出现峰值(2.5~3.7)后下降至稳定在1.2左右,局部略有波动(图3);UEF纵向变化与MoEF高度相似,但变化相对MoEF较小,UEF在顶部含量最低,在210 cmbsf出现最高值(1.6~1.8),随后下降并稳定在1.4左右(图3);Ba/Al在4.7×10-3~6.5×10-3之间,高值出现在370~550 cmbsf区间,除此之外,在90~170 cmbsf附近存在局部高值(图3)。

  • 图2 南海北部水合物赋存区HD109站位孔隙水硫酸根及微量元素特征

  • Fig.2 Sulfate and trace element characteristics in pore waters at station HD109 in gas hydrate area of the northern South China Sea

  • OSR—有机质硫酸盐还原作用;AOM—甲烷厌氧氧化作用;斜线部分为Lin Zhiyong et al.(2017)提出的现代SMTZ位置

  • OSR—organic matter sulfate reduction; AOM—anaerobic methane oxidation; the oblique lines in the illustration show the modern SMZT proposed by Lin Zhiyong et al. (2017)

  • 图3 南海北部水合物赋存区HD109站位沉积物-孔隙水微量元素及Ba同位素组成特征(TOC数据引自Lin Zhiyong et al.,2017

  • Fig.3 Characteristics of trace elements and Ba isotopic composition of sediments and porewaters at station HD109 in gas hydrate area of the northern South China Sea (TOC data from Lin Zhiyong et al., 2017)

  • 3.3 孔隙水和沉积物Ba同位素变化特征

  • 孔隙水Ba同位素组成总体变化较大(δ138/134Ba:0.34‰~0.85‰)(表1)。0~400 cmbsf,δ138/134Ba值总体在0.40‰~0.60‰之间波动,在400 cmbsf左右出现明显高值(0.62‰~0.75‰),400 cmbsf以下,δ138/134Ba下降并保持小幅波动,绝大多数值不超过0.60‰,但在740 cmbsf左右呈突变特征,出现最高值(0.85‰)。与孔隙水相比,沉积物的δ138/134Ba值变化有限,保持在0‰左右,在孔隙水δ138/134Ba变化较大的深度未观察到明显波动(表1,图3)。

  • 4 讨论

  • 4.1 孔隙水元素特征及地球化学分带

  • 海洋沉积环境在纵向上可划分为多个地球化学分带,由浅至深分别为:氧气呼吸带、NO-3还原带、Fe-Mn还原带、硫酸盐还原带和硫酸盐-甲烷转换带。在理想条件下,按照有机质降解时与氧化剂发生反应自由能大小的不同,O2、NO-3、Fe3+、Mn4+、SO2-4等氧化剂按顺序依次发生有氧呼吸作用、反硝化作用、Fe-Mn氧化物还原作用、硫酸盐还原作用和产甲烷作用(Froelich et al.,1979; Canfield and Thamdrup,2010)。当然,这种氧化还原分带是一种理想情况,受各种地质因素影响,可能会出现地球化学分带的缺失或者重叠的现象。

  • 在HD109站位,孔隙水中溶解Mn在浅部(0~133 cmbsf)向下呈现出先升后降的特点,在同样的深度范围内,溶解Fe呈现类似于Mn的向下先升后降的特点(图2)。这样的变化特征说明铁锰氧化物的还原主要发生于这一区间,因此0~133 cmbsf应对应Mn-Fe还原带。孔隙水SO2-4变化特征与Lin Zhiyong et al.(2017)研究结果一致,SO2-4在290 cmbsf以上基本保持稳定,自330 cmbsf往下,呈近乎线性下降的特征(图2),这表明硫酸根通过有机质硫酸盐还原作用(OSR:organic matter sulfate reduction)/甲烷厌氧氧化作用(AOM)开始消耗;在大约670 cmbsf处,硫酸根浓度降至最低值。根据硫酸根的纵向变化特点,330~670 cmbsf应代表了硫酸根发生还原反应的深度范围。在此深度范围内,溶解Ba浓度逐渐升高(图2),指示SO2-4被消耗情况下沉积物中BaSO4发生溶解。如前所述,硫酸盐还原通过OSR和AOM作用实现,前者反应为2CH2O + SO2-4→HCO-3+HS-+H2O,发生于硫酸盐还原带;后者反应为CH4+SO2-4→HCO-3+HS-+H2O,发生于硫酸盐-甲烷转换带。硫酸盐-甲烷转换带的下界面一般对应SO2-4接近完全消耗的位置,在HD109站位应该在700 cmbsf左右,Lin Zhiyong et al.(2017)根据甲烷含量特征,推测上界面可能位于610 cmbsf附近。

  • 除了在0~133 cmbsf处的高值,溶解Fe在330~370 cmbsf和650 cmbsf附近还分别存在两个高值区。其中,650 cmbsf附近的高值对应深度接近上文推测的STMZ底界面,其产生可能与SMTZ之下发生Fe驱动的甲烷厌氧氧化作用有关(Riedinger et al.,2014; Egger et al.,2017),反应方程为CH4+8Fe(OH)3+15H+→HCO-3+8Fe2++21H2O,此反应生成的二价铁进入孔隙水中,造成溶解Fe浓度升高。330~370 cmbsf溶解Fe高值的形成原因尚不明确,推测可能是这一深度位于古SMTZ下方,Fe驱动的甲烷厌氧氧化作用造成孔隙水具有较高的Fe含量,后期SMTZ深度下降,但孔隙水中残留的溶解铁尚未完全消耗/扩散,孔隙水的高溶解Fe特征被暂时保留。

  • 4.2 沉积物元素特征对古今硫酸盐-甲烷转换带的响应

  • 4.2.1 氧化还原敏感元素(Mo、U)特征

  • Mo、U在氧化海水以MoO2-4、U6+的形式存在(Tribovillard et al.,2006)。当水体氧化程度降低时,U6+可被还原为U4+并进入沉积物中,这一反应大致与Fe3+还原为Fe2+的反应同步(Morford and Emerson,1999; Tribovillard et al.,2006)。相较而言,Mo进入沉积物高度依赖水体中游离H2S的存在,硫化条件下MoO2-4转化为活性的硫代钼酸根(MoOxS4-x2-)(Helz et al.,1996; Erickson and Helz,2000),随后吸附到有机质或随着Fe-Mo硫化物沉淀,从而进入到沉积物中(Helz et al.,1996; Tribovillard et al.,2006)。游离H2S的存在可使U在沉积物中的富集程度进一步增加(Tribovillard et al.,2006)。因此,硫化条件下沉积物中的Mo和U表现为较为富集的特征。

  • 水体中H2S的产生主要来自于两个途径:有机质硫酸盐还原反应和甲烷厌氧氧化作用。在现代高生产力区域,沉积物中的大量有机质与SO2-4反应产生的H2S可使水岩界面附近孔隙水硫化,甚至部分区域H2S可释放至底层海水中(Böning et al.,2004)。在发生甲烷渗漏的地区,甲烷喷流强度和通量突然增加的情况下,原有的氧化还原分带发生变化,STMZ快速上移至水岩界面附近并在此处发生AOM作用,让水岩界面附近孔隙水富集H2S,在生成量较大情况下甚至会向底层水发生渗漏。典型的例子如孟加拉湾水合物赋存区,其表层50 cmbsf沉积物中记录了三次强烈AOM过程引发的H2S渗漏事件(Peketi et al.,2012)。在HD109站位,210~250 cmbsf处出现了明显的Mo相对富集。尽管这一层位的MoEF绝对数值不高(2.5~3.7),但其上方沉积物MoEF值小于1说明计算富集系数采用的标准(PAAS)Mo/Al比值显著高于本研究区域碎屑组成的背景值,因而造成计算的富集系数偏低。如果采用研究样品中最低的Mo/Al值对碎屑组成进行保守估计(Little et al.,2015),那么210~250 cmbsf沉积物的Mo真实富集水平应是碎屑值的5~7倍,这个较高的Mo富集程度说明这部分沉积物孔隙水曾发育硫化条件。虽然210~250 cmbsf部分沉积物的TOC含量高于上方,但与下方沉积物相比没有明显差异(Lin Zhiyong et al.,2017),说明导致孔隙水硫化的主要因素并非有机质升高带来的有机质硫酸盐还原作用增强,强烈的AOM作用是更加可能的H2S产生途径,该过程产生的H2S导致Mo从水体中快速沉淀并富集。相比Mo,此层位U的富集并不显著,UEF仅相对其他层位略微升高,产生这种现象的原因可能在于后期AOM作用减弱后氧化还原分带下移引起的U再活化。在氧化还原分带下移的情况下,沉积物中原本存在的自生U富集层会受氧化发生U再活化,活化产生的溶解态U可向上扩散至海水中,或者运移至深处条件合适处再次沉淀(McManus et al.,2005; Tribovillard et al.,2006)。从孔隙水U含量变化来看,在沉积物UEF高值区存在较高的溶解U,显示该层位存在U的再活化。值得注意的是,该层位溶解Mo也高于相邻层位,说明部分Mo由沉积物进入孔隙水中,这可能与Mo赋存相(有机质,黄铁矿等)的分解有关。在当前STMZ附近(图2、图3),沉积物中并不存在类似的MoEF和UEF高异常值,这应该与当前STMZ深度相对较深有关:一方面相对较弱的AOM作用限制了H2S的产生量,另一方面,远离水岩界面导致的海水溶解态Mo和U供给受限,从而Mo和U沉淀量有限。

  • 210~250 cmbsf附近曾发生AOM作用这一判断也与前人的研究相符,Lin Zhiyong et al.(2017)基于对本钻孔中自生黄铁矿S同位素的研究,认为古STMZ曾上移至170 cmbsf附近,这个位置接近目前的MoEF高值区(图3),代表了地质历史上一次较强的甲烷渗漏事件。

  • 4.2.2 Ba/Al比值特征

  • 海洋沉积物中的Ba/Al比值特征对沉积物中SMTZ的位置具有指示意义(Dickens,2001; Riedinger et al.,2006)。沉积物中的Ba一般存在于铝硅酸盐矿物和微细的BaSO4颗粒中(Dymond et al.,1992),铝硅酸盐相关的Ba在成岩过程中不具有活动性,而以BaSO4形式存在的钡并不稳定,在贫硫酸根条件下,BaSO4发生溶解(BaSO4→Ba2+ + SO2-4),此过程中Ba以溶解态的形式(Ba2+)被释放进孔隙水中,可造成孔隙水中Ba2+浓度增加(Torres et al.,1996)。这部分Ba2+通过扩散进入沉积物浅部,在含硫酸根孔隙水中达到饱和后再次以BaSO4形式沉淀。因此,沉积物中Ba/Al高值(钡峰,Barium Front)往往位于SMTZ附近,略高于硫酸盐耗尽深度(Dickens,2001; Riedinger et al.,2006),这种溶解-沉淀过程可在SMTZ附近反复进行。在甲烷渗漏区域,甲烷通量的变化会导致AOM反应的强度和硫酸盐的消耗量变化,进而改变SMTZ的深度并影响钡峰的位置(Peketi et al.,2012)。如果SMTZ位置较之前上升,原本存在Ba/Al高值的层位可能因为BaSO4的溶解而使得原本的Ba富集信息被抹去,这种情况下钡峰较难保存在沉积物记录中;相反,如果SMTZ位置较从前下降,那么SO2-4可能保持在较高水平,维持重晶石的饱和状态,原本的Ba/Al高值得以保留(Riedinger et al.,2006)。

  • HD109站位370~550 cmbsf附近存在一个明显的Ba/Al高值,这个层位略高于Lin Zhiyong et al.(2017)推断的当前STMZ上界面,应代表当前钡峰位置(图3)。SMTZ强烈的AOM反应导致了硫酸根的快速消耗,继而引起BaSO4的溶解,这与510 cmbsf附近孔隙水Ba2+含量向下数倍增加的现象相符(图2)。溶解产生的Ba2+向上下扩散并在370~550 cmbsf与SO2-4一起重新沉淀,造成沉积钡的富集。除370~550 cmbsf之外,在90~170 cmbsf附近也存在一个Ba/Al相对高值区,这个钡峰的存在指示了在其下方可能存在古SMTZ。值得注意的是,Ba/Al峰值对应层位接近且略高于上文所述的MoEF、UEF高值区(图3)。根据上节的讨论,MoEF、UEF峰在沉积物中的出现可能是一次较为强烈的甲烷喷流事件的记录,彼时强烈的AOM作用使得当时的SMTZ上移,在SMTZ发生的AOM作用产生的大量H2S使其附近孔隙水中的Mo和U沉淀并进入固相;同时,在该SMTZ上方也可能发育钡峰。因此,90~170 cmbsf的Ba/Al相对高值可能是该SMTZ对应的古钡峰记录。Ba和Mo、U富集的层位也与Ba2+和Mo、U发生沉淀的相对位置相符(前者需要孔隙水中含有一定浓度的硫酸盐,后者需要孔隙水为硫化条件)。90~170 cmbsf部分古钡峰的保留可能与其所在深部较浅有关,推测后期SMTZ并未上升至更高层位,浅部孔隙水硫酸根保持在较高浓度,BaSO4得以保持稳定。

  • 4.3 钡同位素特征对古今硫酸盐-甲烷转换带的响应

  • 4.3.1 孔隙水Ba同位素组成特征

  • 目前海洋沉积物孔隙水Ba同位素相关研究较少,仅有少量数据发表。Middleton et al.(2023)在对热带太平洋沉积物研究中,发现沉积物相对共存的孔隙水δ138/134Ba值偏轻,这个现象被认为与沉积重晶石和孔隙水之间的离子交换有关,可导致流体相的Ba2+富集重的Ba同位素,其Δ重晶石-溶解钡值为-0.17‰(Middleton et al.,2023)。不过,该研究仅涉及了处于氧化分带中的沉积物。在缺氧沉积物中,硫酸盐的还原会导致重晶石溶解(Paytan and Griffith,2007),溶解产生的Ba2+经扩散后,在含SO2-4的层位会发生再次沉淀,形成成岩重晶石(Torres et al.,1996)。虽然重晶石在沉积物中的溶解过程没有显著的Ba同位素分馏,但重晶石的沉淀过程中的Ba同位素分馏较为显著(von Allmen et al.,2010; Böttcher et al.,2018);此外,实验表明沉积物孔隙水中Ba2+扩散过程也存在分馏(van Zuilen et al.,2016)。因此,海洋沉积物中的孔隙水在诸多因素影响下,可能具有变化较大的Ba同位素组成(von Allmen et al.,2010; Tian Lanlan et al.,2023)。

  • HD109站位孔隙水的Ba同位素组成变化较大,δ138/134Ba值为0.34‰~0.83‰(均值0.54‰),无论是在现今SMTZ以上的重晶石稳定区域,还是SMTZ及其下方的重晶石溶解区(见上节),孔隙水均具有较高的δ138/134Ba值(图3)。对SMTZ及其下方的孔隙水而言,其Ba主要来源于沉积物中重晶石的大量溶解。由于重晶石的溶解不伴随显著的Ba同位素分馏,因此这部分孔隙水较高的δ138/134Ba值应继承了对应沉积物中重晶石的δ138/134Ba组成特征。前人的研究认为,海洋沉积物中沉积重晶石的Ba同位素组成应与海洋表层水体中颗粒Ba的同位素组成接近(Bridgestock et al.,2018),南海北部颗粒Ba的δ138/134Ba值为0.10‰~0.20‰(李雅婷,2021),因此HD109站位沉积物的沉积重晶石δ138/134Ba应接近这一数值。不过,由于甲烷喷发强度引起的SMTZ深度变化,本站位沉积物的重晶石可能经历了较为复杂的溶解-沉淀(见上节讨论),沉积物中除沉积重晶石外,还应存在成岩成因重晶石,孔隙水的δ138/134Ba值应受到了不同成因重晶石的影响。从孔隙水相对沉积重晶石(继承颗粒Ba)偏高的δ138/134Ba值来看,成岩重晶石应具有较高的δ138/134Ba值。这部分重晶石具有偏高δ138/134Ba的原因目前有待进一步研究。根据前人对寒武纪重晶石的工作,部分早期成岩重晶石具有δ138/134Ba值较高的特点,其高δ138/134Ba值来自早期成岩过程具有高δ138/134Ba值的流体,该流体的来源和形成机制目前尚不清楚,推测富有机质沉积物是其可能来源。另外,离子交换,水岩反应及扩散过程中伴随的Ba同位素分馏也是其可能的形成机理(Tian Lanlan et al.,2023)。

  • 对于位于SMTZ以上的沉积物,尽管沉积物Ba同位素组成在现今钡峰附近并未出现明显的异常(图3),但孔隙水的Ba同位素组成在当前钡峰附近的变化较为显著,δ138/134Ba值在330~410 cmbf处明显升高,往上又逐渐降低(图3)。沉积物钡峰代表了自生重晶石大量沉淀发生的位置,根据重晶石沉淀实验结果,重晶石沉淀时优先富集较轻的Ba同位素,使剩余液相δ138/134Ba值增加,此过程的α值约为0.99968 ± 0.00002(von Allmen et al.,2010; Böttcher et al.,2018)。因此,HD109站位现今钡峰附近孔隙水较高的δ138/134Ba值应是受到重晶石沉淀影响的产物。值得注意的是,Ba/Al的最高点并非对应δ138/134Ba值的最高点(图3),这应该与Ba在孔隙水中的扩散有关,由于深部与浅部溶解Ba存在浓度梯度差(图2),Ba2+向浅部的扩散导致了具有重δ138/134Ba值孔隙水的上移。孔隙水δ138/134Ba值高值区以上至沉积物顶部,δ138/134Ba值介于0.34‰~0.55‰区间,依旧显著高于沉积重晶石的δ138/134Ba值,即使考虑到沉积重晶石和孔隙水之间的离子交换作用(Δ重晶石-溶解=-0.17‰)(Middleton et al.,2023),与沉积物重晶石平衡的孔隙水δ138/134Ba值应该在0.27‰~0.37‰之间,显然低于实际测试值,因此这部分孔隙水Ba同位素偏重还存在其他因素的影响。造成高δ138/134Ba值的一个可能的影响因素来自下部具有高δ138/134Ba值孔隙水中Ba2+的扩散,另一个可能是地层中具有较高δ138/134Ba值的成岩重晶石与孔隙水之间的离子交换作用。

  • 4.3.2 沉积物Ba同位素特征

  • HD109站位沉积物的δ138/134Ba值变化极小,在-0.03‰~0.05‰之间,均值0.0‰,即使在现代钡峰处和古代钡峰等自生Ba较高的层位,也未观察到显著的Ba同位素变化(图3)。如前所述,海洋沉积物中的Ba主要由过剩Ba和碎屑Ba组成,其中过剩Ba主要源自海洋中的颗粒态Ba(Bridgestock et al.,2018),在成岩过程中可能部分转化为成岩重晶石并可能伴随着Ba同位素比值的变化。为估算HD109站位沉积物中过剩Ba的比例,采用如下公式(Bridgestock et al.,2018):

  • Baxs=Batotal -Ba/Aldetrital ×Altotal

  • 其中,Baxs为过剩Ba,Batotal和Altotal分别为沉积物中的Ba和Al含量,Ba/Aldetrital为碎屑Ba/Al,采用样品中最低值进行估算(Bridgestock et al.,2018)。计算结果显示Baxs占比为0.0%~27.6%(均值11.7%),由于这种计算方法得出的是过剩Ba的上限,因此HD109站位沉积物中碎屑Ba占据绝对的优势。根据前人的研究,碎屑Ba的δ138/134Ba平均组成为0.00‰±0.04‰)(Nan Xiaoyun et al.,2018),与HD109站位沉积物的δ138/134Ba值在误差范围内一致,因此沉积物δ138/134Ba近于0‰值应主要反映了来自碎屑Ba的贡献,过剩Ba的同位素信号被掩盖。要获取沉积物中过剩Ba的同位素组成,需要在未来的工作中采用物理分选或化学淋滤的方法对沉积物中重晶石进行分离和提取以排除碎屑物质影响。

  • 5 结论

  • (1)根据HD109站位孔隙水-沉积物的元素(溶解Fe、Mn、Ba、SO2-4、Ba/Al)变化特征,由上而下识别出了HD109站位中不同的地球化学分带,包括Fe-Mn还原带、硫酸盐还原带和硫酸盐-甲烷过渡带的深度。

  • (2)HD109站位沉积物中Mo、U元素富集及Ba/Al值变化特征反映了浅部(90~170 cmbsf)古硫酸盐-甲烷转换带(SMTZ)的存在,这个较浅的SMTZ代表了沉积历史上的一次甲烷通量增加事件,与前人根据黄铁矿硫同位素特征识别的古SMTZ可对应。

  • (3)HD109站位孔隙水普遍具有较高的δ138/134Ba值,显著高于碎屑来源Ba和海洋沉积Ba的δ138/134Ba值,这些高值来源于沉积物中成岩重晶石溶解的贡献。尽管背景值偏高,在现代钡峰位置附近孔隙水δ138/134Ba值高于相邻层位,反映自生重晶石沉淀过程优先富集轻Ba同位素,导致孔隙水中溶解Ba组成偏重。

  • 由于大量碎屑Ba的存在,HD109站位沉积物全岩δ138/134Ba组成变化有限,但现代钡峰位置附近孔隙水δ138/134Ba的高值说明对应沉淀的重晶石应具有较轻的Ba同位素组成,未来工作可针对沉积物中自生重晶石的δ138/134Ba进行分析,在示踪古今钡峰乃至SMTZ方面具有较大潜力。

  • 参考文献

    • Archer D, Buffett B, Brovkin V. 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 106: 20596~20601.

    • Boetius A, Ravenschlag K, Schubert C J, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen B B, Witte U, Pfannkuche O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623~626.

    • Böning P, Brumsack H J, Böttcher M E, Schnetger B, Kriete C, Kallmeyer J, Borchers S L. 2004. Geochemistry of Peruvian near-surface sediments. Geochimica et Cosmochimica Acta, 68: 4429~4451.

    • Böttcher M E, Neubert N, von Allmen K, Samankassou E, Nägler T F. 2018. Barium isotope fractionation during the experimental transformation of aragonite to witherite and of gypsum to barite, and the effect of ion (de)solvation. Isotopes in Environmental and Health Studies, 54: 324~335.

    • Bridgestock L, Hsieh Y T, Porcelli D, Homoky W B, Bryan A, Henderson G M. 2018. Controls on the barium isotope compositions of marine sediments. Earth and Planetary Science Letters, 481: 101~110.

    • Canfield D E, Thamdrup B. 2010. Towards a consistent classification scheme for geochemical environments, or, why we wish the term “suboxic” would go away. Geobiology, 7: 385~392.

    • Chen Chensheng, Qin Shengfei, Wang Yunpeng, Holland G, Wynn P, Zhong Wanyu, Zhou Zheng. 2022. High temperature methane emissions from Large Igneous Provinces as contributors to late Permian mass extinctions. Nature Communications, 3: 6893.

    • Chen Fang, Su Xin, Nurnberg D, Lu Hongfeng, Zhu Youhua, Liu Jiang, Liao Zhiliang. 2006. Lithologic features of sediments characterized by high sedimentation rates since the last glacial maximum from Dongsha area of the South China Sea. Marine Geology & Quaternary Geology, 26: 9~17 (in Chinese with English abstract).

    • Chen Fang, Hu Yu, Feng Dong, Zhang Xin, Cheng Shihai, Cao Jun, Lu Hongfeng, Chen Duofu. 2016. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chemical Geology, 443: 173~181.

    • Creech J B, Paul B. 2015. IsoSpike: Improved double-spike inversion software. Geostandards and Geoanalytical Research, 39: 7~15.

    • Dickens G R. 2001. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta, 65: 529~543.

    • Dymond J, Suess E, Lyle M. 1992. Barium indeep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7: 163~181.

    • Egger M, Hagens M, Sapart C J, Dijkstra N, van Helmond N A G M, Mogollón J M, Risgaard-Petersen N, van der Veen C, Kasten S, Riedinger N, Böttcher M E, Röckmann T, Jørgensen B B, Slomp C P. 2017. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochimica et Cosmochimica Acta, 207: 256~276.

    • Erickson B E, Helz G R. 2000. Molybdenum (VI) speciation in sulfidic waters. Geochimica et Cosmochimica Acta, 64: 1149~1158.

    • Feng Dong, Qiu Jianwen, Hu Yu, Peckmann J, Guan Hongxiang, Tong Hongpeng, Chen Chong, Chen Jiangxin, Gong Shanggui, Li Niu, Chen Duofu. 2018. Cold seep systems in the South China Sea: An overview. Journal of Asian Earth Sciences, 168: 3~16.

    • Froelich P N, Klinkhammer G P, Bender M L, Luedtke N A, Heath G R, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075~1090.

    • Gong Zaisheng, Huang L F, Chen P H. 2011. Neotectonic controls on petroleum accumulations, offshore China. Journal of Petroleum Geology, 34: 5~27.

    • Han Xiqiu, Suess E, Huang Yongyang, Wu Nengyou, Bohrmann G, Su Xin, Eisenhauer A, Rehder G, Fang Yinxia. 2008. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea. Marine Geology, 249: 243~256.

    • Han Xiqiu, Yang Kehong, Huang Yongyang. 2013. Origin and nature of cold seep in northeastern Dongsha area, South China Sea: Evidence from chimney-like seep carbonates. Chinese Science Bulletin, 58: 3689~3697.

    • Helz G R, Miller C V, Charnock J M, Mosselmans J F W, Pattrick R A D, Garner C D, Vaughan D J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60: 3631~3642.

    • Joseph C, Campbell K A, Torres M E, Martin R A, Pohlman J W, Riedel M, Rose K. 2013. Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals. Palaeogeography, Palaeoclimatology, Palaeoecology, 390: 52~67.

    • Li Lun, Liu Haojie, Zhang Xin, Lei Xinhua, Sha Zhibin. 2015. BSRs, estimated heat flow, hydrate-related gas volume and their implications for methane seepage and gas hydrate in the Dongsha region, northern South China Sea. Marine and Petroleum Geology, 67: 785~794.

    • Li Yating. 2021. On the distributions, fractionation, and controls of stable barium isotopic compositions in the upper water column of the South China Sea. Master's thesis of Xiamen University (in Chinese with English abstract).

    • Lin Zhiyong, Sun Xiaoming, Strauss H, Lu Yang, Gong Junli, Xu Li, Lu Hongfeng, Teichert B M A, Peckmann J. 2017. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea. Geochimica et Cosmochimica Acta, 211: 153~173.

    • Little S H, Vance D, Lyons T W, McManus J. 2015. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings. American Journal of Science, 315: 77~119.

    • Liu Charshine S, Schnurle P, Wang Yunshuen, Chung Sanhsiung, Chen Songchuen, Hsiuan Tahen. 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17: 615~644.

    • Lu Yang, Liu Yufei, Sun Xiaoming, Hao Xinrong, Peckmann J, Lin Zhiyong, Xu Li, Lu Hongfeng. 2017. Intensity of methane seepage reflected by relative enrichment of heavy magnesium isotopes in authigenic carbonates: A case study from the South China Sea. Deep Sea Research Part I Oceanographic Research Papers, 129: 10~21.

    • McDonnell S L, Max M D, Cherkis N Z, Czarnecki M F. 2000. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan. Marine and Petroleum Geology, 17: 929~936.

    • McManus J, Berelson W M, Klinkhammer G P, Hammond D E, Holm C. 2005. Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta, 69: 95~108.

    • Middleton J T, Paytan A, Auro M, Saito M A, Horner T J. 2023. Barium isotope signatures of barite-fluid ion exchange in Equatorial Pacific sediments. Earth and Planetary Science Letters, 612: 118150.

    • Morford J L, Emerson S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63: 1735~1750.

    • Morley C K. 2012. Late Cretaceous-Early Palaeogene tectonic development of SE Asia. Earth-Science Reviews, 115: 37~75.

    • Nan Xiaoyun, Yu Huimin, Rudnick R L, Gaschnig R M, Xu Juan, Li Wangye, Zhang Qun, Jin Zhandong, Li Xianhua, Huang Fang. 2018. Barium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 233: 33~49.

    • Paull C K, Dillon W P. 2001. Natural gas hydrates: Occurrence, distribution, and detection. Washington DC American Geophysical Union Geophysical Monograph Series, 124~124.

    • Paytan A, Griffith E M. 2007. Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54: 687~705.

    • Peketi A, Mazumdar A, Joshi R K, Patil D J, Srinivas P L, Dayal A M. 2012. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics. Geochemistry, Geophysics, Geosystems, 13: 2012GC004288.

    • Riedinger N, Kasten S, Gröger J, Franke C, Pfeifer K. 2006. Active and buried authigenic barite fronts in sediments from the Eastern Cape basin. Earth and Planetary Science Letters, 241: 876~887.

    • Riedinger N, Formolo M J, Lyons T W, Henkel S, Beck A, Kasten S. 2014. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology, 12: 172~181.

    • Sha Zhibin, Liang Jinqing, Zhang Guangxue, Yang Shengxiong, Lu Jingan, Zhang Zijian, McConnell D R, Humphrey G. 2015. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations. Marine Geology, 366: 69~78.

    • Suess E. 2005. RV SONNE cruise report SO 177, Sino-German cooperative project, South China Sea continental margin: Geological methane budget and environmental effects of methane emissions and gas hydrates. IFM-GEOMAR Reports.

    • Tanner L H, Lucas S G, Chapman M G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews, 65: 103~139.

    • Taylor S, McLennan S. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 28~29.

    • Tian Lanlan, Wei Wei, Dong Linhui, Pan Songqi, Jing Zhenhua, Huang Fang. 2023. Diagenetic effect on barium isotope compositions of barites in the lower Cambrian successions. Chemical Geology, 635: 121631.

    • Torres M E, Brumsack H J, Bohrmann G, Emeis K C. 1996. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127: 125~139.

    • Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232: 12~32.

    • Van Zuilen K, Müller T, Nägler T F, Dietzel M, Küsters T. 2016. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures. Geochimica et Cosmochimica Acta, 186: 226~241.

    • Von Allmen K, Böttcher M E, Samankassou E, Nägler T F. 2010. Barium isotope fractionation in the global barium cycle: First evidence from barium minerals and precipitation experiments. Chemical Geology, 277: 70~77.

    • Wan Zhifeng, Xu Xing, Wang Xianqing, Xia Bin, Sun Yuefeng. 2017. Geothermal analysis of boreholes in the Shenhu gas hydrate drilling area, northern South China Sea: Influence of mud diapirs on hydrate occurrence. Journal of Petroleum Science and Engineering, 158: 424~432.

    • Wang Shuhong, Yan Wen, Song Haibin. 2006. Mapping the thickness of the gas hydrate stability zone in the South China Sea. Terrestrial, Atmospheric and Oceanic Sciences, 17: 815~828.

    • Wu Lushan, Yang Shengxiong, Liang Jinqing, Su Xin, Fu Shaoying, Sha Zhibin, Yang Tao. 2013. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu area, the South China Sea. Science China: Earth Sciences, 56: 530~540 (in Chinese with English abstract).

    • Wu Shiguo, Zhang Guangxue, Huang Yongyang, Liang Jinqiang, Wong H K. 2005. Gas hydrate occurrence on the continental slope of the northern South China Sea. Marine and Petroleum Geology, 22: 403~412.

    • Wu Shiguo, Wang Xiujuan, Wong H K, Zhang Guangxue. 2007. Low-amplitude BSRs and gas hydrate concentration on the northern margin of the South China Sea. Marine Geophysical Research, 28: 127~138.

    • Xie Lei, Wang Jiasheng, Lin Qi. 2012. The characteristics and formation mechanism of authigenic minerals in shallow sediments of Shenhu area, northern South China Sea. Acta Petrologica et Mineralogica. 31: 382~392 (in Chinese with English abstract).

    • Xie Lei, Wang Jiashan, Wu Nengyou, Wu Daidai, Wu Zhou, Zhu Xiaowei, Hu Jun, Chen Hongren, Lin Qi. 2013. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea: Implications for a possible mud volcano environment. Science China: Earth Sciences, 56: 541~548 (in Chinese with English abstract).

    • Yang Kehong, Chu Fengyou, Ye Liming, Zhang Weiyan, Xu Dong, Zhu Jihao, Yang Haili, Ge Qian. 2014. Implication of methane seeps from sedimentary geochemical proxies (Sr/Ca & Mg/Ca) in the northern South China Sea. Journal of Jilin University (Earth Science Edition), 44(2): 469~479 (in Chinese with English abstract).

    • Yang Tao, Jiang Shaoyong, Ge Lu, Wu Nengyou, Zhang Guangxue, Liu Jian. 2009. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence. Chinese Science Bulletin, 54: 3231~3240 (in Chinese with English abstract).

    • Yang Tao, Jiang Shaoyong, Ge Lu, Yang Jinghong, Wu Nnengyou, Liu Jian. 2013. Geochemistry of pore waters from HQ-1PC of the Qiongdongnanbasin, northern South China Sea, and its implications for gas hydrate exploration. Science China: Earth Sciences, 56: 521~529.

    • Ye Hong, Yang Tao, Zhu Guorong, Jiang Shaoyong, Wu Lushan. 2016. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China sea. Marine and Petroleum Geology, 75: 68~82.

    • Zhang Guangxue, Liang Jinqiang, Lu Jingan, Yang Shengxiong, Zhang Ming, Su Xin, Xu Huaning, Fu Shaoying, Kuang Zenggui. 2014. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea. Natural Gas Industry, 34: 1~10 (in Chinese with English abstract).

    • Zhang Guangxue, Liang Jinqing, Lu Jingan, Yang Shengxiong, Zhang Ming, Holland M, Schultheiss P, Su Xin, Sha Zhibin, Xu Huaning, Gong Yuehua, Fu Shaoying, Wang Lifeng, Kuang Zenggui. 2015. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth basin, South China Sea. Marine and Petroleum Geology, 67: 356~367.

    • Zhang Mei, Lu Hongfeng, Wu Daidai, Liu Lihua, Wu Nengyou. 2017. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea. Marine Geology & Quaternary Geology, 37(6): 178~188 (in Chinese with English abstract).

    • Zhong Guangfa, Liang Jinqiang, Guo Yiqun, Kuang Zenggui, Su Pibo, Lin Lin. 2017. Integrated core-log facies analysis and depositional model of the gas hydrate-bearing sediments in the northeastern continental slope, South China Sea. Marine and Petroleum Geology, 86: 1159~1172.

    • Zhu Weilin, Zhong Kai, Li Youchuan, Xu Qiang, Fang Dianyong. 2012. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins. Chinese Science Bulletin, 57: 3121~3129.

    • 陈芳, 苏新, Nurnberg D, 陆红峰, 祝幼华, 刘坚, 廖志良. 2006. 南海东沙海域末次冰期最盛期以来的沉积特征. 海洋地质与第四纪, 26: 9~17.

    • 李雅婷. 2021. 南海上层水体钡稳定同位素组成的分布, 分馏与控制. 厦门大学硕士学位论文.

    • 吴庐山, 杨胜雄, 梁金强, 苏新, 付少英, 沙志彬, 杨涛. 2013. 南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义. 中国科学: 地球科学, 43: 339~350.

    • 谢蕾, 王家生, 林杞. 2012. 南海北部神狐水合物赋存区浅表层沉积物自生矿物特征及其成因探讨. 岩石矿物学杂志, 31: 382~392.

    • 谢蕾, 王家生, 吴能友, 邬黛黛, 王舟, 朱小畏, 胡军, 陈洪仁, 林杞. 2013. 南海北部神狐海域浅表层沉积物中自生黄铁矿及其泥火山指示意义. 中国科学: 地球科学, 43: 351~359.

    • 杨克红, 初凤友, 叶黎明, 章伟艳, 许冬, 朱继浩, 杨海丽, 葛倩. 2014. 南海北部甲烷渗漏的沉积地球化学指标(Sr/Ca和Mg/Ca)识别. 吉林大学学报(地球科学版), 44(2): 469~479.

    • 杨涛, 葛璐, 杨红, 吴能友, 张光学, 刘坚. 2009. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义. 科学通报, 54: 3231~3240.

    • 张光学, 梁金强, 陆敬安, 杨胜雄, 张明, 苏新, 徐华宁, 付少英, 匡增桂. 2014. 南海东北部陆坡天然气水合物藏特征. 天然气工业, 34: 1~10.

    • 张美, 陆红锋, 邬黛黛, 刘丽华, 吴能友. 2017. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示. 海洋地质与第四纪地质, 37(6): 178~188.

  • 参考文献

    • Archer D, Buffett B, Brovkin V. 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 106: 20596~20601.

    • Boetius A, Ravenschlag K, Schubert C J, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen B B, Witte U, Pfannkuche O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623~626.

    • Böning P, Brumsack H J, Böttcher M E, Schnetger B, Kriete C, Kallmeyer J, Borchers S L. 2004. Geochemistry of Peruvian near-surface sediments. Geochimica et Cosmochimica Acta, 68: 4429~4451.

    • Böttcher M E, Neubert N, von Allmen K, Samankassou E, Nägler T F. 2018. Barium isotope fractionation during the experimental transformation of aragonite to witherite and of gypsum to barite, and the effect of ion (de)solvation. Isotopes in Environmental and Health Studies, 54: 324~335.

    • Bridgestock L, Hsieh Y T, Porcelli D, Homoky W B, Bryan A, Henderson G M. 2018. Controls on the barium isotope compositions of marine sediments. Earth and Planetary Science Letters, 481: 101~110.

    • Canfield D E, Thamdrup B. 2010. Towards a consistent classification scheme for geochemical environments, or, why we wish the term “suboxic” would go away. Geobiology, 7: 385~392.

    • Chen Chensheng, Qin Shengfei, Wang Yunpeng, Holland G, Wynn P, Zhong Wanyu, Zhou Zheng. 2022. High temperature methane emissions from Large Igneous Provinces as contributors to late Permian mass extinctions. Nature Communications, 3: 6893.

    • Chen Fang, Su Xin, Nurnberg D, Lu Hongfeng, Zhu Youhua, Liu Jiang, Liao Zhiliang. 2006. Lithologic features of sediments characterized by high sedimentation rates since the last glacial maximum from Dongsha area of the South China Sea. Marine Geology & Quaternary Geology, 26: 9~17 (in Chinese with English abstract).

    • Chen Fang, Hu Yu, Feng Dong, Zhang Xin, Cheng Shihai, Cao Jun, Lu Hongfeng, Chen Duofu. 2016. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea. Chemical Geology, 443: 173~181.

    • Creech J B, Paul B. 2015. IsoSpike: Improved double-spike inversion software. Geostandards and Geoanalytical Research, 39: 7~15.

    • Dickens G R. 2001. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta, 65: 529~543.

    • Dymond J, Suess E, Lyle M. 1992. Barium indeep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7: 163~181.

    • Egger M, Hagens M, Sapart C J, Dijkstra N, van Helmond N A G M, Mogollón J M, Risgaard-Petersen N, van der Veen C, Kasten S, Riedinger N, Böttcher M E, Röckmann T, Jørgensen B B, Slomp C P. 2017. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochimica et Cosmochimica Acta, 207: 256~276.

    • Erickson B E, Helz G R. 2000. Molybdenum (VI) speciation in sulfidic waters. Geochimica et Cosmochimica Acta, 64: 1149~1158.

    • Feng Dong, Qiu Jianwen, Hu Yu, Peckmann J, Guan Hongxiang, Tong Hongpeng, Chen Chong, Chen Jiangxin, Gong Shanggui, Li Niu, Chen Duofu. 2018. Cold seep systems in the South China Sea: An overview. Journal of Asian Earth Sciences, 168: 3~16.

    • Froelich P N, Klinkhammer G P, Bender M L, Luedtke N A, Heath G R, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075~1090.

    • Gong Zaisheng, Huang L F, Chen P H. 2011. Neotectonic controls on petroleum accumulations, offshore China. Journal of Petroleum Geology, 34: 5~27.

    • Han Xiqiu, Suess E, Huang Yongyang, Wu Nengyou, Bohrmann G, Su Xin, Eisenhauer A, Rehder G, Fang Yinxia. 2008. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea. Marine Geology, 249: 243~256.

    • Han Xiqiu, Yang Kehong, Huang Yongyang. 2013. Origin and nature of cold seep in northeastern Dongsha area, South China Sea: Evidence from chimney-like seep carbonates. Chinese Science Bulletin, 58: 3689~3697.

    • Helz G R, Miller C V, Charnock J M, Mosselmans J F W, Pattrick R A D, Garner C D, Vaughan D J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60: 3631~3642.

    • Joseph C, Campbell K A, Torres M E, Martin R A, Pohlman J W, Riedel M, Rose K. 2013. Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals. Palaeogeography, Palaeoclimatology, Palaeoecology, 390: 52~67.

    • Li Lun, Liu Haojie, Zhang Xin, Lei Xinhua, Sha Zhibin. 2015. BSRs, estimated heat flow, hydrate-related gas volume and their implications for methane seepage and gas hydrate in the Dongsha region, northern South China Sea. Marine and Petroleum Geology, 67: 785~794.

    • Li Yating. 2021. On the distributions, fractionation, and controls of stable barium isotopic compositions in the upper water column of the South China Sea. Master's thesis of Xiamen University (in Chinese with English abstract).

    • Lin Zhiyong, Sun Xiaoming, Strauss H, Lu Yang, Gong Junli, Xu Li, Lu Hongfeng, Teichert B M A, Peckmann J. 2017. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea. Geochimica et Cosmochimica Acta, 211: 153~173.

    • Little S H, Vance D, Lyons T W, McManus J. 2015. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings. American Journal of Science, 315: 77~119.

    • Liu Charshine S, Schnurle P, Wang Yunshuen, Chung Sanhsiung, Chen Songchuen, Hsiuan Tahen. 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17: 615~644.

    • Lu Yang, Liu Yufei, Sun Xiaoming, Hao Xinrong, Peckmann J, Lin Zhiyong, Xu Li, Lu Hongfeng. 2017. Intensity of methane seepage reflected by relative enrichment of heavy magnesium isotopes in authigenic carbonates: A case study from the South China Sea. Deep Sea Research Part I Oceanographic Research Papers, 129: 10~21.

    • McDonnell S L, Max M D, Cherkis N Z, Czarnecki M F. 2000. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan. Marine and Petroleum Geology, 17: 929~936.

    • McManus J, Berelson W M, Klinkhammer G P, Hammond D E, Holm C. 2005. Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta, 69: 95~108.

    • Middleton J T, Paytan A, Auro M, Saito M A, Horner T J. 2023. Barium isotope signatures of barite-fluid ion exchange in Equatorial Pacific sediments. Earth and Planetary Science Letters, 612: 118150.

    • Morford J L, Emerson S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63: 1735~1750.

    • Morley C K. 2012. Late Cretaceous-Early Palaeogene tectonic development of SE Asia. Earth-Science Reviews, 115: 37~75.

    • Nan Xiaoyun, Yu Huimin, Rudnick R L, Gaschnig R M, Xu Juan, Li Wangye, Zhang Qun, Jin Zhandong, Li Xianhua, Huang Fang. 2018. Barium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 233: 33~49.

    • Paull C K, Dillon W P. 2001. Natural gas hydrates: Occurrence, distribution, and detection. Washington DC American Geophysical Union Geophysical Monograph Series, 124~124.

    • Paytan A, Griffith E M. 2007. Marine barite: Recorder of variations in ocean export productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 54: 687~705.

    • Peketi A, Mazumdar A, Joshi R K, Patil D J, Srinivas P L, Dayal A M. 2012. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics. Geochemistry, Geophysics, Geosystems, 13: 2012GC004288.

    • Riedinger N, Kasten S, Gröger J, Franke C, Pfeifer K. 2006. Active and buried authigenic barite fronts in sediments from the Eastern Cape basin. Earth and Planetary Science Letters, 241: 876~887.

    • Riedinger N, Formolo M J, Lyons T W, Henkel S, Beck A, Kasten S. 2014. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology, 12: 172~181.

    • Sha Zhibin, Liang Jinqing, Zhang Guangxue, Yang Shengxiong, Lu Jingan, Zhang Zijian, McConnell D R, Humphrey G. 2015. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations. Marine Geology, 366: 69~78.

    • Suess E. 2005. RV SONNE cruise report SO 177, Sino-German cooperative project, South China Sea continental margin: Geological methane budget and environmental effects of methane emissions and gas hydrates. IFM-GEOMAR Reports.

    • Tanner L H, Lucas S G, Chapman M G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews, 65: 103~139.

    • Taylor S, McLennan S. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 28~29.

    • Tian Lanlan, Wei Wei, Dong Linhui, Pan Songqi, Jing Zhenhua, Huang Fang. 2023. Diagenetic effect on barium isotope compositions of barites in the lower Cambrian successions. Chemical Geology, 635: 121631.

    • Torres M E, Brumsack H J, Bohrmann G, Emeis K C. 1996. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 127: 125~139.

    • Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232: 12~32.

    • Van Zuilen K, Müller T, Nägler T F, Dietzel M, Küsters T. 2016. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures. Geochimica et Cosmochimica Acta, 186: 226~241.

    • Von Allmen K, Böttcher M E, Samankassou E, Nägler T F. 2010. Barium isotope fractionation in the global barium cycle: First evidence from barium minerals and precipitation experiments. Chemical Geology, 277: 70~77.

    • Wan Zhifeng, Xu Xing, Wang Xianqing, Xia Bin, Sun Yuefeng. 2017. Geothermal analysis of boreholes in the Shenhu gas hydrate drilling area, northern South China Sea: Influence of mud diapirs on hydrate occurrence. Journal of Petroleum Science and Engineering, 158: 424~432.

    • Wang Shuhong, Yan Wen, Song Haibin. 2006. Mapping the thickness of the gas hydrate stability zone in the South China Sea. Terrestrial, Atmospheric and Oceanic Sciences, 17: 815~828.

    • Wu Lushan, Yang Shengxiong, Liang Jinqing, Su Xin, Fu Shaoying, Sha Zhibin, Yang Tao. 2013. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu area, the South China Sea. Science China: Earth Sciences, 56: 530~540 (in Chinese with English abstract).

    • Wu Shiguo, Zhang Guangxue, Huang Yongyang, Liang Jinqiang, Wong H K. 2005. Gas hydrate occurrence on the continental slope of the northern South China Sea. Marine and Petroleum Geology, 22: 403~412.

    • Wu Shiguo, Wang Xiujuan, Wong H K, Zhang Guangxue. 2007. Low-amplitude BSRs and gas hydrate concentration on the northern margin of the South China Sea. Marine Geophysical Research, 28: 127~138.

    • Xie Lei, Wang Jiasheng, Lin Qi. 2012. The characteristics and formation mechanism of authigenic minerals in shallow sediments of Shenhu area, northern South China Sea. Acta Petrologica et Mineralogica. 31: 382~392 (in Chinese with English abstract).

    • Xie Lei, Wang Jiashan, Wu Nengyou, Wu Daidai, Wu Zhou, Zhu Xiaowei, Hu Jun, Chen Hongren, Lin Qi. 2013. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea: Implications for a possible mud volcano environment. Science China: Earth Sciences, 56: 541~548 (in Chinese with English abstract).

    • Yang Kehong, Chu Fengyou, Ye Liming, Zhang Weiyan, Xu Dong, Zhu Jihao, Yang Haili, Ge Qian. 2014. Implication of methane seeps from sedimentary geochemical proxies (Sr/Ca & Mg/Ca) in the northern South China Sea. Journal of Jilin University (Earth Science Edition), 44(2): 469~479 (in Chinese with English abstract).

    • Yang Tao, Jiang Shaoyong, Ge Lu, Wu Nengyou, Zhang Guangxue, Liu Jian. 2009. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence. Chinese Science Bulletin, 54: 3231~3240 (in Chinese with English abstract).

    • Yang Tao, Jiang Shaoyong, Ge Lu, Yang Jinghong, Wu Nnengyou, Liu Jian. 2013. Geochemistry of pore waters from HQ-1PC of the Qiongdongnanbasin, northern South China Sea, and its implications for gas hydrate exploration. Science China: Earth Sciences, 56: 521~529.

    • Ye Hong, Yang Tao, Zhu Guorong, Jiang Shaoyong, Wu Lushan. 2016. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China sea. Marine and Petroleum Geology, 75: 68~82.

    • Zhang Guangxue, Liang Jinqiang, Lu Jingan, Yang Shengxiong, Zhang Ming, Su Xin, Xu Huaning, Fu Shaoying, Kuang Zenggui. 2014. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea. Natural Gas Industry, 34: 1~10 (in Chinese with English abstract).

    • Zhang Guangxue, Liang Jinqing, Lu Jingan, Yang Shengxiong, Zhang Ming, Holland M, Schultheiss P, Su Xin, Sha Zhibin, Xu Huaning, Gong Yuehua, Fu Shaoying, Wang Lifeng, Kuang Zenggui. 2015. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth basin, South China Sea. Marine and Petroleum Geology, 67: 356~367.

    • Zhang Mei, Lu Hongfeng, Wu Daidai, Liu Lihua, Wu Nengyou. 2017. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea. Marine Geology & Quaternary Geology, 37(6): 178~188 (in Chinese with English abstract).

    • Zhong Guangfa, Liang Jinqiang, Guo Yiqun, Kuang Zenggui, Su Pibo, Lin Lin. 2017. Integrated core-log facies analysis and depositional model of the gas hydrate-bearing sediments in the northeastern continental slope, South China Sea. Marine and Petroleum Geology, 86: 1159~1172.

    • Zhu Weilin, Zhong Kai, Li Youchuan, Xu Qiang, Fang Dianyong. 2012. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins. Chinese Science Bulletin, 57: 3121~3129.

    • 陈芳, 苏新, Nurnberg D, 陆红峰, 祝幼华, 刘坚, 廖志良. 2006. 南海东沙海域末次冰期最盛期以来的沉积特征. 海洋地质与第四纪, 26: 9~17.

    • 李雅婷. 2021. 南海上层水体钡稳定同位素组成的分布, 分馏与控制. 厦门大学硕士学位论文.

    • 吴庐山, 杨胜雄, 梁金强, 苏新, 付少英, 沙志彬, 杨涛. 2013. 南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义. 中国科学: 地球科学, 43: 339~350.

    • 谢蕾, 王家生, 林杞. 2012. 南海北部神狐水合物赋存区浅表层沉积物自生矿物特征及其成因探讨. 岩石矿物学杂志, 31: 382~392.

    • 谢蕾, 王家生, 吴能友, 邬黛黛, 王舟, 朱小畏, 胡军, 陈洪仁, 林杞. 2013. 南海北部神狐海域浅表层沉积物中自生黄铁矿及其泥火山指示意义. 中国科学: 地球科学, 43: 351~359.

    • 杨克红, 初凤友, 叶黎明, 章伟艳, 许冬, 朱继浩, 杨海丽, 葛倩. 2014. 南海北部甲烷渗漏的沉积地球化学指标(Sr/Ca和Mg/Ca)识别. 吉林大学学报(地球科学版), 44(2): 469~479.

    • 杨涛, 葛璐, 杨红, 吴能友, 张光学, 刘坚. 2009. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义. 科学通报, 54: 3231~3240.

    • 张光学, 梁金强, 陆敬安, 杨胜雄, 张明, 苏新, 徐华宁, 付少英, 匡增桂. 2014. 南海东北部陆坡天然气水合物藏特征. 天然气工业, 34: 1~10.

    • 张美, 陆红锋, 邬黛黛, 刘丽华, 吴能友. 2017. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示. 海洋地质与第四纪地质, 37(6): 178~188.