en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

冯乾乾,男,1994年生。博士,讲师,研究方向为沉积盆地构造-热演化恢复。E-mail: fengqianqian607@cup.edu.cn。

通讯作者:

邱楠生,男,1968年生。博士,教授,研究方向为沉积盆地温压场重建与地热资源评价。E-mail: qiunsh@cup.edu.cn。

参考文献
Almendral A, Robles W, Parra M, Mora A, Ketcham R, Raghib M. 2015. Fetkin: Coupling kinematic restorations and temperature to predict thrusting, exhumation histories, and thermochronometric ages. AAPG Bulletin, 99(8): 1557~1573.
参考文献
Bernet M. 2009. A field-based estimate of the zircon fission-track closure temperature. Chemical Geology, 259(3~4): 181~189.
参考文献
Buford P V M, McQuarrie N. 2019. Kinematic, flexural, and thermal modelling in the Central Andes: Unravelling age and signal of deformation, exhumation, and uplift. Tectonophysics, 766: 302~325.
参考文献
Cai Chang'e, Qiu Nansheng, Li Huili, Daniel Stockli, Chang Jian, Liu Nian. 2020. Study of the closure temperature of (U-Th)/He in detrital zircon obtained from natural evolution samples. Science China Earth Sciences, 63(3): 412~424.
参考文献
Chapman J B, Carrapa B, Ballato P, Decelles P G, Worthington J, Oimahmadov I, Gadoev M, Ketcham R. 2017. Intracontinental subduction beneath the pamir mountains: Constraints from thermokinematic modeling of shortening in the Tajik fold-and-thrust belt. Geological Society of America Bulletin, 129(11~12): 1450~1471.
参考文献
Chu Yang, Lin Wei, Faure M, Xue Zhenhua, Ji Wenbin, Feng Zhentian. 2019. Cretaceous episodic extension in the South China block, East Asia: Evidence from the Yuechengling massif of central South China. Tectonics, 38(10): 3675~3702.
参考文献
Dahlstrom C D A. 1969. Balanced cross sections. Canadian Journal of Earth Sciences, 6: 743~757.
参考文献
Deng Bin, Liu Shugen, Li Zhiwu, Jansa L F, Liu Shun, Wang Guozhi, Sun Wei. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98~115.
参考文献
Dong Shuwen, Zhang Yueqiao, Gao Rui, Su Jinbao, Liu Mian, Li Jianhua. 2015. A possible buried Paleoproterozoic collisional orogen beneath central south China: Evidence from seismic-reflection profiling. Precambrian Research, 264: 1~10.
参考文献
Erdös Z, van der Beek P, Huismans R S. 2014. Evaluating balanced section restoration with thermochronology data: A case study from the central Pyrenees. Tectonics, 33(5): 617~634.
参考文献
Feng Qianian, Qiu Nansheng, Wu Hang, Hemin K. 2023. Thermo-kinematic constraints on restoration of the eastern Sichuan fold-and-thrust belt, South China. Tectonics, 42: e2022TC007630.
参考文献
Flowers R M, Ketcham R A, Shuster D L, Farley K A. 2009. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73(8): 2347~2365.
参考文献
Gao Rui, Chen Chen, Wang Haiyan, Lu Zhanwu, Brown L, Dong Shuwen, Feng Shaoying, Li Qiusheng, Li Wenhui, Wen Zhongping, Li Feng. 2016. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan basin. Earth and Planetary Science Letters, 454: 86~91.
参考文献
Gleadow A J W, Duddy I R, Green P F, Hegarty K A. 1986. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters, 78(2~3): 245~254.
参考文献
Green P F, Duddy I R, Gleadow A J W, Tingate P R, Laslett G M. 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59: 237~253.
参考文献
Gu Zhidong, Yin Jifeng, Yuan Miao, Bo Dongmei, Liang Dongxing, Zhang Hang, Zhang Li. 2015. Accumulation conditions and exploration directions of natural gas in deep subsalt Sinian-Cambrian system in the eastern Sichuan basin, SW China. Petroleum Exploration and Development, 42(2): 152~166.
参考文献
He Wengang, Zhou Jianxun, Yuan Kang. 2018. Deformation evolution of eastern Sichuan-Xuefeng fold-thrust belt in South China: Insights from analogue modelling. Journal of Structural Geology, 109: 74~85.
参考文献
Hu Wangshui, Zeng Tao, Zhou Yali, Yao Qiankun, Tang Jiguang. 2011. Applying balanced-restoring technique with detachment horizon profile to study the tectonic evolution. Geoscience, 25(5): 896~901.
参考文献
Ketcham R A, Carter A, Donelick R A, Barbarand J, Hurford A J. 2007. Improved modeling of fission-track annealing in apatite. American Mineralogist, 92(5~6): 799~810.
参考文献
Li Chuanxin, He Dengfa, Lu Guo, Wen Kai, Simon A, Sun Yanpeng. 2021. Multiple thrust detachments and their implications for hydrocarbon accumulation in the northeastern Sichuan basin, Southwestern China. AAPG Bulletin, 105(2): 357~390.
参考文献
Li Jianhua, Cawood P A, Ratschbacher L, Zhang Y Q, Dong S W, Xin Y J, Yang H, Zhang P X. 2020. Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone. Earth-Science Reviews, 201: 103056.
参考文献
Li Shuangjian, Li Jianming, Zhou Yan, Wo Yujin, Wang Xinwei. 2011. Fission track evidence for Mesozoic-Cenozoic uplifting in the southeastern margin of Sichuan basin. Acta Petrologica et Mineralogica, 30(2): 225~233 (in Chinese with English abstract).
参考文献
Li Xiaoming, Shan Yehua. 2011. Diverse exhumation of the Mesozoic tectonic belt within the Yangtze plate, China, determined by apatite fission-track thermochronology. Geosciences Journal, 15(4): 349~357.
参考文献
Liu Shugen, Sun Wei, Li Zhiwu, Deng Bin, Liu Shun. 2008. Tectonic uplifting and gas pool formation since late Cretaceous Epoch, Sichuan basin. Natural Gas Geoscience, (3): 293~300 (in Chinese with English abstract).
参考文献
Liu Shugen, Yang Yu, Deng Bin, Zhong Yong, Wen Long, Sun Wei, Li Zhiwu, Jansa L B, Li Jinxi, Song Jinmin, Zhang Xihua, Peng Hanling. 2021. Tectonic evolution of the Sichuan basin, Southwest China. Earth-Science Reviews, 213: 103470.
参考文献
Liu-Zeng Jing, Zhang Jinyu, McPhillips D, Reiners P, Wang Wei, Pik R, Zeng Lingsen, Hoke G, Xie Kejia, Xiao Ping, Zheng Dewen, Ge Yukui. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth and Planetary Science Letters, 490: 62~76.
参考文献
Mei Lianfu, Liu Zhaoxi, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan Provinces of China: Evidence from apatite fission track and balanced cross-section. Earth Science Journal of China University of Geosciences, 35(2): 161~174 (in Chinese with English abstract).
参考文献
Mora A, Casallas W, Ketcham R A, Gomez D, Parra M, Namson J, Stocklie D, Almendral A, Robles W, Ghorbal B. 2015. Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling. AAPG Bulletin, 99(8): 1575~1598.
参考文献
Nemcok M, Schamel S, Gayer R. 2005. Thrust Belts: Structural Architecture, Thermal Regimes and Petroleum Systems. New York: Cambridge University Press.
参考文献
Qiu Nansheng, Chang Jian, Zuo Yinhui, Wang Jiyang, Li Huili. 2012. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim basin, Northwest China. AAPG Bulletin, 96(5): 789~821.
参考文献
Qiu Nansheng, He Lijuan, Chang Jian, Zhu Chuanqing. 2020. Research progress and challenges of thermal history reconstruction in sedimentary basins. Petroleum Geology & Experiment, 42(5): 790~802 (in Chinese with English abstract).
参考文献
Qiu Nansheng, Chang Jian, Zhu Chuanqing, Liu Wen, Zuo Yinhui, Xu Wei, Li Dan. 2022. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China cratons, China. Earth-Science Reviews, 224: 103884.
参考文献
Reiners P W. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151~179.
参考文献
Shi Hongcai, Shi Xiaobin, Glasmacher U A, Yang Xiaoqiu, Stockli D F. 2016. The evolution of eastern Sichuan basin, Yangtze block since Cretaceous: Constraints from low temperature thermochronology. Journal of Asian Earth Sciences, 116: 208~221.
参考文献
Tian Yuntao, Kohn B P, Qiu Nansheng, Yuan Yusong, Hu Shengbiao, Gleadow A J W, Zhang Peizhen. 2018. Eocene to Miocene out-of-sequence deformation in the eastern Tibetan Plateau: Insights from shortening structures in the Sichuan basin. Journal of Geophysical Research: Solid Earth, 123(2): 1840~1855.
参考文献
Wang E, Kirby E, Furlong K P, van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5: 640~645.
参考文献
Wang Erchie, Meng Kai, Su Zhe, Meng Qingren, Chu J J, Chen Zhiliang, Wang Gang, Shi Xuhua, Liang Xinquan. 2014. Block rotation: Tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault. Tectonics, 33(5): 686~718.
参考文献
Wang Ping, Liu Shaofeng, Gao Tangjun, Wang Kai. 2012. Late-orogenic arcuate fold-thrust belts in northern Yangtze area: Structural characteristics and basin evolution. Journal of Palaeogeography, 15(6): 819~838 (in Chinese with English abstract).
参考文献
Wolf R A, Farley K A, Kass D M. 1998. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology, 148(1~2): 105~114.
参考文献
Wu Hang, Qiu Nansheng, Chang Jian, Zhang Jixin, Wang Ye. 2019. Physical simulation on development of multilayer detachment fold belt in eastern Sichuan. Earth Science, 44(3): 784~797 (in Chinese with English abstract).
参考文献
Wu Hang, Qiu Nansheng, Feng Qianqian, Chang Jian, Jiang Kai, Zhang Yinglin, Wu Shixiang. 2020. Reconstruction of tectonic uplift process with thermo-kinematic method. Chinese. Journal of Geophysics, 63(6): 2329~2344 (in Chinese with English abstract).
参考文献
Yamada R, Murakami M, Tagami T. 2007. Statistical modelling of annealing kinetics of fission tracks in zircon: Reassessment of laboratory experiments. Chemical Geology, 236(1~2): 75~91.
参考文献
Yan Danping, Zhang Bing, Zhou Meifu, Wei Guoqi, Song Honglin, Liu Shaofeng. 2009. Constraints on the depth, geometry and kinematics of blind detachment faults provided by fault-propagation folds: An example from the Mesozoic fold belt of South China. Journal of Structural Geology, 31(2): 150~162.
参考文献
Yang Zhao, Shen Chuanbo, Ratschbacher L, Enkelmann E, Jonckheere R, Wauschkuhn B, Dong Yunpeng. 2017. Sichuan basin and beyond: Eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122: 4712~4740.
参考文献
Zhu Chuanqing, Qiu Nansheng, Liu Yifeng, Xiao Yao, Hu Shengbiao. 2019. Constraining the denudation process in the eastern Sichuan basin, China using low-temperature thermochronology and vitrinite reflectance data. Geological Journal, 54(1): 426~437.
参考文献
蔡长娥, 邱楠生, 李慧莉, Stockli D F, 常健, 刘念. 2020. 自然演化碎屑锆石(U-Th)/He封闭温度的研究. 中国科学: 地球科学, 50(1): 66~78.
参考文献
李双建, 李建明, 周雁, 沃玉进, 汪新伟. 2011. 四川盆地东南缘中新生代构造隆升的裂变径迹证据. 岩石矿物学杂志, 30(2): 225~233.
参考文献
刘树根, 孙玮, 李智武, 邓宾, 刘顺. 2008. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏. 天然气地球科学, (3): 293~300.
参考文献
梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161~174.
参考文献
邱楠生, 何丽娟, 常健, 朱传庆. 2020. 沉积盆地热历史重建研究进展与挑战. 石油实验地质, 42(5): 790~802.
参考文献
王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662~1673.
参考文献
吴航, 邱楠生, 常健, 张纪新, 王晔. 2019. 川东多套滑脱层褶皱构造带形成物理模拟. 地球科学, 44(3): 784~797.
参考文献
吴航, 邱楠生, 冯乾乾, 常健, 姜凯, 张应鳞, 吴世祥. 2020. 利用热运动学方法恢复构造隆升过程的探索. 地球物理学报, 63(6): 2329~2344.
目录contents

    摘要

    利用古温标进行热史模拟时,需要设置时间域和温度域的地质约束,其中时间域约束条件的设置限制了热史结果的准确性。逆冲推覆带发生逆冲推覆时,地层抬升和冷却的同时也发生差异水平滑移,使得同一逆冲席的构造抬升过程存在差异,但古温标模拟热史仅揭示样品的冷却过程,无法获得水平位移的信息,因此如何设置合适的时间域约束模拟热史并准确揭示逆冲推覆带的构造-热演化过程是低温热年代学领域探索研究的科学难题。本文以华南地区川东逆冲推覆带为示例,介绍了一种联合构造模拟、平衡剖面解析和低温热年代学、镜质组反射率等多种古温标的热运动学方法,实现“点-面”结合和整体-局部定量耦合,精细剖析逆冲推覆过程抬升剥露的起始时间、方式、速率、期次和幅度,为逆冲推覆带构造-热演化研究提供思路参考。

    Abstract

    Reconstructing the thermal history using paleothermal indicators requires accurate time-temperature constraints. These constraints limit the accuracy of the reconstructed thermal histories. In fold-and-thrust belts, differential horizontal slip occurs simultaneously with uplift and cooling of strata, leading to variations in the uplift process. However, the thermal history, which revealed the cooling processes of the samples, cannot consider the impact of flexural slip information, which has a significant effect on the structural analysis of a region with a long lateral slip distance. Establishing appropriate time constraints for thermal history reconstruction remains a key challenge in low-temperature thermochronology research, particularly for accurately revealing the tectonothermal evolution of fold-and-thrust belts. This study addresses this challenge by introducing a new thermo-kinematic approach to constrain tectonothermal evolution of the eastern Sichuan fold-and-thrust belt, South China.This approach integrates analog modeling, balanced reconstruction, and various paleothermal indicators,including low-temperature thermochronology and organic matter maturity data. By combining these techniques, we achieve a “point-to-surface” fusion, quantitatively coupling overall and local analyses.This allows for a detailed dissection of the onset, pattern, rate, stage, and magnitude of uplift and exhumation during the thrusting process.These findings provide valuable insights into the restoration of tectonothermal evolution within the fold-and-thrust belt.

  • 逆冲推覆带是由逆冲断层及其上盘推覆体或逆冲席组合而成的构造带,广泛发育于主动大陆边缘和内克拉通挤压盆地边缘(Nemcok et al.,2005),是目前油气勘探的重点地区。构造-热演化属于构造地质学运动学研究范畴,目前对于逆冲推覆带运动学解析的方法主要分为静态分析和动态表征两大类,静态分析包括野外地质调查和地震剖面分析等,动态表征主要包括构造实验模拟,平衡剖面恢复和低温热年代学古温标等。平衡剖面恢复遵循在封闭体系中线长守恒、面积守恒的基本原则,将解释剖面上的变形构造通过几何学、运动学原理,复原成未变形形态的一种技术(Dahlstrom,1969),但它无法准确恢复逆冲推覆带的构造抬升剥露细节(起始时间、速率、期次和幅度等)。构造实验模拟包括构造物理模拟实验、有限元数值模拟实验和离散元数值模拟实验等。模拟实验正演地质构造的形成过程、便于分析构造变形特征和力学机制,但需要设置合适的地质模型和力学参数,且实验方案一定程度简化或偏离了地质模型,实验结果同样缺少对变形时间、速率和剥蚀量等抬升剥露细节的精确评估。

  • 低温热年代学古温标通过反演样品温度路径来重建沉积盆地构造-热演化过程,目前主要包括裂变径迹和(U-Th)/He两种。最常用的裂变径迹古温标是磷灰石裂变径迹和锆石裂变径迹,磷灰石裂变径迹的退火温度在110~125℃之间(Gleadow et al.,1986; Green et al.,1986; Ketcham et al.,2007),锆石裂变径迹为210~240℃(Yamada et al.,2007; Bernet et al.,2009)。用于(U-Th)/He热定年测试的矿物以磷灰石、锆石为主,磷灰石中He部分保留区一般位于40~75℃(Wolf et al.,1998),锆石(U-Th)/He封闭温度为140~200℃(Reiners,2005)。前人利用深钻孔自然演化样品得到磷灰石的He封闭温度可达85~90℃(Qiu Nasheng et al.,2012),利用超深钻孔系列样品得到的锆石He封闭温度为200℃(蔡长娥等,2020)。综合运用磷灰石的(U-Th)/He与裂变径迹、锆石(U-Th)/He与裂变径迹等多种参数可以揭示出40~240℃温度范围的热演化过程,这一温度范围涵盖了沉积盆地中浅层构造变形过程、油气成藏、页岩气赋存的温度区间(邱楠生等,2020)。但利用古温标进行热史模拟时,需要设置时间域和温度域的地质约束,其中温度域约束依据古温标的温度敏感区域范围设置,时间域约束根据区域构造演化背景或者测试的古温标年龄进行估计。对区域构造演化和动力学机制的不同认识会导致不同地质约束的设置和不同的构造-热演化认识。对于逆冲推覆带,前移和拆离作用会使得地层抬升和冷却的同时也发生明显差异水平滑移,但古温标模拟热史仅揭示样品的冷却过程,无法获得水平位移的信息,使得来自同一逆冲席的样品热史显示出不同的构造抬升起始时间。例如,川东逆冲推覆带齐岳山背斜样品的热史所揭示的抬升起始时间为120~80 Ma不等(梅廉夫等,2010; Li Xiaoming and Shan Yehua,2011; Shi Hongcai and Shi Xiaobin,2016; 吴航等,2020)。

  • 针对这一难题,近年来国内外学者探索了将运动学解析与热年代学模拟相结合的热运动学方法(thermokinematic)来恢复构造-热演化。例如:① 利用 FetKin软件将平衡剖面、有限元数值模拟和低温热年代学古温标进行结合重建南美科迪勒拉山系和塔吉克褶皱冲断带的构造-热演化过程(Almendral et al.,2015; Mora et al.,2015; Chapman et al.,2017);② 综合野外资料、热年代学和同源沉积速率分析安第斯山脉中部地区构造变形和抬升剥露过程(Buford and McQuarrie,2019);③ 联合低温热年代学古温标和平衡剖面恢复比利牛斯山的构造演化(Erdös et al.,2014);④ 联合构造物理模拟、离散元数值模拟和低温热年代学古温标进行构造-热演化恢复,利用构造物理模拟和离散元数值模拟正演逆冲推覆演化过程,为低温热年代学古温标模拟热史提供合适的运动学约束,从而准确重建川东地区中生代以来的构造抬升过程(吴航,2020; Feng Qianqian et al.,2023)。本文以华南地区川东逆冲推覆带为示例,介绍了一种联合构造模拟、平衡剖面解析和低温热年代学、镜质组反射率等多种古温标的热运动学方法,进行逆冲推覆带构造-热演化恢复,实现了“点-面”结合和整体-局部定量耦合,精细剖析了川东逆冲推覆带抬升剥露的起始时间、方式、速率、期次和幅度,并对其构造演化过程及其动力学机制进行了探讨。

  • 1 研究区地质概况

  • 川东逆冲推覆带位于扬子克拉通西部,是中生代形成的多套滑脱层主控的陆内逆冲推覆带,向西中止于华蓥山断裂,向东过渡到江南-雪峰山造山带,向北复合于大巴山弧形造山带和黄陵古隆起,向南延入滇黔桂交界区,北东-南西向长约 600 km,北西-南东向宽约400 km。川东逆冲推覆带整体上表现为一个北北东—北东走向的、向北西向略微凸出的弧形构造带,构造上由一系列相间排列的、断层切割的复背斜和复向斜组成,以齐岳山断裂为界,北西侧为川东地区薄皮隔挡式褶皱,包括华蓥山背斜、蒲包山背斜、大天池背斜、精华山背斜、大池干背斜,华蓥山背斜在南侧分解成由黄瓜山背斜、塘河背斜、温塘峡背斜和中梁山背斜组成的帚状褶皱带;南东侧为湘鄂西地区厚皮隔槽式褶皱,包括建始复背斜、花果坪复向斜、宜昌-鹤峰复背斜和桑植-石门复向斜(图1);中间转换带由方斗山背斜、齐岳山背斜和利川复向斜组成。川东南地区震旦系至中三叠统为海相地层沉积,上三叠统到白垩系为陆相碎屑岩沉积,受加里东期运动的影响,研究区缺失上志留统、泥盆系和石炭系,受后期构造隆升的影响,新生界普遍缺失,仅部分零星发育(Liu Shugen et al.,2021)。区内发育4套主要滑脱层,分别是基底拆离层、寒武系滑脱层、志留系滑脱层和三叠系滑脱层,主要由页岩、膏岩层、泥页岩和黏土层等抗剪强度较低的偏塑性物质组成(Yan Danping et al.,2009; Dong Shuwen et al.,2015; Li Chuanxin et al.,2021)。

  • 川东逆冲推覆带经历了多期构造运动改造,包括加里东期运动、东吴期运动、印支期运动、燕山期运动和喜马拉雅期运动。构造演化可以分为3个阶段:震旦纪—中三叠世的克拉通盆地演化阶段;晚三叠世—中新世的前陆盆地演化阶段和中新世—第四纪的构造改造阶段。褶皱与断裂分布特征表明,川东逆冲推覆带的构造样式主要受燕山期太平洋板块向欧亚大陆俯冲产生的SE-NW向挤压和喜马拉雅期青藏高原隆升造成四川盆地走滑旋转所衍生的近E-W向挤压所控制(Deng Bin et al.,2013; Wang Erchie et al.,2014; Liu Shugen et al.,2021)。燕山期是川东复杂褶皱变形的主要形成时期,川东逆冲推覆带在170~70 Ma自湘鄂西地区向川东地区递进变形,抬升过程具有明显的阶段性抬升特征(梅廉夫等,2010; Feng Qianqian et al.,2023)。

  • 图1 川东逆冲推覆带地质简图及低温热年代学样品分布位置

  • Fig.1 Geological map of the eastern Sichuan fold-and-thrust belt and the locations of the low-temperature thermochronology samples

  • (a)—地形图;(b)—区域地质剖面A—A′(据王平等,2012吴航等,2019修改);HYF—华蓥山断裂; QYF—齐岳山断裂; ZHF—张家界-花垣断裂

  • (a) —topographic map; (b) —geological cross-section A—A′ (modified after Wang Ping et al., 2012; Wu Hang et al., 2019) ; HYF—Huayingshan fault; QYF—Qiyueshan fault; ZHF—Zhangjiajie-Huayuan fault

  • 2 热运动学方法

  • 本文介绍了一种联合构造模拟、平衡剖面解析和低温热年代学、镜质组反射率等多种古温标的热运动学方法(图2)。① 选择逆冲推覆带垂直构造走向的地质剖面(A—A′),针对 A—A′剖面和典型钻井,系统采集古生界和中生界砂岩样品,开展低温热年代学和镜质组反射率等古温标的测试。② 针对 A—A′剖面构建地质模型,确定模型的缩短率(S0)。基于前人利用古温标恢复的热史和区域构造演化背景明确川东逆冲推覆带中生代发生逆冲推覆的时间域(T0~T1)。③ 开展构造模拟实验。将低温热年代学样品投影到实际地质剖面,结合构造模拟结果确定样品对应构造部位的抬升起始时间。通过构造物理模拟和数值模拟正演构造演化过程,根据各逆冲席开始变形时的缩短率(s),确定其构造抬升起始时间(t=T1-(T1-T0)×s/S0)。将古温标样品投影到实际地质剖面,结合构造模拟实验结果确定样品对应构造部位的抬升起始时间,将其作为热史模拟的时间域约束,将温度域约束设置为 20~200℃,通过模拟大量热史路径来捕捉裂变径迹和(U-Th)/He 等古温标的温度敏感范围,将其设为新的温度域约束。④ 联合钻井样品和露头样品的裂变径迹、(U-Th)/He 进行热史模拟,其中“最好”的时间-温度路径代表了样品的热演化过程,利用古地温梯度法重建样品的抬升剥露过程。⑤ 以构造模拟结果和热史模拟结果为约束,利用 2DMOVE 软件解析 A—A′剖面的构造变形过程。

  • 图2 热运动学方法进行构造-热演化模拟流程示意图

  • Fig.2 Schematic diagram of tectono-thermal modeling constrained by thermo-kinematic analysis

  • 2.1 构造模拟实验

  • 构造模拟实验在中国石油大学(北京)油气资源与工程全国重点实验室进行。实验中使用表面光滑的硬纸板(摩擦系数约为0.1,厚度为0.5 mm)预设在模型中模拟先存的齐岳山断裂,使用200万分子量的硅树脂模拟滑脱层,使用180~250 μm的微玻璃珠模拟脆性地层。实验模型设置见图3,实验参数参考Feng Qianqian et al.(2023)。前人研究表明中生代以来古太平洋板块向西俯冲使得华南地区发生广泛的NW向挤压变形,从而造成了川东构造带的NW向递进变形(Yan Danping et al.,2009; Chu Yang et al.,2019)和J2-K2的(170~70 Ma)快速隆升(刘树根等,2008; 梅廉夫等,2010; 李双建等,2011; 王平等,2012; Deng Bin et al.,2013; Shi Hongcai et al.,2016; Li Chuanxin et al.,2021)。由此可以大致确定剖面A—A′在170~70 Ma发生了逆冲推覆,因此本文模拟了剖面A—A′在170~70 Ma的构造演化过程。

  • 构造物理模拟实验结果见图4,实验初始,在右侧挤压作用下,挤压端首先发生变形,基底卷入变形,在挤压端形成了两个箱形背斜(图4a、b)。当缩短率为9%时,预设的齐岳山断裂开始活动(图4c),在齐岳山地区形成逆冲推覆构造。随着挤压的继续进行,齐岳山断裂继续活动,上部构造层形成少量滑脱褶皱并发生明显的差异水平位移,先发生变形的地层具有更大的水平位移,表明隆升首先发生在远离挤压端的齐岳山地区西北缘。当缩短率达到15%时,齐岳山断裂上盘发育典型的断弯褶皱,左侧开始形成滑脱褶皱,右侧发育新的倾向挤压端的断层(图4d)。齐岳山断裂作为枢纽串联了两侧不同深度的滑脱层,将深部应变传递到浅部地层,持续挤压作用下,齐岳山断裂上盘地层继续发育断弯褶皱作用,左侧寒武系发生滑脱变形,右侧形成一个新的箱状褶皱(图4e)。最终,齐岳山断裂左侧发育5个背斜紧闭的断展褶皱,形成典型的隔档式褶皱,齐岳山断裂右侧发育3个典型的箱形背斜,形成典型的隔槽式褶皱。各个构造带的相对位置,地层露头及箱形背斜和隔挡式褶皱的数量与实际剖面A—A′的相似度较高,实验较好地呈现了剖面A—A′在燕山期(170~70 Ma)SE—NW向挤压作用下的变形过程。利用公式1可以确定某一挤压缩短量(s,cm)所对应的地质时间:

  • 图3 构造模拟实验设置

  • Fig.3 The model setup of sandbox and numerical experiment

  • 深灰色为韧性滑脱层,浅灰色为脆性地层

  • Dark gray represents viscous layer, while light gray represents brittle layer

  • 图4 构造物理模拟实验结果

  • Fig.4 Sandbox experiment results

  • (a~f)—不同缩短率下的实验结果;(g)—缩短率为25%对应的构造解释结果;s—缩短率;QYF—预设的齐岳山断裂;F1~F17—顺序形成的逆冲断裂

  • (a~f) —sandbox experiment results under the different shortening ratios; (g) —the interpreted of the tectonic pattern after 25% of shortening; s—shortening ratio; QYF—Qiyueshan fault; F1~F17—thrust faults numbered in the order of their formation

  • T=170-s×ΔT30,0s30
    (1)
  • 式中,ΔT=100 Ma。这表明每挤压6 cm相当于自然界发生了10 Ma的变形。考虑到模拟实验中所得到的隆升时间有一定的误差,本文对初始隆升时间设置了±10 Ma的误差,恢复结果如图5所示。

  • 2.2 构造-热演化模拟

  • 本文系统采集了川东地区的8个露头砂岩样品进行了磷灰石裂变径迹(AFT)、磷灰石(U-Th)/He(AHe)和锆石(U-Th)/He(ZHe)测试,进行构造-热演化模拟,同时收集了8个已发表的样品热史,信息如表1所示。AFT测试是在中国石油大学(北京)油气资源与工程全国重点实验室进行,通过LA-ICP-MS方法获得,测试结果如表2所示。AHe测试在美国佛罗里达大学完成,测试结果如表3所示。ZHe测试在澳大利亚墨尔本大学和中国科学院地质与地球物理研究所完成,测试结果如表4所示。

  • 图5 样品剖面位置投影和模拟实验确定川东逆冲推覆带相应构造部位的初始隆升时间

  • Fig.5 Projection locations of samples on the profile and the initial uplift time of corresponding structural parts of the eastern Sichuan fold-and-thrust belt determined by analogue modeling

  • 表1 川东逆冲推覆带低温热年代学样品信息

  • Table1 Details of the thermochronology samples of the eastern Sichuan fold-and-thrust belt

  • 注:*样品引自Feng Qianqian et al.,2023。

  • 有机质成熟度主要与有机质所经历的最高温度有关,镜质组反射率是有机质成熟度的最可靠指标,因此镜质组反射率是用来研究盆地古地温的最高古地温计。本文收集了川东地区6口钻井的反射率数据。镜质组反射率测试结果如图5所示,川东南地区在0~4500 m深度范围内,Requ值分布在0.8%~3.5%,总体上Requ值随着深度的增加而增加,具有良好的线性关系,表明单井所有的地层同时达到最高古地温。利用Thermodel软件,采用Easy Ro法,依据系列深度的Requ恢复了单井的最高古地温剖面(图6),结果表明川东地区的最高古地温梯度为30~34℃/km。

  • 利用HeFty 软件(1.7.4b版本),依据裂变径迹参数、(U-Th)/He年龄等古温标对样品的热演化史路径进行模拟,其中,AFT模拟采用扇形模型(Ketcham et al.,2007),AHe年龄模拟采用Flowers模型(Flowers et al.,2009),ZHe模拟采用Guenthner模型(Guenthner et al.,2013)。在模拟过程中设置了3个地质约束,包括样品在中生代构造隆升的时间域和温度域、沉积时的地表温度和现今地层温度(图7)。将构造模拟实验揭示的对应构造部位的初始隆升时间作为样品中生代构造隆升的时间域约束,其中将华蓥山背斜初始隆升时间±30 Ma作为其分叉衍生的黄瓜山背斜、塘河背斜、温塘峡背斜和中梁山背斜样品(CSZH、JS、SF和ZL)中生代构造隆升的时间域约束。沉积时的地表温度和现今地层温度均设为20±5℃。基于蒙特卡洛法随机模拟了1000~100000条热演化史路径,其中“最好”的时间—温度路径代表了该样品的热演化史。拟合优度(GOF)值代表模拟计算的古温标值与实测古温标值的拟合程度,当GOF大于50%时,说明热演化史模拟结果是可靠的。热演化史模拟结果如图6所示。热史结果表明川东逆冲推覆带总体具有自湘鄂西地区向川东地区阶段性递进变形特征。结合最高古地温梯度,可以计算各样品的冷却速率、总剥蚀量、燕山期剥蚀量和喜马拉雅期剥蚀量(图8)。样品RXZ-2、ZX、QY-1、EDS、XF-1、SCY、RX和SZ-2的热史没有表现为喜马拉雅期(新生代)快速冷却的特征,即没有喜马拉雅期的构造响应,因此这些样品的冷却速率和剥蚀量仅计算了燕山期以来的冷却速率和剥蚀量。

  • 表2 川东逆冲推覆带LA-ICP-MS方法测试的AFT结果

  • Table2 The measured AFT data by the LA-ICP-MS of the eastern Sichuan fold-and-thrust belt

  • 注:ρS—矿物中自发裂变径迹密度;NS—径迹数量;P(χ2)—检验概率,P(χ2)>0.05,年龄为中值年龄,P(χ2)<0.05,年龄为池年龄;MTL—平均径迹长度;N—所测裂变径迹条数; Dpar—与抛光面相交径迹的蚀刻像直径。

  • 表3 川东逆冲推覆带AHe 测试结果

  • Table3 The measured AHe data of the eastern Sichuan fold-and-thrust belt

  • 注:FT—α射出效应的校正参数;eU—有效铀浓度; eU =U+0.235Th。

  • 表4 川东逆冲推覆带ZHe 测试结果

  • Table4 The measured ZHe data of the eastern Sichuan fold-and-thrust belt

  • 图6 川东地区典型钻井镜质组反射率数据(a)和单井最高古地温(b)剖面

  • Fig.6 Vitrinite reflectance data (a) and the maximum paleotemperature (b) profiles of typical wells in the eastern Sichuan basin

  • 2.3 平衡剖面解析

  • 平衡剖面恢复结果如图9所示,川东逆冲推覆带构造演化过程分出 5 个主要阶段:① 隔槽式褶皱发育阶段(170~130 Ma),在北西向挤压作用下,齐岳山断裂和张家界-花垣断裂之间发育两个宽缓的箱状背斜,基底拆离面控制着构造变形(图9a);② 转换阶段(130~100 Ma),齐岳山断裂将深部的应变传递到浅部,串联了浅部滑脱层和基底拆离面,这一阶段齐岳山断裂以转换垂直位移为主,构造特征表现为齐岳山断裂上盘持续隆起,形成宽缓的齐岳山背斜,隔槽区浅部构造层发育多个小型断滑和断展褶皱,隔槽区整体剧烈抬升(图9b);③ 隔档式褶皱发育阶段(100~70 Ma),浅层志留系和三叠系滑脱层控制了隔档区的构造变形,陆续形成几个狭窄的滑脱褶皱,同时段隔槽式褶皱逐渐紧闭,深浅构造叠加,浅部构造层发育复杂的复向斜和复背斜构造(图9c);④ 褶皱带定形阶段(70~30 Ma),隔档式和隔槽式褶皱逐渐紧闭,形成典型的侏罗山式逆冲推覆带(图9d);⑤ 持续改造阶段(30 Ma至今),晚始新世以来,来自青藏高原隆升和太平洋板块俯冲的远程效应,隔槽式褶皱带经历了持续缓慢剥蚀,隔档式褶皱带经历了快速剥露(图9e、f)。

  • 3 讨论

  • 3.1 热运动学方法的优势与局限

  • 本文建立了联合构造模拟、平衡剖面解析和低温热年代学、镜质组反射率等多种古温标的热运动学方法来恢复川东逆冲推覆带构造-热演化过程。针对垂直构造走向的地质剖面,利用构造物理模拟实验和离散元数值模拟实验,剖析川东构造带逆冲推覆过程;基于构造模拟实验的运动学约束,联合钻井和露头样品的裂变径迹、(U-Th)/He进行热史模拟;利用典型钻井系列深度的镜质组反射率恢复研究区的古地温梯度,联合温度演化路径恢复样品的剥露过程;以此为约束结合平衡剖面系统解析构造演化过程,从而精细恢复构造抬升的起始时间、方式、速率、期次和幅度。对比于单独利用低温热年代学方法所恢复的构造-热演化过程,热运动学方法为低温热年代学方法重建热历史提供更符合区域构造演化认识的时间域约束,温度域约束为裂变径迹和(U-Th)/He的温度灵敏范围。然而这个方法仍具有以下局限:① 热史模拟时要求采用的古温标的封闭温度应超过样品所经历的最高古地温。但对于深层古老层系,一方面海相碳酸盐岩层系缺乏传统的古温标,另一方面地层经历过高温,往往使得古温标发生重置,无法准确显示温度灵敏范围。因此仍需要探索具有更高封闭温度的或者适用于碳酸盐岩层系的古温标,从而准确揭示深层古老层系的热演化过程。② 构造模拟时,需要建立合适的地质模型,从而准确重现地质剖面的构造演化,但由于技术条件的限制,目前所使用的地质模型均进行了极大的简化,所铺设滑脱层厚度远超实际地层厚度,同时无法模拟岩性和地层厚度的横向变化,模拟结果中断层的倾向、断距或褶皱幅度与实际构造存在偏差。③ 利用热运动学方法恢复剥蚀过程的关键在于地温梯度的选取。本文基于系列深度的镜质组反射率数据恢复了最高古地温梯度,结合热演化史从而比较准确地计算了样品的冷却速率和剥蚀量。但需要说明的是,由于在湘鄂西地区缺乏镜质组反射率数据,在计算该地区剥蚀量时,参考了川东地区的古地温梯度,计算结果必然存在误差。④ 该方法仅适用于晚期发生逆冲推覆的构造带,对于早期或者多期逆冲推覆的地区,如何准确揭示抬升—沉降—抬升的构造变形过程仍需进一步探索。

  • 图7 川东逆冲推覆带样品热史模拟结果

  • Fig.7 Thermal inversion results of outcrop samples of the eastern Sichuan fold-and-thrust belt

  • *样品热史引自Feng Qianqian et al.,2023;绿线代表可接受热史路径(accept,GOF>0.05);紫红线代表好的热史路径(good,GOF>0.5);黑线代表最佳的热史路径;蓝色框为设置的中生代构造隆升的地质约束

  • *Thermal histories are referenced from Feng Qianqian et al., 2023; green lines: the acceptable fit paths (accept, GOF>0.05) ; magenta lines represent the good fit paths (good, GOF>0.5) ; black lines represent the best time-temperature paths; the blue boxes represent the constraints for the exhumation event that occurred in the Yanshanian

  • 图8 川东逆冲推覆带样品的冷却速率和剥蚀量

  • Fig.8 Cooling rates and denudation of samples of the eastern Sichuan fold-and-thrust belt

  • C1和C2分别为燕山期和喜马拉雅期冷却速率; D1和D2分别为燕山期和喜马拉雅期剥蚀量

  • C1 and C2 are the cooling rates during the Yanshan and Himalayan, denudation, respectively; D1 and D2 are the denudation thickness during the Yanshan and Himalayan, denudation, respectively

  • 图9 川东逆冲推覆带平衡剖面恢复结果(据Feng Qianqian et al.,2023修改)

  • Fig.9 Balanced geological cross-section reconstructions in the eastern Sichuan fold-and-thrust belt (modified after Feng Qianqian et al., 2023)

  • 3.2 川东逆冲推覆带构造演化的构造启示

  • 在燕山期,受太平洋板块俯冲、江南-雪峰隆起产生的 SE—NW 向挤压作用,川东逆冲推覆带表现为“早期快速隆升—晚期缓慢隆升的”分段隆升特征,总体具有自SE 向 NW 递进变形趋势。构造演化受齐岳山断裂和多套滑脱层的控制。湘鄂西地区的主控滑脱层为基底拆里面,川东地区的主控滑脱层为志留系滑脱层。齐岳山断裂是隔槽式褶皱转换为隔档式褶皱的关键,早期齐岳山断裂将深部的应变传递到浅部,串联了志留系滑脱层和基底拆离面之间深部构造层和志留系滑脱层之上的浅部构造层,这一阶段齐岳山断裂以转换垂直位移为主,构造特征表现为齐岳山断裂上盘持续隆起。晚期当齐岳山背斜的隆起幅度达到某一程度时,浅部构造层积累的应变达到齐岳山背斜吸收的极限,齐岳山断裂开始向北西侧转换水平位移,构造特征表现为齐岳山断裂上盘发生水平位移,最终在齐岳山地区形成一个具有明显差异水平位移的大型逆冲推覆构造。大量的热年代学、岩石学、地球化学、构造和地层研究表明,晚侏罗世—早白垩世,太平洋板块俯冲在华南板块发生地壳挤压缩短,发育陆内褶皱-冲断带;在早白垩世—晚白垩世,太平洋板块幕式俯冲、后撤,使得华南板块形成伸展环境,形成大规模的火成岩出露和区域性的伸展构造(Chu Yang et al.,2019; Li Jianhua et al.,2020)。本文结果表明川东地区在早白垩世快速冷却,在晚白垩世开始缓慢冷却。川东逆冲推覆带中生代冷却速率的缩减与太平洋板块俯冲、后撤时间上的同步表明:快速隆升受太平洋板块俯冲产生的华南地区地壳缩短作用控制而缓慢隆升是俯冲后撤导致的华南地区地壳伸展的构造响应。

  • 喜马拉雅期,青藏高原在始新世—渐新世发生隆升东扩,导致了龙门山断裂带和鲜水河断裂带的走滑伸展(Wang Erchie et al.,20122014; Liu-Zeng Jing et al.,2018)。低温热年代学分析表明四川盆地在始新世—渐新世发生一期盆地范围内的区域剥露事件,且具有向东传播的趋势(Deng Bin et al.,2013; Yang Zhao et al.,2017; Tian Yuntao et al.,2018)。本次研究结果也揭示了川东地区始新世—渐新世的快速剥蚀事件(图6)。四川盆地新生代以来快速隆升与青藏高原隆升东扩时间上的同步,指示了四川盆地新生代地层的广泛剥蚀可能是晚始新世—早中新世青藏高原隆升东扩的远程构造效应的结果。本文热史结果表明样品CSZH和SFZ的冷却速率分别为0.08℃/Ma和0.14℃/Ma,在中生代经历了一次较慢的冷却事件。考虑到四川盆地的地温梯度自中生代以来有所下降(Qiu Nansheng et al.,2022),可以认为云雾山背斜(CSZH)和缙云山背斜(SF)在中生代未隆升,这两个背斜分别在30 Ma和20 Ma开始形成。地震资料分析四川盆地的主要构造地层大多向西倾斜(Gao Rui et al.,2016; Li Chuanxin et al.,2021),指示了四川盆地始新世—渐新世浅层地壳挤压缩短作用。低温热年代学和构造证据均支撑了青藏高原隆升东扩产生的地壳挤压缩短作用导致了四川盆地发生始新世—渐新世的快速隆升剥露。

  • 4 结论

  • (1)本文建立了一种构造模拟、平衡剖面解析和低温热年代学、镜质组反射率等多种古温标的热运动学方法恢复逆冲推覆带构造-热演化过程。对比于单独利用低温热年代学方法所恢复的构造-热演化过程,这种整体的研究方法,即构造模拟、平衡剖面、区域地质和热年代学的整合,所恢复的热历史更符合构造演化过程,可以得到更精准的剥露历史。但在构造模拟地质建模和多期构造沉降-抬升过程恢复等方面需要进一步的深化和完善。

  • (2)川东逆冲推覆带表现为自湘鄂西地区向川东地区阶段性递进变形特征。构造演化过程可分出 5 个主要阶段,分别是170~130 Ma隔槽式褶皱发育阶段、130~100 Ma转换阶段、100~70 Ma隔档式褶皱发育阶段、70~30 Ma褶皱带定形阶段和30 Ma至今持续改造阶段。冷却速率的变化指示了古太平洋板块俯冲后撤和青藏高原隆升的远程构造效应。

  • 参考文献

    • Almendral A, Robles W, Parra M, Mora A, Ketcham R, Raghib M. 2015. Fetkin: Coupling kinematic restorations and temperature to predict thrusting, exhumation histories, and thermochronometric ages. AAPG Bulletin, 99(8): 1557~1573.

    • Bernet M. 2009. A field-based estimate of the zircon fission-track closure temperature. Chemical Geology, 259(3~4): 181~189.

    • Buford P V M, McQuarrie N. 2019. Kinematic, flexural, and thermal modelling in the Central Andes: Unravelling age and signal of deformation, exhumation, and uplift. Tectonophysics, 766: 302~325.

    • Cai Chang'e, Qiu Nansheng, Li Huili, Daniel Stockli, Chang Jian, Liu Nian. 2020. Study of the closure temperature of (U-Th)/He in detrital zircon obtained from natural evolution samples. Science China Earth Sciences, 63(3): 412~424.

    • Chapman J B, Carrapa B, Ballato P, Decelles P G, Worthington J, Oimahmadov I, Gadoev M, Ketcham R. 2017. Intracontinental subduction beneath the pamir mountains: Constraints from thermokinematic modeling of shortening in the Tajik fold-and-thrust belt. Geological Society of America Bulletin, 129(11~12): 1450~1471.

    • Chu Yang, Lin Wei, Faure M, Xue Zhenhua, Ji Wenbin, Feng Zhentian. 2019. Cretaceous episodic extension in the South China block, East Asia: Evidence from the Yuechengling massif of central South China. Tectonics, 38(10): 3675~3702.

    • Dahlstrom C D A. 1969. Balanced cross sections. Canadian Journal of Earth Sciences, 6: 743~757.

    • Deng Bin, Liu Shugen, Li Zhiwu, Jansa L F, Liu Shun, Wang Guozhi, Sun Wei. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98~115.

    • Dong Shuwen, Zhang Yueqiao, Gao Rui, Su Jinbao, Liu Mian, Li Jianhua. 2015. A possible buried Paleoproterozoic collisional orogen beneath central south China: Evidence from seismic-reflection profiling. Precambrian Research, 264: 1~10.

    • Erdös Z, van der Beek P, Huismans R S. 2014. Evaluating balanced section restoration with thermochronology data: A case study from the central Pyrenees. Tectonics, 33(5): 617~634.

    • Feng Qianian, Qiu Nansheng, Wu Hang, Hemin K. 2023. Thermo-kinematic constraints on restoration of the eastern Sichuan fold-and-thrust belt, South China. Tectonics, 42: e2022TC007630.

    • Flowers R M, Ketcham R A, Shuster D L, Farley K A. 2009. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73(8): 2347~2365.

    • Gao Rui, Chen Chen, Wang Haiyan, Lu Zhanwu, Brown L, Dong Shuwen, Feng Shaoying, Li Qiusheng, Li Wenhui, Wen Zhongping, Li Feng. 2016. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan basin. Earth and Planetary Science Letters, 454: 86~91.

    • Gleadow A J W, Duddy I R, Green P F, Hegarty K A. 1986. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters, 78(2~3): 245~254.

    • Green P F, Duddy I R, Gleadow A J W, Tingate P R, Laslett G M. 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59: 237~253.

    • Gu Zhidong, Yin Jifeng, Yuan Miao, Bo Dongmei, Liang Dongxing, Zhang Hang, Zhang Li. 2015. Accumulation conditions and exploration directions of natural gas in deep subsalt Sinian-Cambrian system in the eastern Sichuan basin, SW China. Petroleum Exploration and Development, 42(2): 152~166.

    • He Wengang, Zhou Jianxun, Yuan Kang. 2018. Deformation evolution of eastern Sichuan-Xuefeng fold-thrust belt in South China: Insights from analogue modelling. Journal of Structural Geology, 109: 74~85.

    • Hu Wangshui, Zeng Tao, Zhou Yali, Yao Qiankun, Tang Jiguang. 2011. Applying balanced-restoring technique with detachment horizon profile to study the tectonic evolution. Geoscience, 25(5): 896~901.

    • Ketcham R A, Carter A, Donelick R A, Barbarand J, Hurford A J. 2007. Improved modeling of fission-track annealing in apatite. American Mineralogist, 92(5~6): 799~810.

    • Li Chuanxin, He Dengfa, Lu Guo, Wen Kai, Simon A, Sun Yanpeng. 2021. Multiple thrust detachments and their implications for hydrocarbon accumulation in the northeastern Sichuan basin, Southwestern China. AAPG Bulletin, 105(2): 357~390.

    • Li Jianhua, Cawood P A, Ratschbacher L, Zhang Y Q, Dong S W, Xin Y J, Yang H, Zhang P X. 2020. Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone. Earth-Science Reviews, 201: 103056.

    • Li Shuangjian, Li Jianming, Zhou Yan, Wo Yujin, Wang Xinwei. 2011. Fission track evidence for Mesozoic-Cenozoic uplifting in the southeastern margin of Sichuan basin. Acta Petrologica et Mineralogica, 30(2): 225~233 (in Chinese with English abstract).

    • Li Xiaoming, Shan Yehua. 2011. Diverse exhumation of the Mesozoic tectonic belt within the Yangtze plate, China, determined by apatite fission-track thermochronology. Geosciences Journal, 15(4): 349~357.

    • Liu Shugen, Sun Wei, Li Zhiwu, Deng Bin, Liu Shun. 2008. Tectonic uplifting and gas pool formation since late Cretaceous Epoch, Sichuan basin. Natural Gas Geoscience, (3): 293~300 (in Chinese with English abstract).

    • Liu Shugen, Yang Yu, Deng Bin, Zhong Yong, Wen Long, Sun Wei, Li Zhiwu, Jansa L B, Li Jinxi, Song Jinmin, Zhang Xihua, Peng Hanling. 2021. Tectonic evolution of the Sichuan basin, Southwest China. Earth-Science Reviews, 213: 103470.

    • Liu-Zeng Jing, Zhang Jinyu, McPhillips D, Reiners P, Wang Wei, Pik R, Zeng Lingsen, Hoke G, Xie Kejia, Xiao Ping, Zheng Dewen, Ge Yukui. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth and Planetary Science Letters, 490: 62~76.

    • Mei Lianfu, Liu Zhaoxi, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan Provinces of China: Evidence from apatite fission track and balanced cross-section. Earth Science Journal of China University of Geosciences, 35(2): 161~174 (in Chinese with English abstract).

    • Mora A, Casallas W, Ketcham R A, Gomez D, Parra M, Namson J, Stocklie D, Almendral A, Robles W, Ghorbal B. 2015. Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling. AAPG Bulletin, 99(8): 1575~1598.

    • Nemcok M, Schamel S, Gayer R. 2005. Thrust Belts: Structural Architecture, Thermal Regimes and Petroleum Systems. New York: Cambridge University Press.

    • Qiu Nansheng, Chang Jian, Zuo Yinhui, Wang Jiyang, Li Huili. 2012. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim basin, Northwest China. AAPG Bulletin, 96(5): 789~821.

    • Qiu Nansheng, He Lijuan, Chang Jian, Zhu Chuanqing. 2020. Research progress and challenges of thermal history reconstruction in sedimentary basins. Petroleum Geology & Experiment, 42(5): 790~802 (in Chinese with English abstract).

    • Qiu Nansheng, Chang Jian, Zhu Chuanqing, Liu Wen, Zuo Yinhui, Xu Wei, Li Dan. 2022. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China cratons, China. Earth-Science Reviews, 224: 103884.

    • Reiners P W. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151~179.

    • Shi Hongcai, Shi Xiaobin, Glasmacher U A, Yang Xiaoqiu, Stockli D F. 2016. The evolution of eastern Sichuan basin, Yangtze block since Cretaceous: Constraints from low temperature thermochronology. Journal of Asian Earth Sciences, 116: 208~221.

    • Tian Yuntao, Kohn B P, Qiu Nansheng, Yuan Yusong, Hu Shengbiao, Gleadow A J W, Zhang Peizhen. 2018. Eocene to Miocene out-of-sequence deformation in the eastern Tibetan Plateau: Insights from shortening structures in the Sichuan basin. Journal of Geophysical Research: Solid Earth, 123(2): 1840~1855.

    • Wang E, Kirby E, Furlong K P, van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5: 640~645.

    • Wang Erchie, Meng Kai, Su Zhe, Meng Qingren, Chu J J, Chen Zhiliang, Wang Gang, Shi Xuhua, Liang Xinquan. 2014. Block rotation: Tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault. Tectonics, 33(5): 686~718.

    • Wang Ping, Liu Shaofeng, Gao Tangjun, Wang Kai. 2012. Late-orogenic arcuate fold-thrust belts in northern Yangtze area: Structural characteristics and basin evolution. Journal of Palaeogeography, 15(6): 819~838 (in Chinese with English abstract).

    • Wolf R A, Farley K A, Kass D M. 1998. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology, 148(1~2): 105~114.

    • Wu Hang, Qiu Nansheng, Chang Jian, Zhang Jixin, Wang Ye. 2019. Physical simulation on development of multilayer detachment fold belt in eastern Sichuan. Earth Science, 44(3): 784~797 (in Chinese with English abstract).

    • Wu Hang, Qiu Nansheng, Feng Qianqian, Chang Jian, Jiang Kai, Zhang Yinglin, Wu Shixiang. 2020. Reconstruction of tectonic uplift process with thermo-kinematic method. Chinese. Journal of Geophysics, 63(6): 2329~2344 (in Chinese with English abstract).

    • Yamada R, Murakami M, Tagami T. 2007. Statistical modelling of annealing kinetics of fission tracks in zircon: Reassessment of laboratory experiments. Chemical Geology, 236(1~2): 75~91.

    • Yan Danping, Zhang Bing, Zhou Meifu, Wei Guoqi, Song Honglin, Liu Shaofeng. 2009. Constraints on the depth, geometry and kinematics of blind detachment faults provided by fault-propagation folds: An example from the Mesozoic fold belt of South China. Journal of Structural Geology, 31(2): 150~162.

    • Yang Zhao, Shen Chuanbo, Ratschbacher L, Enkelmann E, Jonckheere R, Wauschkuhn B, Dong Yunpeng. 2017. Sichuan basin and beyond: Eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122: 4712~4740.

    • Zhu Chuanqing, Qiu Nansheng, Liu Yifeng, Xiao Yao, Hu Shengbiao. 2019. Constraining the denudation process in the eastern Sichuan basin, China using low-temperature thermochronology and vitrinite reflectance data. Geological Journal, 54(1): 426~437.

    • 蔡长娥, 邱楠生, 李慧莉, Stockli D F, 常健, 刘念. 2020. 自然演化碎屑锆石(U-Th)/He封闭温度的研究. 中国科学: 地球科学, 50(1): 66~78.

    • 李双建, 李建明, 周雁, 沃玉进, 汪新伟. 2011. 四川盆地东南缘中新生代构造隆升的裂变径迹证据. 岩石矿物学杂志, 30(2): 225~233.

    • 刘树根, 孙玮, 李智武, 邓宾, 刘顺. 2008. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏. 天然气地球科学, (3): 293~300.

    • 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161~174.

    • 邱楠生, 何丽娟, 常健, 朱传庆. 2020. 沉积盆地热历史重建研究进展与挑战. 石油实验地质, 42(5): 790~802.

    • 王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662~1673.

    • 吴航, 邱楠生, 常健, 张纪新, 王晔. 2019. 川东多套滑脱层褶皱构造带形成物理模拟. 地球科学, 44(3): 784~797.

    • 吴航, 邱楠生, 冯乾乾, 常健, 姜凯, 张应鳞, 吴世祥. 2020. 利用热运动学方法恢复构造隆升过程的探索. 地球物理学报, 63(6): 2329~2344.

  • 参考文献

    • Almendral A, Robles W, Parra M, Mora A, Ketcham R, Raghib M. 2015. Fetkin: Coupling kinematic restorations and temperature to predict thrusting, exhumation histories, and thermochronometric ages. AAPG Bulletin, 99(8): 1557~1573.

    • Bernet M. 2009. A field-based estimate of the zircon fission-track closure temperature. Chemical Geology, 259(3~4): 181~189.

    • Buford P V M, McQuarrie N. 2019. Kinematic, flexural, and thermal modelling in the Central Andes: Unravelling age and signal of deformation, exhumation, and uplift. Tectonophysics, 766: 302~325.

    • Cai Chang'e, Qiu Nansheng, Li Huili, Daniel Stockli, Chang Jian, Liu Nian. 2020. Study of the closure temperature of (U-Th)/He in detrital zircon obtained from natural evolution samples. Science China Earth Sciences, 63(3): 412~424.

    • Chapman J B, Carrapa B, Ballato P, Decelles P G, Worthington J, Oimahmadov I, Gadoev M, Ketcham R. 2017. Intracontinental subduction beneath the pamir mountains: Constraints from thermokinematic modeling of shortening in the Tajik fold-and-thrust belt. Geological Society of America Bulletin, 129(11~12): 1450~1471.

    • Chu Yang, Lin Wei, Faure M, Xue Zhenhua, Ji Wenbin, Feng Zhentian. 2019. Cretaceous episodic extension in the South China block, East Asia: Evidence from the Yuechengling massif of central South China. Tectonics, 38(10): 3675~3702.

    • Dahlstrom C D A. 1969. Balanced cross sections. Canadian Journal of Earth Sciences, 6: 743~757.

    • Deng Bin, Liu Shugen, Li Zhiwu, Jansa L F, Liu Shun, Wang Guozhi, Sun Wei. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98~115.

    • Dong Shuwen, Zhang Yueqiao, Gao Rui, Su Jinbao, Liu Mian, Li Jianhua. 2015. A possible buried Paleoproterozoic collisional orogen beneath central south China: Evidence from seismic-reflection profiling. Precambrian Research, 264: 1~10.

    • Erdös Z, van der Beek P, Huismans R S. 2014. Evaluating balanced section restoration with thermochronology data: A case study from the central Pyrenees. Tectonics, 33(5): 617~634.

    • Feng Qianian, Qiu Nansheng, Wu Hang, Hemin K. 2023. Thermo-kinematic constraints on restoration of the eastern Sichuan fold-and-thrust belt, South China. Tectonics, 42: e2022TC007630.

    • Flowers R M, Ketcham R A, Shuster D L, Farley K A. 2009. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73(8): 2347~2365.

    • Gao Rui, Chen Chen, Wang Haiyan, Lu Zhanwu, Brown L, Dong Shuwen, Feng Shaoying, Li Qiusheng, Li Wenhui, Wen Zhongping, Li Feng. 2016. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan basin. Earth and Planetary Science Letters, 454: 86~91.

    • Gleadow A J W, Duddy I R, Green P F, Hegarty K A. 1986. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters, 78(2~3): 245~254.

    • Green P F, Duddy I R, Gleadow A J W, Tingate P R, Laslett G M. 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59: 237~253.

    • Gu Zhidong, Yin Jifeng, Yuan Miao, Bo Dongmei, Liang Dongxing, Zhang Hang, Zhang Li. 2015. Accumulation conditions and exploration directions of natural gas in deep subsalt Sinian-Cambrian system in the eastern Sichuan basin, SW China. Petroleum Exploration and Development, 42(2): 152~166.

    • He Wengang, Zhou Jianxun, Yuan Kang. 2018. Deformation evolution of eastern Sichuan-Xuefeng fold-thrust belt in South China: Insights from analogue modelling. Journal of Structural Geology, 109: 74~85.

    • Hu Wangshui, Zeng Tao, Zhou Yali, Yao Qiankun, Tang Jiguang. 2011. Applying balanced-restoring technique with detachment horizon profile to study the tectonic evolution. Geoscience, 25(5): 896~901.

    • Ketcham R A, Carter A, Donelick R A, Barbarand J, Hurford A J. 2007. Improved modeling of fission-track annealing in apatite. American Mineralogist, 92(5~6): 799~810.

    • Li Chuanxin, He Dengfa, Lu Guo, Wen Kai, Simon A, Sun Yanpeng. 2021. Multiple thrust detachments and their implications for hydrocarbon accumulation in the northeastern Sichuan basin, Southwestern China. AAPG Bulletin, 105(2): 357~390.

    • Li Jianhua, Cawood P A, Ratschbacher L, Zhang Y Q, Dong S W, Xin Y J, Yang H, Zhang P X. 2020. Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone. Earth-Science Reviews, 201: 103056.

    • Li Shuangjian, Li Jianming, Zhou Yan, Wo Yujin, Wang Xinwei. 2011. Fission track evidence for Mesozoic-Cenozoic uplifting in the southeastern margin of Sichuan basin. Acta Petrologica et Mineralogica, 30(2): 225~233 (in Chinese with English abstract).

    • Li Xiaoming, Shan Yehua. 2011. Diverse exhumation of the Mesozoic tectonic belt within the Yangtze plate, China, determined by apatite fission-track thermochronology. Geosciences Journal, 15(4): 349~357.

    • Liu Shugen, Sun Wei, Li Zhiwu, Deng Bin, Liu Shun. 2008. Tectonic uplifting and gas pool formation since late Cretaceous Epoch, Sichuan basin. Natural Gas Geoscience, (3): 293~300 (in Chinese with English abstract).

    • Liu Shugen, Yang Yu, Deng Bin, Zhong Yong, Wen Long, Sun Wei, Li Zhiwu, Jansa L B, Li Jinxi, Song Jinmin, Zhang Xihua, Peng Hanling. 2021. Tectonic evolution of the Sichuan basin, Southwest China. Earth-Science Reviews, 213: 103470.

    • Liu-Zeng Jing, Zhang Jinyu, McPhillips D, Reiners P, Wang Wei, Pik R, Zeng Lingsen, Hoke G, Xie Kejia, Xiao Ping, Zheng Dewen, Ge Yukui. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth and Planetary Science Letters, 490: 62~76.

    • Mei Lianfu, Liu Zhaoxi, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan Provinces of China: Evidence from apatite fission track and balanced cross-section. Earth Science Journal of China University of Geosciences, 35(2): 161~174 (in Chinese with English abstract).

    • Mora A, Casallas W, Ketcham R A, Gomez D, Parra M, Namson J, Stocklie D, Almendral A, Robles W, Ghorbal B. 2015. Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling. AAPG Bulletin, 99(8): 1575~1598.

    • Nemcok M, Schamel S, Gayer R. 2005. Thrust Belts: Structural Architecture, Thermal Regimes and Petroleum Systems. New York: Cambridge University Press.

    • Qiu Nansheng, Chang Jian, Zuo Yinhui, Wang Jiyang, Li Huili. 2012. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim basin, Northwest China. AAPG Bulletin, 96(5): 789~821.

    • Qiu Nansheng, He Lijuan, Chang Jian, Zhu Chuanqing. 2020. Research progress and challenges of thermal history reconstruction in sedimentary basins. Petroleum Geology & Experiment, 42(5): 790~802 (in Chinese with English abstract).

    • Qiu Nansheng, Chang Jian, Zhu Chuanqing, Liu Wen, Zuo Yinhui, Xu Wei, Li Dan. 2022. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China cratons, China. Earth-Science Reviews, 224: 103884.

    • Reiners P W. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151~179.

    • Shi Hongcai, Shi Xiaobin, Glasmacher U A, Yang Xiaoqiu, Stockli D F. 2016. The evolution of eastern Sichuan basin, Yangtze block since Cretaceous: Constraints from low temperature thermochronology. Journal of Asian Earth Sciences, 116: 208~221.

    • Tian Yuntao, Kohn B P, Qiu Nansheng, Yuan Yusong, Hu Shengbiao, Gleadow A J W, Zhang Peizhen. 2018. Eocene to Miocene out-of-sequence deformation in the eastern Tibetan Plateau: Insights from shortening structures in the Sichuan basin. Journal of Geophysical Research: Solid Earth, 123(2): 1840~1855.

    • Wang E, Kirby E, Furlong K P, van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5: 640~645.

    • Wang Erchie, Meng Kai, Su Zhe, Meng Qingren, Chu J J, Chen Zhiliang, Wang Gang, Shi Xuhua, Liang Xinquan. 2014. Block rotation: Tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault. Tectonics, 33(5): 686~718.

    • Wang Ping, Liu Shaofeng, Gao Tangjun, Wang Kai. 2012. Late-orogenic arcuate fold-thrust belts in northern Yangtze area: Structural characteristics and basin evolution. Journal of Palaeogeography, 15(6): 819~838 (in Chinese with English abstract).

    • Wolf R A, Farley K A, Kass D M. 1998. Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology, 148(1~2): 105~114.

    • Wu Hang, Qiu Nansheng, Chang Jian, Zhang Jixin, Wang Ye. 2019. Physical simulation on development of multilayer detachment fold belt in eastern Sichuan. Earth Science, 44(3): 784~797 (in Chinese with English abstract).

    • Wu Hang, Qiu Nansheng, Feng Qianqian, Chang Jian, Jiang Kai, Zhang Yinglin, Wu Shixiang. 2020. Reconstruction of tectonic uplift process with thermo-kinematic method. Chinese. Journal of Geophysics, 63(6): 2329~2344 (in Chinese with English abstract).

    • Yamada R, Murakami M, Tagami T. 2007. Statistical modelling of annealing kinetics of fission tracks in zircon: Reassessment of laboratory experiments. Chemical Geology, 236(1~2): 75~91.

    • Yan Danping, Zhang Bing, Zhou Meifu, Wei Guoqi, Song Honglin, Liu Shaofeng. 2009. Constraints on the depth, geometry and kinematics of blind detachment faults provided by fault-propagation folds: An example from the Mesozoic fold belt of South China. Journal of Structural Geology, 31(2): 150~162.

    • Yang Zhao, Shen Chuanbo, Ratschbacher L, Enkelmann E, Jonckheere R, Wauschkuhn B, Dong Yunpeng. 2017. Sichuan basin and beyond: Eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122: 4712~4740.

    • Zhu Chuanqing, Qiu Nansheng, Liu Yifeng, Xiao Yao, Hu Shengbiao. 2019. Constraining the denudation process in the eastern Sichuan basin, China using low-temperature thermochronology and vitrinite reflectance data. Geological Journal, 54(1): 426~437.

    • 蔡长娥, 邱楠生, 李慧莉, Stockli D F, 常健, 刘念. 2020. 自然演化碎屑锆石(U-Th)/He封闭温度的研究. 中国科学: 地球科学, 50(1): 66~78.

    • 李双建, 李建明, 周雁, 沃玉进, 汪新伟. 2011. 四川盆地东南缘中新生代构造隆升的裂变径迹证据. 岩石矿物学杂志, 30(2): 225~233.

    • 刘树根, 孙玮, 李智武, 邓宾, 刘顺. 2008. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏. 天然气地球科学, (3): 293~300.

    • 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161~174.

    • 邱楠生, 何丽娟, 常健, 朱传庆. 2020. 沉积盆地热历史重建研究进展与挑战. 石油实验地质, 42(5): 790~802.

    • 王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662~1673.

    • 吴航, 邱楠生, 常健, 张纪新, 王晔. 2019. 川东多套滑脱层褶皱构造带形成物理模拟. 地球科学, 44(3): 784~797.

    • 吴航, 邱楠生, 冯乾乾, 常健, 姜凯, 张应鳞, 吴世祥. 2020. 利用热运动学方法恢复构造隆升过程的探索. 地球物理学报, 63(6): 2329~2344.