-
锆(Zr),是一种重要的关键金属,因其耐高温、耐腐蚀等材料学特性,广泛应用于冶金、航空航天和核工业等领域(王旭峰等,2012;王汝成等,2020)。自然界,除斜锆石和锆石外,锆可与碱质(K、Na和Ca为主)和挥发分(F、Cl和H2O为主)结合,形成结构复杂的锆矿物,如异性石、纤硅钠锆石。这些锆矿物多产于碱性岩和碱性花岗岩体系高分异岩浆晚期至热液流体阶段,常与稀土矿物共生,是厘定锆、稀土等关键金属成矿时代,追溯成矿物质迁移-沉淀过程的有效示踪矿物(Andersen et al.,2010,2013;Wu Fuyuan et al.,2010;Qiu Kunfeng et al.,2019;邬斌等,2018)。
-
最近我们在辽宁赛马碱性岩体中首次观察到两种稀有锆硅酸盐矿物——赵氏碱锆石(斜方晶系,理想化学式为KNaZrSi3O9·2H2O)和水硼锶钠锆石(三方晶系,理想化学式为(Na,□)12(□,Na)12Sr12Zr14(Si3O9)10[Si2BO7(OH)2]6·12H2O。其中赵氏碱锆石为中国首次发现,此前发现于美国Wind Mountain,俄罗斯Khibiny、Lovozero和巴西 Poços de Caldas碱性岩体(Boggs and Ghose,1985;Ghose and Thakur,1985;Pekov and Nikolaev,2013;Ivanyuk et al.,2015;Guarino et al.,2021),以华人矿物学家赵彦奇教授(1930~2022年)在新矿物发现方面的成就而命名。水硼锶钠锆石为全球第三次发现,是全球仅有的两种含硼锆硅酸盐矿物之一,此前仅发现于加拿大Mont Saint-Hilaire和中国云南个旧白云山碱性岩体(McDonald and Chao,2005;Wang Yanjuan et al.,2023)。两种锆矿物产出数量较少,前人多侧重于矿物成分和结构等基础矿物学研究,较少深入探讨其成因及岩浆-热液系统与锆-稀土成矿关系。其中赵氏碱锆石产于含方沸石的霞石正长岩晶洞中(Boggs and Ghose,1985;Ghose and Thakur,1985),或由异性石经富碱岩浆热液自交代作用形成(Ivanyuk et al.,2015)。而水硼锶钠锆石产于碱性岩体角砾岩晶洞和霞石正长伟晶岩中,与热液碳酸盐矿物等共生(McDonald and Chao,2005),或在霞石方钠正长岩中,以榍石或莫片榍石的蚀变矿物产出(Wang Yanjuan et al.,2023)。
-
辽宁赛马碱性岩体位于华北克拉通东北缘辽东半岛,发育我国典型碱性岩型铀-稀土-锆-铌综合性矿床,并且陆续发现了赛马石、凤成石等多种锆和稀土新矿物(Yang Zhuming et al.,2012;沈敢富等,2017;Wu Bin et al.,2022,2023,2024)。前人已对其矿物组成与特征(陈肇博等,1996;Wu Bin et al.,2015,2016)、岩石地球化学特征与成因(周玲棣和王扬传,1991;谭东娟等,1999;Zhu Yusheng et al.,2016,2017;付瑞鑫等,2023)、区域构造演化与成岩成矿时代(景立珍等,1995;孙立军等,2008;Wu Fuyuan et al.,2010;朱昱升,2016;刘杰勋,2019),以及矿床地质特征与成因(北京铀矿地质研究所赛马矿床研究组,1977;陈肇博等,1996;Ju Nan et al.,2019;Ma Danzhen and Liu Yan,2023)等方面进行了详细的研究。近年来学者普遍注意到碱性岩浆期后流体交代作用与稀土、锆、铌成矿的密切关系(Wu Bin et al.,2015,2019;Ma Danzhen and Liu Yan,2023),但针对交代流体来源性质、交代作用时间及成矿元素活化-迁移-再沉淀机制等问题,目前仍不清楚。因此,本文拟通过对赛马岩体新发现的赵氏碱锆石和水硼锶钠锆石进行系统的岩相学、矿物晶体结构与化学成分,以及同位素年代学研究,揭示岩浆期后交代流体与锆等关键金属迁移-沉淀的关系。
-
1 地质背景
-
赛马碱性杂岩区位于华北克拉通东北缘辽东半岛,辽宁省凤城市赛马镇东部(图1a),杂岩区呈东西向伸展,出露面积约280 km2,自东向西分为柏林川、叆阳、顾家和赛马碱性杂岩体(陈肇博等,1996;Zhu Yusheng et al.,2016)。东部以碱性正长岩为主的柏林川岩体,中部以碱性火山岩和潜火山岩为主的叆阳岩体,而西部则以霞石正长岩为主的顾家和赛马岩体。这些岩体深部连通且同源,是原始碱性岩浆不同分异阶段的产物。原始岩浆来源于华北克拉通拆沉至软流圈的陆壳发生熔融形成具有陆壳特征的熔体或流体交代岩石圈地幔而发生低程度部分熔融(Zhu Yusheng et al.,2016,2017)。
-
Fig.1 The distribution of Triassic alkaline rocks in the northern margin of the North China Craton (a, modified after Zhong Jun et al., 2020) and geological map of the Saima alkaline complex (b, modified after Chen Zhaobo et al., 1996)
-
赛马碱性岩体位于赛马碱性杂岩区西部,出露面积约20 km2,主要岩性为钾质响岩、霞石正长岩和钠质异霞正长岩,其中,霞石正长岩是岩体的主体,约占70%,响岩约占20%,异霞正长岩约占5%,其他岩性或岩脉约占5%,异霞正长岩呈岩株、岩脉或似层状侵入霞石正长岩(陈肇博等,1996;朱昱升,2016)。围岩为岩体北部、西部和南部的元古宇辽河群白云质大理岩,以及西南部的辽河群千枚岩、东北部震旦系石英岩和寒武系灰岩,而岩体东部被侏罗系砂砾岩和煤系地层所覆盖(陈肇博等,1996)。赛马碱性岩产出铀-稀土-锆-铌综合性矿床,其中最为闻名的铀矿分为: ① 产于异霞正长岩中的绿层硅铈钛矿型矿化,该类矿化规模最大;② 产于矽卡岩中的铀烧绿石-铌钛铀矿型矿化;③ 产于强烈热液蚀变的碱性岩中的沥青铀矿型矿化。矿石矿物包括绿层硅铈钛矿、烧绿石族矿物、异性石、沥青铀矿、铀方钍矿等(北京铀矿地质研究所赛马矿床研究组,1977;陈肇博等,1996)。锆石和异性石U-Pb年龄显示赛马碱性岩体的形成时代约为230~220 Ma(Wu Fuyuan et al.,2010;Zhu Yusheng et al.,2016)。此外,赛马岩体成岩后普遍经历了后期流体交代,宏观上呈现为长石石英脉、方解石脉穿插霞石正长岩,微观上表现为霞石、钾长石和异性石等原生矿物被钠沸石、方解石和菱锶矿等热液矿物交代(Wu Bin et al.,2015;朱昱升,2016;邬斌等,2018)。本文含赵氏碱锆石和水硼锶钠锆石的异霞正长岩样品采自赛马碱性岩体东部,坐标E124°20′01.1″,N40°58′54.6″(图1b)。
-
2 分析方法
-
赵氏碱锆石、斜方钠锆石和水硼锶钠锆石的原位激光拉曼光谱分析在东华理工大学核资源与环境国家重点实验室完成,采用Thermo Fisher DXR 2xi激光拉曼光谱仪,使用50×物镜,532 nm激光波长和20 mW激光输出功率,激光的束斑为1 μm,光谱的分辨率为1 cm-1,光谱分析范围为50~4000 cm-1。测试之前用单晶硅对拉曼位移进行校准,校正后的单晶硅所对应的拉曼位移为520.7 cm-1。
-
赵氏碱锆石和水硼锶钠锆石的微区X射线衍射分析在中国科学院广州地球化学研究所矿物学与成矿学重点实验室Micro-XRD仪器上完成,仪器型号为Rigaku D/max RAPID-V。衍射仪测试条件:工作电压为40 kV,电流为30 mA,射线为Cu-Kα(λ=0.15418 nm),颗粒工作区域约为100 μm,准直仪收集时间为100 s。
-
矿物主量元素分析在东华理工大学核资源与环境国家重点实验室电子探针(EPMA)上完成,仪器型号为日本电子株式会社JEOL JXA-8230,工作条件如下:加速电压为15 kV,电流为20 nA,异性石、赵氏碱锆石和水硼锶钠锆石的束斑直径分别为10 μm、20 μm和5 μm。标样选用磷灰石(Ca)、金红石(Ti)、透长石(K)、橄榄石(Fe、Mg)、蔷薇辉石(Mn)、铬铅矿(Pb)、硬玉(Na)、锆石(Zr)、重晶石(Ba)、铁铝榴石(Al)、硅铍铝钠石(Cl)、天青石(Sr)、纯金属单质(Nb、Hf)、含Y石榴子石(Y)、独居石(La、Ce、Pr、Nd)、人工合成稀土磷酸盐(Sm)。元素的峰值和背景值测试时间分别为10 s和5 s。所有数据均采用标准ZAF校正程序进行校正,主量元素的分析误差<2%。
-
矿物微量元素分析在东华理工大学核资源与环境国家重点实验室激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)上完成,激光剥蚀装置为ESI NWR 257 nm飞秒激光器,分析采用Perkin Elmer Nex ION 1000四极杆ICP-MS。激光剥蚀能量密度为5.0 J/cm2,脉冲为5 Hz,剥蚀直径为32 μm。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度。微量元素含量处理中采用玻璃标准物质NIST612作外标进行微量元素校正。每数据分析点包括30 s背景信号和45 s样品剥蚀信号。分析数据的离线处理利用Iolite软件完成(Paton et al.,2011)。
-
异性石和水硼锶钠锆石的U-Pb定年在东华理工大学核资源与环境国家重点实验室激光剥蚀电感耦合等离子质谱仪(LA-ICP-MS)上完成,激光剥蚀系统为相干公司生产的Geo Las HD 193 nm准分子激光器,电感耦合等离子体质谱仪为安捷伦公司生产的7900 ICP-MS。测试过程中采用氦气为载气,氩气为补偿气。激光剥蚀频率和束斑分布为5 Hz和32 μm,激光能量密度为3.5 J/cm2,以国际锆石标样91500(Wiedenbeck et al.,2004)为外标,以国际锆石标样Plešovice(Sláma et al.,2008)监控分析质量,以玻璃标准物质NIST610作外标校正微量元素。每个分析数据点包括大约20 s背景信号和45 s样品剥蚀信号,数据处理采用软件ICPMSDataCal11.0(Liu Yongsheng et al.,2008,2010)完成,样品的U-Pb年龄谐和图绘制和年龄加权平均值计算采用Isoplot(Ludwig,2012)完成。
-
3 分析结果
-
3.1 岩相学特征
-
异霞正长岩呈灰绿色,中粒至中粗粒,块状构造(图2a)。主要矿物包括霞石(20%~25%)、钾长石(30%~40%)、霓石(25%~30%)、异性石(5%~10%)和黑云母(<5%)。背散射镜下部分钾长石和大部分霞石被钠沸石交代,单偏光下霓石为深绿色—草绿色,多呈粒状、细针状和毛发状集合体产出(图2b~d)。异性石是主要锆-稀土矿物,手标本中呈浅粉色,在单偏光下为无色透明,呈半自形颗粒产出,表面多见裂纹,常同霓石紧密共生或被其包围(图2b、c)。其他副矿物包括方钍石、菱锶矿、氟锶钙磷灰石、铈铌钙钛矿、绿层硅铈钛矿、榍石、何作霖矿和闪叶石等(表1)。
-
进一步观察发现,大多数异性石经历了不同程度的蚀变(图2d~i),蚀变程度较低的矿物组合由残余异性石(大量)+赵氏碱锆石+斜方钠锆石+钠沸石+霓石等组成,其中赵氏碱锆石多呈他形,粒径<50 μm,具有许多微小孔洞,包裹斜方钠锆石、铈硅磷灰石等矿物,周围见残余异性石,表面裂纹较多,裂隙和边缘被钠沸石交代,与周围次生矿物接触界线较为模糊(图2d、e)。斜方钠锆石多呈不规则他形或细小颗粒集合体的形式出现,粒状<20 μm,与次生霓石紧密共生,沿赵氏碱锆石颗粒的边缘分布。次生霓石不同于早期造岩矿物霓石的产状,颗粒一般细小,粒径<20 μm,呈细针状、毛发状或他形集合体分布(图2e);钠沸石呈不规则他形集合体与赵氏碱锆石紧密共生,还可见假晶中有钠沸石脉贯入,表明该阶段经历了强烈的钠交代(图2e、f);假晶中钾长石的产状不同于造岩矿物钾长石,颗粒小,一般<30 μm,多呈他形,包裹斜方钠锆石、铈硅磷灰石等矿物(图2f);而铈硅磷灰石为假晶中主要的稀土矿物,颗粒细小,一般<10 μm,呈不规则粒状或细脉状零星分布于假晶中(图2d~f)。
-
随着蚀变程度加强,残余异性石及赵氏碱锆石和斜方钠锆石等早期蚀变矿物进一步遭受交代,占比逐渐减少至消失,形成假晶,蚀变矿物组合转变为残余异性石(少量)+水硼锶钠锆石+锆石+方解石+菱锶矿+钠沸石±斜方铅锆石等,假晶周围常有氟锶钙磷灰石产出(图2g~i)。水硼锶钠锆石为该阶段主要锆矿物,其位于假晶内部,多呈他形粒状或集合体,粒径<200 μm,与周围矿物接触界线清晰,内部未见细小矿物包裹体及明显蚀变(图2h)。残余异性石的产状不同于前者蚀变组合,其数量大幅度减少,颗粒也细小,一般<5 μm,多呈他形或细脉状被钠沸石包裹;水硼锶钠锆石周围出现大量菱锶矿、方解石等碳酸盐矿物,其中一部分方解石呈他形不规则粒状,粒径<30 μm,与假晶内锆石、钠沸石等蚀变矿物共生,另一部分方解石以他形集合体的形式填充于水硼锶钠锆石颗粒内部或沿其边缘分布;而菱锶矿颗粒较小,粒径<20 μm,以他形粒状与方解石共生分布于水硼锶钠锆石周围;假晶中见大量的钠沸石产出,呈不规则他形,颗粒表面较均一,包裹水硼锶钠锆石、锆石等矿物;锆石多呈细脉状或细小他形不规则粒状集合体(<20 μm)分布于水硼锶钠锆石颗粒边缘或被钠沸石包围;斜方铅锆石呈不规则他形,粒径<50 μm,分布于水硼锶钠锆石周围;假晶周围有他形氟锶钙磷灰石产出,粒径<150 μm,其表面多见裂缝(图2i)。
-
图2 赛马岩体异霞正长岩手标本(a)、光学显微镜(b)及背散射电子像照片(c~i)
-
Fig.2 Hand specimen (a) , optical microscope (b) , and backscattered electron images (c~i) of the lujavrite from the Saima complex
-
(a)—异霞正长岩手标本;(b)—异霞正长岩光学显微镜照片(单偏光);(c)—新鲜异性石颗粒;(d、e)—早期异性石蚀变矿物组合,包括残余异性石、赵氏碱锆石、斜方钠锆石、钠沸石等;(f)—异性石假晶中有钠沸石脉贯入;(g~i)—异性石假晶晚期蚀变矿物组合,包括水硼锶钠锆石、钠沸石、锆石、方解石等; Aeg—霓石;Bri-Ce—铈硅磷灰石;Bt—黑云母;Bta—水硼锶钠锆石;Cal—方解石;Eud—异性石;Eud PM—异性石假晶;Fsig—氟锶钙磷灰石;Gch—赵氏碱锆石;Gdn—斜方钠锆石;Kfs—钾长石;Nph—霞石;Ntr—钠沸石;Pdgn—斜方铅锆石;Str—菱锶矿;Ttn—榍石;Zrn—锆石
-
(a) —hand specimen of the lujavrite; (b) —optical microscope photo of the lujavrite (in plane-polarized light) ; (c) —early fresh eudialyte grain; (d, e) —early alteration mineral assemblage after eudialyte, including residual eudialyte, georgechaoite, gaidonnayite, natrolite, and etc.; (f) —natrolite veins crosscut pseudomorph after eudialyte; (g~i) —late alteration mineral assemblage after eudialyte, including bobtraillite, natrolite, zircon, calcite, and etc.; Aeg—aegirine; Bri-Ce—britholite- (Ce) ; Bt—biotite; Bta—bobtraillite; Cal—calcite; Eud—eudialyte; Eud PM—pseudomorph after eudialyte; Fsig—fluorsigaiite; Gch—georgechaoite; Gdn—gaidonnayite; Kfs—K-feldspar; Nph—nepheline; Ntr—natrolite; Pdgn—plumbogaidonnayite; Str—strontianite; Ttn—titanite; Zrn—zircon
-
3.2 异性石成分与U-Pb年代学
-
赛马异霞正长岩中新鲜的异性石主要元素包括Si(49.96%~51.93% SiO2)、Zr(12.42%~13.69% ZrO2)、Na(12.52%~13.39% Na2O)、Ca(8.15%~9.35% CaO)、Fe(2.69%~5.55% FeO)、Sr(2.70%~3.46% SrO)、Mn(1.03%~1.92% MnO)、Nb(0.59%~1.05% Nb2O5)、Cl(1.06%~1.21% Cl)和REE(含Y,0.94%~2.18% REE2O3)(附表1)。稀土元素总量为9174×10-6~16695×10-6(附表1),(La/Yb)N、(La/Sm)N、(Gd/Yb)N分别介于4.66~7.97、2.50~4.87、0.97~1.97之间,轻重稀土分馏明显;δEu和δCe分别介于0.87~0.98、0.81~0.94之间,无明显的Eu和Ce异常,其稀土元素球粒陨石标准化配分曲线呈明显的右倾斜型(图3),富集轻稀土。
-
本文利用LA-ICP-MS对30颗较新鲜的异性石进行测试分析(附表2),其U-Pb同位素组成在Tera-Wasserburg谐和图解上的下交点年龄为218±5 Ma(MSWD=1.3,n=30,图4a),206Pb/238U加权平均年龄为219±2 Ma(MSWD=0.86,n=30,图4b),该年龄与前人获得的赛马异性石年龄224±5 Ma及锆石年龄225±4 Ma(Wu Fuyuan et al.,2010;Zhu Yusheng et al.,2016)在误差范围内较一致,说明锆石作为异性石定年标样较可靠,基体效应影响小,218±5 Ma为岩浆期异性石的形成年龄。
-
图3 赛马异霞正长岩异性石、赵氏碱锆石、水硼锶钠锆石和斜方钠锆石稀土元素球粒陨石标准化配分曲线(标准化数据来自Sun Shensu and McDonough,1989)
-
Fig.3 Chondrite-normalized REEs distribution patterns for eudialyte, georgechaoite, bobtraillite and gaidonnayite in the Saima lujavrite (normalized values from Sun Shensu and McDonough, 1989)
-
图4 赛马异霞正长岩异性石(a、b)和水硼锶钠锆石(c、d)U-Pb年龄Tera-Wasserburg谐和图和207Pb校正206Pb/238U年龄加权平均图
-
Fig.4 Tera-Wasserburg concordia diagrams and the corresponding 207Pb-corrected 206Pb/238U ages for eudialyte (a, b) and bobtraillite (c, d) from the Saima lujavrite
-
3.3 赵氏碱锆石结构与成分
-
赵氏碱锆石的拉曼光谱位移分别出现在330 cm-1、523 cm-1、677 cm-1、916 cm-1、1047 cm-1、2424 cm-1、3431 cm-1处,与RRUFF拉曼数据库赵氏碱锆石的峰位比较相近(图5)。赵氏碱锆石Si-Zr结构的拉曼特征与斜方钠锆石、斜方铅锆石和类质同象合成材料相似(Celestian et al.,2019)。其中最强峰916 cm-1为沿a轴延伸[ZrO6]-[SiO4]螺旋链的伸缩振动,330 cm-1可能对应于SiO4反对称弯曲振动或晶格振动,523 cm-1为三元环([SiO4]-[ZrO6]-[SiO4])亚结构的对称伸缩振动(图6),677 cm-1对应于涉及桥氧的Si-O-Si键弯曲振动,1047 cm-1代表[SiO4]四面体中的Si-O不对称伸缩振动,如其他沸石族矿物(Dutta and Del Barco,1985),3431 cm-1对应于H2O的O-H对称伸缩振动(Carey and Korenowski,1998)。此外,2424 cm-1可能代表潜在H3O+络合物中的SiO-H伸缩振动或氢键广泛存在于含水锆硅酸盐矿物中(Chukanov et al.,2022;Kovalskaya et al.,2023)。
-
进一步对赵氏碱锆石进行微区X射线衍射分析,其XRD谱图主要峰位分别为([d(I)(hkl),d为面网间距,单位为nm;I为强度百分比%];附表3,图7): 0.3127(50)(140)、0.2972(100)(400)、0.2841(68)(240)、0.2707(55)(420)、0.2497(58)(340)、0.2204(51)(332)、0.1906(52)(540)、0.1675(64)(153)、0.1619(68)(080)和0.1414(50)(173)。由UnitCell软件程序(Holland and Redfern,1997)处理数据,得到赵氏碱锆石(斜方晶系)的晶胞参数为a=1.18325(5)nm,b=1.29141(3)nm,c=0.67292(1)nm,V=1.02825(4)nm3。
-
赵氏碱锆石为异性石的早期蚀变产物,主要成分为43.17%~44.84% SiO2,27.50%~30.30% ZrO2,7.04%~9.56% K2O,6.04%~9.65% Na2O,7.68%~7.90% H2O(H2O为计算所得,见附表4)。以9个氧原子和2个H2O分子计算,赵氏碱锆石的晶体化学式为(Na0.97K0.78Ca0.06Pb0.01Sr0.01)Σ1.83(Zr0.98Ti0.01Hf0.01)Σ1.00Si3.02O9·2H2O。赵氏碱锆石的稀土元素总量为5616×10-6~9883×10-6(附表4),稀土总量明显低于异性石,从图8中可看出,异性石蚀变成赵氏碱锆石和斜方钠锆石的过程中,轻稀土元素大量迁移亏损。该矿物的(La/Yb)N、(La/Sm)N、(Gd/Yb)N分别介于1.61~13.57、3.72~16.60、0.31~1.35之间,与异性石相比,其轻重稀土分馏更明显,但重稀土内部分馏变弱;δEu和δCe分别介于0.63~0.99、0.62~0.88之间,无明显的Eu和Ce异常,与异性石相似,赵氏碱锆石的稀土元素球粒陨石标准化配分曲线呈明显的右倾斜型(图3),富集轻稀土。由于赵氏碱锆石颗粒较小,PbO含量普遍较高(附表4)且易受后期流体影响,无法获得可靠年龄。
-
图5 赛马异霞正长岩赵氏碱锆石和斜方钠锆石拉曼光谱图
-
Fig.5 Raman spectrum of georgechaoite and gaidonnayite from the Saima lujavrite
-
RRUFF赵氏碱锆石为RRUFF拉曼数据库(http://rruff.info)赵氏碱锆石拉曼图谱
-
RRUFF georgechaoite denotes Raman spectrum of georgechaoite from the RRUFF Raman database (http://rruff.info)
-
图6 赵氏碱锆石晶体结构示意图(据美国矿物学家晶体结构数据库修改,http://www.minsocam.org/msa/ Crystal_Database.html)
-
Fig.6 Crystal structure of georgechaoite (modified from the American Mineralogist Crystal Structure Database, http://www.minsocam.org/msa/Crystal_Database.html)
-
图7 赛马异霞正长岩赵氏碱锆石的X射线衍射谱图(面网间距d单位为nm)
-
Fig.7 X-ray diffraction pattern of georgechaoite from the Saima lujavrite (d-spacing in nm)
-
RRUFF赵氏碱锆石为RRUFF X射线数据库(http://rruff.info)赵氏碱锆石的X射线衍射谱图
-
RRUFF georgechaoite denotes X-ray diffraction pattern of georgechaoite from the RRUFF X-ray database (http://rruff.info)
-
图8 异性石与其蚀变产物间稀土元素和锆含量的相对差异图
-
Fig.8 Relative differences diagram in REE and Zr concentrations between eudialyte and its alteration products
-
某元素X在蚀变产物和异性石中的相对差异,其计算公式为([Xalter]-[Xeud])/[Xeud]×100%,Xalter代表蚀变产物的某元素X含量(×10-6),Xeud代表异性石的某元素X含量(×10-6)
-
The relative difference of an element X between the alteration products and eudialyte is calculated as ([Xalter]-[Xeud]) /[Xeud]×100%, Xalter represents the concentration of an element X (×10-6) in alteration products, and Xeud represents the concentration of an element X (×10-6) in eudialyte
-
3.4 水硼锶钠锆石结构、成分与U-Pb年代学
-
水硼锶钠锆石的拉曼光谱位移分别出现在357 cm-1、573 cm-1、627 cm-1、951 cm-1、997 cm-1、1526 cm-1、1757 cm-1、1969 cm-1、2401 cm-1、3562 cm-1处,与RRUFF拉曼数据库水硼锶钠锆石的峰位比较相近(图9)。其中3562 cm-1对应于H2O的O-H对称伸缩振动,处于1526 cm-1、1757 cm-1、1969 cm-1和2401 cm-1的拉曼峰与其他含有酸性基团的含水物质拉曼光谱相似(Chukanov et al.,2022),属于BO-H伸缩振动。997 cm-1对应(SiO4,BO4)反对称伸缩振动,951 cm-1对应(SiO4,BO4)对称伸缩振动,627 cm-1处对应(SiO4,BO4)对称弯曲振动,而在573 cm-1处的拉曼峰可能是由Zr-O伸缩振动引起的。357 cm-1处的弱峰,通常在锆硅酸盐矿物中出现,可能对应(SiO4,BO4)反对称弯曲振动或由外部晶格振动引起(图10)。
-
进一步对水硼锶钠锆石进行微区X射线衍射分析,其主要峰位分别为([d(I)(hkl),d为面网间距,单位为nm;I为强度百分比%];附表3,图11):0.3108(64)(331)、0.3031(67)(510)、0.2731(56)(332)、0.1978(89)(443)、0.1872(77)(064)、0.1765(36)(740)、0.1722(74)(830)、0.1711(40)(624)和0.1295(100)(773)。由UnitCell软件程序(Holland and Redfern,1997)处理数据,得到水硼锶钠锆石(三方晶系)的晶胞参数为a=1.96634(3)nm,c=0.99581(3)nm,V=3.33445(1)nm3。
-
图9 赛马异霞正长岩水硼锶钠锆石的拉曼光谱图
-
Fig.9 Raman spectrum of bobtraillite from the Saima lujavrite
-
RRUFF水硼锶钠锆石为RRUFF拉曼数据库(http://rruff.info)水硼锶钠锆石拉曼图谱
-
RRUFF bobtraillite denotes Raman spectrum of bobtraillite from the RRUFF Raman database (http://rruff.info)
-
图10 水硼锶钠锆石晶体结构示意图(据Wang Yanjuan et al.,2023修改)
-
Fig.10 Crystal structure of bobtraillite (modified after Wang Yanjuan et al., 2023)
-
水硼锶钠锆石为异性石假晶晚期蚀变产物,与异性石和赵氏碱锆石相比,水硼锶钠锆石有较高的Sr(16.18%~18.25% SrO)含量,较低的Si(39.90%~41.35% SiO2)、Zr(24.04%~26.80% ZrO2)和Na(2.69%~3.85% Na2O)含量(附表5)。由于电子探针无法测Li、B等超轻元素,故本文中的Li、B含量是由LA-ICP-MS获得,为2.87%~3.75% B2O3,而Li含量低于检测限。以Si+B=48计算,水硼锶钠锆石的晶体化学式为(Na7.10Ca0.99K0.01□3.90)Σ12.00(Sr10.42Ca1.56Ba0.01Pb0.01)Σ12.00(Zr12.85Ti0.49Hf0.13Al0.08Nb0.06□0.39)Σ14.00Si42.01B5.99O132(OH)12·12H2O。水硼锶钠锆石的稀土元素总量为3347×10-6~8412×10-6(附表5),其稀土总量明显低于异性石,而高于赵氏碱锆石,从图8可看出,异性石蚀变成水硼锶钠锆石的过程中,轻稀土元素大量迁移亏损;该矿物的(La/Yb)N、(La/Sm)N、(Gd/Yb)N分别介于0.11~0.75、0.10~1.25、0.50~1.19之间,与异性石和赵氏碱锆石相比,轻稀土亏损且轻重稀土分馏明显;δEu和δCe分别介于0.79~0.98、0.78~2.36之间,呈无明显的Eu异常,大部分呈较明显的Ce正异常,水硼锶钠锆石的稀土元素球粒陨石标准化配分曲线区别于异性石和赵氏碱锆石,呈明显的左倾斜型(图3),相对富集重稀土。
-
对16颗水硼锶钠锆石颗粒进行LA-ICP-MS U-Pb同位素年龄分析(附表2),其U-Pb同位素组成在Tera-Wasserburg谐和图解上的下交点年龄为107±5 Ma(MSWD=2.0,n=16,图4c),206Pb/238U加权平均年龄为105±3 Ma(MSWD=1.5,n=16,图4d),晚于异性石U-Pb年龄218±5 Ma。考虑到水硼锶钠锆石与异性石同为三方晶系含锆环状硅酸盐矿物,锆石作为定年标样而引起的基体效应可能影响较小;并且岩相学特征(无明显蚀变)和化学成分(颗粒间成分较均一,加计算所得H2O含量后接近100%)显示水硼锶钠锆石并未明显经历后期改造,因此该年龄(107±5 Ma)具有一定可靠性,指示了水硼锶钠锆石的形成年龄,即与之成因相关的热液作用时间。
-
4 讨论
-
4.1 稀有锆矿物结构、成分特征与成因分析
-
赵氏碱锆石属于斜方钠锆石族,该族矿物还包括斜方钠锆石和新发现的斜方铅锆石(表1;Boggs and Ghose,1985;Ghose and Thakur,1985;Wu Bin et al.,2024),它们为架状硅酸盐矿物,晶体结构以六个SiO4四面体相重复的波状链为基础,并与ZrO6八面体共角顶连接构成锆硅酸盐三维骨架,Na、K、Ca、Pb等金属阳离子和H2O填充于骨架空隙(图6),与沸石族矿物多孔结构相似,其中金属阳离子可相互置换,构成类质同象变体(Day and Hawthorne,2020)。相比于较常见的斜方钠锆石,赛马赵氏碱锆石发生了Na+ → K+置换,导致Si-O和Zr-O键长发生不同程度的变化,对应的拉曼图谱表现为沿a轴延伸方向的[ZrO6]-[SiO4]链伸缩振动峰位明显由935 cm-1向916 cm-1转变;然而[SiO4]-[ZrO6]-[SiO4]三元环位于523 cm-1附近的伸缩振动峰位变化程度较小(图5),与三元环的相对稳定性有关。由于六次配位的K+(0.138 nm)有效离子半径大于Na+(0.102 nm; Shannon,1976),因此相对于斜方钠锆石,赵氏碱锆石在单位晶胞参数和体积上,都有所增大。化学成分上,从斜方钠锆石到赵氏碱锆石,除发生Na+ → K+等价置换,部分碱金属还被Ca2+、Pb2+、Sr2+等二价阳离子异价置换,并产生空位(□),即Na/K+ → M2+ + □(其中M = Ca、Pb、Sr等二价阳离子);相应的,化学式中金属阳离子个数由约1.97~2.03 apfu减小至1.68~1.93 apfu,甚至斜方铅锆石端元金属阳离子和空位各约占1.00 apfu(Wu Bin et al.,2024;附表4,图12)。自然界及实验岩石学表明,这些存在金属阳离子空位的锆(-钛-铌)硅酸盐矿物(如本文空位赵氏碱锆石和斜方铅锆石)较难直接从熔体或流体中结晶,而是由对应的无空位矿物(如斜方钠锆石)通过异价离子交换形式实现物相转变(Pekov and Chukanov,2005;Pekov et al.,2013,2014)。碱性岩浆晚期普遍出溶富碱热液,斜方钠锆石和赵氏碱锆石均为异性石经富碱热液自交代作用的蚀变产物(Mitchell and Liferovich,2006;Ivanyuk et al.,2015;Wu Bin et al.,2016;邬斌等,2018;Mikhailova et al.,2022),而赛马碱性岩体中空位赵氏碱锆石的出现,预示着赛马地区可能存在晚于富碱自交代热液的另一期流体作用,使得Ca2+、Pb2+、Sr2+等阳离子通过异价置换进入初步蚀变产物——斜方钠锆石(或无空位赵氏碱锆石),形成本文中空位赵氏碱锆石。
-
图11 赛马异霞正长岩水硼锶钠锆石的X射线衍射谱图(面网间距d单位为nm)
-
Fig.11 X-ray diffraction pattern of bobtraillite from the Saima lujavrite (d-spacing in nm)
-
RRUFF水硼锶钠锆石为RRUFF X射线数据库(http://rruff.info)水硼锶钠锆石X射线衍射谱图
-
RRUFF bobtraillite denotes X-ray diffraction pattern of bobtraillite from the RRUFF X-ray database (http://rruff.info)
-
图12 赛马碱性岩体斜方钠锆石族矿物金属阳离子 Na+,K+,M2+端元投图(按单位原子数)
-
Fig.12 Compositional variations of gaidonnayite-group minerals in the Saima alkaline complex plotted on a Na+-K+-M2+ end-member diagram (atom per formula unit)
-
斜方钠锆石数据见附表6;斜方铅锆石数据来自于Wu Bin et al.,2024;灰色图例赵氏碱锆石数据来自Guarino et al.,2021
-
Gaidonnayite data is shown in Appendix 6; plumbogaidonnayite data is from Wu Bin et al., 2024; gray legend georgechaoite data is from Guarino et al., 2021
-
水硼锶钠锆石是复杂环状硅酸盐矿物,全球仅有的两种含硼锆硅酸盐矿物之一(McDonald and Chao,2005,2010),此前被认为是蓝锥矿族矿物变种,分别产出于加拿大Mont Saint-Hilaire碱性岩体角砾岩晶洞和霞石正长伟晶岩,与热液碳酸盐矿物等共生(McDonald and Chao,2005);以及中国云南个旧白云山霞石方钠正长岩,以榍石或莫片榍石的蚀变矿物产出(Wang Yanjuan et al.,2023),两处均具热液成因特征。赛马岩体中的水硼锶钠锆石,首次发现以异性石或早期自交代产物(斜方钠锆石、赵氏碱锆石)的进一步蚀变矿物出现,拉曼峰位及单位晶胞参数在误差范围内与前人结果较为一致(图9)。化学成分上,赛马水硼锶钠锆石相比于个旧水硼锶钠锆石(平均Na2O 4.84%,Li2O 0.10%,CaO 1.03%)贫Na富Ca,并且不含Li(附表5)。由于该矿物在金属阳离子位置存在灵活的替代关系(Wang Yanjuan et al.,2023),不同产地水硼锶钠锆石成分差异可能与原生矿物类型及流体成分密切相关。值得注意的是,原生矿物异性石本身成分不含B,而水硼锶钠锆石含约3% B2O3(附表5),除水硼锶钠锆石外,赛马岩体目前未发现其他含硼矿物(陈肇博等,1996)。与此同时,赛马岩体围岩——古元古代辽河群大理岩,发育我国最大的沉积变质改造型硼成矿带,包括周边的凤城翁泉沟、宽甸砖庙沟等近百处规模不等的硼矿床(点)(刘延亭等,2023)。因此,水硼锶钠锆石中硼,是来源于碱性岩浆自身晚期热液,还是外来含硼交代流体,有待进一步确定。
-
4.2 多期次流体交代作用
-
岩相学证据表明,作为岩浆期主要的锆和稀土矿石矿物,异性石经历了不同程度的流体交代作用,形成了(1)残余异性石(大量)+赵氏碱锆石+斜方钠锆石+钠沸石+霓石等早期热液矿物组合和(2)残余异性石(少量)+水硼锶钠锆石+锆石+方解石+菱锶矿+钠沸石±斜方铅锆石等晚期热液矿物组合。两种组合次生热液矿物类型差异明显,可能揭示了不同来源性质的流体作用,其中组合(1)代表了晚期岩浆热液的富碱自交代作用,组合(2)代表了外来富Ca、Sr和B碳酸盐化流体作用(图13)。
-
碱性岩或碱性花岗岩体系演化晚期往往会发生富碱自交代作用(多为钠交代),即岩浆分异出溶富碱质(如Na、K等)和挥发分(如F、Cl等)的热液交代早期形成的造岩矿物(如碱性长石、角闪石、辉石等)和副矿物(如异性石、榍石等),并有效促使REE、Zr、Nb等成矿元素以络合离子形式发生溶解、迁移和再沉淀(Markl and Baumgartner,2002;Anenburg et al.,2020;Wu Bin et al.,2023;张东等,2024)。赛马碱性岩浆经历了由早期钾质响岩、霞石正长岩向晚期钠质异霞正长岩的演化过程,异霞正长岩岩浆晚期达到流体过饱和,出溶富Na和F岩浆流体(Wu Bin et al.,2016;付瑞鑫等,2023;Ma Danzhen and Liu Yan,2023)。自交代过程表现为造岩矿物霞石和霓辉石分别被钠沸石和霓石交代,而异性石被组合(1)中赵氏碱锆石、斜方钠锆石、钠沸石和霓石交代。异性石、斜方钠锆石和赵氏碱锆石的稀土元素配分曲线(图3)呈为较相似的右倾轻稀土富集型,无明显Eu和Ce异常,佐证了它们可能出自同一岩浆-热液(自交代)体系,自交代作用时间应该略晚于异性石形成年龄218±5 Ma。与原生异性石相比,赵氏碱锆石和斜方钠锆石等自交代产物的锆含量升高而稀土含量明显降低(图3、8),指示了自交代过程中,相比于锆,大量稀土元素进入流体相而迁移出异性石假晶,最终以铈硅磷灰石的形式再沉淀,与REE的溶解-迁移能力要强于Zr的异性石溶解实验结果及地质实例相吻合(Sheard et al.,2012;Mikhailova et al.,2022)。
-
图13 赛马岩体异霞正长岩中异性石结晶及多期次热液流体交代演化图
-
Fig.13 Evolutionary diagram of eudialyte crystallization and multi-stage hydrothermal alteration in the Saima lujavrite
-
与早期蚀变组合(1)相比,组合(2)中较少见残余异性石,并且斜方钠锆石、赵氏碱锆石等早期蚀变矿物占比减少(图2g~i),逐渐被水硼锶钠锆石取代,说明水硼锶钠锆石(107±5 Ma)形成可能晚于自交代产物斜方钠锆石和赵氏碱锆石。异性石Sr含量普遍不高(约<4%)且不含B,一般自身蚀变较难形成富Sr和B的次生矿物。赛马碱性岩体中水硼锶钠锆石(B2O3约3%、SrO约17%)作为异性石的蚀变产物,暗示了除普遍的富碱自交代流体外,赛马异性石可能还经历另一期特殊的流体作用。与异性石、斜方钠锆石和赵氏碱锆石不同,水硼锶钠锆石的稀土元素配分曲线呈左倾重稀土富集型,Ce正异常明显(图3),指示了其可能形成于更氧化的流体环境。此外,异霞正长岩全岩CaO普遍较低(<1.50%),且岩浆晚期及自交代产物未观察到霓辉石、磷灰石、萤石等富Ca矿物,但水硼锶钠锆石周围及样品中出现大量菱锶矿、方解石等热液碳酸盐矿物(图2g~i),佐证了除自身碱交代流体外,异性石可能还经历了另一期较氧化的外来富Sr、Ca和B碳酸盐化流体作用。相似地,赛马钾锆石、绿层硅铈钛矿也发生了富碱自交代和外来富Ca流体叠加改造作用,包括被菱锶矿和方解石在内的次生热液矿物交代(Wu Bin et al.,2015,2019)。
-
4.3 区域构造与成矿指示意义
-
赛马岩体地处华北克拉通东北缘辽东半岛,锆石Hf-O(εHf(t)值-11.2~-14.0,δ18O 值+6.4‰~+8.6‰)等同位素证据表明,原始岩浆与大陆深俯冲和扬子-华北克拉通之间的陆陆碰撞作用引起的岩石圈拆沉作用有关,为拆沉至软流圈的陆壳发生熔融形成具有陆壳特征的熔体/流体交代岩石圈地幔而发生低程度部分熔融形成,而非古太平洋板块洋壳俯冲作用的直接产物(Zhu Yusheng et al.,2017)。赛马碱性岩浆-热液体系经历了岩浆期钠演化和热液期碱(以钠为主)交代过程(陈肇博等,1996;付瑞鑫等,2023);相应的,岩浆期主要锆矿物由锆石、钾锆石向异性石转变,并在热液阶段形成赵氏碱锆石和斜方钠锆石等次生锆矿物,该岩浆-热液叠加作用过程促进了Zr和REE等成矿元素迁移-富集(Wu Bin et al.,2015,2016)。本文中异霞正长岩异性石Tera-Wasserburg图下交点年龄218±5 Ma,误差范围内与赛马成岩年龄较一致,略晚于霞石正长岩中锆石年龄225±4 Ma(Zhu Yusheng et al.,2016),与野外异霞正长岩侵位较晚,以岩株或似层状侵入霞石正长岩的接触关系及岩浆演化顺序吻合(陈肇博等,1996;朱昱升,2016)。该年龄指示了赛马锆和稀土富集于岩浆晚期异霞正长岩阶段,而以蚀变组合(1)为代表的富碱自交代流体作用时间应与成岩年龄接近或略晚于后者。碱交代作用被认为是碱性岩成矿体系中REE和HFSE进一步超常富集的主要原因之一(Vasyukova and Williams,2018,2019;Yang Wubin et al.,2020,2022;张东等,2024),涉及造岩矿物,如碱性长石、角闪石和辉石在自交代过程大量REE和HFSE释放到熔体或流体中。但值得注意的是,赛马岩体碱交代过程也会破坏异性石、绿层硅铈钛矿等岩浆期矿石矿物的稳定性(邬斌等,2018;Wu Bin et al.,2019;Ma Danzhen and Liu Yan,2023),生成多种类型次生热液矿物,将增加后期选矿难度。
-
组合(2)中水硼锶钠锆石作为异性石(或赵氏碱锆石和斜方钠锆石)的进一步热液蚀变产物, Tera-Wasserburg图下交点年龄为107±5 Ma。该年龄晚于赛马成岩年龄(230~220 Ma)及辽东半岛早白垩世花岗质岩浆作用年龄(如三股流、五龙背岩体,年龄较集中于117~131 Ma,吴福元等,2005),而与鸭绿江断裂带丹东、鼓楼子、麻线沟等盆地年轻火山岩斜长石、锆石或碎屑锆石年龄(100~122 Ma;Liu Junlan et al.,2011;Chang Suchin et al.,2014;张帅,2019),以及胶东-朝鲜半岛部分花岗岩或火山岩年龄(~110 Ma;范宏瑞等,2016)接近。考虑到赛马岩体距离鸭绿江断裂带仅50 km,并且围岩古元古代辽河群大理岩也发育与古太平洋板块俯冲有关的韧性剪切和糜棱岩化作用(张帅,2019),水硼锶钠锆石107±5 Ma年龄可能指示了与古太平洋板块俯冲作用有关的构造(或岩浆)热液事件,如前4.2章节所述,古太平洋板块俯冲可能扰动了辽河群大理岩,产生富Sr、Ca和B的碳酸盐化流体交代赛马岩体,从而进一步引起了异性石残余及早期自交代产物(斜方钠锆石、赵氏碱锆石)蚀变成水硼锶钠锆石。整体而言,异性石不同蚀变组合揭示了赛马岩体经历了与区域构造作用相关的多期次流体叠加作用,导致了Zr和REE等成矿元素在碱性岩浆-热液体系发生了再活化-迁移,然而该过程对关键金属超常富集作用的量化方法有待于进一步研究。
-
5 结论
-
(1)辽宁赛马碱性岩体中首次发现了赵氏碱锆石和水硼锶钠锆石,它们是岩浆期异性石(218±5 Ma)经历不同期次流体交代的蚀变产物。
-
(2)赵氏碱锆石与赛马岩浆分异的富碱自交代流体有关,而水硼锶钠锆石(107±5 Ma)可能与古太平洋板块俯冲引起的外来富Sr、Ca和B碳酸盐化流体有关。
-
(3)异性石经流体交代,大量稀土元素进入流体相而发生迁移,仅少量在赵氏碱锆石等蚀变锆矿物中保留。
-
致谢:本次研究的样品处理与实验测试得到了东华理工大学核资源与环境国家重点实验室钟福军老师和赵严老师的指导与帮助,在论文修改过程中得到两位审稿老师的悉心指导和辛勤付出,在此一并表示感谢。
-
附件:本文附件(附表1~6)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202502090?st=article_issue
-
参考文献
-
Andersen T, Erambert M, Larsen A O, Selbekk R S. 2010. Petrology of nepheline syenite pegmatites in the Oslo rift, Norway: Zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. Journal of Petrology, 51(11): 2303~2325.
-
Andersen T, Erambert M, Larsen A O, Selbekk R S. 2013. Petrology of nepheline syenite pegmatites in the Oslo rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic complex. Mineralogia, 44(3-4): 61~98.
-
Anenburg M, Mavrogenes J A, Frigo C, Wall F. 2020. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Science Advances, 6(41): eabb6570.
-
Boggs R C, Ghose S. 1985. Georgechaoite NaKZrSi3O9·2H2O, a new mineral species from Wind Mountain, New Mexico. The Canadian Mineralogist, 23(1): 1~4.
-
Carey D M, Korenowski G M. 1998. Measurement of the Raman spectrum of liquid water. The Journal of Chemical Physics, 108(7): 2669~2675.
-
Celestian A J, Lively J, Xu Wenqian. 2019. In situ Cs and H exchange into gaidonnayite and proposed mechanisms of ion diffusion. Inorganic Chemistry, 58(3): 1919~1928.
-
Chang Suchin, Hemming S R, Gao Keqin, Zhou Fuchang. 2014. 40Ar/39Ar age constraints on Cretaceous fossil-bearing formations near the China-North Korea border. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 93~98.
-
Chen Zhaobo, Fan Jun, Guo Zhitian, He Zhongqi, Wang Shuliang, Ren Kuncai. 1996. Saima Alkaline Complex and Mineralization. Beijing: Atomic Energy Press (in Chinese with English abstract).
-
Chukanov N V, Vigasina M F, Rastsvetaeva R K, Aksenov S M, Mikhailova J A, Pekov I V. 2022. The evidence of hydrated proton in eudialyte-group minerals based on Raman spectroscopy data. Journal of Raman Spectroscopy, 53(6): 1188~1203.
-
Day M C, Hawthorne F C. 2020. A structure hierarchy for silicate minerals: Chain, ribbon, and tube silicates. Mineralogical Magazine, 84(2): 165~244.
-
Dutta P K, Del Barco B. 1985. Raman spectroscopic studies of zeolite framework hydrated zeolite A and the influence of cations. The Journal of Physical Chemistry, 89(10): 1861~1865.
-
Fan Hongrui, Feng Kai, Li Xinghui, Hu Fangfang, Yang Kuifeng. 2016. Mesozoic gold mineralization in the Jiaodong and Korean Peninsulas. Acta Petrologica Sinica, 32(10): 3225~3238 (in Chinese with English abstract).
-
Fu Ruixin, Li Ningbo, Niu Hecai, Shan Qiang, Zhao Xun, Liu Kun. 2023. Magmatic evolution and rare earth enrichment of Saima alkaline complex, Liaoning, China. Acta Petrologica Sinica, 39(10): 2951~2967 (in Chinese with English abstract).
-
Ghose S, Thakur P. 1985. The crystal structure of georgechaoite, NaKZrSi3O9·2H2O. The Canadian Mineralogist, 23(1): 5~10.
-
Guarino V, Lustrino M, Zanetti A, Tassinari C C G, Ruberti E, de'Gennaro R, Melluso L. 2021. Mineralogy and geochemistry of a giant agpaitic magma reservoir: The Late Cretaceous Poços de Caldas potassic alkaline complex (SE Brazil). Lithos, 398: 106~330.
-
Holland T J B, Redfern S A T. 1997. Unit cell refinement from powder diffraction data; the use of regression diagnostics. Mineralogical Magazine, 61(1): 65~77.
-
Ivanyuk G Y, Pakhomovsky Y A, Yakovenchuk V N. 2015. Eudialyte-group minerals in rocks of Lovozero layered complex at Mt. Karnasurt and Mt. Kedykvyrpakhk. Geology of Ore Deposits, 57: 600~613.
-
Jing Lizhen, Guo Yujia, Ding Caixia. 1995. Chronology and origin of Saima alkaline rocks in Liaoning Province. Liaoning Geology, (4): 257~271 (in Chinese with English abstract).
-
Ju Nan, Ren Yunsheng, Zhang Sen, Bi Zhongwei, Shi Lei, Zhang Di, Shang Qingqing, Yang Qun, Wang Zhigao, Gu Chaoyu, Sun Qiushi, Wu Tong. 2019. Metallogenic epoch and tectonic setting of Saima niobium deposit in Fengcheng, Liaoning Province, NE China. Minerals, 9(2): 80.
-
Kovalskaya T N, Ermolaeva V N, Chukanov N V, Varlamov D A, Kovalskiy G A, Zakharchenko E S, Kalinin G M, Chaichuk K D. 2023. Synthesis of Fe-deficient eudialyte analogues: Relationships between the composition of the reaction system and crystal-chemical features of the products. Mineralogical Magazine, 87(2): 233~240.
-
Liu Jiexun. 2019. The Mesozoic tectonic evolution of Liaodong area in the eastern segment of the northern margin of the North China Craton. Doctoral dissertation of Jilin University (in Chinese with English abstract).
-
Liu Junlan, Ji Mo, Shen Liang, Guan Huimei, Davis G A. 2011. Early Cretaceous extensional structures in the Liaodong Peninsula: Structural associations, geochronological constraints and regional tectonic implications. Science China Earth Sciences, 54: 823~842.
-
Liu Yanting, Wang Chunlian, Ding Ting, Yan Kai, You Chao, Liu Xue, Chen Zhenhong. 2023. Genetic types, distribution, application and ore-searching prospects of boron deposits. Geology in China, 50(5): 1414~1431 (in Chinese with English abstract).
-
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.
-
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.
-
Ludwig K R. 2012. User's manual for isoplot rersion 3. 75: A geochronological toolkit for microsoft excel. Berkeley: Berkeley Geochronology Center Special Publication.
-
Ma Danzhen, Liu Yan. 2023. Nb mineralization in the nepheline syenite in the Saima area of the North China Craton, China. Ore Geology Reviews, 152: 105247.
-
Markl G, Baumgartner L. 2002. pH changes in peralkaline late-magmatic fluids. Contributions to Mineralogy and Petrology, 144(3): 331~346.
-
McDonald A M, Chao G Y. 2005. Bobtraillite, (Na, Ca)13Sr11(Zr, Y, Nb)14Si42B6O132(OH)12·12H2O, a new mineral species from Mont Saint-Hilaire, Quebec: Description, structure determination and relationship to benitoite and wadeite. The Canadian Mineralogist, 43(2): 747~758.
-
McDonald A M, Chao G Y. 2010. Rogermitchellite, Na12(Sr, Na)24Ba4Zr26Si78(B, Si)12O246(OH)24·18H2O, a new mineral species from Mont Saint-Hilaire, Québec: Description, structure determination and relationship with HFSE-bearing cyclosilicates. The Canadian Mineralogist, 48(2): 267~278.
-
Mikhailova J A, Pakhomovsky Y A, Kalashnikova G O, Aksenov S M. 2022. Dissolution of the eudialyte-group minerals: Experimental modeling of natural processes. Minerals, 12(11): 1460.
-
Mitchell R H, Liferovich R P. 2006. Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa. Lithos, 91(1-4): 352~372.
-
Momma K, Izumi F. 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6): 1272~1276.
-
Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12): 2508~2518.
-
Pekov I V, Chukanov N V. 2005. Microporous framework silicate minerals with rare and transition elements: Minerogenetic aspects. Reviews in Mineralogy and Geochemistry, 57: 145~171.
-
Pekov I V, Nikolaev A P. 2013. Minerals of the pegmatites and hydrothermal assemblages of the Koashva deposit. Mineralogical Almanac, 18(2): 6~65.
-
Pekov I V, Britvin S N, Zubkova N V, Chukanov N V, Bryzgalov I A, Lykova I S, Belakovskiy D I, Pushcharovsky D Y. 2013. Vigrishinite, Zn2Ti4-xSi4O14(OH, H2O, □)8, a new mineral from the Lovozero alkaline complex, Kola Peninsula, Russia. Geology of Ore Deposits, 55(7): 575~586.
-
Pekov I V, Lykova I S, Chukanov N V, Yapaskurt V O, Belakovskiy D I, Zolotarev Jr A A, Zubkova N V. 2014. Zvyaginite NaZnNb2Ti[Si2O7]2O(OH, F)3(H2O)4+x (x<1), a new mineral of the epistolite group from the Lovozero alkaline pluton, Kola Peninsula, Russia. Geology of Ore Deposits, 56(8): 644~656.
-
Qiu Kunfeng, Yu Haocheng, Wu Mingqian, Geng Jianzhen, Ge Xiangkun, Gou Zongyang, Taylor R D. 2019. Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China. American Mineralogist, 104(10): 1487~1502.
-
Saima Deposit Research Group, Beijing Institute of Uranium Geology. 1977. Uranium deposit in the Saima alkaline massif, Northeast China. Scientia Sinica, (5): 466~483+503~506 (in Chinese with English abstract).
-
Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 32(5): 751~767.
-
Sheard E R, Williams-Jones A E, Heiligmann M, Pederson C, Trueman D L. 2012. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Economic Geology, 107(1): 81~104.
-
Shen Ganfu, Xu Jinsha, Yao Peng, Li Guowu. 2017. Fengchengite: A new species with the Na-poor but vacancy-doninante N(5) site in the eudialyte group. Acta Mineralogica Sinica, 37(Z1): 140~151 (in Chinese with English abstract).
-
Sláma J, Košler J, Condon D J, Crowley T L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1~35.
-
Sun Lijun, Zhang Yonghong, Yu Jinhui, Zhou Zhizhong, Zhao Hongzhi. 2008. Discussion geological features and age on the alkaline-complex of Fengcheng of the eastern Liaoning. Journal of Liaoning Provincial College of Communications, (4): 41~44 (in Chinese with English abstract).
-
Sun Shensu, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publication, 42(1): 313~345.
-
Tan Dongjuan, Lin Jingqian, Shan Xuanlong. 1999. On magma origin of the Saima-Bailinchuan alkaline volcanic-intrusive complex. Geological Review, 45(S1): 474~481 (in Chinese with English abstract).
-
Vasyukova O V, Williams-Jones A E. 2018. Direct measurement of metal concentrations in fluid inclusions, a tale of hydrothermal alteration and REE ore formation from Strange Lake, Canada. Chemical Geology, 483: 385~396.
-
Vasyukova O V, Williams-Jones A E. 2019. Closed system fluid-mineral-mediated trace element behaviour in peralkaline rare metal pegmatites: Evidence from Strange Lake. Chemical Geology, 505: 86~99.
-
Wang Rucheng, Che Xudong, Wu Bin, Xie Lei. 2020. Critical mineral resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 3763~3777 (in Chinese with English abstract).
-
Wang Xufeng, Li Zhongkui, Zhou Jun, Tian Feng. 2012. Application and research progress of zirconium alloys in nuclear industry. Hot Working Technology, 41(2): 71~74 (in Chinese with English abstract).
-
Wang Yanjuan, Nestola F, Hou Zengqian, Gu Xiangping, Dong Guochen, Yang Zhusen, Fan Guang, Xiao Zhibin, Qu Kai. 2023. Bobtraillite from Gejiu hyperagpaitic nepheline syenite, southwestern China: New occurrence and crystal structure. European Journal of Mineralogy, 35(1): 65~74.
-
Wiedenbeck M, Hanchar J M, Peck W H, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard J P, Girard, Greenwood R C, Hinton R, Kita N, Mason P R D, Norman M, Ogasawara M, Piccoli P M, Rhede D, Satoh H, Schulz-Dobrick B, Skår Ø, Spicuzza M J, Terada K, Tindle A, Togashi S, Vennemann V, Xie Q, Zheng Yongfu. 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28(1): 9~39.
-
Wu Bin, Wang Rucheng, Yang Jinhui, Wu Fuyuan, Zhang Wenlan, Gu Xiangping, Zhang Aicheng. 2015. Wadeite (K2ZrSi3O9), an alkali-zirconosilicate from the Saima agpaitic rocks in northeastern China: Its origin and response to multi-stage activities of alkaline fluids. Lithos, 224: 126~142.
-
Wu Bin, Wang Rucheng, Yang Jinhui, Wu Fuyuan, Zhang Wenlan, Gu Xiangping, Zhang Aicheng. 2016. Zr and REE mineralization in sodic lujavrite from the Saima alkaline complex, northeastern China: A mineralogical study and comparison with potassic rocks. Lithos, 262: 232~246.
-
Wu Bin, Wang Rucheng, Liu Xiaodong, Guo Guolin, Song Zhentao. 2018. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magma-hydrothermal evolution. Acta Petrologica Sinica, 34(6): 1741~1757 (in Chinese with English abstract).
-
Wu Bin, Wen Hanjie, Bonnetti C, Wang Rucheng, Yang Jinhui, Wu Fuyuan. 2019. Rinkite-(Ce) in the nepheline syenite pegmatite from the Saima alkaline complex, northeastern China: Its occurrence, alteration, and implications for REE mineralization. The Canadian Mineralogist, 57(6): 903~924.
-
Wu Bin, Gu Xiangping, Rao Can, Wang Rucheng, Xing Xingqing, Zhong Fujun, Wan Jianjun, Bonnetti C. 2022. Fluorsigaiite, Ca2Sr3(PO4)3F, a new mineral of the apatite supergroup from the Saima alkaline complex, Liaoning Province, China. Mineralogical Magazine, 86(6): 940~947.
-
Wu Bin, Gu Xiangping, Rao Can, Wang Rucheng, Xing Xingqing, Wan Jianjun, Zhong Fujun, Bonnetti C. 2023. Gysinite-(La), PbLa(CO3)2(OH)·H2O, a new rare earth mineral of the ancylite group from the Saima alkaline complex, Liaoning Province, China. Mineralogical Magazine, 87(1): 143~150.
-
Wu Bin, Gu Xiangping, Gui Xin, Bonnetti C, Rao Can, Wang Rucheng, Wan Jianjun, Song Wenlei. 2024. Plumbogaidonnayite, PbZrSi3O9·2H2O, a new Pb-member of the gaidonnayite group from the Saima alkaline complex, Liaoning Province, China. Mineralogical Magazine, 88(2): 185~194.
-
Wu Fuyuan, Yang Jinhui, Liu Xiaoming. 2005. Geochronological framework of the Mesozoic granitic magmatism in the Liaodong Peninsula, Northeast China. Geological Journal of China Universities, (3): 305~317 (in Chinese with English abstract).
-
Wu Fuyuan, Yang Yueheng, Marks M A W, Liu Zhichao, Zhou Qin, Ge Wenchun, Yang Jingsui, Zhao Zifu, Mitchell R H, Markl G. 2010. In situ U-Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1-2): 8~34.
-
Yang Wubin, Niu Hecai, Li Ningbo, Hollings P, Zurevinski S, Xing Changming. 2020. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: Implications for rare metal mineralization. Lithos, 358: 105411.
-
Yang Wubin, Niu Hecai, Li Ningbo, Hollings P, Zurevinski S, Mitchell R H. 2022. Scavenging and release of REE and HFSE by Na-metasomatism in magmatic-hydrothermal systems. Fundamental Research, 4(2): 315~323.
-
Yang Zhuming, Giester G, Ding Kuishou, Tillmanns E. 2012. Hezuolinite, (Sr, REE)4Zr(Ti, Fe3+, Fe2+)2Ti2O8(Si2O7)2, a new mineral species of the chevkinite group from Saima alkaline complex, Liaoning Province, NE China. European Journal of Mineralogy, 24(1): 189~196.
-
Zhang Dong, Yang Wubin, Niu Hecai. 2024. Na-metasomatism and its contributions to REE enrichment in alkaline granite systems. Acta Petrologica Sinica, 40(3): 864~872 (in Chinese with English abstract).
-
Zhang Shuai. 2019. Mesozoic structural features and evolution history of the Yalu River fault zone and adjacent areas. Doctoral dissertation of Hefei University of Technology (in Chinese with English abstract).
-
Zhong Jun, Fan Honghai, Chen Jinyong, Meng Yanning, Wang Yunsheng. 2020. Geochemical characteristics and 40Ar-39Ar age of biotite from Saima aegirine-nepheline syenite and its geological significance. Earth Science, 45(1): 131~144 (in Chinese with English abstract).
-
Zhou Lingdi, Wang Yangchuan. 1991. REE geochemistry and genetic model of Saima and Zijing Mountain alkaline rock bodies. Geochimica, (3): 229~235 (in Chinese with English abstract).
-
Zhu Yusheng. 2016. Petrogenesis of the Saima alkaline complex in the Liaodong Peninsula: Implications for the recycled continental crust. Doctoral dissertation of the University of Chinese Academy of Sciences (in Chinese with English abstract).
-
Zhu Yusheng, Yang Jinhui, Sun Jinfeng, Wang Hao. 2016. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China. Journal of Asian Earth Sciences, 117: 184~207.
-
Zhu Yusheng, Yang Jinhui, Sun Jinfeng, Wang Hao. 2017. Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks. Geology, 45(5): 407~410.
-
北京铀矿地质研究所赛马矿床研究组. 1977. 我国东北赛马碱性岩体中的铀矿床. 中国科学, (5): 466~483+503~506.
-
陈肇博, 范军, 郭智添, 何钟琦, 王树良, 任坤才. 1996. 赛马碱性岩与成矿作用. 北京: 原子能出版社.
-
范宏瑞, 冯凯, 李兴辉, 胡芳芳, 杨奎锋. 2016. 胶东-朝鲜半岛中生代金成矿作用. 岩石学报, 32(10): 3225~3238.
-
付瑞鑫, 李宁波, 牛贺才, 单强, 赵旭, 刘堃. 2023. 赛马碱性杂岩体的岩浆演化与稀土富集. 岩石学报, 39(10): 2951~2967.
-
景立珍, 郭裕嘉, 丁彩霞. 1995. 辽宁赛马碱性岩的年代学及碱性岩浆的形成. 辽宁地质, (4): 257~271.
-
刘杰勋. 2019. 华北克拉通北缘东段辽东地区中生代构造演化. 吉林大学博士学位论文.
-
刘延亭, 王春连, 丁婷, 颜开, 游超, 刘雪, 陈振红. 2023. 硼矿床的成因类型、分布、应用及找矿远景. 中国地质, 50(5): 1414~1431.
-
沈敢富, 徐金沙, 姚鹏, 李国武. 2017. 凤成石: 异性石族矿物N(5)位贫钠的空位类似物新种. 矿物学报, 37(Z1): 140~151.
-
孙立军, 张永红, 于金辉, 周志忠, 赵鸿志. 2008. 辽宁东部凤城碱性岩体的地质特征及形成时代探讨. 辽宁省交通高等专科学校学报, (4): 41~44.
-
谭东娟, 林景仟, 单玄龙. 1999. 赛马—柏林川碱性火山-侵入杂岩体岩浆成因. 地质论评, 45(S1): 474~481.
-
王汝成, 车旭东, 邬斌, 谢磊. 2020. 中国铌钽锆铪资源. 科学通报, 65(33): 3763~3777.
-
王旭峰, 李中奎, 周军, 田锋. 2012. 锆合金在核工业中的应用及研究进展. 热加工工艺, 41(2): 71~74.
-
邬斌, 王汝成, 刘晓东, 郭国林, 宋振涛. 2018. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义. 岩石学报, 34(6): 1741~1757.
-
吴福元, 杨进辉, 柳小明. 2005. 辽东半岛中生代花岗质岩浆作用的年代学格架. 高校地质学报, (3): 305~317.
-
张东, 杨武斌, 牛贺才. 2024. 钠交代作用对碱性花岗岩体系中稀土富集成矿的贡献. 岩石学报, 40(3): 864~872.
-
张帅. 2019. 鸭绿江断裂带及旁侧地区中生代构造特征与演化历史. 合肥工业大学博士学位论文.
-
钟军, 范洪海, 陈金勇, 孟艳宁, 赵敬洋, 史长昊, 王生云. 2020. 辽宁赛马霓霞正长岩黑云母地球化学特征、40Ar-39Ar年龄及其地质意义. 地球科学, 45(1): 131~144.
-
周玲棣, 王扬传. 1991. 赛马和紫金山碱性杂岩体稀土元素地球化学及成因模式. 地球化学, 3: 229~235.
-
朱昱升. 2016. 辽东赛马碱性杂岩体成因: 对陆壳物质再循环的启示. 中国科学院大学博士学位论文.
-
摘要
在辽宁赛马碱性岩体首次发现两种稀有锆硅酸盐矿物——赵氏碱锆石和水硼锶钠锆石,为岩浆期异性石的热液蚀变产物。本文通过详细的岩相学、矿物学、地球化学以及同位素年代学研究,揭示了赵氏碱锆石和水硼锶钠锆石的产出特征、晶体结构、化学成分以及锆和稀土的岩浆富集-热液蚀变年龄,进而探讨岩浆期后交代流体与成矿元素迁移-沉淀的关系。赵氏碱锆石为早期蚀变产物,多呈他形,与残余异性石、次生斜方钠锆石、钠沸石和铈硅磷灰石等共生。其为斜方晶系, a=1.18325(5) nm,b=1.29141(3) nm,c=0.67292(1) nm,V=1.02825(4) nm3,晶体化学式为(Na0.97K0.78Ca0.06Pb0.01Sr0.01)Σ1.83(Zr0.98Ti0.01Hf0.01)Σ1.00Si3.02O9·2H2O。水硼锶钠锆石形成晚于赵氏碱锆石,呈他形粒状或集合体,与次生钠沸石、锆石、菱锶矿、方解石和铈硅磷灰石等蚀变矿物共生于异性石假晶,假晶中异性石残余、斜方钠锆石和赵氏碱锆石均较少。水硼锶钠锆石为三方晶系,a=1.96634(3) nm,c=0.99581(3) nm,V=3.33445(1) nm3,晶体化学式为 (Na7.10Ca0.99K0.01□3.90)Σ12.00(Sr10.42Ca1.56Ba0.01Pb0.01)Σ12.00 (Zr12.85Ti0.49Hf0.13Al0.08Nb0.06□0.39)Σ14.00Si42.01B5.99O132(OH)12·12H2O。赵氏碱锆石和水硼锶钠锆石为岩浆期异性石(218±5 Ma)经历不同期次流体交代的蚀变产物,其中赵氏碱锆石与赛马岩浆分异的富碱自交代流体有关,而水硼锶钠锆石(107±5 Ma)可能与古太平洋板块俯冲引起的外来富Sr、Ca和B碳酸盐化流体有关。赛马岩体异性石中稀土元素经流体交代,大量进入流体相而发生迁移,少量在赵氏碱锆石等蚀变锆矿物中保留。两种稀有锆矿物的发现对揭示热液流体性质、热液活动期次及锆等关键金属迁移-沉淀机制具有重要意义。
Abstract
Georgechaoite and bobtraillite, rare zirconosilicates, were discovered as secondary alteration products of eudialyte within the Saima alkaline complex in Liaoning Province, China. An integrated study encompassing petrography, mineralogy, geochemistry, and isotopic geochronology was conducted to reveal their occurrence, crystal structure, and chemical composition. This investigation aimed to constrain the ages of magmatic enrichment and hydrothermal alteration of Zr-REE-bearing minerals, ultimately exploring the relationship between post-magmatic fluid events and the mobilization-precipitation of ore-forming elements. Georgechaoite, an early alteration mineral, commonly occurs as anhedral crystals associated with secondary gaidonnayite, natrolite, britholite-(Ce), and other alteration minerals. It crystallizes in the orthorhombic system with unit cell parameters: a= 1.18325(5) nm, b=1.29141(3) nm, c=0.67292 (1) nm, V=1.02825(4) nm3, and an empirical formula of (Na0.97K0.78Ca0.06Pb0.01Sr0.01)Σ1.83(Zr0.98Ti0.01Hf0.01)Σ1.00Si3.02O9·2H2O. Bobtraillite,a later alteration mineral, posterior to georgechaoite, exhibits anhedral crystals or aggregates in close association with secondary natrolite, zircon, strontianite, calcite, britholite-(Ce), and other alteration minerals in the pseudomorph after eudialyte, with few remnants of eudialyte, gaidonnayite, or georgechaoite. It crystallizes in the trigonal system with unit cell parameters: a=1.96634(3) nm, c=0.99581(3) nm, V=3.33445(1) nm3, and an empirical formula of (Na7.10Ca0.99K0.01□3.90)Σ12.00(Sr10.42Ca1.56Ba0.01Pb0.01)Σ12.00(Zr12.85Ti0.49Hf0.13Al0.08Nb0.06□0.39)Σ14.00Si42.01B5.99O132(OH)12·12H2O. Geochronological data indicate that the primary eudialyte alteration occurred around 218±5 Ma. Georgechaoite formation is attributed to alkali-rich metasomatic fluids derived from the Saima alkaline magmas. In contrast, the age of bobtraillite formation is 107±5 Ma, probably related to external carbonate fluids mobilized by the subduction of the ancient Pacific plate. Hydrothermal alteration led to the release of a significant portion of REEs from the precursor eudialyte into the fluid system, with only the minority being preserved in secondary minerals (e.g., georgechaoite and bobtraillite). The discovery and characterization of georgechaoite and bobtraillite provide valuable insights into the nature and ages of post-magmatic fluid eventsin the Saima alkaline complex. These findings have significant implications for understanding the remobilization-precipitation mechanisms of critical metals (e.g., Zr and REEs) in hydrothermal environments.