en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

胡宗全,男,1971年生。博士,教授级高工,主要从事沉积与油气储层、致密砂岩与页岩油气地质勘探工作和研究。E-mail: huzongquan.syky@sinopec.com。

参考文献
Aase N E, Bjørkum P A, Nadeau P H. 1996. The effect of grain-coating microquartz on preservation of reservoir porosity. AAPG Bulletin, 80(10): 1654~1673.
参考文献
Baqués V, Ukar E, Laubach S E, Forstner S R, Fall A. 2020. Fracture, dissolution, and cementation events in Ordovician carbonate reservoirs, Tarim basin, NW China. Geofluids, (243): 1~28.
参考文献
Barclay S A, Worden R H, Parnell J, Hall D L, Sterner S M. 2020. Assessment of fluid contacts and compartmentalization in sandstone reservoirs using fluid inclusions: An example from the magnus oil field, north Sea1. AAPG Bulletin, 84(4): 489~504.
参考文献
Bjørlykke K. 2014. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 301: 1~14.
参考文献
Bjørlykke K, Jahren J. 2012. Open or closed geochemical system during diagenesis in sedimentary basin: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. AAPG Bulletin, 96(12): 2193~2214.
参考文献
Bloch S, Lander R H, Bonnell L. 2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 86(2): 301~328.
参考文献
Bohi D R. 2014. Technological improvement in petroleum exploration and development. Productivity in natural resource industries. Routledge, 2014: 73~108.
参考文献
Cao Binfeng, Sun Wei. 2011. Diagenesis of chang 6 reservoir in Xuecha block of Wuqi area. Natural Gas Geoscience, 22(6): 951~960 (in Chinese with English abstract).
参考文献
Cao Yingchang, Yuan Guanghui, Yang Haijun, Wang Yanzhong, Liu Keyu, Zan Nianmin, Xi Kelai, Wang Jian. 2022a. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins. Acta Petrolei Sinica, 43(1): 112~140 (in Chinese with English abstract).
参考文献
Cao Yingchang, Yuan Guanghui, Wang Yanzhong, Zan Nianmin, Jin Zihao, Liu Keyu, Xi Kelai, Wei Yihan, Sun Peipei. 2022b. Successive formation of secondary pores via feldspar dissolution in deeply buried feldspar-rich clastic reservoirs in typical petroliferous basins and its petroleum geological significance. Science China Earth Sciences, 65(9): 1673~1703.
参考文献
Chen Gang, Hu Zongquan. 2018. Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at southeastern Ordos basin. Journal of China Coal Society, 43(6): 1572~1579 (in Chinese with English abstract).
参考文献
Chen Qilin, Huang Chenggang. 2018. Research progress of modification of reservoirs by dissolution in sedimentary rock. Advances in Earth Science, 33(11): 1112~1129 (in Chinesewith English abstract).
参考文献
Deng Yi, Gao Chonglong, Wang Jian, Liu Ming, Meng Yuanlin, Ren Ying, Liu Ke, Wang Ke. 2023. Deep reservoir characteristics and physical property controlling factors of Qigu Formation in western section of southern margin of Junggar basin. Modern Geology, 38(2): 335~349 (in Chinese with English abstract).
参考文献
Ding Wenlong, Wang Xinghua, Hu Qiujia, Yin Shuai, Cao Xiangyu, Liu Jianjun. 2015. Progress in tight sandstone reservoir fractures research. Advances in Earth Science, 30(7): 737~750 (in Chinese with English abstract).
参考文献
Dowey P J, Hodgson D M, Worden R H. 2012. Pre-requisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs: A review of subsurface examples. Marine and Petroleum Geology, 32(1): 63~75.
参考文献
Duan Wei, Chen Jinding, Luo Chengfei, Tian Jinqiang, Guo Long, Lin Junfeng. 2013. Effects of formation overpressure on diagensis in the Dongfang block of Yinggehai basin. Acta Petrolei Sinica, 34(6): 1049~1059 (in Chinese with English abstract).
参考文献
Dutton S P, Hutton M E, Ambrose W A, Childers A T, Loucks R G. 2018. Preservation of reservoir quality by chlorite coats in deep Tuscaloosa sandstones, central Louisiana, USA. Gulf Coast Association of Geological Societies, 7: 46~58.
参考文献
Ehrenberg S N, Nadeau P H. 2005. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. AAPG Bulletin, 89(4): 435~445.
参考文献
Ehrenberg S N, Walderhaug O, Bjørlykke K. 2012. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion? AAPG Bulletin, 96(2): 217~233.
参考文献
Feng Jiarui, Gao Zhiyong, Cui Jinggang, Zhou Chuanmin. 2016. The exploration status and research advances of deep and ultra-deep clastic reservoirs. Advances in Earth Science, 31(7): 718~736 (in Chinese with English abstract).
参考文献
Grant N T, Middleton A J, Archer S. 2014. Porosity trends in the Skagerrak Formation, Central Graben, United Kingdom Continental Shelf: The role of compaction and pore pressure history. AAPG Bulletin, 98(6): 1111~1143.
参考文献
Guerriero V, Mazzoli S, Iannace A, Vitale S, Carravetta A, Strauss C. 2013. A permeability model for naturally fractured carbonate reservoirs. Marine and Petroleum Geology, 40: 115~134.
参考文献
Guo Huajun, Si Xueqiang, Yuan Bo, Peng Bo, Ji Dongsheng, Chen Xiguang. 2022. The characteristics and main controlling factors of ultra-deep sandstone reservoir in the middle part of the southern margin of Junggar basin. Marine Origin Petroleum Geology, 27(3): 313~324 (in Chinese with English abstract).
参考文献
Guo Xiaowen, Liu Keyu, Song Yan, Zhao Mengjun, Liu Shaobo, Zhuo Qingong, Lu Xuesong. 2016. Influences of hydrocarbon charging and overpressure on reservoir porosity in Kela-2 gas field of the Kuqa depression, Tarim basin. Oil & Gas Geology, 37(6): 935~943 (in Chinese with English abstract).
参考文献
Guo Xusheng, Hu Dongfeng, Huang Renchun, Wei Zhihong, Duan Jinbao, Wei Xiangfeng, Fan Xiaojun, Mou Zhiwei. 2020. Deep and ultra-deep natural gas exploration in the Sichuan basin: Progress and prospect. Natural Gas Industry, 40(5): 1~14 (in Chinese with English abstract).
参考文献
Guo Xusheng, Hu Zongquan, Li Shuangjian, Zheng Lunju, Zhu Dongya, Liu Junlong, Shen Baojian, Du Wei, Yu Lingjie, Liu Zengqin, Huangfu Ruilin. 2023. Progress and prospect of natural gas exploration and research in deep and ultra-deep strata. Petroleum Science Bulletin, 8(4): 461~474 (in Chinese with English abstract).
参考文献
Hermana M, Ghosh D P, Sum C W. 2017. Discriminating lithology and pore fill in hydrocarbon prediction from seismic elastic inversion using absorption attributes. The Leading Edge, 36(11): 902~909.
参考文献
Hu Suyun, Wang Xiaojun, Cao Zhenglin, Li Jianzhong, Gong Deyu, Xu Yang. 2020. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar basin, NW China. Petroleum Exploration and Development, 47(2): 266~279.
参考文献
Hu Zongquan, Yin Wei, Wu Xinhe, Gao Jinhui, Li Song, Liu Chunyan, Chen Chunfang. 2012. Petroleum accumulation systems of clastic strata and their distribution in the four large-sized basins in central-western China. Oil & Gas Geology, 33(4): 561~570 (in Chinese with English abstract).
参考文献
Hu Zongquan, Zheng Herong, Yin Wei, Liu Chunyan, Sun Chuanxiang, Xiao Christopher, Wang Fubin, Li Song, Chen Chunfang. 2020. Comparison of diagenetic characteristics and pore evolution in outcrops and cores of tight sandstone reservoirs in the Triassic Yanchang Formation, the Ordos basin, China. AAPG Bulletin, 104(11): 2429~2452.
参考文献
Huang Haiping, Zhang Shuichang, Su Jin. 2016. Palaeozoic oil-source correlation in the Tarim basin, NW China: A review. Organic Geochemistry, 94: 32~46.
参考文献
Huang Renchun, Liu Ruobing, Liu Ming, Cao Huanyu, Su Sai, Du Hongquan. 2021. Characteristics and genesis of fault-fracture reservoirs in the Xujiahe Formation, Tongjiang-Malubei area, northeastern Sichuan basin. Oil & Gas Geology, 42(4): 873~883 (in Chinese with English abstract).
参考文献
Jia Chengzao, Pang Xiongqi. 2015. Research processes and main development directions of deep hydrocarbon geological theories. Acta Petroleum Sinica, 36(12): 1457~1469.
参考文献
Jiang Lingzhi, Niu Jiayu, Zhang Qingchang, Xu Guomin, Meng Yuanlin, Xiao Lihua. 2009. Major factors analysis on controlling the formation of favorable reservoir in deep level of Bohai Bay basin. Geological Review, 55(1): 73~78 (in Chinese with English abstract).
参考文献
Lambert L, Durlet C, Loreau J P, Marnier G. 2006. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing. Marine and Petroleum Geology, 23(1): 79~92.
参考文献
Lander R H, Bonnell L M, Larese R E. 2008. Toward more accurate quartz cement models: The importance of euhedral versus noneuhedral growth rates. AAPG Bulletin, 92(11): 1537~1563.
参考文献
Lavenu A P C, Lamarche J, Salardon R, Gallois A, Marié L, Gauthier B D M. 2014. Relating background fractures to diagenesis and rock physical properties in a platform-slope transect. Example of the Maiella Mountain (central Italy). Marine and Petroleum Geology, 51: 2~19.
参考文献
Li Jian, She Yuanqi, Gao Yang, Yang Guiru, Li Mingpeng, Yang Shen. 2019. Onshore deep and ultra-deep natural gas exploration fields and potentials in China. China Petroleum Exploration, 24(4): 403~417 (in Chinese with English abstract).
参考文献
Li Song, Tang Dazhen, Pan Zhejun, Xu Hao, Tao S, Liu Yanfei, Ren Pengfei. 2018. Geological conditions of deep coalbed methane in the eastern margin of the Ordos basin, China: Implications for coalbed methane development. Journal of Natural Gas Science and Engineering, 53: 394~402.
参考文献
Liu Chun, Zhang Ronghu, Zhang Huiliang, Huang Wei, Mo Tao, Zhou Lu. 2017. Genetic types and geological significance of micro pores in tight sandstone reservoirs: A case study of the ultra-deep reservoir in the Kuqa foreland thrust belt, NW China. Acta Petrolei Sinica, 38(2): 150~159 (in Chinese with English abstract).
参考文献
Luo Xiaorong, Hu Caizhi, Xiao Zhongyao, Zhao Jian, Zhang Baoshou, Yang Wan, Zhao Fengyun, Lei Yuhong, Zhang Likuan. 2015. Effects of carrier bed heterogeneity on hydrocarbon migration. Marine and Petroleum Geology, 68: 120~131.
参考文献
Luo Xiaorong, Zhang Liqiang, Zhang Likuan, Lei Yuhong, Cheng Ming, Shi Hui, Cao Binfeng. 2020. Heterogeneity of clastic carrier bed and hydrocarbon migration and accumulation. Acta Petrolei Sinica, 41(3): 253~272 (in Chinese with English abstract).
参考文献
Luo Xiaorong, Zhang Likuan, Zhang Liqiang, Liu Naigui, Yan Jianzhao, Lei Yuhong, Qi Yukai, Li Jun, Cheng Ming, Yan Yiming, Cao Binfeng. 2022. Effectiveness of deep-buried clastic reservoir beds and the evaluation methodology. Journal of Northwest University (Natural Science Edition), 52(6): 968~986 (in Chinese with English abstract).
参考文献
Luo Xiaorong, Yang Haijun, Wang Zhenliang, Zhang Liqiang, Zhang Likuan, Lei Yuhong, Zhou Lu, Zhang Baoshou, Yan Yiming, Cao Binfeng, Liu Zhida. 2023. Heterogeneity characteristics of clastic reservoirs and hydrocarbon accumulation mode in deep-ultradeep basins. Acta Geologica Sinica, 97(9): 2802~2819 (in Chinese with English abstract).
参考文献
Ma Liyuan, Qiu Guiqiang, Hu Caizhi, Xu Shilin, Chen Chunfang, Li Song. 2022. Reservoir forming mechanism of the Yanchang tight sandstone in Honghe oilfield, Ordos basin. Acta Sedimentologica Sinica, 40(6): 1762~1773 (in Chinese with English abstract).
参考文献
Ma Yongsheng, Cai Xunyu, Zhao Peirong, Luo Yi, Zhang Xuefeng. 2010. Distribution and further exploration of the large-medium sized gas fields in Sichuan basin. Acta Petrolei Sinica, 31(3): 347~354 (in Chinese with English abstract).
参考文献
Pan Rong, Zhu Xiaomin, Wang Xingxing, Zhang Jianfeng. 2014. Advancement on formation mechanism of deep effective clastic reservoir. Lithologic Reservoirs, 26(4): 73~80 (in Chinese with English abstract).
参考文献
Pang Xiongqi, Jia Chengzao, Wang Wenyan. 2015. Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins. Petroleum Science, 12: 1~53.
参考文献
Qi Yukai, Luo Xiaorong, He Yonghong, Dang Hailong, Liu Naigui, Lei Yuhong, Zhang Likuan. 2015. Experimental studies on oil imbibition in mixed-wetting porous medium. Chinese Journal of Geology, 50(4): 1208~1217 (in Chinese with English abstract).
参考文献
Qi Yukai, Luo Xiaorong, Wang Yi, Liu Naigui, Zhou Bo, Yan Jianzhao, Zhang Likuan. 2017. Mechanical study of the effect of fractional-wettability on multiphase fluid flow. International Journal of Multiphase Flow, 93: 205~212.
参考文献
Qi Yukai, Lin Huixi, Zhang Fushun, Zhu Xiuxiang, Hu Hanwen, Zhou Bo, Wei Qing. 2021. The relationship between diagenetic evolution and hydrocarbon charge in deep tight reservoirs: A case study from Kepingtage Formation of S9 well block in Tarim basin. Geofluids, 2021: 1~18.
参考文献
Rabaev R U, Chibisov A V, Kotenev A Y, Kotenev M Y, Efimov E R. 2021. Mathematical modelling of carbonate reservoir dissolution and prediction of the controlled hydrochloric acid treatment efficiency. SOCAR Proceedings, (2): 40~46.
参考文献
Ramadan M A M, Abd El Hamed A G, Badran F, Nooh A Z. 2019. Relation between hydrocarbon saturation and pore pressure evaluation for the Amal Field area, Gulf of Suez, Egypt. Egyptian Journal of Petroleum, 28(1): 1~9.
参考文献
Scotchman I C, Doré A G, Spencer A M. 2018. Petroleum systems and results of exploration on the Atlantic margins of the UK, Faroes & Ireland: What have we learnt? Petroleum Geology Conference Series. London: The Geological Society of London, 8(1): 187~197.
参考文献
Shi Chaoqun, Wang Zuotao, Zhu Wenhui, Jiang Jun, Zhang Huifang, Zhou Siyu, Lou Hong, Zuo Xiaojun, Li Gang, Wang Zhenhong. 2020. Fracture characteristic and its impact on reservoir quality of ultra-deep reservoir in Dabei region, Kelasu tectonic belt, Kuqa depression, Tarim basin. Natural Gas Geoscience, 31(12): 1687~1699 (in Chinese with English abstract).
参考文献
Song Yan, Zhao Mengjun, Fang Shihu, Xie Huiwen, Liu Shaobo, Zhuo Qingong. 2012. Dominant factors of hydrocarbon distribution in the foreland basins, central and western China. Petroleum Exploration and Development, 39(3): 285~294.
参考文献
Sun Jing, You Xincai, Zhang Quan, Xue Jingjing, Chang Qiusheng. 2023. Development characteristics and genesis of deep tight conglomerate reservoirs of Mahu area in Junggar basin. Natural Gas Geoscience, 34(2): 240~252 (in Chinese with English abstract).
参考文献
Sun Longde, Zou Caineng, Zhu Rukai, Zhang Yunhui, Zhang Shuichang, Zhang Baomin, Zhu Guangyou, Gao Zhiyong. 2013. Formation, distribution and potential of deep hydrocarbon resources in China. Petroleum Exploration and Development, 40(6): 641~649 (in Chinese with English abstract).
参考文献
Tan Kaijun, Zhang Fan, Zhao Yingcheng, Pan Jianguo, Yin Lu. 2010. Characteristics and genetic mechanism of volcanic dissolved pore in northwestern margin of Junggar basin. Lithologic Reservoirs, 22(3): 22~25 (in Chinese with English abstract).
参考文献
Tang Yong, Song Yong, He Wenjun, Zhao Long, Yang Haibo, Zhao Changyong, Zheng Menglin, Sun Shuai, Fei Liying. 2022. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar basin. Oil & Gas Geology, 43(1): 132~148 (in Chinese with English abstract).
参考文献
Taylor T R, Giles M R, Hathon L A, Diggs T N, Braunsdorf N R, Birbiglia G V, Kittridge M G, Macaulay C I, Espejo I S. 2010. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bulletin, 94(8): 1093~1132.
参考文献
Tian Jun, Wang Qinghua, Yang Haijun, Li Yong. 2021. Petroleum exploration history and enlightenment in Tarim basin. Xinjiang Petroleum Geology, 42(3): 272~282 (in Chinese with English abstract).
参考文献
Walderhaug O. 2000. Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjorn field, northern North Sea. AAPG Bulletin, 84(9): 1325~1339.
参考文献
Wang Bo, Zhang Ronghu, Ren Kangxu, Luo Peng, Liu Chun. 2011. Prediction of the lower limit of burial depth for effective reservoirs in the Dabei-Kelasu deep structural belt of Kuqa depression. Acta Petrolei Sinica, 32(2): 212~218 (in Chinese with English abstract).
参考文献
Wang Cheng, Shao Hongmei, Hong Shuxin, Guan Yanhua, Teng Hongda, Jia Pengtao, Xue Yunfei. 2007. The lower limits of physical properties for deep clastic reservoirs in north Songliao basin and its relationship with microscopic features. Petroleum Geology & Oilfield Development in Daqing, 26(5): 18~20, 24 (in Chinese with English abstract).
参考文献
Wang Jian, Gao Chonglong, Bai Lei, Xiang Baoli, Liu Jin, Xian Benzhong, Lian Lixia, Liu Ke. 2023. Diagenesis and pore evolution of Cretaceous Qingshuihe Formation reservoir in western section of southern margin of Junggar basin. Petroleum Geology and Experiment, 45(4): 632~645 (in Chinese with English abstract).
参考文献
Wang Junpeng, Zhang Ronghu, Zhao Jilong, Wang Ke, Wang Bo, Ceng Qinglu, Liu Chun. 2014. Characteristics and evaluation of fractures in ultra-deep tight sandstone reservoir: Taking Keshen gasfield in Tarim basin, NW China as an example. Natural Gas Geoscience, 25(11): 1735~1745 (in Chinese with English abstract).
参考文献
Wang Ke, Zhang Ronghu, Tang Yong, Yu Zhaofeng, Yang Zhao, Tang Yangang, Zhou Lu. 2022. Structural diagenesis and reservoir prediction of Lower Jurassic Ahe Formation in the northern structural belt of Kuqa depression. Acta Petrolei Sinica, 43(7): 925~940 (in Chinese with English abstract).
参考文献
Wang Yanzhong, Cao Yingchang. 2010. Lower property limit and controls on deep effective clastic reservoirs of Paleogene in Chezhen depression. Acta Sedimentologica Sinica, 28(4): 752~761 (in Chinese with English abstract).
参考文献
Wang Zhongnan, Luo Xiaorong, Liu Keyu, Fan Yuchen, Wang Xiangzeng. 2021. Influence of chlorite on wettability in tight sandstone reservoir of Yanchang Formation of Upper Triassic in Ordos basin. Scientia Sinica (Terrae), 51(7): 1123~1134 (in Chinese with English abstract).
参考文献
Worden R H, Oxtoby N H, Smalley P C. 1998. Can oil emplacement prevent quartz cementation in sandstones?. Petroleum Geoscience, 4: 129~137.
参考文献
Xin Yi, Wang Guiwen, Liu Bingchang, Ai Yong, Cai Deyang, Yang Shuwen, Liu Hongkun, Xie Yuqiang, Chen Kangjun. 2022. Pore structure evaluation in ultra-deep tight sandstones using NMR measurements and fractal analysis. Journal of Petroleum Science and Engineering, 211: 110180.
参考文献
Yuan Zhen, Li Wenhou, Guo Yanqin. 2011. Effects of oil emplacement on diagenetic evolution of sandstone reservoir in Yanchang Formation, southeastern Ordos basin. Geological Journal of China Universities, 17(4): 594~604 (in Chinese with English abstract).
参考文献
Zeng Lianbo, Li Xiangyang. 2009. Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos basin, China. AAPG Bulletin, 93(4): 461~477.
参考文献
Zeng Lianbo, Jiang Jianwei, Yang Yongli. 2010. Fractures in the low porosity and ultra-low permeability glutenite reservoirs: A case study of the late Eocene Hetaoyuan Formation in the Anpeng oilfield, Nanxiang basin, China. Marine and Petroleum Geology, 27(7): 1642~1650.
参考文献
Zhang Xingwen, Pang Xiongqi, Li Caijun, Yu Jiwang, Wang Wenyang, Xiao Huiyi, Li Changrong, Yu Jitao. 2021. Geological characteristics, formation conditions and accumulation model of deep and ultra-deep, high-porosity and high-permeability clastic reservoirs: A case study of Gulf of Mexico basin. Acta Petrolei Sinica, 42(4): 466~480 (in Chinese with English abstract).
参考文献
Zhang Yuexia, Ding Lin, Zhou Fengjuan, Li Xiaoyan. 2023. Study on the lower limits of permeability and buried depth of Paleogene sandstone reservoirs in the Zhu Ⅰ depression, Pearl River Mouth basin. Marine Origin Petroleum Geology, 28(3): 311~322 (in Chinese with English abstract).
参考文献
Zhao Xuefeng, Zhu Guangyou, Liu Qinfu, Zhang Shuichang. 2007. Main control factors of pore development in deep marine carbonate reservoirs. Natural Gas Geoscience, 18(4): 514~521 (in Chinese with English abstract).
参考文献
Zhong Dakang, Zhu Xiaomin, Wang Hongjun. 2008. Characteristics and formation mechanism analysis of deep quality clastic rock reservoirs in China. Scientia Sinica (Terrae), 38(z1): 11~18 (in Chinese with English abstract).
参考文献
Zhou Dongsheng, Liu Guangxiang, Ye Jun, Jia Cunshan. 2004. Study on the mechanisms for preserving anomalously high porosity in deep buried sandstone reservoirs. Petroleum Geology and Experiment, 26(1): 40~46 (in Chinese with English abstract).
参考文献
Zhu Guangyou, Zhang Shuichang. 2009. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China. Acta Petrolei Sinica, 30(6): 793~802 (in Chinese with English abstract).
参考文献
Zhu Guangyou, Wang Huitong, Weng Na, Yang Haijun, Zhang Ke, Liao Fengrong, Yuan Neng. 2015. Geochemistry, origin and accumulation of continental condensate in the ultra-deep-buried Cretaceous sandstone reservoir, Kuqa depression, Tarim basin, China. Marine and Petroleum Geology, 65: 103~113.
参考文献
Zou Caineng, Tao Shizhen, Zhang Xiangxiang, He Dongbo, Zhou Chuanmin, Gao Xiaohui. 2009. Geologic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China's Large Gas Provinces of low porosity and permeability. Science in China (Series D: Earth Sciences), 52(8): 1068~1090.
参考文献
操应长, 远光辉, 杨海军, 王艳忠, 刘可禹, 昝念民, 葸克来. 2022a. 王健含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展. 石油学报, 43(1): 112~140.
参考文献
曹斌风, 孙卫.2011. 吴旗地区薛岔区块延长组长6砂岩储层成岩作用研究.天然气地球科学, 22(6): 951~960.
参考文献
陈刚, 胡宗全. 2018. 鄂尔多斯盆地东南缘延川南深层煤层气富集高产模式探讨. 煤炭学报, 43(6): 1572~1579.
参考文献
陈启林, 黄成刚. 2018. 沉积岩中溶蚀作用对储集层的改造研究进展. 地球科学进展, 33(11): 1112~1129.
参考文献
邓毅, 高崇龙, 王剑, 刘明, 孟元林, 任影, 刘可, 王柯.2023. 准噶尔盆地南缘西段齐古组深层储层特征及物性控制因素.现代地质, 38(2): 335~349.
参考文献
丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 2015. 致密砂岩储层裂缝研究进展. 地球科学进展, 30(7): 737~750.
参考文献
段威, 陈金定, 罗程飞, 田金强, 郭龙, 林俊峰. 2013. 莺歌海盆地东方区块地层超压对成岩作用的影响. 石油学报, 34(6): 1049~1059.
参考文献
冯佳睿, 高志勇, 崔京钢, 周川闽. 2016. 深层、超深层碎屑岩储层勘探现状与研究进展. 地球科学进展, 31(7): 718~736.
参考文献
郭华军, 司学强, 袁波, 彭博, 冀冬生, 陈希光. 2022. 准噶尔盆地南缘中段超深层相对优质砂岩储层发育特征及主控因素. 海相油气地质, 27(3): 313~324.
参考文献
郭小文, 刘可禹, 宋岩, 赵孟军, 柳少波, 卓勤功, 鲁雪. 2016. 库车坳陷克拉2气田油气充注和超压对储层孔隙的影响. 石油与天然气地质, 37(6): 935~943.
参考文献
郭旭升, 胡东风, 黄仁春, 魏志红, 段金宝, 魏祥峰, 范小军, 缪志伟. 2020. 四川盆地深层—超深层天然气勘探进展与展望. 天然气工业, 40(5): 1~14.
参考文献
郭旭升, 胡宗全, 李双建, 魏志红, 段金宝, 魏祥峰, 范小军, 缪志伟. 2023. 深层—超深层天然气勘探研究进展与展望. 石油科学通报, 8(4): 461~474.
参考文献
胡宗全, 尹伟, 伍新和, 高金慧, 李松, 刘春燕, 陈纯芳. 2012. 中国中西部四大盆地碎屑岩油气成藏体系及其分布规律. 石油与天然气地质, 33(4): 561~570.
参考文献
黄仁春, 刘若冰, 刘明, 曹环宇, 宿赛, 杜红权. 2021. 川东北通江—马路背地区须家河组断缝体储层特征及成因. 石油与天然气地质, 42(4): 873~883.
参考文献
贾承造, 庞雄奇. 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457~1469.
参考文献
蒋凌志, 牛嘉玉, 张庆昌, 徐国民, 孟元林, 肖丽华. 2009. 渤海湾盆地深部有利储层发育的主控因素. 地质论评, 55(1): 73~78.
参考文献
李剑, 佘源琦, 高阳, 杨桂茹, 李明鹏, 杨慎. 2019. 中国陆上深层—超深层天然气勘探领域及潜力. 中国石油勘探, 24(4): 403~417.
参考文献
刘春, 张荣虎, 张惠良, 黄伟, 莫涛, 周露. 2017. 致密砂岩储层微孔隙成因类型及地质意义——以库车前陆冲断带超深层储层为例. 石油学报, 38(2): 150~159.
参考文献
罗晓容. 2013. 前陆盆地异常流体: 地质作用及其增压效率. 地质科学, 48(1): 32~49
参考文献
罗晓容, 张立强, 张立宽, 雷裕红, 程明, 施辉, 曹斌风.2020.碎屑岩输导层非均质性与油气运聚成藏.石油学报, 41(3): 253~272.
参考文献
罗晓容, 张立宽, 刘乃贵, 闫建钊, 雷裕红, 齐育楷, 李俊, 程明, 严一鸣, 曹斌风. 2022. 深层碎屑岩储层有效性及其评价方法. 西北大学学报(自然科学版), 52(6): 968~986.
参考文献
罗晓容, 杨海军, 王震亮, 张立强, 张立宽, 雷裕红, 周路, 张宝收, 严一鸣, 曹斌风, 刘志达. 2023. 深层—超深层碎屑岩储层非均质性特征与油气成藏模式. 地质学报, 97(9): 2802~2819.
参考文献
马立元, 邱桂强, 胡才志, 徐士林, 陈纯芳, 李松. 2022. 鄂尔多斯盆地红河油田延长组致密砂岩成藏机制分析. 沉积学报, 40(6): 1762~1773.
参考文献
马永生, 蔡勋育, 赵培荣, 罗毅, 张学丰. 2010. 四川盆地大中型天然气田分布特征与勘探方向. 石油学报, 31(3): 347~354.
参考文献
潘荣, 朱筱敏, 王星星, 张剑锋. 2014. 深层有效碎屑岩储层形成机理研究进展. 岩性油气藏, 26(4): 73~80.
参考文献
齐育楷, 罗晓容, 贺永红, 党海龙, 刘乃贵, 雷裕红, 张立宽. 2015. 混合润湿孔隙介质中油自吸实验研究. 地质科学, 50(4): 1208~1217.
参考文献
史超群, 王佐涛, 朱文慧, 蒋俊, 张慧芳, 周思宇, 娄洪, 左小军, 李刚, 王振鸿. 2020. 塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用. 天然气地球科学, 31(12): 1687~1699.
参考文献
孙靖, 尤新才, 张全, 薛晶晶, 常秋生. 2023. 准噶尔盆地玛湖地区深层致密砾岩储层发育特征及成因. 天然气地球科学, 34(2): 240~252.
参考文献
孙龙德, 邹才能, 朱如凯, 张云辉, 张水昌, 张宝民, 朱光有, 高志勇. 2013. 中国深层油气形成、分布与潜力分析. 石油勘探与开发, 40(6): 641~649.
参考文献
谭开俊, 张帆, 赵应成, 潘建国, 尹路. 2010. 准噶尔盆地西北缘火山岩溶蚀孔隙特征及成因机制. 岩性油气藏, 22(3): 22~25.
参考文献
唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 2022. 准噶尔叠合盆地复式油气成藏规律. 石油与天然气地质, 43(1): 132~148.
参考文献
田军, 王清华, 杨海军, 李勇. 2021. 塔里木盆地油气勘探历程与启示. 新疆石油地质, 42(3): 272~282.
参考文献
王波, 张荣虎, 任康绪, 罗鹏, 刘春. 2011. 库车坳陷大北—克拉苏深层构造带有效储层埋深下限预测. 石油学报, 32(2): 212~218.
参考文献
王成, 邵红梅, 洪淑新, 官艳华, 滕宏达, 贾朋涛, 薛云飞. 2007. 松辽盆地北部深层碎屑岩储层物性下限及与微观特征的关系. 大庆石油地质与开发, 26(5): 18~20+24.
参考文献
王剑, 高崇龙, 白雷, 向宝力, 刘金, 鲜本忠, 连丽霞, 刘可. 2023. 准噶尔盆地南缘西段白垩系清水河组储层成岩作用及孔隙演化. 石油实验地质, 45(4): 632~645.
参考文献
王俊鹏, 张荣虎, 赵继龙, 王珂, 王波, 曾庆鲁, 刘春. 2014. 超深层致密砂岩储层裂缝定量评价及预测研究——以塔里木盆地克深气田为例. 天然气地球科学, 25(11): 1735~1745.
参考文献
王珂, 张荣虎, 唐永, 余朝丰, 杨钊, 唐雁刚, 周露. 2022. 库车坳陷北部构造带侏罗系阿合组构造成岩作用与储层预测. 石油学报, 43(7): 925~940.
参考文献
王艳忠, 操应长. 2010. 车镇凹陷古近系深层碎屑岩有效储层物性下限及控制因素. 沉积学报, 28(4): 752~761.
参考文献
王忠楠, 罗晓容, 刘可禹, 范雨辰, 王香增. 2021. 鄂尔多斯盆地上三叠统延长组致密砂岩储层绿泥石对润湿性的影响. 中国科学: 地球科学, 51(7): 1123~1134.
参考文献
袁珍, 李文厚, 郭艳琴. 2011. 鄂尔多斯盆地东南缘延长组石油充注对砂岩储层成岩演化的影响.高校地质学报, 17(4): 594~604.
参考文献
张兴文, 庞雄奇, 李才俊, 于吉旺, 汪文洋, 肖惠译, 李昌荣, 余季陶. 2021. 深层—超深层高孔高渗碎屑岩油气藏地质特征, 形成条件及成藏模式——以墨西哥湾盆地为例.石油学报, 42(4): 466~480.
参考文献
张月霞, 丁琳, 周凤娟, 李晓艳. 2023. 珠江口盆地珠一坳陷古近系砂岩储层渗透率和埋深下限研究. 海相油气地质, 28(3): 311~322.
参考文献
赵雪凤, 朱光有, 刘钦甫, 张水昌. 2007. 深部海相碳酸盐岩储层孔隙发育的主控因素研究. 天然气地球科学, 18(4): 514~521.
参考文献
钟大康, 朱筱敏, 王红军. 2008. 中国深层优质碎屑岩储层特征与形成机理分析. 中国科学(D辑: 地球科学), (S1): 11~18.
参考文献
周东升, 刘光祥, 叶军, 贾存善. 2004. 深部砂岩异常孔隙的保存机制研究. 石油实验地质, 26 (1): 40~46.
参考文献
朱光有, 张水昌. 2009. 中国深层油气成藏条件与勘探潜力. 石油学报, 30(6): 793~802.
目录contents

    摘要

    深埋条件下碎屑岩是否发育有效储层是储层地质研究和油气勘探的重要问题。随着勘探实践、地质认识和工程技术的不断发展,传统认识不断被突破,目前油气勘探实践证实在埋藏深度6000~8000 m的超深层仍然发育碎屑岩有效储层。通过对深埋背景下碎屑岩储层形成机理的系统调研,结合中西部四大盆地典型深层储层的多尺度观察,明确了沉积作用控制储层原始条件、多种成岩作用控制有效储层的成储机理。结果表明,在深层超深层条件下,碎屑岩高能沉积相带原生孔隙发育条件好、逼近主力烃源岩就近配置、多期油气充注、超压条件、低地温场对成岩演化的抑制作用等有利于碎屑岩保存原生孔隙并形成溶蚀孔隙,晚期构造改造作用有利于形成裂缝并改善孔渗性能,超深层碎屑岩仍具有巨大的勘探潜力。在沉积-成岩-构造三元复合控制下的碎屑岩有利储层发育带是有利的勘探区带。

    Abstract

    The development of effective hydrocarbon reservoirs in clastic sedimentary rocks subjected to deep burial conditions is a crucial area of investigation in reservoir research and hydrocarbon exploration. With the continuous development of exploration practices, geological understanding, and engineering technologies, traditional interpretations of deep reservoir formation are continually refined. Current exploration practices have confirmed the existence of effective clastic rock reservoirs at depths ranging from 6000 m to 8000 m. Through a comprehensive review of the literature on deep-buried reservoir formation mechanisms, combined with multi-scale observations of typical deep reservoirs in the four major basins of the central and western regions, the effect of original sedimentation conditions and various diagenetic processes on reservoir formation has been clarified. Our findings show that under deep and ultra-deep conditions, several key factors contribute to the preservation of primary pores and the formation of dissolution pores in clastic rocks. These factors include favorable sedimentary hydrodynamic conditions, multi-stage hydrocarbon charging, overpressure conditions, and the inhibitory effect of low geothermal fields on diagenetic evolution. Late structural transformation can enhance reservoir permeability through the formation of fractures. Therefore, ultra-deep clastic rocks possess significant exploration potential. Favorable zones of reservoir development in clastic rocks, governed by the interplay of sedimentation, diagenesis, and tectonic activity, represent promising exploration targets.

  • 1 碎屑岩有效储层埋深下限

  • 近年来,我国陆上盆地超深层油气勘探不断取得新的突破,向超深层领域拓展已成必然趋势(朱光有和张水昌,2009贾承造和庞雄奇,2015郭华军等,2022郭旭升等,2023)。传统认识认为,以碎屑颗粒、孔隙和填隙物为原始结构的碎屑岩在埋藏过程中原生孔隙会逐步丧失,而碎屑岩原始组分的可溶性较差导致形成次生孔隙难度较大,因此油气地质和勘探家在不同盆地对不同层系的碎屑岩常会设定特定的有效储层埋深下限的概念(Ehrenberg and Nadeau,2005; 钟大康等,2008王波等,2011贾承造和庞雄奇,2015),在地质认识和勘探上常常具有二面性,在一定的勘探阶段有助于让油气勘探聚焦在主力勘探层系取得突破,但逐渐成为勘探领域拓展的束缚。纵观东、中、西部盆地碎屑岩油气勘探历程,石油地质学家对于有效储层埋深下限的认识并非一成不变。随着油气勘探逐渐向深部层系进军,碎屑岩有效储层埋深下限不断向下延拓,不断被刷新(Zhu Guangyou et al.,2015; 刘春等,2017李剑等,2019Xin Yi et al.,2022; Cao Yingchang et al.,2022b邓毅等,2023王剑等,2023)。

  • 前期,国内外学者一般将埋深大于3500~4000 m的地层定义为深层(孙龙德,2013; Bohi,2014; Pang Xiongqi et al.,2015; Scotchman et al.,2018),受这一认识的影响,早期在东部渤海湾盆地、松辽盆地、苏北盆地,中部鄂尔多斯盆地的油气勘探过程中认为的碎屑岩有效储层埋深下限一般也在3500~4000 m范围内(王成等,2007朱光有和张水昌,2009王艳忠和操应长,2010)。但在西部塔里木盆地、准噶尔盆地和四川盆地不断加大勘探力度的过程中,西部低地温梯度大型叠合盆地与东、中部断陷、坳陷型盆地在盆地结构、盆地性质、构造沉积演化过程等方面存在不同(马永生等,2010Song Yan et al.,2012; Huang Haiping et al.,2016; Li Song et al.,2018; 陈刚和胡宗全,2018Guo Xusheng et al.,2020; Hu Zongquan et al.,2020; 田军等,2021唐勇等,2022),导致碎屑岩成岩演化滞后、勘探层系下移,有效储层普遍埋深较大,在超深层领域(>6000 m)接连获得了商业油气发现(Luo Xiaorong et al,2015; 罗晓容等,2020; Hu Suyun et al.,2020; 张兴文等,2021; 张月霞等,2023)。随着准噶尔盆地腹部永1井(2004年)在侏罗系5860 m获得油气突破、塔里木盆地顺托果勒地区顺9井(2012年)在志留系5600 m获得勘探突破、准噶尔盆地腹部征10井(2022年)在三叠系克拉玛依组6700 m、上乌尔禾组7600 m以及成6井(2022年)在下乌尔禾组6530 m均获得勘探突破,这一系列深层超深层碎屑岩勘探的成功实践使研究者不仅重新定义“深层”概念,并且重新审视碎屑岩有效储层埋深的下限,目前一批勘探成果已经证实西部塔里木、准噶尔等盆地的碎屑岩有效储层埋深下限(表1)可以超过8000 m(史超群等,2020王珂等,2022孙靖等,2023)。

  • 随着油气勘探理论和技术的不断进步,油气勘探“深地工程”的不断实施,随之而来的一系列深层油气新突破必将刷新研究者对于深部储层的认知,同时对于碎屑岩有效储层埋深下限和发育机理认识也处于不断的革新与发展之中。本文旨在系统总结我国深层含油气盆地有效储层发育特征,明确有效储层发育机理,从而为下一步深层碎屑岩油气勘探提供借鉴指导。

  • 表1 中西部四大盆地典型深层碎屑岩储层特征统计

  • Table1 Statistical analysis of typical deep clastic rock reservoir characteristics in four major basins of central and western China

  • 注:表中孔隙度、渗透率为数值范围,括号内为平均值。

  • 2 超深层碎屑岩有效储层成储机理

  • 2.1 沉积作用奠定了储层的矿物组构和原生孔隙的物质基础

  • 我国中西部四大盆地普遍经历了早古生代的海相沉积、晚古生代的海陆过渡相沉积以及中新生代以来的陆相沉积,不同盆地的储层物性差异明显(表1)。总体上,塔里木盆地和准噶尔盆地的储层物性相对较好,鄂尔多斯盆地次之,四川盆地较差。不同盆地、不同沉积环境的储层,其物性条件很大程度上受控于原始沉积作用。宏观上,沉积环境控制沉积相带的展布,也就控制了油气藏形成的储集砂体 (Zou Caineng et al.,2009)。微观上,沉积环境控制了沉积物的原始组分、粒度、分选、磨圆与杂基含量等,进而奠定了储层的物质基础,也对后期储层的成岩演化具有明显控制作用(Qi Yukai et al.,2021罗晓容等,2022)。

  • 在海相沉积体系中,塔里木盆地泥盆系东河塘组发育高能前滨相带,沉积了纯净的中—细粒石英砂岩,储层中石英含量可高达90%以上(表1)。在长期深埋的背景下,现今储层中颗粒仍以点-线接触为主,平均孔隙度高达18.3%。(图1a、表1)。同为滨岸沉积相带,塔里木盆地顺9井区志留系柯坪塔格组则为远滨沉积,岩屑含量普遍高于50%(表1)。因此,即便在相似的埋深下,经历了更为强烈的压实作用,部分储层镜下几乎无可见孔隙,常可见塑性岩屑压实挤入颗粒孔隙的现象,砂岩物性相对差(图1b、表1)。相似地,四川盆地志留系小河坝组主要发育三角洲前缘远端砂坝,储层中粗碎屑不发育,整体以粉砂岩-泥质粉砂岩为主,储层物性相对较差(表1)。

  • 二叠纪、三叠纪以来,我国中西部四大盆地陆续进入了陆相沉积演化阶段。准噶尔盆地三叠系发育了厚层的扇三角洲、辫状河三角洲砂体。盆地边缘近物源区的三角洲平原发育厚层砂砾岩体,虽然粒度较粗,但砂、砾、泥快速混杂堆积,孔隙中常见凝灰质、泥质杂基(图1c),储层物性较差。向凹陷区过渡,三角洲前缘砂体的分选、磨圆度有了极大改善(图1d、f),储层物性显著提高,是有利的勘探对象。近期在征10井三叠系克拉玛依组的前缘砂体中试油获高产,揭示了6700 m仍可发育孔隙度13%的优质储层。相比之下,同时代四川盆地三叠系须家河组虽同样发育三角洲前缘河道砂体,但压实、胶结作用更强(图1e),现今储层孔隙度普遍低于5%(表1)。

  • 图1 中西部四大盆地不同沉积相带典型岩芯及薄片照片

  • Fig.1 Typical core and thin section photos of different sedimentary facies zones in four major basins of central and western China

  • (a)—塔里木盆地,D3d,前滨砂坝细砂岩,顺1井,5343 m;(b)—塔里木盆地,S1k,远滨砂坝细砂岩,顺9井,5900 m;(c)—准噶尔盆地,T1b,三角洲平原砂砾岩体,玛18井,3874 m;(d)—准噶尔盆地,T2k,三角洲前缘细砂岩,征10井,6701 m;(e)—四川盆地,T3x,三角洲前缘细砂岩,丰谷110井,4624 m;(f)—鄂尔多斯盆地,P1s,三角洲分流河道,新富3井,2663 m

  • (a) —Tarim basin, D3d, foreshore bar fine sandstone, well Shun-1, 5343 m; (b) —Tarim basin, S1k, offshore sand bar fine sandstone, well Shun 9, 5900 m; (c) —the Junggar basin, T1b, delta plain glutenite body, well Ma18, 3874 m; (d) —the Junggar basin, T2k, delta front fine sandstone, well Zheng10, 6701 m; (e) —Sichuan basin, T3x, delta front fine sandstone, well Fenggu 110, 4624 m; (f) —Ordos basin, P1s, delta diversion channel, well Xinfu 3, 2663 m

  • 沉积水动力条件对储层物性的控制作用不仅在不同沉积微相中有明显反映,即便是同一沉积微相的不同砂体部位,其物性也有较大差异。通过对塔里木盆地顺9井志留系取芯层段的细致描述和取样观察,同一单砂体的不同部位,其物质组分以及物性也有较大差异(图2a)。通常来讲,单砂坝顶部粒度最粗、塑性颗粒含量最少,主要发育中等压实的块状细砂岩,孔隙发育相对较好(图2b);中部发育平行-交错层理细砂岩,压实程度稍高、仅局部发育原生粒间孔隙(图2c);而在底部发育波状层理的粉砂岩-泥岩互层沉积,塑性颗粒含量较高,抗压实能力弱,以强压实岩屑砂岩相为主(图2d)。

  • 2.2 多种地质作用有利于碎屑岩优质储层的形成和保持

  • 在经历深埋作用后,建设性成岩作用对碎屑岩储集性能的改造和保持是至关重要的。不同学者从不同视角探讨了深层有效砂岩储层形成机理(Aase et al.,1996Worden et al.,1998Bloch et al.,2002钟大康等,2008Taylor et al.,2010Ehrenberg,2012孙龙德等,2013Grant et al.,2014操应长等,2022a)。基于前人的研究成果,本文辩证分析认识颗粒薄膜、地层超压、地温场、油气充注、溶蚀作用以及裂缝作用对孔隙发育和保存的作用机理。

  • 2.2.1 颗粒薄膜对石英胶结物生长的抑制作用

  • 颗粒薄膜发育常常会阻止石英胶结物在颗粒表面的广泛成核沉淀,其机理往往被认为是颗粒薄膜的存在能够有效阻止颗粒表面与成岩流体的接触,从而抑制胶结作用的发生。颗粒薄膜主要由自生黏土矿物(多为绿泥石)和微晶石英构成(Aase et al.,1996Dowey et al.,2012潘荣等,2014Dutton et al.,2018)。较之伊利石和混层黏土矿物,自生绿泥石是抑制砂岩中石英胶结发育最重要的颗粒薄膜矿物。比如准噶尔盆地侏罗系头屯河组,储层中绿泥石膜能够围绕石英颗粒形成连续环边,很大程度上抑制了石英加大边的发育(图3a)。鄂尔多斯盆地三叠系延长组,绿泥石膜最为发育的部位,其厚度可达10 μm以上,从而有效阻碍了石英胶结物的沉淀(图3c),从扫描电镜照片中也可见绿泥石连片发育的区域,除了极少量微晶石英生长外,并未发生硅质矿物的连片胶结(图3d),对原生孔隙起到了至关重要的保存作用(图3e)。除此之外,其他自生矿物如赤铁矿、菱铁矿等,也可如绿泥石膜一样扮演着相似的角色。在塔里木盆地白垩系普遍发育的红层,颗粒边缘普遍被赤铁矿所包裹,因此在镜下薄片中少见石英等胶结矿物的沉淀(图3f)。更为重要的是,绿泥石膜对岩石油润湿性的形成也起到了重要作用(王忠楠等,2021),在亲油条件下,油气充注所需要的动力条件将会极大降低,可有效弥补储层物性差的不足(齐育楷等,2015Qi Yukai et al.,2017)。

  • 图2 塔里木盆地志留系柯坪塔格组岩性纵向分布图(a)、岩芯及典型镜下照片(b~d)

  • Fig.2 Longitudinal distribution map of lithology in the Silurian Kepingtag Formation of the Tarim basin (a) , and core and typical microscopic photographs (b~d)

  • (a)—顺9井;(b)—5584.3 m;(c)—5585.0 m;(d)—5586.4 m

  • (a) —well Shun 9; (b) —5584.3 m; (c) —5585.0 m; (d) —5586.4 m

  • 图3 颗粒薄膜对孔隙保存作用典型镜下微观照片

  • Fig.3 Microscopic photos illustrating the effect of grain coating on pore preservation

  • (a)—准噶尔盆地,J2t1,董7井,4514 m;(b)—准噶尔盆地,J2t1,董2井,4429 m;(c)—鄂尔多斯盆地,T3y2,HH45井,2350 m;(d)—鄂尔多斯盆地,T3y2,HH45井,2350 m;(e)—四川盆地,T3x,YL8井,4075.72 m;(f)—塔里木盆地,K1bs,星火5井,5600 m;Chl—绿泥石;Qtz—自生石英

  • (a) —Junggar basin, J2t1, well Dong 7, 4514 m; (b) —Junggar basin, J2t1, well Dong 2, 4429 m; (c) —Ordos basin, T3y2, well HH45, 2350 m; (d) —Ordos basin, T3y2, well HH45, 2350 m; (e) —Sichuan basin, T3x, well YL8, 4075.72 m; (f) —Tarim basin, K1bs, well Xinghuo 5, 5600 m; Chl—chlorite; Qtz—authigenic quartz

  • 然而,颗粒薄膜能否有效抑制石英的次生加大,很大程度上取决于其包裹程度。石英颗粒表面被薄膜包裹的面积越大,其次生加大越能被有效抑制;反之,石英次生加大仍能发育(Taylor et al.,2010)。镜下薄片中常可见由于绿泥石膜的不均等发育,在同一个石英颗粒中,未被绿泥石膜包裹的部位石英加大边仍可发生沉淀(图3b)。并且当绿泥石含量过高,密集充填颗粒之间时,会极大程度降低或破坏粒间原生孔隙和储层渗透性(周东升等,2004)。

  • 总得来说,颗粒薄膜对深层砂岩储层孔、渗的改善具有非常重要的作用,深层常常发育异常高孔渗。前人统计结果表明,储层中绿泥石的含量越高,储层的物性相对越好(Ehrenberg,2005)。但是,某些情况下当胶结作用以碳酸盐、硫酸盐或沸石类胶结为主而石英胶结相对较弱时,颗粒薄膜对原生孔隙保存的意义相对较小。尤其是对于成分成熟度相对较低的砂岩,由于石英胶结几乎不发育,因此颗粒薄膜对孔隙保存的作用很小。

  • 2.2.2 超压对压实作用的抑制作用

  • 伴随上覆沉积物的增加,储层所遭受的有效应力增大,机械压实加强,孔隙度减小。而孔隙流体超压的发育,能够有效削弱有效应力,减缓机械压实速率。砂岩储层中孔隙流体超压发育往往会保存相当一部分原生孔隙。主要机理包括:① 机械压实减缓,部分孔隙空间得到保存;② 超压抑制粒间压溶,阻碍硅离子的来源,减缓石英胶结作用;③ 超压代表了封闭环境,与外界离子交换速率明显降低,有效减缓了胶结作用的发生(Walderhaug,2000Lander et al.,2008Taylor et al.,2010)。

  • 超压对储层原生孔隙的保存取决于砂岩机械力学性质和超压形成的相对时间。当砂岩储层中塑性组分富集时,孔隙被保存下来的潜力较大,这是因为压实作用对储层质量改造起主导作用。Taylor et al.(2010)对北海油田、墨西哥湾等多个油田岩芯样品的有效应力和粒间孔隙含量的统计结果发现,当储层有效应力由80 MPa降至10 MPa时,粒间孔隙由15%左右增加至30%左右,最高可达35%。对于国内各大盆地深层孔隙度与压力系数的相关关系也可发现,在深层中普遍发育了异常高压,出现了明显的优质储层发育带(图4)。准噶尔盆地征10井三叠系克拉玛依组在6500 m左右的优质储层发育带,其压力系数高达1.8(图4a);库车坳陷白垩系主力产层压力系数高达2.0以上,在超压带之下发育了异常高孔隙度的储层(图4b)。以上证据都表明超压发育对储层孔隙的保存具有非常重要的意义(段威等,2013郭旭升等,2020)。而超压的成因与生烃增压、良好膏盐岩盖层封闭导致的欠压实息息相关(郭小文等,2016罗晓容等,2023),在前陆盆地的形成过程中,快速压实、构造挤压等作用也能造成异常高压(罗晓容等,2013)。因此,立足盆地生烃凹陷,落实源-盖高效配置的层系和区带,是下一步在盆地深层寻找优质储层的关键。

  • 2.2.3 低地温场对成岩演化的抑制作用

  • 碎屑岩储层的成岩作用及其阶段与地层的古地温关系密切,地层温度的升高将会导致石英、伊利石等自生矿物在地层水中溶解度降低,从而发生沉淀(Barclay and Worden, 2000;蒋凌志等,2009冯佳睿等,2016操应长等,2022a)。但我国西部盆地长期保持的低地温场对延缓成岩作用的发生和孔隙的保存起到了至关重要的作用。如图5所示,塔里木盆地和准噶尔盆地的古地温梯度较低,平均约为20℃/km,是典型的冷盆。在埋深5000~8000 m的范围内,多数储层的成岩阶段仍以中成岩A1阶段为主(Qi Yukai et al.,2017),因此储层的孔隙度可高达15%~20%(表1),主要发育原生孔隙。相比之下,四川盆地和鄂尔多斯盆地地温梯度较高,平均介于30~40℃/km,现今储层成岩作用已进入中成岩A2—中成岩B阶段(操应长等,2022a)。因此,整体上储层物性略差,孔隙度多小于10%(表1)。

  • 除此之外,中西部不同盆地的地层埋藏过程及速率对储层孔隙的演化也有着重要的控制作用。天山南北的库车坳陷和准噶尔盆地南缘山前带,在喜马拉雅期天山褶皱隆升所造成的强烈挤压环境,均表现为典型的前陆盆地,主要以早期缓慢浅埋、晚期快速深埋的埋藏方式为主(图6a、b)。以库车坳陷的主力产层白垩系巴什基奇克组为例,侏罗纪—古近纪(130~23 Ma)长期缓慢的过程中,地层仅沉降至2000 m左右;从新近纪(23 Ma)以来地层迅速沉降并接受巨厚沉积。晚期快速深埋的时间较为短暂,颗粒间流体来不及排出而停留在储层颗粒间,故而压实作用未充分进行,颗粒间仍以点-线接触为主(图3f)。相较之下,四川盆地、鄂尔多斯盆地自二叠纪以来,以正常埋藏方式为主,沉积地层逐渐沉降至5000 m左右(图6c、d),因此压实作用普遍进行得较为彻底,现今储层中原生孔隙消失殆尽,颗粒接触紧密(图3e)。

  • 图4 准噶尔盆地、库车坳陷孔隙度与超压发育关系图

  • Fig.4 Relationship between overpressure development and porosity of Junggar basin and Kuqa depression

  • (a)—准噶尔盆地征10井;(b)— 库车坳陷克深井区

  • (a) —well Zheng10 of Junggar basin; (b) —well Kela 2 of Kuqa depression

  • 图5 中西部四大盆地储层物性与地温梯度关系

  • Fig.5 Relationship between geothermal gradients and reservoir properties in four major basins of central and western of China

  • 图6 中西部四大盆地重点层系埋藏史与孔隙演化图

  • Fig.6 Burial history and pore evolution of key strata in four major basins of central and western China

  • (a)一库车坳陷南斜坡新和地区三叠系;(b)一准喝尔盆地南缘白垩系清水河组;(c)一四川盆地普光地区三叠系须家河组;(d)一鄂尔多斯盆地东部二叠系石盒子组

  • (a)-Triassic in the Xinhe area of the southern slope of the Kuqa depression;(b)-Qingshuihe Formation of the Cretaceous in the southern margin of the Junggar basin;(c)-Xujiahe Formation of the Triassic in the Puguang area of the Sichuan basin;(d)-Shihezi Formation of Permian in the eastern Ordos basin

  • 2.2.4 烃类充注对孔隙的保护作用

  • 关于烃类充注对于孔隙的保护作用讨论由来已久,众说纷纭(Grant et al.,2014Bjørlykke,2014Hermana et al.,2017Ramadan et al.,2019)。大量勘探实践和研究表明,早期烃类的充注能够改变储层颗粒的润湿性,在颗粒表面形成连续油膜,从而抑制石英、伊利石甚至是高岭石的沉淀(袁珍等,2011曹斌风和孙卫,2011)。如塔里木盆地志留系柯坪塔格组,在加里东末期—海西晚期即发生了规模油气充注。随后在构造抬升剥蚀的影响下地层出露地表,原油遭到破坏而变为储层沥青。这些早期充注的油气附着于石英颗粒表面,改变了颗粒表面的润湿性,能够有效抑制后期石英加大边的生长,含沥青储层中几乎见不到石英加大边的生长,沥青与残存孔隙的总面孔率高达8.5%(图7a)。相较之下,早期未发生油气充注的储层中石英加大等自生矿物发育相对较为普遍,导致现今储层面孔率平均仅为5.6%(图7b)。

  • 然而,烃类充注对储层的保护作用很大程度上取决于矿物颗粒表面的润湿性及油气充注的期次。在大部分富石英颗粒的储层中,由于石英表面的润湿性通常表现为混合润湿的特征,部分颗粒表面仍表现为亲水特征(齐育楷等,2015),很难形成连续的油膜包裹(Barclay and Worden,2000),因此在不连续油膜包裹的矿物表面仍然能进行物质交换及矿物沉淀,如石英加大边的生长(图7c)。所以,多数情况下,烃类的充注只能在一定程度上减缓,但并不能阻止胶结作用的发生。

  • 此外,中新生代以来受喜马拉雅期运动的影响,地层快速埋深、油气充注期次较晚,如库车坳陷中新生界在20 Ma以来才开始发生油气充注,晚期充注的油气对胶结作用的发生很难起到抑制作用。

  • 2.2.5 溶蚀作用的增孔作用

  • 深层储层溶蚀作用的发育可以大大改善砂体的储集性能。依据定性的岩石学观察和解释,许多地质学家认为深层砂岩储层以次生溶蚀孔隙为主(Lambert,2006赵雪凤等,2007谭开俊等,2010Ehrenberg et al.,2012; 陈启林和黄启刚,2018Baqués et al.,2020; Rabaev et al.,2021)。薄片下常见到长石等硅铝酸盐矿物的溶蚀现象(图7d),从而为油气的运移和赋存提供了有效场所,例如塔里木盆地志留系的储层中,长石颗粒沿节理缝发生了强烈的溶蚀,在荧光照片中可见两期油气均沿溶蚀缝发生充注(图7e)。除了陆源碎屑矿物的溶蚀之外,成岩流体对于自生矿物的溶蚀对孔隙的形成起到了保存以及增加的双重作用。在成岩早期即发生沉淀的胶结物,可有效抑制压实作用对孔隙的破坏,后期当有酸性或碱性流体侵入时,这些矿物的溶蚀又能够进一步将所保存的孔隙释放。比如早期的连晶方解石胶结物,虽然最初在浅埋藏期将孔隙破坏殆尽,但这些胶结物有效地抵抗了压实作用,在后期溶蚀作用的改造下发生部分溶蚀。在塔里木盆地的志留系储层中,可见石英颗粒间互不接触,且孔隙中见方解石溶蚀残余,而后发生了油气充注(图7e)。诸如此类,高岭石矿物的沉淀也起到了相似的作用,通过溶蚀可将部分孔隙释放,起到了保孔作用(图7f)。

  • 实际上,在埋藏成岩阶段,储层孔隙度的增加,需要其中大量矿物发生溶解,且由孔隙水迁移将其产物带出储层。溶蚀物质迁移的规模决定了储层孔渗条件的改善程度。Bjørlykke and Jahren(2012)认为在一个封闭的且未受热液活动影响的地化环境中,受控于物质平衡,次生溶蚀孔隙发育和储层孔隙度净增加是不可能的。尽管薄片下见次生孔隙发育,但定量计算成岩某阶段储层中有多少物质被溶解、多少被沉淀是异常困难的。在浅埋藏阶段,受大气水的淋滤作用整个储层地是一个开放的地化体系。但是在深层封闭环境下,目前仍没有一个地化模型能较好地解释其中次生孔隙的形成及分布,制约了对溶蚀孔隙分布的预测。

  • 2.3 构造破裂提升了碎屑岩储层的渗透性能

  • 油气钻探实践表明,构造裂缝是改善深层碎屑岩储层渗流能力的关键因素。我国几乎所有的深层、超深层碎屑岩储层都受到了构造作用的影响,对于裂缝发育“甜点区”的准确预测是油气获得高产、稳产的关键(Zeng Lianbo et al.,2010; Guerriero et al.,2013; Lavenu et al.,2014; Rabaev et al.,2021)。裂缝的发育可显著提高特低渗或致密储层的基质渗透率,为流体运移提供渗流通道。近年来,针对致密砂岩储层以“断缝体”思路所开展的勘探成效显著(王俊鹏等,2014黄仁春等,2021马立元等,2022),裂缝甚至可成为油气分子的主要赋存场所(Zeng Lianbo and Li Xiangyang,2009丁文龙等,2015)。在四川盆地通江—马路背地区,大量的勘探实践表明,在早期构造隆升作用下,可以产生裂缝,在经过挤压、构造压实以及地层倒转的构造运动,之后也可以产生裂缝。不同类型的裂缝发育,会对基质储层有不同程度的改善,裂缝发育层段的储层物性要远高于裂缝不发育层段(图8a)。在塔里木盆地的顺托果勒低隆地区,裂缝有效沟通了深层砂岩储层的单砂体,可提高储层渗透率1~3个数量级(图8b)。且多数裂缝发育的储层,岩芯均可见油迹级别的显示(图8b),表明裂缝可作为良好的油气运移通道。因此,断层伴生缝、褶皱伴生缝与规模高能砂体的叠合带是“甜点”发育带。

  • 图7 中西部盆地深层储层典型成岩作用微观图版

  • Fig.7 Microscopic photos of diagenesis processes of deep reservoirs in the basins of central and western China

  • (a)—塔里木盆地志留系,顺901井,5298 m,早期油气充注有效抑制胶结作用;(b)—塔里木盆地志留系,顺9井,5397.32 m,无沥青储层中石英加大生长;(c)—准噶尔盆地侏罗系,永1井,5878 m,不连续油膜外石英次生加大;(d)—准噶尔盆地侏罗系,董7井,5224 m,长石溶蚀;(e)—塔里木盆地志留系,顺902井,5518.3 m,长石溶蚀后发生两期油气充注;(f)—鄂尔多斯盆地三叠系,红河12井,2091 m,高岭石溶蚀孔隙;Ca—方解石;Qog—石英次生加大

  • (a) —Silurian system in Tarim basin, well Shun 901, 5298 m, early oil and gas filling effectively inhibited cementation; (b) —Silurian system in Tarim basin, well Shun 9, 5397.32 m, quartz growth in asphalt free reservoir; (c) —Jurassic system in Junggar basin, well Yong-1, 5878 m, quartz secondary enlargement outside discontinuous oil film; (d) —Jurassic system in Junggar basin, well Dong 7, 5224 m, feldspar dissolution; (e) —Silurian system in Tarim basin, well Shun 902, 5518.3 m, two stages of oil and gas charging occurred after feldspar dissolution; (f) —Triassic in Ordos basin, well Honghe 12, 2091 m, kaolinite dissolution pores; Ca—calcite; Qog—quartz overgrowth

  • 更为重要的是,裂缝的发育能够提升甜点的级别甚至使非储层重新成为储层。库车坳陷侏罗系—下白垩统发育辫状河三角洲砂体,基质孔隙度较差而难以规模动用,此前中石化和中石油的多口钻井均未达到工业油气流标准。近日,在“断缝体”成储-成藏的模式和思路指导下,中石化在库车南斜坡新和地区部署的新北1井,在7200 m钻揭了白垩系亚格列木组裂缝-孔隙型储层。在喜马拉雅晚期受区域挤压构造应力场控制,裂缝大量形成,叠加烃源岩排酸溶蚀增孔,断溶双控极大地改善了储层物性(图9)。

  • 图8 四川盆地及塔里木盆地储层孔渗交会图

  • Fig.8 Porosity-permeability crossplot for reservoirs in the Sichuan basin and Tarim basin

  • (a)—通江—马路背地区须家河组;(b)—顺托果勒低隆地区柯坪塔格组

  • (a) —Xujiahe Formation in Tongjiang-Malubei area of Sichuan basin; (b) —Kepingtage Formation in Shuntuoguole low rift area of Tarim basin

  • 3 深层—超深层碎屑岩勘探方向

  • 通过对上述油气勘探实践的梳理,总结碎屑岩形成和保持的主控因素,深层—超深层仍有极广阔的勘探空间和前景(胡宗全等,2012)。瞄准高能沉积相带、落实有利成岩作用发育区、考虑构造破裂对储层的改造,寻找三元共控的有效储层,从盆地隆起部位向斜坡区战略转移,逼近主力烃源岩是勘探重要方向(表2、图10)。

  • 表2 中西部四大盆地碎屑岩主要勘探领域和方向

  • Table2 Main exploration fields and directions for clastic rocks in four major basins of central and western China

  • 3.1 海相沉积体系

  • 对于海相沉积体系,塔里木盆地泥盆系东河塘组发育纯净的滨岸石英砂岩,此前已在构造高点发现了哈德逊油气藏,下一步的勘探重点将由构造高点向着供源方向继续拓展。志留系柯坪塔格组已在顺托果勒低隆地区发现了顺9井油藏,主要以高位体系域的远滨砂坝沉积为主,储层普遍致密、开发难度大,下一步应向更深层寻找低位体系域三角洲高能沉积体系,在塔河地区已有多口井钻揭优质储层,塔中—顺北地区可能具备相似的沉积背景,储层物性更好。此外,叠加系列北东向通源走滑断裂的改造,可形成相断双控的有利储层发育带。四川盆地志留系小河坝组虽粒度较细,但与志留系烃源岩紧邻,高强度油气充注动力下致密储层仍能规模成藏,只要有砂岩发育的地层均见到气测显示,近期涪陵地区平桥2井在小河坝组试气获2.5×104 m3稳定工业气流,对沉寂多年的致密砂岩勘探起到了极大推动作用。鄂尔多斯盆地元古宇长城系发育滨浅海石英砂岩,在强水动力条件下形成了粒度粗、分选好和杂基含量少的优质储层,近期多口钻井揭示了元古宇裂陷槽内具备自生自储气藏勘探潜力,是盆地深层值得关注的潜力方向。

  • 图9 库车坳陷南斜坡新和地区埋藏史、成岩-孔隙演化史及典型微观铸体薄片

  • Fig.9 Burial history, diagenetic evolution, microscopic thin sections of casts from the Xinhe area, southern slope of the Kuqa depression

  • (a)—新北1井埋藏史、成岩-孔隙演化史图;(b)—新北1井,7211.23 m;(c)—新北1井,7217.84 m

  • (a) —burial history and diagenetic evolution history of well Xinbei 1; (b) —well Xinbei 1, 7211.23 m; (c) —well Xinbei 1, 7217.84 m

  • 3.2 陆相沉积体系

  • 对于陆相沉积体系,天山南北两大盆地的源内/近源沉积体系是近中期关注的重点。在准噶尔盆地腹部,围绕二叠系风城组、下乌尔禾组两套主力烃源岩,玛湖凹陷、盆1井西凹陷等大型生烃凹陷中沉积的多期辫状河三角洲相砂体,源储一体或紧邻配置,多期油气就近充注以及随之产生的超压,对储层的保存和形成具有重要意义,可形成高丰度的油气藏。在塔里木盆地库车坳陷,白垩系巴什基奇克组规模突破后,近期多口重点钻井相继在三叠系、侏罗系两套主力烃源岩层系中获得突破,山前带强构造应力挤压作用下形成的“断缝体”储层,证实了源储一体的成藏模式,展示了下凹进源勘探的良好勘探潜力。四川盆地三叠系须家河组发育大面积展布的厚层砂体,目前发现的气藏多以构造型为主,下一步可考虑向斜坡和凹陷带寻找地层-岩性油气藏的可能。虽埋深较大,但致密的基质储层叠加断裂裂缝的改造,仍具有规模勘探的潜力。

  • 图10 中西部地区深层—超深层碎屑岩有利勘探区带图

  • Fig.10 Map of favorable exploration areas for deep to ultra-deep clastic rocks in central and western regions of China

  • 4 结论

  • (1)碎屑岩有效油气储层的深度下限在很大程度上受到地质认识和工程技术的限制,并没有严格的地质界限,随着勘探程度和认识的提高而变化。不同盆地的不同区带、不同层系的不同岩性、在不同勘探阶段和不同的技术条件下,碎屑岩有效储层的深度下限具有很大的差异性。

  • (2)原始沉积作用控制了碎屑岩颗粒的矿物组成、粒度、分选、磨圆与杂基含量等,奠定了碎屑岩储层的原始孔隙条件,也影响着储层成岩作用和孔隙演化的走向。高能沉积环境中刚性颗粒含量、成分成熟度高,具备形成优质储层的条件。

  • (3)在成岩作用过程中存在抑制储层孔隙减少的保护性成岩作用。黏土矿物薄膜和液态烃充注可以阻断孔隙流体与颗粒表面接触从而抑制胶结作用。长期保持的低地温场能在一定程度上抑制或减缓成岩作用的发生。超压的存在会抑制储层的致密化过程,尤其是邻近各盆地主力烃源层和烃源灶,超压作用和油气充注使部分有效碎屑岩储层得以保留。

  • (4)在深层条件下,高温高压流体常引起一定程度的溶蚀作用,多期构造作用下成岩强度大的碎屑岩储层内发生复杂的裂缝,从而使致密化的碎屑岩储层在增加孔隙度的同时大幅度的提升渗透率,提升甜点的级别甚至使非储层重新成为储层。

  • (5)围绕富烃凹陷的深层,源内/近源层系是下一步勘探的重点。海相沉积体系中,塔里木盆地环绕满加尔凹陷周缘的泥盆系和志留系,在北东向走滑断裂的控制下油气纵向输导、规模成藏;四川盆地志留系源储紧邻是寻求致密油气突破的重点。陆相源内/近源成藏体系中,准噶尔盆地的二叠系—三叠系、塔里木盆地的三叠系—侏罗系、四川盆地三叠系、鄂尔多斯盆地的石炭系—二叠系发育源储一体或紧邻的成藏组合,富烃凹陷的斜坡带是下一步勘探的重点区带。

  • 参考文献

    • Aase N E, Bjørkum P A, Nadeau P H. 1996. The effect of grain-coating microquartz on preservation of reservoir porosity. AAPG Bulletin, 80(10): 1654~1673.

    • Baqués V, Ukar E, Laubach S E, Forstner S R, Fall A. 2020. Fracture, dissolution, and cementation events in Ordovician carbonate reservoirs, Tarim basin, NW China. Geofluids, (243): 1~28.

    • Barclay S A, Worden R H, Parnell J, Hall D L, Sterner S M. 2020. Assessment of fluid contacts and compartmentalization in sandstone reservoirs using fluid inclusions: An example from the magnus oil field, north Sea1. AAPG Bulletin, 84(4): 489~504.

    • Bjørlykke K. 2014. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 301: 1~14.

    • Bjørlykke K, Jahren J. 2012. Open or closed geochemical system during diagenesis in sedimentary basin: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. AAPG Bulletin, 96(12): 2193~2214.

    • Bloch S, Lander R H, Bonnell L. 2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 86(2): 301~328.

    • Bohi D R. 2014. Technological improvement in petroleum exploration and development. Productivity in natural resource industries. Routledge, 2014: 73~108.

    • Cao Binfeng, Sun Wei. 2011. Diagenesis of chang 6 reservoir in Xuecha block of Wuqi area. Natural Gas Geoscience, 22(6): 951~960 (in Chinese with English abstract).

    • Cao Yingchang, Yuan Guanghui, Yang Haijun, Wang Yanzhong, Liu Keyu, Zan Nianmin, Xi Kelai, Wang Jian. 2022a. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins. Acta Petrolei Sinica, 43(1): 112~140 (in Chinese with English abstract).

    • Cao Yingchang, Yuan Guanghui, Wang Yanzhong, Zan Nianmin, Jin Zihao, Liu Keyu, Xi Kelai, Wei Yihan, Sun Peipei. 2022b. Successive formation of secondary pores via feldspar dissolution in deeply buried feldspar-rich clastic reservoirs in typical petroliferous basins and its petroleum geological significance. Science China Earth Sciences, 65(9): 1673~1703.

    • Chen Gang, Hu Zongquan. 2018. Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at southeastern Ordos basin. Journal of China Coal Society, 43(6): 1572~1579 (in Chinese with English abstract).

    • Chen Qilin, Huang Chenggang. 2018. Research progress of modification of reservoirs by dissolution in sedimentary rock. Advances in Earth Science, 33(11): 1112~1129 (in Chinesewith English abstract).

    • Deng Yi, Gao Chonglong, Wang Jian, Liu Ming, Meng Yuanlin, Ren Ying, Liu Ke, Wang Ke. 2023. Deep reservoir characteristics and physical property controlling factors of Qigu Formation in western section of southern margin of Junggar basin. Modern Geology, 38(2): 335~349 (in Chinese with English abstract).

    • Ding Wenlong, Wang Xinghua, Hu Qiujia, Yin Shuai, Cao Xiangyu, Liu Jianjun. 2015. Progress in tight sandstone reservoir fractures research. Advances in Earth Science, 30(7): 737~750 (in Chinese with English abstract).

    • Dowey P J, Hodgson D M, Worden R H. 2012. Pre-requisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs: A review of subsurface examples. Marine and Petroleum Geology, 32(1): 63~75.

    • Duan Wei, Chen Jinding, Luo Chengfei, Tian Jinqiang, Guo Long, Lin Junfeng. 2013. Effects of formation overpressure on diagensis in the Dongfang block of Yinggehai basin. Acta Petrolei Sinica, 34(6): 1049~1059 (in Chinese with English abstract).

    • Dutton S P, Hutton M E, Ambrose W A, Childers A T, Loucks R G. 2018. Preservation of reservoir quality by chlorite coats in deep Tuscaloosa sandstones, central Louisiana, USA. Gulf Coast Association of Geological Societies, 7: 46~58.

    • Ehrenberg S N, Nadeau P H. 2005. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. AAPG Bulletin, 89(4): 435~445.

    • Ehrenberg S N, Walderhaug O, Bjørlykke K. 2012. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion? AAPG Bulletin, 96(2): 217~233.

    • Feng Jiarui, Gao Zhiyong, Cui Jinggang, Zhou Chuanmin. 2016. The exploration status and research advances of deep and ultra-deep clastic reservoirs. Advances in Earth Science, 31(7): 718~736 (in Chinese with English abstract).

    • Grant N T, Middleton A J, Archer S. 2014. Porosity trends in the Skagerrak Formation, Central Graben, United Kingdom Continental Shelf: The role of compaction and pore pressure history. AAPG Bulletin, 98(6): 1111~1143.

    • Guerriero V, Mazzoli S, Iannace A, Vitale S, Carravetta A, Strauss C. 2013. A permeability model for naturally fractured carbonate reservoirs. Marine and Petroleum Geology, 40: 115~134.

    • Guo Huajun, Si Xueqiang, Yuan Bo, Peng Bo, Ji Dongsheng, Chen Xiguang. 2022. The characteristics and main controlling factors of ultra-deep sandstone reservoir in the middle part of the southern margin of Junggar basin. Marine Origin Petroleum Geology, 27(3): 313~324 (in Chinese with English abstract).

    • Guo Xiaowen, Liu Keyu, Song Yan, Zhao Mengjun, Liu Shaobo, Zhuo Qingong, Lu Xuesong. 2016. Influences of hydrocarbon charging and overpressure on reservoir porosity in Kela-2 gas field of the Kuqa depression, Tarim basin. Oil & Gas Geology, 37(6): 935~943 (in Chinese with English abstract).

    • Guo Xusheng, Hu Dongfeng, Huang Renchun, Wei Zhihong, Duan Jinbao, Wei Xiangfeng, Fan Xiaojun, Mou Zhiwei. 2020. Deep and ultra-deep natural gas exploration in the Sichuan basin: Progress and prospect. Natural Gas Industry, 40(5): 1~14 (in Chinese with English abstract).

    • Guo Xusheng, Hu Zongquan, Li Shuangjian, Zheng Lunju, Zhu Dongya, Liu Junlong, Shen Baojian, Du Wei, Yu Lingjie, Liu Zengqin, Huangfu Ruilin. 2023. Progress and prospect of natural gas exploration and research in deep and ultra-deep strata. Petroleum Science Bulletin, 8(4): 461~474 (in Chinese with English abstract).

    • Hermana M, Ghosh D P, Sum C W. 2017. Discriminating lithology and pore fill in hydrocarbon prediction from seismic elastic inversion using absorption attributes. The Leading Edge, 36(11): 902~909.

    • Hu Suyun, Wang Xiaojun, Cao Zhenglin, Li Jianzhong, Gong Deyu, Xu Yang. 2020. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar basin, NW China. Petroleum Exploration and Development, 47(2): 266~279.

    • Hu Zongquan, Yin Wei, Wu Xinhe, Gao Jinhui, Li Song, Liu Chunyan, Chen Chunfang. 2012. Petroleum accumulation systems of clastic strata and their distribution in the four large-sized basins in central-western China. Oil & Gas Geology, 33(4): 561~570 (in Chinese with English abstract).

    • Hu Zongquan, Zheng Herong, Yin Wei, Liu Chunyan, Sun Chuanxiang, Xiao Christopher, Wang Fubin, Li Song, Chen Chunfang. 2020. Comparison of diagenetic characteristics and pore evolution in outcrops and cores of tight sandstone reservoirs in the Triassic Yanchang Formation, the Ordos basin, China. AAPG Bulletin, 104(11): 2429~2452.

    • Huang Haiping, Zhang Shuichang, Su Jin. 2016. Palaeozoic oil-source correlation in the Tarim basin, NW China: A review. Organic Geochemistry, 94: 32~46.

    • Huang Renchun, Liu Ruobing, Liu Ming, Cao Huanyu, Su Sai, Du Hongquan. 2021. Characteristics and genesis of fault-fracture reservoirs in the Xujiahe Formation, Tongjiang-Malubei area, northeastern Sichuan basin. Oil & Gas Geology, 42(4): 873~883 (in Chinese with English abstract).

    • Jia Chengzao, Pang Xiongqi. 2015. Research processes and main development directions of deep hydrocarbon geological theories. Acta Petroleum Sinica, 36(12): 1457~1469.

    • Jiang Lingzhi, Niu Jiayu, Zhang Qingchang, Xu Guomin, Meng Yuanlin, Xiao Lihua. 2009. Major factors analysis on controlling the formation of favorable reservoir in deep level of Bohai Bay basin. Geological Review, 55(1): 73~78 (in Chinese with English abstract).

    • Lambert L, Durlet C, Loreau J P, Marnier G. 2006. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing. Marine and Petroleum Geology, 23(1): 79~92.

    • Lander R H, Bonnell L M, Larese R E. 2008. Toward more accurate quartz cement models: The importance of euhedral versus noneuhedral growth rates. AAPG Bulletin, 92(11): 1537~1563.

    • Lavenu A P C, Lamarche J, Salardon R, Gallois A, Marié L, Gauthier B D M. 2014. Relating background fractures to diagenesis and rock physical properties in a platform-slope transect. Example of the Maiella Mountain (central Italy). Marine and Petroleum Geology, 51: 2~19.

    • Li Jian, She Yuanqi, Gao Yang, Yang Guiru, Li Mingpeng, Yang Shen. 2019. Onshore deep and ultra-deep natural gas exploration fields and potentials in China. China Petroleum Exploration, 24(4): 403~417 (in Chinese with English abstract).

    • Li Song, Tang Dazhen, Pan Zhejun, Xu Hao, Tao S, Liu Yanfei, Ren Pengfei. 2018. Geological conditions of deep coalbed methane in the eastern margin of the Ordos basin, China: Implications for coalbed methane development. Journal of Natural Gas Science and Engineering, 53: 394~402.

    • Liu Chun, Zhang Ronghu, Zhang Huiliang, Huang Wei, Mo Tao, Zhou Lu. 2017. Genetic types and geological significance of micro pores in tight sandstone reservoirs: A case study of the ultra-deep reservoir in the Kuqa foreland thrust belt, NW China. Acta Petrolei Sinica, 38(2): 150~159 (in Chinese with English abstract).

    • Luo Xiaorong, Hu Caizhi, Xiao Zhongyao, Zhao Jian, Zhang Baoshou, Yang Wan, Zhao Fengyun, Lei Yuhong, Zhang Likuan. 2015. Effects of carrier bed heterogeneity on hydrocarbon migration. Marine and Petroleum Geology, 68: 120~131.

    • Luo Xiaorong, Zhang Liqiang, Zhang Likuan, Lei Yuhong, Cheng Ming, Shi Hui, Cao Binfeng. 2020. Heterogeneity of clastic carrier bed and hydrocarbon migration and accumulation. Acta Petrolei Sinica, 41(3): 253~272 (in Chinese with English abstract).

    • Luo Xiaorong, Zhang Likuan, Zhang Liqiang, Liu Naigui, Yan Jianzhao, Lei Yuhong, Qi Yukai, Li Jun, Cheng Ming, Yan Yiming, Cao Binfeng. 2022. Effectiveness of deep-buried clastic reservoir beds and the evaluation methodology. Journal of Northwest University (Natural Science Edition), 52(6): 968~986 (in Chinese with English abstract).

    • Luo Xiaorong, Yang Haijun, Wang Zhenliang, Zhang Liqiang, Zhang Likuan, Lei Yuhong, Zhou Lu, Zhang Baoshou, Yan Yiming, Cao Binfeng, Liu Zhida. 2023. Heterogeneity characteristics of clastic reservoirs and hydrocarbon accumulation mode in deep-ultradeep basins. Acta Geologica Sinica, 97(9): 2802~2819 (in Chinese with English abstract).

    • Ma Liyuan, Qiu Guiqiang, Hu Caizhi, Xu Shilin, Chen Chunfang, Li Song. 2022. Reservoir forming mechanism of the Yanchang tight sandstone in Honghe oilfield, Ordos basin. Acta Sedimentologica Sinica, 40(6): 1762~1773 (in Chinese with English abstract).

    • Ma Yongsheng, Cai Xunyu, Zhao Peirong, Luo Yi, Zhang Xuefeng. 2010. Distribution and further exploration of the large-medium sized gas fields in Sichuan basin. Acta Petrolei Sinica, 31(3): 347~354 (in Chinese with English abstract).

    • Pan Rong, Zhu Xiaomin, Wang Xingxing, Zhang Jianfeng. 2014. Advancement on formation mechanism of deep effective clastic reservoir. Lithologic Reservoirs, 26(4): 73~80 (in Chinese with English abstract).

    • Pang Xiongqi, Jia Chengzao, Wang Wenyan. 2015. Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins. Petroleum Science, 12: 1~53.

    • Qi Yukai, Luo Xiaorong, He Yonghong, Dang Hailong, Liu Naigui, Lei Yuhong, Zhang Likuan. 2015. Experimental studies on oil imbibition in mixed-wetting porous medium. Chinese Journal of Geology, 50(4): 1208~1217 (in Chinese with English abstract).

    • Qi Yukai, Luo Xiaorong, Wang Yi, Liu Naigui, Zhou Bo, Yan Jianzhao, Zhang Likuan. 2017. Mechanical study of the effect of fractional-wettability on multiphase fluid flow. International Journal of Multiphase Flow, 93: 205~212.

    • Qi Yukai, Lin Huixi, Zhang Fushun, Zhu Xiuxiang, Hu Hanwen, Zhou Bo, Wei Qing. 2021. The relationship between diagenetic evolution and hydrocarbon charge in deep tight reservoirs: A case study from Kepingtage Formation of S9 well block in Tarim basin. Geofluids, 2021: 1~18.

    • Rabaev R U, Chibisov A V, Kotenev A Y, Kotenev M Y, Efimov E R. 2021. Mathematical modelling of carbonate reservoir dissolution and prediction of the controlled hydrochloric acid treatment efficiency. SOCAR Proceedings, (2): 40~46.

    • Ramadan M A M, Abd El Hamed A G, Badran F, Nooh A Z. 2019. Relation between hydrocarbon saturation and pore pressure evaluation for the Amal Field area, Gulf of Suez, Egypt. Egyptian Journal of Petroleum, 28(1): 1~9.

    • Scotchman I C, Doré A G, Spencer A M. 2018. Petroleum systems and results of exploration on the Atlantic margins of the UK, Faroes & Ireland: What have we learnt? Petroleum Geology Conference Series. London: The Geological Society of London, 8(1): 187~197.

    • Shi Chaoqun, Wang Zuotao, Zhu Wenhui, Jiang Jun, Zhang Huifang, Zhou Siyu, Lou Hong, Zuo Xiaojun, Li Gang, Wang Zhenhong. 2020. Fracture characteristic and its impact on reservoir quality of ultra-deep reservoir in Dabei region, Kelasu tectonic belt, Kuqa depression, Tarim basin. Natural Gas Geoscience, 31(12): 1687~1699 (in Chinese with English abstract).

    • Song Yan, Zhao Mengjun, Fang Shihu, Xie Huiwen, Liu Shaobo, Zhuo Qingong. 2012. Dominant factors of hydrocarbon distribution in the foreland basins, central and western China. Petroleum Exploration and Development, 39(3): 285~294.

    • Sun Jing, You Xincai, Zhang Quan, Xue Jingjing, Chang Qiusheng. 2023. Development characteristics and genesis of deep tight conglomerate reservoirs of Mahu area in Junggar basin. Natural Gas Geoscience, 34(2): 240~252 (in Chinese with English abstract).

    • Sun Longde, Zou Caineng, Zhu Rukai, Zhang Yunhui, Zhang Shuichang, Zhang Baomin, Zhu Guangyou, Gao Zhiyong. 2013. Formation, distribution and potential of deep hydrocarbon resources in China. Petroleum Exploration and Development, 40(6): 641~649 (in Chinese with English abstract).

    • Tan Kaijun, Zhang Fan, Zhao Yingcheng, Pan Jianguo, Yin Lu. 2010. Characteristics and genetic mechanism of volcanic dissolved pore in northwestern margin of Junggar basin. Lithologic Reservoirs, 22(3): 22~25 (in Chinese with English abstract).

    • Tang Yong, Song Yong, He Wenjun, Zhao Long, Yang Haibo, Zhao Changyong, Zheng Menglin, Sun Shuai, Fei Liying. 2022. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar basin. Oil & Gas Geology, 43(1): 132~148 (in Chinese with English abstract).

    • Taylor T R, Giles M R, Hathon L A, Diggs T N, Braunsdorf N R, Birbiglia G V, Kittridge M G, Macaulay C I, Espejo I S. 2010. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bulletin, 94(8): 1093~1132.

    • Tian Jun, Wang Qinghua, Yang Haijun, Li Yong. 2021. Petroleum exploration history and enlightenment in Tarim basin. Xinjiang Petroleum Geology, 42(3): 272~282 (in Chinese with English abstract).

    • Walderhaug O. 2000. Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjorn field, northern North Sea. AAPG Bulletin, 84(9): 1325~1339.

    • Wang Bo, Zhang Ronghu, Ren Kangxu, Luo Peng, Liu Chun. 2011. Prediction of the lower limit of burial depth for effective reservoirs in the Dabei-Kelasu deep structural belt of Kuqa depression. Acta Petrolei Sinica, 32(2): 212~218 (in Chinese with English abstract).

    • Wang Cheng, Shao Hongmei, Hong Shuxin, Guan Yanhua, Teng Hongda, Jia Pengtao, Xue Yunfei. 2007. The lower limits of physical properties for deep clastic reservoirs in north Songliao basin and its relationship with microscopic features. Petroleum Geology & Oilfield Development in Daqing, 26(5): 18~20, 24 (in Chinese with English abstract).

    • Wang Jian, Gao Chonglong, Bai Lei, Xiang Baoli, Liu Jin, Xian Benzhong, Lian Lixia, Liu Ke. 2023. Diagenesis and pore evolution of Cretaceous Qingshuihe Formation reservoir in western section of southern margin of Junggar basin. Petroleum Geology and Experiment, 45(4): 632~645 (in Chinese with English abstract).

    • Wang Junpeng, Zhang Ronghu, Zhao Jilong, Wang Ke, Wang Bo, Ceng Qinglu, Liu Chun. 2014. Characteristics and evaluation of fractures in ultra-deep tight sandstone reservoir: Taking Keshen gasfield in Tarim basin, NW China as an example. Natural Gas Geoscience, 25(11): 1735~1745 (in Chinese with English abstract).

    • Wang Ke, Zhang Ronghu, Tang Yong, Yu Zhaofeng, Yang Zhao, Tang Yangang, Zhou Lu. 2022. Structural diagenesis and reservoir prediction of Lower Jurassic Ahe Formation in the northern structural belt of Kuqa depression. Acta Petrolei Sinica, 43(7): 925~940 (in Chinese with English abstract).

    • Wang Yanzhong, Cao Yingchang. 2010. Lower property limit and controls on deep effective clastic reservoirs of Paleogene in Chezhen depression. Acta Sedimentologica Sinica, 28(4): 752~761 (in Chinese with English abstract).

    • Wang Zhongnan, Luo Xiaorong, Liu Keyu, Fan Yuchen, Wang Xiangzeng. 2021. Influence of chlorite on wettability in tight sandstone reservoir of Yanchang Formation of Upper Triassic in Ordos basin. Scientia Sinica (Terrae), 51(7): 1123~1134 (in Chinese with English abstract).

    • Worden R H, Oxtoby N H, Smalley P C. 1998. Can oil emplacement prevent quartz cementation in sandstones?. Petroleum Geoscience, 4: 129~137.

    • Xin Yi, Wang Guiwen, Liu Bingchang, Ai Yong, Cai Deyang, Yang Shuwen, Liu Hongkun, Xie Yuqiang, Chen Kangjun. 2022. Pore structure evaluation in ultra-deep tight sandstones using NMR measurements and fractal analysis. Journal of Petroleum Science and Engineering, 211: 110180.

    • Yuan Zhen, Li Wenhou, Guo Yanqin. 2011. Effects of oil emplacement on diagenetic evolution of sandstone reservoir in Yanchang Formation, southeastern Ordos basin. Geological Journal of China Universities, 17(4): 594~604 (in Chinese with English abstract).

    • Zeng Lianbo, Li Xiangyang. 2009. Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos basin, China. AAPG Bulletin, 93(4): 461~477.

    • Zeng Lianbo, Jiang Jianwei, Yang Yongli. 2010. Fractures in the low porosity and ultra-low permeability glutenite reservoirs: A case study of the late Eocene Hetaoyuan Formation in the Anpeng oilfield, Nanxiang basin, China. Marine and Petroleum Geology, 27(7): 1642~1650.

    • Zhang Xingwen, Pang Xiongqi, Li Caijun, Yu Jiwang, Wang Wenyang, Xiao Huiyi, Li Changrong, Yu Jitao. 2021. Geological characteristics, formation conditions and accumulation model of deep and ultra-deep, high-porosity and high-permeability clastic reservoirs: A case study of Gulf of Mexico basin. Acta Petrolei Sinica, 42(4): 466~480 (in Chinese with English abstract).

    • Zhang Yuexia, Ding Lin, Zhou Fengjuan, Li Xiaoyan. 2023. Study on the lower limits of permeability and buried depth of Paleogene sandstone reservoirs in the Zhu Ⅰ depression, Pearl River Mouth basin. Marine Origin Petroleum Geology, 28(3): 311~322 (in Chinese with English abstract).

    • Zhao Xuefeng, Zhu Guangyou, Liu Qinfu, Zhang Shuichang. 2007. Main control factors of pore development in deep marine carbonate reservoirs. Natural Gas Geoscience, 18(4): 514~521 (in Chinese with English abstract).

    • Zhong Dakang, Zhu Xiaomin, Wang Hongjun. 2008. Characteristics and formation mechanism analysis of deep quality clastic rock reservoirs in China. Scientia Sinica (Terrae), 38(z1): 11~18 (in Chinese with English abstract).

    • Zhou Dongsheng, Liu Guangxiang, Ye Jun, Jia Cunshan. 2004. Study on the mechanisms for preserving anomalously high porosity in deep buried sandstone reservoirs. Petroleum Geology and Experiment, 26(1): 40~46 (in Chinese with English abstract).

    • Zhu Guangyou, Zhang Shuichang. 2009. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China. Acta Petrolei Sinica, 30(6): 793~802 (in Chinese with English abstract).

    • Zhu Guangyou, Wang Huitong, Weng Na, Yang Haijun, Zhang Ke, Liao Fengrong, Yuan Neng. 2015. Geochemistry, origin and accumulation of continental condensate in the ultra-deep-buried Cretaceous sandstone reservoir, Kuqa depression, Tarim basin, China. Marine and Petroleum Geology, 65: 103~113.

    • Zou Caineng, Tao Shizhen, Zhang Xiangxiang, He Dongbo, Zhou Chuanmin, Gao Xiaohui. 2009. Geologic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China's Large Gas Provinces of low porosity and permeability. Science in China (Series D: Earth Sciences), 52(8): 1068~1090.

    • 操应长, 远光辉, 杨海军, 王艳忠, 刘可禹, 昝念民, 葸克来. 2022a. 王健含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展. 石油学报, 43(1): 112~140.

    • 曹斌风, 孙卫.2011. 吴旗地区薛岔区块延长组长6砂岩储层成岩作用研究.天然气地球科学, 22(6): 951~960.

    • 陈刚, 胡宗全. 2018. 鄂尔多斯盆地东南缘延川南深层煤层气富集高产模式探讨. 煤炭学报, 43(6): 1572~1579.

    • 陈启林, 黄成刚. 2018. 沉积岩中溶蚀作用对储集层的改造研究进展. 地球科学进展, 33(11): 1112~1129.

    • 邓毅, 高崇龙, 王剑, 刘明, 孟元林, 任影, 刘可, 王柯.2023. 准噶尔盆地南缘西段齐古组深层储层特征及物性控制因素.现代地质, 38(2): 335~349.

    • 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 2015. 致密砂岩储层裂缝研究进展. 地球科学进展, 30(7): 737~750.

    • 段威, 陈金定, 罗程飞, 田金强, 郭龙, 林俊峰. 2013. 莺歌海盆地东方区块地层超压对成岩作用的影响. 石油学报, 34(6): 1049~1059.

    • 冯佳睿, 高志勇, 崔京钢, 周川闽. 2016. 深层、超深层碎屑岩储层勘探现状与研究进展. 地球科学进展, 31(7): 718~736.

    • 郭华军, 司学强, 袁波, 彭博, 冀冬生, 陈希光. 2022. 准噶尔盆地南缘中段超深层相对优质砂岩储层发育特征及主控因素. 海相油气地质, 27(3): 313~324.

    • 郭小文, 刘可禹, 宋岩, 赵孟军, 柳少波, 卓勤功, 鲁雪. 2016. 库车坳陷克拉2气田油气充注和超压对储层孔隙的影响. 石油与天然气地质, 37(6): 935~943.

    • 郭旭升, 胡东风, 黄仁春, 魏志红, 段金宝, 魏祥峰, 范小军, 缪志伟. 2020. 四川盆地深层—超深层天然气勘探进展与展望. 天然气工业, 40(5): 1~14.

    • 郭旭升, 胡宗全, 李双建, 魏志红, 段金宝, 魏祥峰, 范小军, 缪志伟. 2023. 深层—超深层天然气勘探研究进展与展望. 石油科学通报, 8(4): 461~474.

    • 胡宗全, 尹伟, 伍新和, 高金慧, 李松, 刘春燕, 陈纯芳. 2012. 中国中西部四大盆地碎屑岩油气成藏体系及其分布规律. 石油与天然气地质, 33(4): 561~570.

    • 黄仁春, 刘若冰, 刘明, 曹环宇, 宿赛, 杜红权. 2021. 川东北通江—马路背地区须家河组断缝体储层特征及成因. 石油与天然气地质, 42(4): 873~883.

    • 贾承造, 庞雄奇. 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457~1469.

    • 蒋凌志, 牛嘉玉, 张庆昌, 徐国民, 孟元林, 肖丽华. 2009. 渤海湾盆地深部有利储层发育的主控因素. 地质论评, 55(1): 73~78.

    • 李剑, 佘源琦, 高阳, 杨桂茹, 李明鹏, 杨慎. 2019. 中国陆上深层—超深层天然气勘探领域及潜力. 中国石油勘探, 24(4): 403~417.

    • 刘春, 张荣虎, 张惠良, 黄伟, 莫涛, 周露. 2017. 致密砂岩储层微孔隙成因类型及地质意义——以库车前陆冲断带超深层储层为例. 石油学报, 38(2): 150~159.

    • 罗晓容. 2013. 前陆盆地异常流体: 地质作用及其增压效率. 地质科学, 48(1): 32~49

    • 罗晓容, 张立强, 张立宽, 雷裕红, 程明, 施辉, 曹斌风.2020.碎屑岩输导层非均质性与油气运聚成藏.石油学报, 41(3): 253~272.

    • 罗晓容, 张立宽, 刘乃贵, 闫建钊, 雷裕红, 齐育楷, 李俊, 程明, 严一鸣, 曹斌风. 2022. 深层碎屑岩储层有效性及其评价方法. 西北大学学报(自然科学版), 52(6): 968~986.

    • 罗晓容, 杨海军, 王震亮, 张立强, 张立宽, 雷裕红, 周路, 张宝收, 严一鸣, 曹斌风, 刘志达. 2023. 深层—超深层碎屑岩储层非均质性特征与油气成藏模式. 地质学报, 97(9): 2802~2819.

    • 马立元, 邱桂强, 胡才志, 徐士林, 陈纯芳, 李松. 2022. 鄂尔多斯盆地红河油田延长组致密砂岩成藏机制分析. 沉积学报, 40(6): 1762~1773.

    • 马永生, 蔡勋育, 赵培荣, 罗毅, 张学丰. 2010. 四川盆地大中型天然气田分布特征与勘探方向. 石油学报, 31(3): 347~354.

    • 潘荣, 朱筱敏, 王星星, 张剑锋. 2014. 深层有效碎屑岩储层形成机理研究进展. 岩性油气藏, 26(4): 73~80.

    • 齐育楷, 罗晓容, 贺永红, 党海龙, 刘乃贵, 雷裕红, 张立宽. 2015. 混合润湿孔隙介质中油自吸实验研究. 地质科学, 50(4): 1208~1217.

    • 史超群, 王佐涛, 朱文慧, 蒋俊, 张慧芳, 周思宇, 娄洪, 左小军, 李刚, 王振鸿. 2020. 塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用. 天然气地球科学, 31(12): 1687~1699.

    • 孙靖, 尤新才, 张全, 薛晶晶, 常秋生. 2023. 准噶尔盆地玛湖地区深层致密砾岩储层发育特征及成因. 天然气地球科学, 34(2): 240~252.

    • 孙龙德, 邹才能, 朱如凯, 张云辉, 张水昌, 张宝民, 朱光有, 高志勇. 2013. 中国深层油气形成、分布与潜力分析. 石油勘探与开发, 40(6): 641~649.

    • 谭开俊, 张帆, 赵应成, 潘建国, 尹路. 2010. 准噶尔盆地西北缘火山岩溶蚀孔隙特征及成因机制. 岩性油气藏, 22(3): 22~25.

    • 唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 2022. 准噶尔叠合盆地复式油气成藏规律. 石油与天然气地质, 43(1): 132~148.

    • 田军, 王清华, 杨海军, 李勇. 2021. 塔里木盆地油气勘探历程与启示. 新疆石油地质, 42(3): 272~282.

    • 王波, 张荣虎, 任康绪, 罗鹏, 刘春. 2011. 库车坳陷大北—克拉苏深层构造带有效储层埋深下限预测. 石油学报, 32(2): 212~218.

    • 王成, 邵红梅, 洪淑新, 官艳华, 滕宏达, 贾朋涛, 薛云飞. 2007. 松辽盆地北部深层碎屑岩储层物性下限及与微观特征的关系. 大庆石油地质与开发, 26(5): 18~20+24.

    • 王剑, 高崇龙, 白雷, 向宝力, 刘金, 鲜本忠, 连丽霞, 刘可. 2023. 准噶尔盆地南缘西段白垩系清水河组储层成岩作用及孔隙演化. 石油实验地质, 45(4): 632~645.

    • 王俊鹏, 张荣虎, 赵继龙, 王珂, 王波, 曾庆鲁, 刘春. 2014. 超深层致密砂岩储层裂缝定量评价及预测研究——以塔里木盆地克深气田为例. 天然气地球科学, 25(11): 1735~1745.

    • 王珂, 张荣虎, 唐永, 余朝丰, 杨钊, 唐雁刚, 周露. 2022. 库车坳陷北部构造带侏罗系阿合组构造成岩作用与储层预测. 石油学报, 43(7): 925~940.

    • 王艳忠, 操应长. 2010. 车镇凹陷古近系深层碎屑岩有效储层物性下限及控制因素. 沉积学报, 28(4): 752~761.

    • 王忠楠, 罗晓容, 刘可禹, 范雨辰, 王香增. 2021. 鄂尔多斯盆地上三叠统延长组致密砂岩储层绿泥石对润湿性的影响. 中国科学: 地球科学, 51(7): 1123~1134.

    • 袁珍, 李文厚, 郭艳琴. 2011. 鄂尔多斯盆地东南缘延长组石油充注对砂岩储层成岩演化的影响.高校地质学报, 17(4): 594~604.

    • 张兴文, 庞雄奇, 李才俊, 于吉旺, 汪文洋, 肖惠译, 李昌荣, 余季陶. 2021. 深层—超深层高孔高渗碎屑岩油气藏地质特征, 形成条件及成藏模式——以墨西哥湾盆地为例.石油学报, 42(4): 466~480.

    • 张月霞, 丁琳, 周凤娟, 李晓艳. 2023. 珠江口盆地珠一坳陷古近系砂岩储层渗透率和埋深下限研究. 海相油气地质, 28(3): 311~322.

    • 赵雪凤, 朱光有, 刘钦甫, 张水昌. 2007. 深部海相碳酸盐岩储层孔隙发育的主控因素研究. 天然气地球科学, 18(4): 514~521.

    • 钟大康, 朱筱敏, 王红军. 2008. 中国深层优质碎屑岩储层特征与形成机理分析. 中国科学(D辑: 地球科学), (S1): 11~18.

    • 周东升, 刘光祥, 叶军, 贾存善. 2004. 深部砂岩异常孔隙的保存机制研究. 石油实验地质, 26 (1): 40~46.

    • 朱光有, 张水昌. 2009. 中国深层油气成藏条件与勘探潜力. 石油学报, 30(6): 793~802.

  • 参考文献

    • Aase N E, Bjørkum P A, Nadeau P H. 1996. The effect of grain-coating microquartz on preservation of reservoir porosity. AAPG Bulletin, 80(10): 1654~1673.

    • Baqués V, Ukar E, Laubach S E, Forstner S R, Fall A. 2020. Fracture, dissolution, and cementation events in Ordovician carbonate reservoirs, Tarim basin, NW China. Geofluids, (243): 1~28.

    • Barclay S A, Worden R H, Parnell J, Hall D L, Sterner S M. 2020. Assessment of fluid contacts and compartmentalization in sandstone reservoirs using fluid inclusions: An example from the magnus oil field, north Sea1. AAPG Bulletin, 84(4): 489~504.

    • Bjørlykke K. 2014. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 301: 1~14.

    • Bjørlykke K, Jahren J. 2012. Open or closed geochemical system during diagenesis in sedimentary basin: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. AAPG Bulletin, 96(12): 2193~2214.

    • Bloch S, Lander R H, Bonnell L. 2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 86(2): 301~328.

    • Bohi D R. 2014. Technological improvement in petroleum exploration and development. Productivity in natural resource industries. Routledge, 2014: 73~108.

    • Cao Binfeng, Sun Wei. 2011. Diagenesis of chang 6 reservoir in Xuecha block of Wuqi area. Natural Gas Geoscience, 22(6): 951~960 (in Chinese with English abstract).

    • Cao Yingchang, Yuan Guanghui, Yang Haijun, Wang Yanzhong, Liu Keyu, Zan Nianmin, Xi Kelai, Wang Jian. 2022a. Current situation of oil and gas exploration and research progress of the origin of high-quality reservoirs in deep-ultra-deep clastic reservoirs of petroliferous basins. Acta Petrolei Sinica, 43(1): 112~140 (in Chinese with English abstract).

    • Cao Yingchang, Yuan Guanghui, Wang Yanzhong, Zan Nianmin, Jin Zihao, Liu Keyu, Xi Kelai, Wei Yihan, Sun Peipei. 2022b. Successive formation of secondary pores via feldspar dissolution in deeply buried feldspar-rich clastic reservoirs in typical petroliferous basins and its petroleum geological significance. Science China Earth Sciences, 65(9): 1673~1703.

    • Chen Gang, Hu Zongquan. 2018. Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at southeastern Ordos basin. Journal of China Coal Society, 43(6): 1572~1579 (in Chinese with English abstract).

    • Chen Qilin, Huang Chenggang. 2018. Research progress of modification of reservoirs by dissolution in sedimentary rock. Advances in Earth Science, 33(11): 1112~1129 (in Chinesewith English abstract).

    • Deng Yi, Gao Chonglong, Wang Jian, Liu Ming, Meng Yuanlin, Ren Ying, Liu Ke, Wang Ke. 2023. Deep reservoir characteristics and physical property controlling factors of Qigu Formation in western section of southern margin of Junggar basin. Modern Geology, 38(2): 335~349 (in Chinese with English abstract).

    • Ding Wenlong, Wang Xinghua, Hu Qiujia, Yin Shuai, Cao Xiangyu, Liu Jianjun. 2015. Progress in tight sandstone reservoir fractures research. Advances in Earth Science, 30(7): 737~750 (in Chinese with English abstract).

    • Dowey P J, Hodgson D M, Worden R H. 2012. Pre-requisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs: A review of subsurface examples. Marine and Petroleum Geology, 32(1): 63~75.

    • Duan Wei, Chen Jinding, Luo Chengfei, Tian Jinqiang, Guo Long, Lin Junfeng. 2013. Effects of formation overpressure on diagensis in the Dongfang block of Yinggehai basin. Acta Petrolei Sinica, 34(6): 1049~1059 (in Chinese with English abstract).

    • Dutton S P, Hutton M E, Ambrose W A, Childers A T, Loucks R G. 2018. Preservation of reservoir quality by chlorite coats in deep Tuscaloosa sandstones, central Louisiana, USA. Gulf Coast Association of Geological Societies, 7: 46~58.

    • Ehrenberg S N, Nadeau P H. 2005. Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. AAPG Bulletin, 89(4): 435~445.

    • Ehrenberg S N, Walderhaug O, Bjørlykke K. 2012. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion? AAPG Bulletin, 96(2): 217~233.

    • Feng Jiarui, Gao Zhiyong, Cui Jinggang, Zhou Chuanmin. 2016. The exploration status and research advances of deep and ultra-deep clastic reservoirs. Advances in Earth Science, 31(7): 718~736 (in Chinese with English abstract).

    • Grant N T, Middleton A J, Archer S. 2014. Porosity trends in the Skagerrak Formation, Central Graben, United Kingdom Continental Shelf: The role of compaction and pore pressure history. AAPG Bulletin, 98(6): 1111~1143.

    • Guerriero V, Mazzoli S, Iannace A, Vitale S, Carravetta A, Strauss C. 2013. A permeability model for naturally fractured carbonate reservoirs. Marine and Petroleum Geology, 40: 115~134.

    • Guo Huajun, Si Xueqiang, Yuan Bo, Peng Bo, Ji Dongsheng, Chen Xiguang. 2022. The characteristics and main controlling factors of ultra-deep sandstone reservoir in the middle part of the southern margin of Junggar basin. Marine Origin Petroleum Geology, 27(3): 313~324 (in Chinese with English abstract).

    • Guo Xiaowen, Liu Keyu, Song Yan, Zhao Mengjun, Liu Shaobo, Zhuo Qingong, Lu Xuesong. 2016. Influences of hydrocarbon charging and overpressure on reservoir porosity in Kela-2 gas field of the Kuqa depression, Tarim basin. Oil & Gas Geology, 37(6): 935~943 (in Chinese with English abstract).

    • Guo Xusheng, Hu Dongfeng, Huang Renchun, Wei Zhihong, Duan Jinbao, Wei Xiangfeng, Fan Xiaojun, Mou Zhiwei. 2020. Deep and ultra-deep natural gas exploration in the Sichuan basin: Progress and prospect. Natural Gas Industry, 40(5): 1~14 (in Chinese with English abstract).

    • Guo Xusheng, Hu Zongquan, Li Shuangjian, Zheng Lunju, Zhu Dongya, Liu Junlong, Shen Baojian, Du Wei, Yu Lingjie, Liu Zengqin, Huangfu Ruilin. 2023. Progress and prospect of natural gas exploration and research in deep and ultra-deep strata. Petroleum Science Bulletin, 8(4): 461~474 (in Chinese with English abstract).

    • Hermana M, Ghosh D P, Sum C W. 2017. Discriminating lithology and pore fill in hydrocarbon prediction from seismic elastic inversion using absorption attributes. The Leading Edge, 36(11): 902~909.

    • Hu Suyun, Wang Xiaojun, Cao Zhenglin, Li Jianzhong, Gong Deyu, Xu Yang. 2020. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar basin, NW China. Petroleum Exploration and Development, 47(2): 266~279.

    • Hu Zongquan, Yin Wei, Wu Xinhe, Gao Jinhui, Li Song, Liu Chunyan, Chen Chunfang. 2012. Petroleum accumulation systems of clastic strata and their distribution in the four large-sized basins in central-western China. Oil & Gas Geology, 33(4): 561~570 (in Chinese with English abstract).

    • Hu Zongquan, Zheng Herong, Yin Wei, Liu Chunyan, Sun Chuanxiang, Xiao Christopher, Wang Fubin, Li Song, Chen Chunfang. 2020. Comparison of diagenetic characteristics and pore evolution in outcrops and cores of tight sandstone reservoirs in the Triassic Yanchang Formation, the Ordos basin, China. AAPG Bulletin, 104(11): 2429~2452.

    • Huang Haiping, Zhang Shuichang, Su Jin. 2016. Palaeozoic oil-source correlation in the Tarim basin, NW China: A review. Organic Geochemistry, 94: 32~46.

    • Huang Renchun, Liu Ruobing, Liu Ming, Cao Huanyu, Su Sai, Du Hongquan. 2021. Characteristics and genesis of fault-fracture reservoirs in the Xujiahe Formation, Tongjiang-Malubei area, northeastern Sichuan basin. Oil & Gas Geology, 42(4): 873~883 (in Chinese with English abstract).

    • Jia Chengzao, Pang Xiongqi. 2015. Research processes and main development directions of deep hydrocarbon geological theories. Acta Petroleum Sinica, 36(12): 1457~1469.

    • Jiang Lingzhi, Niu Jiayu, Zhang Qingchang, Xu Guomin, Meng Yuanlin, Xiao Lihua. 2009. Major factors analysis on controlling the formation of favorable reservoir in deep level of Bohai Bay basin. Geological Review, 55(1): 73~78 (in Chinese with English abstract).

    • Lambert L, Durlet C, Loreau J P, Marnier G. 2006. Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing. Marine and Petroleum Geology, 23(1): 79~92.

    • Lander R H, Bonnell L M, Larese R E. 2008. Toward more accurate quartz cement models: The importance of euhedral versus noneuhedral growth rates. AAPG Bulletin, 92(11): 1537~1563.

    • Lavenu A P C, Lamarche J, Salardon R, Gallois A, Marié L, Gauthier B D M. 2014. Relating background fractures to diagenesis and rock physical properties in a platform-slope transect. Example of the Maiella Mountain (central Italy). Marine and Petroleum Geology, 51: 2~19.

    • Li Jian, She Yuanqi, Gao Yang, Yang Guiru, Li Mingpeng, Yang Shen. 2019. Onshore deep and ultra-deep natural gas exploration fields and potentials in China. China Petroleum Exploration, 24(4): 403~417 (in Chinese with English abstract).

    • Li Song, Tang Dazhen, Pan Zhejun, Xu Hao, Tao S, Liu Yanfei, Ren Pengfei. 2018. Geological conditions of deep coalbed methane in the eastern margin of the Ordos basin, China: Implications for coalbed methane development. Journal of Natural Gas Science and Engineering, 53: 394~402.

    • Liu Chun, Zhang Ronghu, Zhang Huiliang, Huang Wei, Mo Tao, Zhou Lu. 2017. Genetic types and geological significance of micro pores in tight sandstone reservoirs: A case study of the ultra-deep reservoir in the Kuqa foreland thrust belt, NW China. Acta Petrolei Sinica, 38(2): 150~159 (in Chinese with English abstract).

    • Luo Xiaorong, Hu Caizhi, Xiao Zhongyao, Zhao Jian, Zhang Baoshou, Yang Wan, Zhao Fengyun, Lei Yuhong, Zhang Likuan. 2015. Effects of carrier bed heterogeneity on hydrocarbon migration. Marine and Petroleum Geology, 68: 120~131.

    • Luo Xiaorong, Zhang Liqiang, Zhang Likuan, Lei Yuhong, Cheng Ming, Shi Hui, Cao Binfeng. 2020. Heterogeneity of clastic carrier bed and hydrocarbon migration and accumulation. Acta Petrolei Sinica, 41(3): 253~272 (in Chinese with English abstract).

    • Luo Xiaorong, Zhang Likuan, Zhang Liqiang, Liu Naigui, Yan Jianzhao, Lei Yuhong, Qi Yukai, Li Jun, Cheng Ming, Yan Yiming, Cao Binfeng. 2022. Effectiveness of deep-buried clastic reservoir beds and the evaluation methodology. Journal of Northwest University (Natural Science Edition), 52(6): 968~986 (in Chinese with English abstract).

    • Luo Xiaorong, Yang Haijun, Wang Zhenliang, Zhang Liqiang, Zhang Likuan, Lei Yuhong, Zhou Lu, Zhang Baoshou, Yan Yiming, Cao Binfeng, Liu Zhida. 2023. Heterogeneity characteristics of clastic reservoirs and hydrocarbon accumulation mode in deep-ultradeep basins. Acta Geologica Sinica, 97(9): 2802~2819 (in Chinese with English abstract).

    • Ma Liyuan, Qiu Guiqiang, Hu Caizhi, Xu Shilin, Chen Chunfang, Li Song. 2022. Reservoir forming mechanism of the Yanchang tight sandstone in Honghe oilfield, Ordos basin. Acta Sedimentologica Sinica, 40(6): 1762~1773 (in Chinese with English abstract).

    • Ma Yongsheng, Cai Xunyu, Zhao Peirong, Luo Yi, Zhang Xuefeng. 2010. Distribution and further exploration of the large-medium sized gas fields in Sichuan basin. Acta Petrolei Sinica, 31(3): 347~354 (in Chinese with English abstract).

    • Pan Rong, Zhu Xiaomin, Wang Xingxing, Zhang Jianfeng. 2014. Advancement on formation mechanism of deep effective clastic reservoir. Lithologic Reservoirs, 26(4): 73~80 (in Chinese with English abstract).

    • Pang Xiongqi, Jia Chengzao, Wang Wenyan. 2015. Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins. Petroleum Science, 12: 1~53.

    • Qi Yukai, Luo Xiaorong, He Yonghong, Dang Hailong, Liu Naigui, Lei Yuhong, Zhang Likuan. 2015. Experimental studies on oil imbibition in mixed-wetting porous medium. Chinese Journal of Geology, 50(4): 1208~1217 (in Chinese with English abstract).

    • Qi Yukai, Luo Xiaorong, Wang Yi, Liu Naigui, Zhou Bo, Yan Jianzhao, Zhang Likuan. 2017. Mechanical study of the effect of fractional-wettability on multiphase fluid flow. International Journal of Multiphase Flow, 93: 205~212.

    • Qi Yukai, Lin Huixi, Zhang Fushun, Zhu Xiuxiang, Hu Hanwen, Zhou Bo, Wei Qing. 2021. The relationship between diagenetic evolution and hydrocarbon charge in deep tight reservoirs: A case study from Kepingtage Formation of S9 well block in Tarim basin. Geofluids, 2021: 1~18.

    • Rabaev R U, Chibisov A V, Kotenev A Y, Kotenev M Y, Efimov E R. 2021. Mathematical modelling of carbonate reservoir dissolution and prediction of the controlled hydrochloric acid treatment efficiency. SOCAR Proceedings, (2): 40~46.

    • Ramadan M A M, Abd El Hamed A G, Badran F, Nooh A Z. 2019. Relation between hydrocarbon saturation and pore pressure evaluation for the Amal Field area, Gulf of Suez, Egypt. Egyptian Journal of Petroleum, 28(1): 1~9.

    • Scotchman I C, Doré A G, Spencer A M. 2018. Petroleum systems and results of exploration on the Atlantic margins of the UK, Faroes & Ireland: What have we learnt? Petroleum Geology Conference Series. London: The Geological Society of London, 8(1): 187~197.

    • Shi Chaoqun, Wang Zuotao, Zhu Wenhui, Jiang Jun, Zhang Huifang, Zhou Siyu, Lou Hong, Zuo Xiaojun, Li Gang, Wang Zhenhong. 2020. Fracture characteristic and its impact on reservoir quality of ultra-deep reservoir in Dabei region, Kelasu tectonic belt, Kuqa depression, Tarim basin. Natural Gas Geoscience, 31(12): 1687~1699 (in Chinese with English abstract).

    • Song Yan, Zhao Mengjun, Fang Shihu, Xie Huiwen, Liu Shaobo, Zhuo Qingong. 2012. Dominant factors of hydrocarbon distribution in the foreland basins, central and western China. Petroleum Exploration and Development, 39(3): 285~294.

    • Sun Jing, You Xincai, Zhang Quan, Xue Jingjing, Chang Qiusheng. 2023. Development characteristics and genesis of deep tight conglomerate reservoirs of Mahu area in Junggar basin. Natural Gas Geoscience, 34(2): 240~252 (in Chinese with English abstract).

    • Sun Longde, Zou Caineng, Zhu Rukai, Zhang Yunhui, Zhang Shuichang, Zhang Baomin, Zhu Guangyou, Gao Zhiyong. 2013. Formation, distribution and potential of deep hydrocarbon resources in China. Petroleum Exploration and Development, 40(6): 641~649 (in Chinese with English abstract).

    • Tan Kaijun, Zhang Fan, Zhao Yingcheng, Pan Jianguo, Yin Lu. 2010. Characteristics and genetic mechanism of volcanic dissolved pore in northwestern margin of Junggar basin. Lithologic Reservoirs, 22(3): 22~25 (in Chinese with English abstract).

    • Tang Yong, Song Yong, He Wenjun, Zhao Long, Yang Haibo, Zhao Changyong, Zheng Menglin, Sun Shuai, Fei Liying. 2022. Characteristics of composite hydrocarbon accumulation in a superimposed basin, Junggar basin. Oil & Gas Geology, 43(1): 132~148 (in Chinese with English abstract).

    • Taylor T R, Giles M R, Hathon L A, Diggs T N, Braunsdorf N R, Birbiglia G V, Kittridge M G, Macaulay C I, Espejo I S. 2010. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bulletin, 94(8): 1093~1132.

    • Tian Jun, Wang Qinghua, Yang Haijun, Li Yong. 2021. Petroleum exploration history and enlightenment in Tarim basin. Xinjiang Petroleum Geology, 42(3): 272~282 (in Chinese with English abstract).

    • Walderhaug O. 2000. Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjorn field, northern North Sea. AAPG Bulletin, 84(9): 1325~1339.

    • Wang Bo, Zhang Ronghu, Ren Kangxu, Luo Peng, Liu Chun. 2011. Prediction of the lower limit of burial depth for effective reservoirs in the Dabei-Kelasu deep structural belt of Kuqa depression. Acta Petrolei Sinica, 32(2): 212~218 (in Chinese with English abstract).

    • Wang Cheng, Shao Hongmei, Hong Shuxin, Guan Yanhua, Teng Hongda, Jia Pengtao, Xue Yunfei. 2007. The lower limits of physical properties for deep clastic reservoirs in north Songliao basin and its relationship with microscopic features. Petroleum Geology & Oilfield Development in Daqing, 26(5): 18~20, 24 (in Chinese with English abstract).

    • Wang Jian, Gao Chonglong, Bai Lei, Xiang Baoli, Liu Jin, Xian Benzhong, Lian Lixia, Liu Ke. 2023. Diagenesis and pore evolution of Cretaceous Qingshuihe Formation reservoir in western section of southern margin of Junggar basin. Petroleum Geology and Experiment, 45(4): 632~645 (in Chinese with English abstract).

    • Wang Junpeng, Zhang Ronghu, Zhao Jilong, Wang Ke, Wang Bo, Ceng Qinglu, Liu Chun. 2014. Characteristics and evaluation of fractures in ultra-deep tight sandstone reservoir: Taking Keshen gasfield in Tarim basin, NW China as an example. Natural Gas Geoscience, 25(11): 1735~1745 (in Chinese with English abstract).

    • Wang Ke, Zhang Ronghu, Tang Yong, Yu Zhaofeng, Yang Zhao, Tang Yangang, Zhou Lu. 2022. Structural diagenesis and reservoir prediction of Lower Jurassic Ahe Formation in the northern structural belt of Kuqa depression. Acta Petrolei Sinica, 43(7): 925~940 (in Chinese with English abstract).

    • Wang Yanzhong, Cao Yingchang. 2010. Lower property limit and controls on deep effective clastic reservoirs of Paleogene in Chezhen depression. Acta Sedimentologica Sinica, 28(4): 752~761 (in Chinese with English abstract).

    • Wang Zhongnan, Luo Xiaorong, Liu Keyu, Fan Yuchen, Wang Xiangzeng. 2021. Influence of chlorite on wettability in tight sandstone reservoir of Yanchang Formation of Upper Triassic in Ordos basin. Scientia Sinica (Terrae), 51(7): 1123~1134 (in Chinese with English abstract).

    • Worden R H, Oxtoby N H, Smalley P C. 1998. Can oil emplacement prevent quartz cementation in sandstones?. Petroleum Geoscience, 4: 129~137.

    • Xin Yi, Wang Guiwen, Liu Bingchang, Ai Yong, Cai Deyang, Yang Shuwen, Liu Hongkun, Xie Yuqiang, Chen Kangjun. 2022. Pore structure evaluation in ultra-deep tight sandstones using NMR measurements and fractal analysis. Journal of Petroleum Science and Engineering, 211: 110180.

    • Yuan Zhen, Li Wenhou, Guo Yanqin. 2011. Effects of oil emplacement on diagenetic evolution of sandstone reservoir in Yanchang Formation, southeastern Ordos basin. Geological Journal of China Universities, 17(4): 594~604 (in Chinese with English abstract).

    • Zeng Lianbo, Li Xiangyang. 2009. Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos basin, China. AAPG Bulletin, 93(4): 461~477.

    • Zeng Lianbo, Jiang Jianwei, Yang Yongli. 2010. Fractures in the low porosity and ultra-low permeability glutenite reservoirs: A case study of the late Eocene Hetaoyuan Formation in the Anpeng oilfield, Nanxiang basin, China. Marine and Petroleum Geology, 27(7): 1642~1650.

    • Zhang Xingwen, Pang Xiongqi, Li Caijun, Yu Jiwang, Wang Wenyang, Xiao Huiyi, Li Changrong, Yu Jitao. 2021. Geological characteristics, formation conditions and accumulation model of deep and ultra-deep, high-porosity and high-permeability clastic reservoirs: A case study of Gulf of Mexico basin. Acta Petrolei Sinica, 42(4): 466~480 (in Chinese with English abstract).

    • Zhang Yuexia, Ding Lin, Zhou Fengjuan, Li Xiaoyan. 2023. Study on the lower limits of permeability and buried depth of Paleogene sandstone reservoirs in the Zhu Ⅰ depression, Pearl River Mouth basin. Marine Origin Petroleum Geology, 28(3): 311~322 (in Chinese with English abstract).

    • Zhao Xuefeng, Zhu Guangyou, Liu Qinfu, Zhang Shuichang. 2007. Main control factors of pore development in deep marine carbonate reservoirs. Natural Gas Geoscience, 18(4): 514~521 (in Chinese with English abstract).

    • Zhong Dakang, Zhu Xiaomin, Wang Hongjun. 2008. Characteristics and formation mechanism analysis of deep quality clastic rock reservoirs in China. Scientia Sinica (Terrae), 38(z1): 11~18 (in Chinese with English abstract).

    • Zhou Dongsheng, Liu Guangxiang, Ye Jun, Jia Cunshan. 2004. Study on the mechanisms for preserving anomalously high porosity in deep buried sandstone reservoirs. Petroleum Geology and Experiment, 26(1): 40~46 (in Chinese with English abstract).

    • Zhu Guangyou, Zhang Shuichang. 2009. Hydrocarbon accumulation conditions and exploration potential of deep reservoirs in China. Acta Petrolei Sinica, 30(6): 793~802 (in Chinese with English abstract).

    • Zhu Guangyou, Wang Huitong, Weng Na, Yang Haijun, Zhang Ke, Liao Fengrong, Yuan Neng. 2015. Geochemistry, origin and accumulation of continental condensate in the ultra-deep-buried Cretaceous sandstone reservoir, Kuqa depression, Tarim basin, China. Marine and Petroleum Geology, 65: 103~113.

    • Zou Caineng, Tao Shizhen, Zhang Xiangxiang, He Dongbo, Zhou Chuanmin, Gao Xiaohui. 2009. Geologic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China's Large Gas Provinces of low porosity and permeability. Science in China (Series D: Earth Sciences), 52(8): 1068~1090.

    • 操应长, 远光辉, 杨海军, 王艳忠, 刘可禹, 昝念民, 葸克来. 2022a. 王健含油气盆地深层—超深层碎屑岩油气勘探现状与优质储层成因研究进展. 石油学报, 43(1): 112~140.

    • 曹斌风, 孙卫.2011. 吴旗地区薛岔区块延长组长6砂岩储层成岩作用研究.天然气地球科学, 22(6): 951~960.

    • 陈刚, 胡宗全. 2018. 鄂尔多斯盆地东南缘延川南深层煤层气富集高产模式探讨. 煤炭学报, 43(6): 1572~1579.

    • 陈启林, 黄成刚. 2018. 沉积岩中溶蚀作用对储集层的改造研究进展. 地球科学进展, 33(11): 1112~1129.

    • 邓毅, 高崇龙, 王剑, 刘明, 孟元林, 任影, 刘可, 王柯.2023. 准噶尔盆地南缘西段齐古组深层储层特征及物性控制因素.现代地质, 38(2): 335~349.

    • 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 2015. 致密砂岩储层裂缝研究进展. 地球科学进展, 30(7): 737~750.

    • 段威, 陈金定, 罗程飞, 田金强, 郭龙, 林俊峰. 2013. 莺歌海盆地东方区块地层超压对成岩作用的影响. 石油学报, 34(6): 1049~1059.

    • 冯佳睿, 高志勇, 崔京钢, 周川闽. 2016. 深层、超深层碎屑岩储层勘探现状与研究进展. 地球科学进展, 31(7): 718~736.

    • 郭华军, 司学强, 袁波, 彭博, 冀冬生, 陈希光. 2022. 准噶尔盆地南缘中段超深层相对优质砂岩储层发育特征及主控因素. 海相油气地质, 27(3): 313~324.

    • 郭小文, 刘可禹, 宋岩, 赵孟军, 柳少波, 卓勤功, 鲁雪. 2016. 库车坳陷克拉2气田油气充注和超压对储层孔隙的影响. 石油与天然气地质, 37(6): 935~943.

    • 郭旭升, 胡东风, 黄仁春, 魏志红, 段金宝, 魏祥峰, 范小军, 缪志伟. 2020. 四川盆地深层—超深层天然气勘探进展与展望. 天然气工业, 40(5): 1~14.

    • 郭旭升, 胡宗全, 李双建, 魏志红, 段金宝, 魏祥峰, 范小军, 缪志伟. 2023. 深层—超深层天然气勘探研究进展与展望. 石油科学通报, 8(4): 461~474.

    • 胡宗全, 尹伟, 伍新和, 高金慧, 李松, 刘春燕, 陈纯芳. 2012. 中国中西部四大盆地碎屑岩油气成藏体系及其分布规律. 石油与天然气地质, 33(4): 561~570.

    • 黄仁春, 刘若冰, 刘明, 曹环宇, 宿赛, 杜红权. 2021. 川东北通江—马路背地区须家河组断缝体储层特征及成因. 石油与天然气地质, 42(4): 873~883.

    • 贾承造, 庞雄奇. 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457~1469.

    • 蒋凌志, 牛嘉玉, 张庆昌, 徐国民, 孟元林, 肖丽华. 2009. 渤海湾盆地深部有利储层发育的主控因素. 地质论评, 55(1): 73~78.

    • 李剑, 佘源琦, 高阳, 杨桂茹, 李明鹏, 杨慎. 2019. 中国陆上深层—超深层天然气勘探领域及潜力. 中国石油勘探, 24(4): 403~417.

    • 刘春, 张荣虎, 张惠良, 黄伟, 莫涛, 周露. 2017. 致密砂岩储层微孔隙成因类型及地质意义——以库车前陆冲断带超深层储层为例. 石油学报, 38(2): 150~159.

    • 罗晓容. 2013. 前陆盆地异常流体: 地质作用及其增压效率. 地质科学, 48(1): 32~49

    • 罗晓容, 张立强, 张立宽, 雷裕红, 程明, 施辉, 曹斌风.2020.碎屑岩输导层非均质性与油气运聚成藏.石油学报, 41(3): 253~272.

    • 罗晓容, 张立宽, 刘乃贵, 闫建钊, 雷裕红, 齐育楷, 李俊, 程明, 严一鸣, 曹斌风. 2022. 深层碎屑岩储层有效性及其评价方法. 西北大学学报(自然科学版), 52(6): 968~986.

    • 罗晓容, 杨海军, 王震亮, 张立强, 张立宽, 雷裕红, 周路, 张宝收, 严一鸣, 曹斌风, 刘志达. 2023. 深层—超深层碎屑岩储层非均质性特征与油气成藏模式. 地质学报, 97(9): 2802~2819.

    • 马立元, 邱桂强, 胡才志, 徐士林, 陈纯芳, 李松. 2022. 鄂尔多斯盆地红河油田延长组致密砂岩成藏机制分析. 沉积学报, 40(6): 1762~1773.

    • 马永生, 蔡勋育, 赵培荣, 罗毅, 张学丰. 2010. 四川盆地大中型天然气田分布特征与勘探方向. 石油学报, 31(3): 347~354.

    • 潘荣, 朱筱敏, 王星星, 张剑锋. 2014. 深层有效碎屑岩储层形成机理研究进展. 岩性油气藏, 26(4): 73~80.

    • 齐育楷, 罗晓容, 贺永红, 党海龙, 刘乃贵, 雷裕红, 张立宽. 2015. 混合润湿孔隙介质中油自吸实验研究. 地质科学, 50(4): 1208~1217.

    • 史超群, 王佐涛, 朱文慧, 蒋俊, 张慧芳, 周思宇, 娄洪, 左小军, 李刚, 王振鸿. 2020. 塔里木盆地库车坳陷克拉苏构造带大北地区超深储层裂缝特征及其对储层控制作用. 天然气地球科学, 31(12): 1687~1699.

    • 孙靖, 尤新才, 张全, 薛晶晶, 常秋生. 2023. 准噶尔盆地玛湖地区深层致密砾岩储层发育特征及成因. 天然气地球科学, 34(2): 240~252.

    • 孙龙德, 邹才能, 朱如凯, 张云辉, 张水昌, 张宝民, 朱光有, 高志勇. 2013. 中国深层油气形成、分布与潜力分析. 石油勘探与开发, 40(6): 641~649.

    • 谭开俊, 张帆, 赵应成, 潘建国, 尹路. 2010. 准噶尔盆地西北缘火山岩溶蚀孔隙特征及成因机制. 岩性油气藏, 22(3): 22~25.

    • 唐勇, 宋永, 何文军, 赵龙, 杨海波, 赵长永, 郑孟林, 孙帅, 费李莹. 2022. 准噶尔叠合盆地复式油气成藏规律. 石油与天然气地质, 43(1): 132~148.

    • 田军, 王清华, 杨海军, 李勇. 2021. 塔里木盆地油气勘探历程与启示. 新疆石油地质, 42(3): 272~282.

    • 王波, 张荣虎, 任康绪, 罗鹏, 刘春. 2011. 库车坳陷大北—克拉苏深层构造带有效储层埋深下限预测. 石油学报, 32(2): 212~218.

    • 王成, 邵红梅, 洪淑新, 官艳华, 滕宏达, 贾朋涛, 薛云飞. 2007. 松辽盆地北部深层碎屑岩储层物性下限及与微观特征的关系. 大庆石油地质与开发, 26(5): 18~20+24.

    • 王剑, 高崇龙, 白雷, 向宝力, 刘金, 鲜本忠, 连丽霞, 刘可. 2023. 准噶尔盆地南缘西段白垩系清水河组储层成岩作用及孔隙演化. 石油实验地质, 45(4): 632~645.

    • 王俊鹏, 张荣虎, 赵继龙, 王珂, 王波, 曾庆鲁, 刘春. 2014. 超深层致密砂岩储层裂缝定量评价及预测研究——以塔里木盆地克深气田为例. 天然气地球科学, 25(11): 1735~1745.

    • 王珂, 张荣虎, 唐永, 余朝丰, 杨钊, 唐雁刚, 周露. 2022. 库车坳陷北部构造带侏罗系阿合组构造成岩作用与储层预测. 石油学报, 43(7): 925~940.

    • 王艳忠, 操应长. 2010. 车镇凹陷古近系深层碎屑岩有效储层物性下限及控制因素. 沉积学报, 28(4): 752~761.

    • 王忠楠, 罗晓容, 刘可禹, 范雨辰, 王香增. 2021. 鄂尔多斯盆地上三叠统延长组致密砂岩储层绿泥石对润湿性的影响. 中国科学: 地球科学, 51(7): 1123~1134.

    • 袁珍, 李文厚, 郭艳琴. 2011. 鄂尔多斯盆地东南缘延长组石油充注对砂岩储层成岩演化的影响.高校地质学报, 17(4): 594~604.

    • 张兴文, 庞雄奇, 李才俊, 于吉旺, 汪文洋, 肖惠译, 李昌荣, 余季陶. 2021. 深层—超深层高孔高渗碎屑岩油气藏地质特征, 形成条件及成藏模式——以墨西哥湾盆地为例.石油学报, 42(4): 466~480.

    • 张月霞, 丁琳, 周凤娟, 李晓艳. 2023. 珠江口盆地珠一坳陷古近系砂岩储层渗透率和埋深下限研究. 海相油气地质, 28(3): 311~322.

    • 赵雪凤, 朱光有, 刘钦甫, 张水昌. 2007. 深部海相碳酸盐岩储层孔隙发育的主控因素研究. 天然气地球科学, 18(4): 514~521.

    • 钟大康, 朱筱敏, 王红军. 2008. 中国深层优质碎屑岩储层特征与形成机理分析. 中国科学(D辑: 地球科学), (S1): 11~18.

    • 周东升, 刘光祥, 叶军, 贾存善. 2004. 深部砂岩异常孔隙的保存机制研究. 石油实验地质, 26 (1): 40~46.

    • 朱光有, 张水昌. 2009. 中国深层油气成藏条件与勘探潜力. 石油学报, 30(6): 793~802.