en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王海峰,男,1987年生。工程师,长期从事储层地质研究工作。E-mail:wanghf39@cnooc.com.cn。

通讯作者:

唐华风,男,1979年生。教授,博士生导师,主要从事火山岩储层和火山地层综合研究。E-mail:tanghfhc@jlu.edu.cn。

参考文献
Calvari S, Tanner L H, Groppelli G. 1998. Debris-avalanche deposits of the Milo Lahar sequence and the opening of the Valle Del Bove on Etna Volcano Italy. Journal of Volcanology & Geothermal Research, 87 (1): 193~209.
参考文献
Chen Huanqing, Shi Weiwei, Du Yijing, Deng Xiaojuan. 2022. Advances in volcanic facies research of volcanic reservoir. Chinese Journal of Geology, 57(4): 1307~1323 (in Chinese with English abstract).
参考文献
De Vries B W, Davies T. 2015. Landslides, debris avalanches, and volcanic gravitational deformation. In: Sigurdsson H, ed. The Encyclopedia of Volcanoes. New York: Academic Press, 665~682.
参考文献
Doyle M G, McPhie J. 2000. Facies architecture of a silicic intrusion-dominated volcanic centre at Highway-Reward, Queensland, Australia. Journal of Volcanology and Geothermal Research, 99: 79~96.
参考文献
Editorial Committee of Geosciences Dictionary. 2006. Geosciences Dictionary: Volume of Basic Science. Beijing: Geological Publishing House, 1~1173 (in Chinese with English abstract).
参考文献
Fisher R V, Schmincke H U. 1984. Pyroclastic Rocks. Berlin: Springer.
参考文献
Huang Lei, Wang Yingbin, Wu Qiang, Wang Qiang. 2012. Cenozoic tectonic evolution of the Laizhouwan sag in Bohai Bay basin. Acta Geologica Sinica, 86(6): 867~876 (in Chinese with English abstract).
参考文献
Jerram D A. 2002. Volcanology and facies architecture of flood basalts. In: Menzies M A, Klemperer S L, Ebinger C J, et al. , eds. Volcanic Rifted Margins. Special Paper 362, Geological Society of America, 362: 121~135.
参考文献
Jin Bailu, Zhang Xiyou. 1994. Volcanic Geology of the Changbai Mountain. Changchun: Korean Education Press, 40~49 (in Chinese with English abstract).
参考文献
Khalaf E E D A H. 2010. Stratigraphy, facies architecture, and palaeoenvironment of Neoproterozoic volcanics and volcaniclastic deposits in Fatira area, central eastern Desert, Egypt. Journal of African Earth Sciences, 58: 405~426.
参考文献
Lockwood J P, Hazlett W R. 2010. Volcanoes-Global Perspectives. Hoboken, USA: Wiley Blackwell.
参考文献
Li Shi, Wang Tong. 1980. Volcanic Rocks. Beijing: Geological Publishing House, 20~40 (in Chinese with English abstract).
参考文献
McPhie J, Doyle M, Allen R. 1993. Volcanic textures. Australia, University of Tasmania, Hobart, 1~197.
参考文献
Neyendorf K K E, Mehl Jr J P, Jackson J A. 2011. Glossary of Geology, Fifth Edition, Revised. Alexandria, Virginia: American Geosciences Institute, 1-3587.
参考文献
Niu Chengmin. 2012. Tectonic evolution and hydrocarbon accumulation of Laizhouwan depression in southern Bohai Sea. Oil & Gas Geology, 33(3): 424~431 (in Chinese with English abstract).
参考文献
Qiu Jiaxiang, Tao Kuiyuan, Zhao Junlei, 1996. Volcanic Rocks. Beijing: Geological Publishing House, 10~22 (in Chinese with English abstract).
参考文献
Ren Xianjun. 2022. Faces model of intermediate volcanic rocks in steep slope and its control on reservoirs: A case study in Changling fault depression, Songliao basin. Journal of Jilin University (Earth Science Edition), 52(3): 816~828 (in Chinese with English abstract).
参考文献
Shan Xuanlong, Mou Hansheng, Liu Yuhu, Li Ruilei, Zhu Jianfeng, Shi Yunqian, Leng Qinglei, Yi Jian. 2023. Subaqueous volcanic eruptive facies, facies model and its reservoir significance in a continental lacustrine basin: A case from the Cretaceous in Chaganhua area of southern Songliao basin, NE China. Petroleum Exploration and Development, 50(4): 1~12 (in Chinese with English abstract).
参考文献
Shi Hao, Zhou Fanghong, Lv Dingyou. 2014. Cenozoic strike-slip tectonic character and the significance of oil and gas exploration in eastern Laizhou Bay. Offshore Oil, 34(3): 34~39 (in Chinese with English abstract).
参考文献
Tang Huafeng, Kong Tan, Liu Xiang, Yang Di, Huo Hongyu, Huang Yulong. 2016. Characteristics and formation mechanisms of high quality reservoir of volcaniclastic sedimentary rocks of early Cretaceous in Songliao basin. Acta Petrolei Sinica, 37(5): 631~643 (in Chinese with English abstract).
参考文献
Tang Huafeng, Zhao Pengjiu, Gao Youfeng, Wang Pujun, Qi Yuning. 2017. Spatio-temporal attributes of volcano stratigraphy and its lithostratigraphic units in a basin. Journal of Jilin University (Earth Science Edition), 47(4): 949~973 (in Chinese with English abstract).
参考文献
Tang Huafeng, Dai Yanlin, Guo Tianchan, Liu Zhao, He Xianpei, Zhang Yichi. 2020a. Distribution pattern of reservoirs in the extrusive volcanic edifice: A case study of the Yitong volcanoes. Acta Petrolei Sinica, 41(7): 809~820 (in Chinese with English abstract).
参考文献
Tang Huafeng, Wang Pujun, Bian Weihua, Huang Yulong, Gao Youfeng, Dai Xiaojuan. 2020b. Review of volcanic reservoir geology. Acta Petrolei Sinica, 41(12): 1744~1773 (in Chinese with English abstract).
参考文献
Tao Kuiyuan. 1994. Structure and Facies of Volcanic Rocks. Nanjing: Jiangsu Science & Technology Press, 12~31 (in Chinese with English abstract).
参考文献
Ui T, Takarada S, Yoshimoto M. 2000. Debris avalanches. In: Sigurdsson H, ed. Encyclopedia of Volcanoes. New York: Academic Press, 617~626.
参考文献
Wang Pujun, Chi Yuanlin, Liu Wanzhu, Cheng Rihui, Shan Xuanlong, Ren Yanguang. 2003. Volcanic facies of the Songliao basin: Classification, characteristics and reservoir significance. Journal of Jilin University (Earth Science Edition), 33(4): 449~456 (in Chinese with English abstract).
参考文献
Wang Pujun, Wu Keyong, Pang Yanming, Men Guangtian, Ren Yanguang, Liu Wanzhu, Bian Weihua. 2006. Volcanic facies of the Songliao basin: Sequence, model and the quantitative relationship with porosity and permeability of the volcanic reservoir. Journal of Jilin University (Earth Science Edition), 36(5): 805~812 (in Chinese with English abstract).
参考文献
Wen Long, Li Ya, Yi Haiyong, Liu Xin, Zhang Benjian, Qiu Yuchao, Zhou Gang, Zhang Xihua. 2019. Lithofacies and reservoir characteristics of Permian volcanic rocks in the Sichuan basin. Natural Gas Industry, 39(2): 17~27 (in Chinese with English abstract).
参考文献
Xie Jiaying, Tao Kuiyuan, Huang Guangzhao. 1994. The volcanic facies types of Mesozoic terrane in Southeast China continent. Volcano Geology and Resources, 15(4): 45~51 (in Chinese with English abstract).
参考文献
Xue Huaimin, Cao Guangyue. 2021. Volcanic lithofacies, volcanic tectonic framework and volcanism process in the southwestern segment of Huanggangliang volcanic structural uplift in Great Xing'an Rang, NE China. Acta Geologica Sinica, 95(3): 643~666 (in Chinese with English abstract).
参考文献
Zhang Xinghua. 2003. Volcanic lithofacies study of Oulituozi oilfield. Special Oil and Gas Reservoirs, 10(1): 40~42 (in Chinese with English abstract).
参考文献
Zhao Jianbin, Huang Xianhua, Liu Xiaoyan, Li Zhenlin, Tian Yang, Ding Wei, Liu Lingli. 2020. Effectiveness evaluation of extra-low permeability andesite reservoirs in Wulanhua sag, Erlian basin. Acta Petrolei Sinica, 41(10): 1188~1196 (in Chinese with English abstract).
参考文献
陈欢庆, 石为为, 杜宜静, 邓晓娟. 2022. 火山岩储层岩相研究进展. 地质科学, 57(4): 1307~1323.
参考文献
地球科学大辞典编委会. 2006. 地球科学大辞典. 北京: 地质出版社, 1~1173.
参考文献
黄雷, 王应斌, 武强, 王强. 2012. 渤海湾盆地莱州湾凹陷新生代盆地演化. 地质学报, 86(6): 867~876.
参考文献
金伯禄, 张希友. 1994. 长白山火山地质研究. 长春: 东北朝鲜民族教育出版社, 40~49.
参考文献
李石, 王彤. 1980. 火山岩. 北京: 地质出版社, 20~40.
参考文献
牛成民. 2012. 渤海南部海域莱州湾凹陷构造演化与油气成藏. 石油与天然气地质, 33(3): 424~431.
参考文献
邱家骧, 陶奎元, 赵俊磊. 1996. 火山岩. 北京: 地质出版社, 10~22.
参考文献
任宪军. 2022. 松辽盆地长岭断陷盆缘陡坡带中性火山岩相模式及其对储层的控制作用. 吉林大学学报(地球科学版), 52(3): 816~828.
参考文献
单玄龙, 牟汉生, 刘玉虎, 李瑞磊, 朱建峰, 石云倩, 冷庆磊, 衣健. 2023. 湖盆水下喷发火山岩相类型、特征与储集意义: 以松辽盆地南部查干花地区白垩系为例. 石油勘探与开发, 50(4): 1~12.
参考文献
史浩, 周东红, 吕丁友. 2014. 莱州湾凹陷东部新生代走滑构造特征及油气勘探意义. 海洋石油, 34(3): 34~39.
参考文献
唐华风, 孔坦, 刘祥, 杨迪, 霍宏宇, 黄玉龙. 2016. 松辽盆地下白垩统沉火山碎屑岩优质储层特征和形成机理. 石油学报, 37(5): 631~643.
参考文献
唐华风, 赵鹏九, 高有峰, 王璞珺, 齐雨宁. 2017. 盆地火山地层时空属性和岩石地层单位. 吉林大学学报(地球科学版), 47(4): 949~973.
参考文献
唐华风, 戴岩林, 郭天婵, 刘钊, 何贤培, 张一弛. 2020a. 侵出式火山机构储层的分布模式——以伊通火山群为例. 石油学报, 41(7): 809~820.
参考文献
唐华风, 王璞珺, 边伟华, 黄玉龙, 高有峰, 代晓娟. 2020b. 火山岩储层地质研究回顾. 石油学报, 41(12): 1744~1773.
参考文献
陶奎元. 1994. 火山岩相构造学. 南京: 江苏科学技术出版社, 12~31.
参考文献
王璞珺, 迟元林, 刘万洙, 程日辉, 单玄龙, 任延广. 2003. 松辽盆地火山岩相: 类型、特征和储层意义. 吉林大学学报(地球科学版), 33(4): 449~456.
参考文献
王璞珺, 吴河勇, 庞颜明, 门广田, 任延广, 刘万洙, 边伟华. 2006. 松辽盆地火山岩相: 相序、相模式与储层物性的定量关系. 吉林大学学报(地球科学版), 36(5): 805~812.
参考文献
文龙, 李亚, 易海永, 刘鑫, 张本健, 邱玉超, 周刚, 张玺华. 2019. 四川盆地二叠系火山岩岩相与储层特征. 天然气工业, 39(2): 17~27.
参考文献
谢家莹, 陶奎元, 黄光昭. 1994. 中国东南大陆中生代火山岩带的火山岩相类型. 火山地质与矿产, 15(4): 45~51.
参考文献
薛怀民, 曹光跃. 2021. 大兴安岭黄岗梁火山构造隆起西南段火山岩相, 火山构造格架与火山作用过程重溯. 地质学报, 95(3): 643~666.
参考文献
张兴华. 2003. 欧利坨子油田火山岩相研究. 特种油气藏, 10(1): 40~42.
参考文献
赵建斌, 黄显华, 刘晓燕, 李振林, 田扬, 丁伟, 刘玲莉. 2020. 二连盆地乌兰花凹陷特低渗安山岩储层的有效性评价. 石油学报, 41(10): 1188~1196.
目录contents

    摘要

    精细岩相模式是油气藏研究的重要基础,为储层预测和评价提供合理的约束。目前火山岩还缺少微相尺度的相模式。参照的5相15亚相分类方案,在莱州湾凹陷南斜坡中生界火山地层中建立了相—亚相—微相划分方案,识别出3相4亚相10微相。具体为爆发相的热碎屑流亚相和热基浪亚相,细分为火山口-近火山口、近源和远源微相。喷溢相熔岩流亚相,细分为简单熔岩流和碎屑堆积微相。火山-沉积相崩塌再搬运堆积亚相,细分为再搬运块状堆积和基质堆积微相。钻井揭示研究区的亚相占比从高到低的顺序为爆发相热基浪亚相、喷溢相熔岩流亚相、爆发相热碎屑流亚相和火山-沉积相崩塌再搬运堆积亚相。火山地层具有复杂岩相叠置关系,亚相单元横向延伸范围有限、对比难度大。储层孔渗条件由好到差的顺序为热基浪亚相、热碎屑流亚相、熔岩流亚相和崩塌再搬运堆积亚相。热基浪亚相近源微相、热碎屑流亚相近源微相、熔岩流亚相简单熔岩流微相上部、崩塌再搬运亚相块状堆积微相的储层较好;其中,热基浪亚相近源微相储层条件为最优。本研究可为火山岩储层预测和评价提供地质依据。

    Abstract

    High-resolution lithofacies model is an important basis for reservoir research, providing essential constraints for reservoir prediction and evaluation. However, such models are often lacking for volcanic rock reservoirs. This study addresses this gap by a facies-subfacies-microfacies classification scheme, building upon a pre-existing scheme with 5 facies and 15 subfacies. Utilizing this approach, we identified 3 facies, 4 subfacies, and 10 microfacies within the Mesozoic volcanic strata on the southern slope of the Laizhou Bay depression. These facies encompass eruptive, effusive, and volcano-sedimentary types. Within the eruptive facies, both pyroclastic flow and base surge subfacies can be further subdivided into crater-near crater, proximal, and distal microfacies. Similarly, the lava flow subfacies of effusive facies can be subdivided into simple lava flow and debris deposition microfacies. Finally, the avalanche subfacies of volcano-sedimentary facies can be subdivided into reworked massive and reworked matrix microfacies. Based on observations from boreholes, the subfacies can be arranged in descending order as follows: base surge subfacies of eruptive facies, lava flow subfacies of effusive facies, pyroclastic flow subfacies of eruptive facies, and avalanche subfacies of volcano-sedimentary facies. Volcanic strata exhibit complex lithofacies with overlapping relationships. This complexity, coupled with the limited lateral extent of subfacies units, presents challenges for correlation. Furthermore, the descending order of reservoir quality is base surge subfacies, pyroclastic flow subfacies, lava flow subfacies, and avalanche subfacies. The reservoir quality of proximal microfacies in base surge and pyroclastic flow subfacies, the upper zone of the simple lava flow in the lava flow subfacies, and the reworked massive deposition microfacies in the avalanche subfacies is relatively better. Among them, the reservoir quality of proximal microfacies in the base surge subfacies stands out as the most favorable. Relevant research results can provide a geological basis for volcanic rock reservoir prediction and evaluation.

  • 精细岩相模式是油气藏研究的重要基础,为储层预测和评价提供合理的约束(唐华风等,2020a赵建斌等,2020任宪军,2022单玄龙等,2023)。目前火山岩相分类方案众多。岩相识别主要依据岩石结构构造特征、几何外形和叠置样式反映出来的火山喷发方式、搬运过程和就位环境等岩石成因。依据研究对象的资料特征和研究需求,岩相分类可分为针对区域地质填图、现代火山和盆地埋藏火山3个方面。如针对区域地质填图的岩相分类方案,研究资料有丰富的露头,能获得岩石组构和叠置样式信息,岩相研究关注点是地质填图的地层单位和空间分布特征;主要以李石、陶奎元、邱家骧和谢家莹等学者为代表,出版了一系列的著作(李石和王彤,1980谢家莹等,1994陶奎元,1994邱家骧等,1996薛怀民和曹光跃,2021)。再如,针对现代火山岩相的分类方案,研究资料有丰富的露头和文献记录,能获得几何外形、岩石组构造和叠置样式信息,岩相研究关注点是地层基本单位的堆积特征和火山灾害;以McPhie、Fisher、 Lockwood、Sigurdsson、Houghton等学者为代表,出版了一系列的著作(Fisher and Schmincke,1984McPhie et al.,1993金伯禄和张希友,1994Doyle and McPhie,2000Lockwood and Hazlett,2010)。随着盆地勘探的需求,研究资料有岩芯、岩屑和测井,能获得岩石组构造信息,岩相研究关注点是储层特征和测井地震可识别性;建立了盆地埋藏火山岩的相模式(Jerram,2002张兴华,2003Khalaf,2010陈欢庆等,2022),如将松辽盆地火山岩相划分为火山通道相、爆发相、喷溢相、侵出相和火山沉积相5相,进一步细分了15亚相(王璞珺等,2003)。该分类方案在盆地火山岩勘探中得到了推广,收录在2011版储层评价标准中。随着钻井揭示火山类型的增多,也逐渐总结出了以地层堆积单元为对象的岩相模式(唐华风等,2017文龙等,2019)。

  • 盆地火山岩相分类方案对于指导火山岩储层研究、预测和评价起到了推动作用。如在松辽盆地将勘探目标聚焦到了喷溢相上部亚相、爆发相热碎屑流亚相、火山通道相火山颈亚相和侵出相内带亚相等(王璞珺等,2006)。在众多盆地的火山岩研究中也建立起了亚相与储层的关系(唐华风等,2020b)。对比现代火山岩相研究来看,盆地火山岩相划分时也存在岩相级别不一致的情况(王璞珺等,2003Lockwood and Hazlett,2010),同时也缺少微相级别的划分方案,导致微相与储层的关系不明确。本文参照5相15亚相的划分方案(王璞珺等,2003),针对渤海莱州湾凹陷南斜坡垦利构造火山岩,开展岩相模式研究,提出了相—亚相—微相的划分方案,并分析了各微相与储层的关系。以期指出火山岩亚相单元的有利储层分布规律,为火山岩储层预测和评价提供地质依据。

  • 1 地质概况

  • 莱州湾凹陷位于渤海海域东南部,东邻鲁东隆起区,西接青东凹陷,南依潍北凸起,北靠莱北低凸起,东西两侧以郯庐走滑断裂带西支和东支为界、北部以莱北一号断层为界(图1a)。整体上表面为东断西超和北断南超的构造样式(史浩等,2014)。凹陷基底为中生界义县组,盖层地层为断陷期沙河街组、东营组,坳陷期馆陶组、明化镇组和平原组等(牛成民,2012)。勘探实践证实该凹陷为富烃凹陷(黄雷等,2012),还处于低勘探程度阶段。2016年渤海油田钻探了莱州湾凹陷南斜坡垦利16构造,在中生界火山岩地层取得了较好的油气发现,受到了广泛关注。

  • 图1 研究区位置图(a)及莱州湾凹陷南斜坡中生界火山岩叠置特征(b)

  • Fig.1 Location map of the study area (a) and overlapping characteristics of Mesozoic volcanic rocks (b)

  • (a)—莱州湾凹陷南斜坡构造简图;(b)—火山岩纵向叠置特征

  • (a) —structural diagram of the southern slope of Laizhou Bay depression; (b) —vertical stacking characteristics of volcanic rocks

  • 按结构和成分特征划分方案,在垦利16构造8口钻井588 m进尺火山岩中识别出火山碎屑岩、火山碎屑熔岩、熔岩和沉火山碎屑岩。各井岩性特征存在差别。1井和7井以火山碎屑岩为主,6井和8井以熔岩为主,9井和10井以火山碎屑熔岩为主,4井以火山碎屑熔岩和火山碎屑岩为主。从钻井揭示段来看,火山岩形成的顺序是1井、7井、4井、6井和8井,表现出复杂的叠置关系(图1b)。

  • 2 岩性特征

  • 2.1 火山碎屑岩类

  • 钻井揭示了流纹质/粗面英安质凝灰岩/角砾岩/集块岩,占比为67.2%。集块岩,块状构造,颗粒支撑,颗粒多为棱角和次棱角状、少数为次圆状。集块主要为凝灰岩和英安岩岩屑,含量为60%~65%,杂乱堆积,分选差;胶结物主要为凝灰质,含量为35%~40%(图2a),成像测井静态图像中表现为块状中高阻,在动态图像中可见亮斑状集块,呈杂乱堆积(图2b)。角砾岩颜色为浅灰绿色,角砾主要为凝灰岩和英安岩岩屑(约占45%)以及斜长石和石英晶屑(约占20%);胶结物主要为火山灰,含量约35%(图2c),在成像静态图像中表现为中低阻条带,在动态图像中表现为明暗相间的条带,可见斜层理(图2d),岩芯上可见复合粒序层理,自上而下显示出细—粗—细—粗—细的层理变化(图2e)。凝灰岩颜色为灰绿色,凝灰主要为晶屑和岩屑,晶屑主要为棱角状斜长石和石英,占比约35%;岩屑主要为凝灰岩和英安岩岩屑,占10%~15%,胶结物成分主要为火山灰,占50%~55%(图2f)。成像测井静态图像表现为低阻块状,动态图像中表现为平直的明暗条带,发育平行层理(图2g)。

  • 图2 莱州湾凹陷南斜坡中生界火山碎屑岩岩性特征

  • Fig.2 Lithologic characteristics of Mesozoic volcaniclastic rocks in the southern slope of Laizhou Bay depression

  • (a)—4井,1602.14 m,凝灰质集块岩;(b)—4井,凝灰质集块岩成像测井特征;(c)—7井,1692.0 m,角砾凝灰岩;(d)—7井,角砾凝灰岩成像测井特征,斜层理发育;(e)—7井,1714.7~1715.0 m,角砾岩和凝灰岩,发育复式粒序层理,可见油迹,赋存在颗粒间孔中;(f)—4井,1600.18 m,流纹质晶屑凝灰岩;(g)—7井,凝灰岩成像测井特征,平行层理发育

  • (a) —well 4, 1602.14 m, tuffaceous agglomerate; (b) —well 4, imaging logging characteristics of tuffaceous agglomerates; (c) —well 7, 1692.0 m, breccia tuff; (d) —well 7, imaging logging characteristics of breccia tuff; (e) —well 7, 1714.7~1715.0 m, breccia and tuff, developed complex grain sequence bedding with the oil occured in intergranular pores; (f) —well 4, 1600.18 m, rhyolitic tuff with crystal fragments; (g) —well 7, imaging logging characteristics of tuff with parallel bedding

  • 2.2 火山碎屑熔岩类

  • 研究区揭示了火山碎屑熔岩中的凝灰熔岩和角砾熔岩两种岩性,占比为10.9%。角砾熔岩,块状构造,角砾成分主要为岩屑、晶屑和玻屑,岩屑主要为英安岩岩屑,约占65%;晶屑主要为斜长石和石英,约占15%,玻屑含量较少,约占5%(图3a、b)。胶结物主要为熔浆,含量约为15%,在成像静态图像上表现为块状高阻的特征,动态图像上表现为亮斑状,弱定向的特征(图3c)。岩芯和镜下照片显示可发育强熔结结构;凝灰熔岩中凝灰主要为晶屑、岩屑和玻屑,晶屑主要为斜长石和少量石英,占比约45%,岩屑主要为英安岩岩屑,占比约30%,玻屑主要为玻璃质,占比约10%,胶结物为熔浆胶结,含量约15%(图3d、e),在成像静态图像上表现为中阻,在动态图像上表现为小亮斑状,具有定向(图3f),横截面表现为纵横比小的板状-席状。

  • 2.3 熔岩类

  • 根据岩石中的矿物组合识别出粗面安山岩、杏仁体安山岩和英安岩,占比为19.4%。粗面安山岩呈灰褐色,致密块状,斑状结构,斑晶主要为斜长石和少量的暗色矿物等,含量约为45%~50%,基质成分主要为斜长石微晶,含量约为50%~55%(图4a)。岩石中发育丰富的层节理,成像测井显示为中—高阻(图4b);英安岩呈肉红色,块状构造,斑状结构,斑晶为斜长石、石英、正长石等,含量约为30%~35%,基质为霏细结构,成分主要为隐晶质和玻璃质,含量约为65%~70%(图4c)。岩石中裂缝发育,成像测井显示为中—高阻(图4d);气孔杏仁呈浅灰色,气孔杏仁构造,斑状结构,斑晶主要为斜长石,可见少量黑云母,含量约为25%~30%;基质主要由微晶斜长石等构成交织结构、安山结构,含量约为70%~75%(图4e)。岩石中气孔杏仁发育,成像测井显示为中—高阻(图4f)。

  • 2.4 沉火山碎屑岩类

  • 该区钻井揭示了沉凝灰岩和沉角砾岩,占比为2.4%。沉凝灰岩中凝灰主要为岩屑和晶屑,岩屑主要为凝灰岩岩屑,含量约65%,晶屑主要为斜长石和石英,含量约20%。可见外碎屑(图5a),外碎屑含量约15%,杂基支撑,具有席状-透镜状外形,多数颗粒为次棱角—次圆状,分选较差,岩石中可发育裂缝;成像测井表现为中低阻、块状,低阻基质包含小直径中阻亮斑(图5b)。沉角砾岩中角砾成分主要为岩屑和晶屑,岩屑成分主要为英安岩和角砾岩岩屑,含量约为60%,晶屑主要为斜长石和石英,含量约10%。外碎屑主要为沉积岩碎屑,含量约30%。颗粒支撑,具有透镜状外形,多数颗粒为棱角状和次棱角状、少量为次圆状(图5c),分选极差,颗粒内裂缝发育。

  • 图3 莱州湾凹陷南斜坡中生界火山碎屑熔岩岩性特征

  • Fig.3 Lithologic characteristics of Mesozoic pyroclastic lava in the southern slope of Laizhou Bay depression

  • (a)—6井,1588 m,角砾熔岩;(b)—7井,1684 m,角砾熔岩薄片;(c)—4井,角砾熔岩成像测井特征;(d)—4井,1650 m,含角砾凝灰熔岩;(e)—4井,1650 m,含角砾凝灰熔岩薄片;(f)—9井,凝灰熔岩成像测井特征

  • (a) —well 6, 1588 m, breccia lava; (b) —well 7, 1684 m, thin sections of breccia lava; (c) —well 4, imaging logging characteristics of breccia lava; (d) —well 4, 1650 m, tuff lava containing angular breccia; (e) —well 4, 1650 m, thin sections of tuff lava containing angular breccia; (f) —well 9, imaging logging characteristics of tuff lava

  • 图4 莱州湾凹陷南斜坡中生界熔岩岩性特征

  • Fig.4 Lithologic characteristics of Mesozoic lava in the southern slope of Laizhou Bay depression

  • (a)—6井,1605 m,粗面安山岩;(b)—8井,块状安山岩成像测井特征,发育层节理;(c)—4井,1633 m,粗面英安岩;(d)—4井,粗面英安岩成像测井特征;(e)—8井,1495 m,杏仁体安山岩;(f)—8井,杏仁体安山岩成像测井特征

  • (a) —well 6, 1605 m, trachyandesite; (b) —well 8, imaging logging characteristics of massive andesite with platy joints; (c) —well 4, 1633 m, trachy-dacite; (d) —well 4, imaging logging characteristics of trachy-dacite; (e) —well 8, 1495 m, amygdaloidal andesite; (f) —well 8, imaging logging characteristics of amygdaloidal andesite

  • 3 岩相模式

  • 基于5相15亚相划分方案,结合现代火山的分类方案,梳理了研究区的岩相分类方案,进一步细划亚相单元的微相构成,在本区识别出3相4亚相10微相(表1)。本区壁心资料丰富,但综合测井数据对岩性的响应关系不好,成像测井与岩石结构有较好的响应关系,所以本文所用资料有壁心、薄片和成像资料。下面详细叙述。

  • 3.1 爆发相

  • 3.1.1 热基浪亚相

  • 地球科学大辞典(2006)收录的基浪的定义,是大陨石撞击地面或爆裂式火山喷发时(以及核爆炸和化学爆炸时),从爆炸点或撞击坑飞溅出速度较低的环形热气云、熔融碎岩屑和尘埃等溅射物,像密度流一样地向外作辐射状运动,速度可高达200 km/h,这种现象称基浪。Neyendorf(2011)编著的地质词典收录的基浪的定义,是由气体和悬浮的固体碎片组成的环形云,从垂直爆炸柱的底部以密集流的形式向外高速径向移动,它伴随火山爆发而成,或伴随由有水参与的火山爆发或超高速撞击成因火山口而分布。(热)基浪是一种碎屑密度流,碎屑物和动量是通过稀释的高度紊流状悬浮颗粒而广泛分散而成(Fisher and Schmincke,1984Lockwood and Hazlett,2010)。

  • 表1 莱州湾凹陷南斜坡中生界火山岩相分类表

  • Table1 Classification of Mesozoic volcanic facies in the southern slope of Laizhou Bay depression

  • 图5 莱州湾凹陷南斜坡中生界沉火山碎屑岩岩性特征

  • Fig.5 Lithologic characteristics of Mesozoic reworked volcaniclastic rocks in the southern slope of Laizhou Bay depression

  • (a)—6井,1735.0 m,沉凝灰岩;(b)—8井,沉凝灰岩风化壳成像测井特征;(c)—6井,1648.5 m,沉火山角砾岩;(d)—6井,1648.5 m,沉火山角砾岩薄片特征

  • (a) —well 6, 1735.0 m, tuffite; (b) —well 8, imaging logging characteristics of weathering crust of tuffite; (c) —well 6, 1648.5 m, reworked volcanic breccia; (d) —well 6, 1648.5 m, thin section characteristics of reworked volcanic breccia

  • 按离火山口位置、岩石组构特征等,将(热)基浪亚相划分为3个微相,分别是火山口-近火山口、近源和远源微相(图6a)。火山口-近火山口微相的火山集块岩和火山角砾岩有数十米厚,近源微相的凝灰岩和角砾岩有数米厚,远源微相的凝灰岩有数米厚。对3个微相的岩芯和薄片进行粒度分析,结果显示(图6b),火山口-近火山口微相的火山集块岩中,集块直径为64~128 mm,角砾直径以2~4 mm为主,凝灰粒径以1~2 mm为主,角砾含量较多,集块体积含量较大,该微相颗粒最粗,分选系数为5.5,分选差(图6b-I)。近源微相的角砾凝灰岩中,角砾直径以2~4 mm为主,凝灰粒径以0.25~0.5 mm和0.125~0.25 mm为主,角砾含量较集块岩减少,颗粒较粗,分选系数为1.9,分选较好(图6b-II)。远源微相的凝灰岩中,含少量角砾,直径以2~4 mm为主,凝灰粒径以0.03125~0.0625 mm为主,部分颗粒在搬运过程中发生破碎,颗粒较细,分选系数为2.6,分选中等(图6b-III)。

  • 3.1.2 热碎屑流亚相

  • 热碎屑流指高温火山碎屑物质和火山气体形成的密度流(Neyendorf et al.,2011)。热碎屑流多为高含量碎屑分散物质和动能的火山碎屑密度流(Fisher and Schmincke,1984Lockwood and Hazlett,2010),通常是陆相的。

  • 按离火山口位置、岩石组构特征等,将热碎屑流亚相划分为3个微相,分别是火山口-近火山口、近源和远源微相(图7a)。火山口-近火山口微相没有样品,本文只讨论近源和远源微相。在火山口-近火山口为块状熔结集块岩/角砾岩/凝灰岩,横截面表现为纵横比大的丘状,强熔结结构。近源微相为交错层理发育或流动构造发育的熔结角砾岩/凝灰岩,远源微相为平行层理发育的(熔结)凝灰岩。对两个微相的岩芯和薄片进行粒度分析显示(图7b),近源微相中角砾直径以2~4 mm为主,凝灰粒径以0.5~1 mm为主,角砾含量较多,颗粒较粗,分选系数为2.7,分选中等(图7b-I)。远源微相中含有少量角砾,以2~4 mm为主,凝灰粒径以0.0625~0.125 mm为主,颗粒较细,分选系数为3.7,分选中等—差(图7b-II)。

  • 3.2 喷溢相熔岩流亚相

  • 熔岩流指从同一个喷出口(中心式或裂隙式均可)一次连续(宁静)喷发的熔浆形成的堆积体,通常为冷凝固结成岩,岩石组构和地层产状呈连续变化,围限界面主要是喷发不整合或喷发整合(唐华风等,2017)。按喷发环境可划分为水上和水下喷发;按内部叠置关系可划分为简单熔岩流和辫状熔岩流。

  • 本区熔岩流亚相,主要是中酸性熔岩,容易形成厚板状外形,主要由厚层状简单熔岩流微相和碎屑堆积微相构成(图8a、b);整体上简单熔岩流微相可分为上下两部分,上部为杏仁体安山岩(图2e),下部为致密块状的熔岩(图2a);碎屑堆积微相主要是自碎角砾,可接受各类胶结作用形成自碎角砾岩,本区发育钙质胶结自碎角砾岩。

  • 3.3 火山-沉积相崩塌再搬运堆积亚相

  • 崩塌再搬运堆积亚相是火山堆积物在水不饱和条件下发生大规模崩塌的产物(Calvari et al.,1998)。崩塌再搬运堆积指由山体滑坡引起的快速和灾难性的块状流,其水平移动高度可能是高度落差的几倍。与驱动力相比,下层的阻力最初非常小(de Vrie and Davies,2015)。该类堆积物可划分为再搬运块状堆积和再搬运基质堆积2类微相(Ui et al.,2000)。

  • 图6 莱州湾凹陷南斜坡中生界火山岩热基浪亚相模式

  • Fig.6 Base surge subfacies model of Mesozoic volcanic rocks in the southern slope of Laizhou Bay depression

  • (a)—热基浪相模式图;(b)—热基浪亚相粒度分布直方图

  • (a) —facies model of base surge; (b) —histogram of particle size distribution in the base surge subfacies

  • 图7 莱州湾凹陷南斜坡中生界火山岩热碎屑流亚相模式

  • Fig.7 Pyroclastic flow subfacies model of Mesozoic volcanic rocks on the southern slope of Laizhou Bay depression

  • (a)—热碎屑流相模式图;(b)—热碎屑流亚相粒度分布直方图

  • (a) —facies model of pyroclastic flow; (b) —histogram of particle size distribution in the pyroclastic flow subfacies

  • 图8 莱州湾凹陷南斜坡中生界火山岩熔岩流亚相模式

  • Fig.8 Lava flow subfacies model of Mesozoic volcanic rocks in the southern slope of Laizhou Bay depression

  • (a)—熔岩流亚相模式纵剖面;(b)—熔岩流亚相模式横剖面

  • (a) —vertical profile of subfacies model of the lava flow; (b) —horizontal profile of subfacies model of the lava flow

  • 特征地形表现为源区为大围谷和堆积区的丘陵地形,地形通常是因为直径特别大的碎屑颗粒突出而形成(图9a);再搬运块状堆积微相主要为沉集块岩和沉角砾岩,分选极差,具有透镜状外形,块状碎屑可以达到数米或更大,形成丘状地形;再搬运基质堆积微相主要为沉角砾凝灰岩,具有席状-透镜状外形。对两个微相的岩芯和薄片进行粒度分析显示(图9b),块状堆积亚相沉角砾岩中,角砾含量较高,粒径以2~4 mm为主,凝灰粒径以0.5~1 mm为主,颗粒较粗,分选系数为3.9,分选中等—差(图9b-I)。基质堆积亚相沉凝灰岩中,角砾含量较少,只在2~4 mm范围内分布,凝灰粒径以0.125~0.25 mm和0.0625~0.125 mm为主,颗粒较细,分选系数为3.4,分选中等(图9b-II)。

  • 4 岩相分布特征

  • 基于上述岩相特征,对研究区内钻井的火山岩相进行划分,结果表明钻井揭示情况中爆发相热基浪亚相最为发育,占比为49.7%;喷溢相熔岩流亚相次之,占比为22.9%;爆发相热碎屑流亚相占比20.6%;火山沉积相崩塌再搬运堆积亚相占比6.8%。

  • 从单井纵向岩相序列来看具有复杂的亚相叠置样式,1井发育爆发相热基浪亚相(图10a);8井依次发育爆发相热基浪亚相、喷溢相熔岩流亚相和火山沉积相崩塌再搬运堆积亚相(图10b);4 井依次发育爆发相热基浪亚相、爆发相热碎屑流亚相和喷溢相熔岩流亚相(图10c);7井依次发育爆发相热基浪亚相、火山沉积相崩塌再搬运堆积亚相、爆发相热碎屑流亚相和喷溢相熔岩流亚相(图10d)。从钻井揭示的火山-沉积夹层和风化壳来看,垦利构造的火山可以是以爆发相为主和以喷溢相为主的特征,结合井间距可知,火山岩相在横向上的变化也较为迅速。利用相干属性识别火山口、利用波形分类进行岩相识别,但限于地震资料的精度问题,本次研究只得到火山岩亚相的分布,微相类型在地震资料上难以刻画。结果显示,火山岩相在横向上变化较为迅速(图11)。

  • 图9 莱州湾凹陷南斜坡中生界沉火山碎屑岩崩塌再搬运堆积亚相模式

  • Fig.9 Avalanche subfacies of Mesozoic reworked volcaniclastic rocks in the southern slope of Laizhou Bay depression

  • (a)—崩塌再搬运堆积相模式图;(b)—崩塌再搬运堆积亚相粒度分布直方图

  • (a) —facies model of avalanche; (b) —histogram of particle size distribution in the avalanche subfacies

  • 图10 莱州湾凹陷南斜坡中生界火山岩相纵向分布

  • Fig.10 Longitudinal distribution of Mesozoic volcanic facies in the southern slope of Laizhou Bay depression

  • (a)—1井火山岩相分布特征;(b)—8井火山岩相分布特征;(c)—4井火山岩相分布特征;(d)—7井火山岩相分布特征

  • (a) —distribution characteristics of volcanic facies in well 1; (b) —distribution characteristics of volcanic facies in well 8; (c) —distribution characteristics of volcanic facies in well 4; (d) —distribution characteristics of volcanic facies in well 7

  • 图11 莱州湾凹陷南斜坡中生界火山岩相平面分布图

  • Fig.11 Facies distribution of Mesozoic volcanic rocks in the southern slope of Laizhou Bay depression

  • 5 岩相的储层特征

  • 由岩芯实测孔隙度和渗透率数据结果可知,储层孔渗条件由好到差的顺序为热基浪亚相、热碎屑流亚相、熔岩流亚相和崩塌再搬运堆积亚相。下面详细介绍4类亚相的微相储层特征。

  • 5.1 热基浪亚相

  • 火山口-近火山口微相的储集空间占比从高到低的顺序为基质溶蚀微孔(48%)、筛状孔(29%)、铸模孔(14%)和基质洞穴状孔(9%),大孔径储集空间占比可达52%(图12a、b)。测井解释孔隙度范围7.5%~23.6%、几何均值13.1%(图12c)。利用成像测井解释的裂缝密度范围2.0~12.0 m/m2、几何均值3.7 m/m2(图12d)。

  • 图12 莱州湾凹陷南斜坡中生界火山岩热基浪亚相储层特征

  • Fig.12 Reservoir characteristics of base surge subfacies of Mesozoic volcanic in the southern slope of Laizhou Bay depression

  • 火山口-近火山口微相:(a)—8井,1458 m,角砾集块岩,发育筛状孔和基质溶蚀微孔;(b)—储集空间构成特征,n=4;(c)—孔隙度特征,n=142,几何平均值为13.1%;(d)—裂缝密度特征,n=12,几何平均值为3.7条/m;近源微相:(e)—4井,1605 m,角砾凝灰岩,发育长石铸膜孔;(f)—储集空间构成特征,n=59;(g)—孔隙度特征,n=884,几何平均值为14.7%;(h)—裂缝密度特征,n=74,几何平均值为4.5条/m;远源微相:(i)—10井,1882 m,凝灰岩,发育基质溶蚀微孔;(j)—储集空间构成特征,n=8;(k)—孔隙度特征,n=95,几何平均值为8.4%;(l)—裂缝密度特征,n=12,几何平均值为2.1条/m

  • Crater-near crater microfacies: (a) —well 8, 1458 m, breccia conglomerate with abundant sieve pores and spongy pores in matrix; (b) —characteristics of reservoir space composition, n=4; (c) —characteristics of porosity, n=142, with a geometric average of 13.1%; (d) —characteristics of the density of the fracture, n=12, with a geometric average of 3.7 number per meter; proximal microfacies: (e) —well 4, 1605 m, breccia tuff with abundant moldic micropores in the feldspar; (f) —characteristics of reservoir space composition, n=59; (g) —characteristics of porosity, n=884, with a geometric average of 14.7%; (h) —characteristics of the density of the fracture, n=74, with a geometric average of 4.5 number per meter; distal microfacies: (i) —well 10, 1882 m, tuff with spongy pores in matrix; (j) —characteristics of reservoir space composition, n=8; (k) —characteristics of porosity, n=95, with a geometric average of 8.4%; (l) —characteristics of the density of the fracture, n=12, with a geometric average of 2.1 number per meter

  • 近源微相的储集空间占比从高到低的顺序为筛状孔(32%)、基质溶蚀微孔(30%)、晶内溶蚀微孔(19%)、铸模孔(12%)和基质洞穴状孔(7%),大孔径储集空间可高达51%(图12e、f)。测井解释孔隙度范围6.4%~27.6%、几何均值14.7%(图12g)。裂缝密度范围2.0~13.0 m/m2、几何均值4.5 m/m2 (图12h)。

  • 远源微相的储集空间占比从高到低的顺序为基质溶蚀微孔(62%)、晶内溶蚀微孔(29%)和基质洞穴状孔(9%),大孔径储集空间占比可达9%(图12i、j)。测井解释孔隙度范围0.7%~17.7%、几何均值17.4%(图12k)。利用成像测井解释的裂缝密度范围1.0~12.0 m/m2、几何均值2.1 m/m2(图12l)。

  • 综上所述,近源微相具有大孔径孔隙占比高、高孔隙度和高裂缝线密度的特征,该微相内岩石粒度较粗且分选好,所以储层较好;火山口-近火山口微相粒度粗,分选差,所以储层稍差;远源微相分选中等,但由于粒度很细,不利于储集空间发育,所以储层较差。

  • 5.2 热碎屑流亚相

  • 钻井揭示了热碎屑流亚相的近源微相和远源微相。所以储层特征分析时只分析了这两个微相。

  • 近源微相的储集空间占比从高到低的顺序为筛状孔(36%)、基质洞穴状孔(31%)、铸膜孔(17%)和基质溶蚀微孔(16%),大孔径储集空间占比可达84%(图13a、b)。孔隙度范围3.3%~23.1%、几何均值7.8%(图13c)。利用成像测井解释的裂缝密度范围1.0~10.0 m/m2、几何均值5.0 m/m2(图13d)。

  • 远源微相的储集空间占比从高到低的顺序为基质洞穴状孔(30%)、筛状孔(25%)、基质溶蚀微孔(22%)、冷凝收缩缝(14%)和晶内溶蚀微孔(9%),大孔径储集空间占比可达55%(图13e、f)。孔隙度范围0.1%~15.4%、几何均值6.0%(图13g)。利用成像测井解释的裂缝密度范围1.0~9.0 m/m2、几何均值5.0 m/m2(图13h)。

  • 综上所述,近源微相具有大孔径孔隙占比高、高孔隙度、高裂缝线密度的特征,粒度较粗,分选中等,所以储层较好;远源微相粒度较细,分选中等—差,所以储层稍差。由于研究区尚未钻遇火山口-近火山口微相,但由以上两个微相的特征推断可知,火山口-近火山口微相熔结程度高,颗粒粗,分选差,所以不利于储层发育。

  • 图13 莱州湾凹陷南斜坡中生界火山岩热碎屑流亚相储层特征

  • Fig.13 Reservoir characteristics of pyroclastics flow subfacies of Mesozoic volcanic in the southern slope of Laizhou Bay depression

  • 近源微相:(a)—7井,1798 m,角砾凝灰熔岩,发育铸膜孔、筛状孔、基质溶蚀洞穴和基质溶蚀微孔;(b)—储集空间构成特征,n=7;(c)—孔隙度特征,n=156,几何平均值为7.8%;(d)—裂缝密度特征,n=19,几何平均值为5.0条/m;远源微相:(e)—7井,1743.5 m,凝灰熔岩,发育晶内溶蚀微孔和基质溶蚀微孔;(f)—储集空间构成特征,n=9;(g)—孔隙度特征,n=277,几何平均值为6.0%;(h)—裂缝密度特征,n=25,几何平均值为5.0条/m

  • Proximal microfacies: (a) —well 7, 1798 m, breccia tuff lava with abundant moldic micropores, sieve pores, cavernous pores, and spongy pores in matrix; (b) —characteristics of reservoir space composition, n=7; (c) —characteristics of porosity, n=156, with a geometric average of 7.8%; (d) —characteristics of the density of the fracture, n=19, with a geometric average of 5.0 number per meter; distal microfacies: (e) —well 7, 1743.5 m, tuff lava with intragranular micropores and spongy pores in matrix; (f) —characteristics of reservoir space composition, n=9; (g) —characteristics of porosity, n=277, with a geometric average of 6.0%; (h) —characteristics of the density of the fracture, n=25, with a geometric average of 5.0 number per meter

  • 5.3 熔岩流亚相

  • 钻井揭示的简单熔岩流微相和碎屑堆积微相,储层样品只有简单熔岩流微相,所以只能对简单熔岩流微相进行分析。简单熔岩流微相可分为上部和下部。

  • 简单熔岩微相上部的储集空间占比从高到低的顺序为基质溶蚀洞穴状孔(36%)、杏仁体内孔(30%)、基质溶蚀微孔(27%)和冷凝收缩缝(7%),大孔径储集空间占比可达73%(图14a、b)。孔隙度范围0.4%~17.8%、几何均值10.9%(图14c)。

  • 简单熔岩微相下部的储集空间占比从高到低的顺序为筛状孔(28%)、基质溶蚀微孔(24%)、基质溶蚀洞穴状孔(31%)、晶内溶蚀微孔(10%)、冷凝收缩缝(9%)和溶蚀缝(8%),大孔径储集空间占比可达68%(图14d、e)。孔隙度范围3.7%~15.8%、几何均值8.7%(图14f)。

  • 综上所述,熔岩流亚相的储层主要体现为简单熔岩流微相上下分层,上部大孔径储集空间占比高、孔隙度高,所以上部储层较好;下部大孔径孔隙占比低、孔隙度低,所以下部储层较差。

  • 5.4 崩塌再搬运堆积亚相

  • 再搬运块状堆积微相的储集空间占比从高到低的顺序为筛状孔(51%)、铸模孔(33%)、晶内溶蚀微孔(11%)和基质溶蚀微孔(5%),大孔径储集空间占比可达84%(图15a、b)。孔隙度范围0.1%~9.7%、几何均值7.2%(图15c)。裂缝面密度范围3~10 m/m2、几何均值6.7 m/m2(图15d)。

  • 再搬运基质堆积微相的储集空间占比从高到低的顺序为筛状孔(50%)、基质溶蚀洞穴状孔(21%)、基质溶蚀微孔(14%)、晶内溶蚀微孔(6%)、颗粒间孔(5%)和炸裂缝(4%),大孔径储集空间占比可达80%(图15e、f)。孔隙度范围8.8%~13.2%、几何均值10.5%(图15g)。裂缝面密度范围11~15 m/m2、几何均值13.5 m/m2(图15h)。

  • 综上所述,再搬运基质堆积微相具有大孔径孔隙占比高、高孔隙度、高裂缝线密度的特征,该微相内颗粒较细,分选中等;再搬运块状堆积微相内颗粒较粗,分选中等—差,所以再搬运基质堆积微相储层物性好于再搬运块状堆积微相。如果熔岩碎屑中含有颗粒内气孔时再搬运块状堆积微相的储层好于再搬运基质堆积微相(唐华风等,2016)。

  • 图14 莱州湾凹陷南斜坡中生界火山岩熔岩流亚相储层特征

  • Fig.14 Reservoir characteristics of lava flow subfacies of Mesozoic volcanic rocks in the southern slope of Laizhou Bay depression

  • 简单熔岩流微相上部:(a)—6井,1583 m,杏仁体安山岩,发育杏仁体内孔;(b)—储集空间构成特征,n=5;(c)—孔隙度特征,n=135,几何平均值为10.9%;简单熔岩流微相下部:(d)—8井,1471 m,安山岩,发育筛状孔和晶内溶蚀微孔;(e)—储集空间构成特征,n=32;(f)—孔隙度特征,n=208,几何平均值为8.7%

  • The upper part of the simple lava flow microfacies: (a) —well 6, 1583 m, amygdaloidal andesite with abundant amygdale; (b) —characteristics of reservoir space composition, n=5; (c) —characteristics of porosity, n=135, with a geometric average of 10.9%; the lower of the simple lava flow microfacies: (d) —well 8, 1471 m, andesite with abundant sieve pores and intragranular micropores; (e) —characteristics of reservoir space composition, n=32; (f) —characteristics of porosity, n=208, with a geometric average of 8.7%

  • 图15 莱州湾凹陷南斜坡中生界火山岩崩塌再搬运堆积亚相储层特征

  • Fig.15 Reservoir characteristics of avalanche subfacies of Mesozoic volcanic rocks volcanic in the southern slope of Laizhou Bay depression

  • 再搬运块状堆积微相:(a)—7井,1731.5 m,沉角砾岩,发育筛状孔和晶内溶蚀微孔;(b)—储集空间构成特征,n=7;(c)—孔隙度特征,n=66,几何平均值为7.2%;(d)—裂缝密度特征,n=7,几何平均值为6.7条/m;再搬运基质堆积微相:(e)—7井,1724 m,沉凝灰岩,发育筛状孔和基质溶蚀洞穴;(f)—储集空间构成特征,n=6;(g)—孔隙度特征,n=40,几何平均值为10.5%;(h)—裂缝密度特征,n=3,几何平均值为13.5条/m

  • Reworked massive deposition microfacies: (a) —well 7, 1731.5 m, breccia tuff lava with abundant moldic micropores, sieve pores, cavernous pores, and spongy pores in matrix; (b) —characteristics of reservoir space composition, n=7; (c) —characteristics of porosity, n=66, with a geometric average of 7.2%; (d) —characteristics of the density of the fracture, n=7, with a geometric average of 6.7 number per meter; reworked matrix microfacies: (e) —well 7, 1724 m, reworked tuff with abundant moldic micropores and cavernous pores; (f) —characteristics of reservoir space composition, n=6; (g) —characteristics of porosity, n=40, with a geometric average of 10.5%; (h) —characteristics of the density of the fracture, n=3, with a geometric average of 13.5 number per meter

  • 6 结论

  • (1)在本区识别出3相4亚相10微相。爆发相热碎屑流亚相和热基浪亚相,均可分为火山口-近火山口、近源和远源微相。喷溢相熔岩流亚相,可分为简单熔岩流和碎屑堆积微相。火山-沉积相崩塌再搬运堆积亚相,可分为再搬运块状堆积微相和再搬运基质堆积微相。

  • (2)钻井揭示的亚相占比从高到低的顺序为爆发相热基浪亚相、喷溢相熔岩流亚相、爆发相热碎屑流亚相和火山-沉积相崩塌再搬运堆积亚相。火山地层具有复杂岩相叠置关系,亚相单元横向延伸范围有限、对比难度大的特点。

  • (3)储层孔渗条件由好到差的顺序为热基浪亚相、热碎屑流亚相、熔岩流亚相和崩塌再搬运堆积亚相。

  • (4)爆发相热基浪亚相中近源微相储层好于火山口-近火山口微相和远源微相。爆发相热碎屑流亚相中远源微相储层较好于近源微相。喷溢相熔岩流亚相简单熔岩流微相的储层主要体现为上下分层,上部好于下部。崩塌再搬运堆积亚相中再搬运基质堆积微相储层物性好于再搬运块状堆积微相的。在本研究区发育的3相4亚相10微相中,爆发相热基浪亚相近源微相储层品质最好。

  • 参考文献

    • Calvari S, Tanner L H, Groppelli G. 1998. Debris-avalanche deposits of the Milo Lahar sequence and the opening of the Valle Del Bove on Etna Volcano Italy. Journal of Volcanology & Geothermal Research, 87 (1): 193~209.

    • Chen Huanqing, Shi Weiwei, Du Yijing, Deng Xiaojuan. 2022. Advances in volcanic facies research of volcanic reservoir. Chinese Journal of Geology, 57(4): 1307~1323 (in Chinese with English abstract).

    • De Vries B W, Davies T. 2015. Landslides, debris avalanches, and volcanic gravitational deformation. In: Sigurdsson H, ed. The Encyclopedia of Volcanoes. New York: Academic Press, 665~682.

    • Doyle M G, McPhie J. 2000. Facies architecture of a silicic intrusion-dominated volcanic centre at Highway-Reward, Queensland, Australia. Journal of Volcanology and Geothermal Research, 99: 79~96.

    • Editorial Committee of Geosciences Dictionary. 2006. Geosciences Dictionary: Volume of Basic Science. Beijing: Geological Publishing House, 1~1173 (in Chinese with English abstract).

    • Fisher R V, Schmincke H U. 1984. Pyroclastic Rocks. Berlin: Springer.

    • Huang Lei, Wang Yingbin, Wu Qiang, Wang Qiang. 2012. Cenozoic tectonic evolution of the Laizhouwan sag in Bohai Bay basin. Acta Geologica Sinica, 86(6): 867~876 (in Chinese with English abstract).

    • Jerram D A. 2002. Volcanology and facies architecture of flood basalts. In: Menzies M A, Klemperer S L, Ebinger C J, et al. , eds. Volcanic Rifted Margins. Special Paper 362, Geological Society of America, 362: 121~135.

    • Jin Bailu, Zhang Xiyou. 1994. Volcanic Geology of the Changbai Mountain. Changchun: Korean Education Press, 40~49 (in Chinese with English abstract).

    • Khalaf E E D A H. 2010. Stratigraphy, facies architecture, and palaeoenvironment of Neoproterozoic volcanics and volcaniclastic deposits in Fatira area, central eastern Desert, Egypt. Journal of African Earth Sciences, 58: 405~426.

    • Lockwood J P, Hazlett W R. 2010. Volcanoes-Global Perspectives. Hoboken, USA: Wiley Blackwell.

    • Li Shi, Wang Tong. 1980. Volcanic Rocks. Beijing: Geological Publishing House, 20~40 (in Chinese with English abstract).

    • McPhie J, Doyle M, Allen R. 1993. Volcanic textures. Australia, University of Tasmania, Hobart, 1~197.

    • Neyendorf K K E, Mehl Jr J P, Jackson J A. 2011. Glossary of Geology, Fifth Edition, Revised. Alexandria, Virginia: American Geosciences Institute, 1-3587.

    • Niu Chengmin. 2012. Tectonic evolution and hydrocarbon accumulation of Laizhouwan depression in southern Bohai Sea. Oil & Gas Geology, 33(3): 424~431 (in Chinese with English abstract).

    • Qiu Jiaxiang, Tao Kuiyuan, Zhao Junlei, 1996. Volcanic Rocks. Beijing: Geological Publishing House, 10~22 (in Chinese with English abstract).

    • Ren Xianjun. 2022. Faces model of intermediate volcanic rocks in steep slope and its control on reservoirs: A case study in Changling fault depression, Songliao basin. Journal of Jilin University (Earth Science Edition), 52(3): 816~828 (in Chinese with English abstract).

    • Shan Xuanlong, Mou Hansheng, Liu Yuhu, Li Ruilei, Zhu Jianfeng, Shi Yunqian, Leng Qinglei, Yi Jian. 2023. Subaqueous volcanic eruptive facies, facies model and its reservoir significance in a continental lacustrine basin: A case from the Cretaceous in Chaganhua area of southern Songliao basin, NE China. Petroleum Exploration and Development, 50(4): 1~12 (in Chinese with English abstract).

    • Shi Hao, Zhou Fanghong, Lv Dingyou. 2014. Cenozoic strike-slip tectonic character and the significance of oil and gas exploration in eastern Laizhou Bay. Offshore Oil, 34(3): 34~39 (in Chinese with English abstract).

    • Tang Huafeng, Kong Tan, Liu Xiang, Yang Di, Huo Hongyu, Huang Yulong. 2016. Characteristics and formation mechanisms of high quality reservoir of volcaniclastic sedimentary rocks of early Cretaceous in Songliao basin. Acta Petrolei Sinica, 37(5): 631~643 (in Chinese with English abstract).

    • Tang Huafeng, Zhao Pengjiu, Gao Youfeng, Wang Pujun, Qi Yuning. 2017. Spatio-temporal attributes of volcano stratigraphy and its lithostratigraphic units in a basin. Journal of Jilin University (Earth Science Edition), 47(4): 949~973 (in Chinese with English abstract).

    • Tang Huafeng, Dai Yanlin, Guo Tianchan, Liu Zhao, He Xianpei, Zhang Yichi. 2020a. Distribution pattern of reservoirs in the extrusive volcanic edifice: A case study of the Yitong volcanoes. Acta Petrolei Sinica, 41(7): 809~820 (in Chinese with English abstract).

    • Tang Huafeng, Wang Pujun, Bian Weihua, Huang Yulong, Gao Youfeng, Dai Xiaojuan. 2020b. Review of volcanic reservoir geology. Acta Petrolei Sinica, 41(12): 1744~1773 (in Chinese with English abstract).

    • Tao Kuiyuan. 1994. Structure and Facies of Volcanic Rocks. Nanjing: Jiangsu Science & Technology Press, 12~31 (in Chinese with English abstract).

    • Ui T, Takarada S, Yoshimoto M. 2000. Debris avalanches. In: Sigurdsson H, ed. Encyclopedia of Volcanoes. New York: Academic Press, 617~626.

    • Wang Pujun, Chi Yuanlin, Liu Wanzhu, Cheng Rihui, Shan Xuanlong, Ren Yanguang. 2003. Volcanic facies of the Songliao basin: Classification, characteristics and reservoir significance. Journal of Jilin University (Earth Science Edition), 33(4): 449~456 (in Chinese with English abstract).

    • Wang Pujun, Wu Keyong, Pang Yanming, Men Guangtian, Ren Yanguang, Liu Wanzhu, Bian Weihua. 2006. Volcanic facies of the Songliao basin: Sequence, model and the quantitative relationship with porosity and permeability of the volcanic reservoir. Journal of Jilin University (Earth Science Edition), 36(5): 805~812 (in Chinese with English abstract).

    • Wen Long, Li Ya, Yi Haiyong, Liu Xin, Zhang Benjian, Qiu Yuchao, Zhou Gang, Zhang Xihua. 2019. Lithofacies and reservoir characteristics of Permian volcanic rocks in the Sichuan basin. Natural Gas Industry, 39(2): 17~27 (in Chinese with English abstract).

    • Xie Jiaying, Tao Kuiyuan, Huang Guangzhao. 1994. The volcanic facies types of Mesozoic terrane in Southeast China continent. Volcano Geology and Resources, 15(4): 45~51 (in Chinese with English abstract).

    • Xue Huaimin, Cao Guangyue. 2021. Volcanic lithofacies, volcanic tectonic framework and volcanism process in the southwestern segment of Huanggangliang volcanic structural uplift in Great Xing'an Rang, NE China. Acta Geologica Sinica, 95(3): 643~666 (in Chinese with English abstract).

    • Zhang Xinghua. 2003. Volcanic lithofacies study of Oulituozi oilfield. Special Oil and Gas Reservoirs, 10(1): 40~42 (in Chinese with English abstract).

    • Zhao Jianbin, Huang Xianhua, Liu Xiaoyan, Li Zhenlin, Tian Yang, Ding Wei, Liu Lingli. 2020. Effectiveness evaluation of extra-low permeability andesite reservoirs in Wulanhua sag, Erlian basin. Acta Petrolei Sinica, 41(10): 1188~1196 (in Chinese with English abstract).

    • 陈欢庆, 石为为, 杜宜静, 邓晓娟. 2022. 火山岩储层岩相研究进展. 地质科学, 57(4): 1307~1323.

    • 地球科学大辞典编委会. 2006. 地球科学大辞典. 北京: 地质出版社, 1~1173.

    • 黄雷, 王应斌, 武强, 王强. 2012. 渤海湾盆地莱州湾凹陷新生代盆地演化. 地质学报, 86(6): 867~876.

    • 金伯禄, 张希友. 1994. 长白山火山地质研究. 长春: 东北朝鲜民族教育出版社, 40~49.

    • 李石, 王彤. 1980. 火山岩. 北京: 地质出版社, 20~40.

    • 牛成民. 2012. 渤海南部海域莱州湾凹陷构造演化与油气成藏. 石油与天然气地质, 33(3): 424~431.

    • 邱家骧, 陶奎元, 赵俊磊. 1996. 火山岩. 北京: 地质出版社, 10~22.

    • 任宪军. 2022. 松辽盆地长岭断陷盆缘陡坡带中性火山岩相模式及其对储层的控制作用. 吉林大学学报(地球科学版), 52(3): 816~828.

    • 单玄龙, 牟汉生, 刘玉虎, 李瑞磊, 朱建峰, 石云倩, 冷庆磊, 衣健. 2023. 湖盆水下喷发火山岩相类型、特征与储集意义: 以松辽盆地南部查干花地区白垩系为例. 石油勘探与开发, 50(4): 1~12.

    • 史浩, 周东红, 吕丁友. 2014. 莱州湾凹陷东部新生代走滑构造特征及油气勘探意义. 海洋石油, 34(3): 34~39.

    • 唐华风, 孔坦, 刘祥, 杨迪, 霍宏宇, 黄玉龙. 2016. 松辽盆地下白垩统沉火山碎屑岩优质储层特征和形成机理. 石油学报, 37(5): 631~643.

    • 唐华风, 赵鹏九, 高有峰, 王璞珺, 齐雨宁. 2017. 盆地火山地层时空属性和岩石地层单位. 吉林大学学报(地球科学版), 47(4): 949~973.

    • 唐华风, 戴岩林, 郭天婵, 刘钊, 何贤培, 张一弛. 2020a. 侵出式火山机构储层的分布模式——以伊通火山群为例. 石油学报, 41(7): 809~820.

    • 唐华风, 王璞珺, 边伟华, 黄玉龙, 高有峰, 代晓娟. 2020b. 火山岩储层地质研究回顾. 石油学报, 41(12): 1744~1773.

    • 陶奎元. 1994. 火山岩相构造学. 南京: 江苏科学技术出版社, 12~31.

    • 王璞珺, 迟元林, 刘万洙, 程日辉, 单玄龙, 任延广. 2003. 松辽盆地火山岩相: 类型、特征和储层意义. 吉林大学学报(地球科学版), 33(4): 449~456.

    • 王璞珺, 吴河勇, 庞颜明, 门广田, 任延广, 刘万洙, 边伟华. 2006. 松辽盆地火山岩相: 相序、相模式与储层物性的定量关系. 吉林大学学报(地球科学版), 36(5): 805~812.

    • 文龙, 李亚, 易海永, 刘鑫, 张本健, 邱玉超, 周刚, 张玺华. 2019. 四川盆地二叠系火山岩岩相与储层特征. 天然气工业, 39(2): 17~27.

    • 谢家莹, 陶奎元, 黄光昭. 1994. 中国东南大陆中生代火山岩带的火山岩相类型. 火山地质与矿产, 15(4): 45~51.

    • 薛怀民, 曹光跃. 2021. 大兴安岭黄岗梁火山构造隆起西南段火山岩相, 火山构造格架与火山作用过程重溯. 地质学报, 95(3): 643~666.

    • 张兴华. 2003. 欧利坨子油田火山岩相研究. 特种油气藏, 10(1): 40~42.

    • 赵建斌, 黄显华, 刘晓燕, 李振林, 田扬, 丁伟, 刘玲莉. 2020. 二连盆地乌兰花凹陷特低渗安山岩储层的有效性评价. 石油学报, 41(10): 1188~1196.

  • 参考文献

    • Calvari S, Tanner L H, Groppelli G. 1998. Debris-avalanche deposits of the Milo Lahar sequence and the opening of the Valle Del Bove on Etna Volcano Italy. Journal of Volcanology & Geothermal Research, 87 (1): 193~209.

    • Chen Huanqing, Shi Weiwei, Du Yijing, Deng Xiaojuan. 2022. Advances in volcanic facies research of volcanic reservoir. Chinese Journal of Geology, 57(4): 1307~1323 (in Chinese with English abstract).

    • De Vries B W, Davies T. 2015. Landslides, debris avalanches, and volcanic gravitational deformation. In: Sigurdsson H, ed. The Encyclopedia of Volcanoes. New York: Academic Press, 665~682.

    • Doyle M G, McPhie J. 2000. Facies architecture of a silicic intrusion-dominated volcanic centre at Highway-Reward, Queensland, Australia. Journal of Volcanology and Geothermal Research, 99: 79~96.

    • Editorial Committee of Geosciences Dictionary. 2006. Geosciences Dictionary: Volume of Basic Science. Beijing: Geological Publishing House, 1~1173 (in Chinese with English abstract).

    • Fisher R V, Schmincke H U. 1984. Pyroclastic Rocks. Berlin: Springer.

    • Huang Lei, Wang Yingbin, Wu Qiang, Wang Qiang. 2012. Cenozoic tectonic evolution of the Laizhouwan sag in Bohai Bay basin. Acta Geologica Sinica, 86(6): 867~876 (in Chinese with English abstract).

    • Jerram D A. 2002. Volcanology and facies architecture of flood basalts. In: Menzies M A, Klemperer S L, Ebinger C J, et al. , eds. Volcanic Rifted Margins. Special Paper 362, Geological Society of America, 362: 121~135.

    • Jin Bailu, Zhang Xiyou. 1994. Volcanic Geology of the Changbai Mountain. Changchun: Korean Education Press, 40~49 (in Chinese with English abstract).

    • Khalaf E E D A H. 2010. Stratigraphy, facies architecture, and palaeoenvironment of Neoproterozoic volcanics and volcaniclastic deposits in Fatira area, central eastern Desert, Egypt. Journal of African Earth Sciences, 58: 405~426.

    • Lockwood J P, Hazlett W R. 2010. Volcanoes-Global Perspectives. Hoboken, USA: Wiley Blackwell.

    • Li Shi, Wang Tong. 1980. Volcanic Rocks. Beijing: Geological Publishing House, 20~40 (in Chinese with English abstract).

    • McPhie J, Doyle M, Allen R. 1993. Volcanic textures. Australia, University of Tasmania, Hobart, 1~197.

    • Neyendorf K K E, Mehl Jr J P, Jackson J A. 2011. Glossary of Geology, Fifth Edition, Revised. Alexandria, Virginia: American Geosciences Institute, 1-3587.

    • Niu Chengmin. 2012. Tectonic evolution and hydrocarbon accumulation of Laizhouwan depression in southern Bohai Sea. Oil & Gas Geology, 33(3): 424~431 (in Chinese with English abstract).

    • Qiu Jiaxiang, Tao Kuiyuan, Zhao Junlei, 1996. Volcanic Rocks. Beijing: Geological Publishing House, 10~22 (in Chinese with English abstract).

    • Ren Xianjun. 2022. Faces model of intermediate volcanic rocks in steep slope and its control on reservoirs: A case study in Changling fault depression, Songliao basin. Journal of Jilin University (Earth Science Edition), 52(3): 816~828 (in Chinese with English abstract).

    • Shan Xuanlong, Mou Hansheng, Liu Yuhu, Li Ruilei, Zhu Jianfeng, Shi Yunqian, Leng Qinglei, Yi Jian. 2023. Subaqueous volcanic eruptive facies, facies model and its reservoir significance in a continental lacustrine basin: A case from the Cretaceous in Chaganhua area of southern Songliao basin, NE China. Petroleum Exploration and Development, 50(4): 1~12 (in Chinese with English abstract).

    • Shi Hao, Zhou Fanghong, Lv Dingyou. 2014. Cenozoic strike-slip tectonic character and the significance of oil and gas exploration in eastern Laizhou Bay. Offshore Oil, 34(3): 34~39 (in Chinese with English abstract).

    • Tang Huafeng, Kong Tan, Liu Xiang, Yang Di, Huo Hongyu, Huang Yulong. 2016. Characteristics and formation mechanisms of high quality reservoir of volcaniclastic sedimentary rocks of early Cretaceous in Songliao basin. Acta Petrolei Sinica, 37(5): 631~643 (in Chinese with English abstract).

    • Tang Huafeng, Zhao Pengjiu, Gao Youfeng, Wang Pujun, Qi Yuning. 2017. Spatio-temporal attributes of volcano stratigraphy and its lithostratigraphic units in a basin. Journal of Jilin University (Earth Science Edition), 47(4): 949~973 (in Chinese with English abstract).

    • Tang Huafeng, Dai Yanlin, Guo Tianchan, Liu Zhao, He Xianpei, Zhang Yichi. 2020a. Distribution pattern of reservoirs in the extrusive volcanic edifice: A case study of the Yitong volcanoes. Acta Petrolei Sinica, 41(7): 809~820 (in Chinese with English abstract).

    • Tang Huafeng, Wang Pujun, Bian Weihua, Huang Yulong, Gao Youfeng, Dai Xiaojuan. 2020b. Review of volcanic reservoir geology. Acta Petrolei Sinica, 41(12): 1744~1773 (in Chinese with English abstract).

    • Tao Kuiyuan. 1994. Structure and Facies of Volcanic Rocks. Nanjing: Jiangsu Science & Technology Press, 12~31 (in Chinese with English abstract).

    • Ui T, Takarada S, Yoshimoto M. 2000. Debris avalanches. In: Sigurdsson H, ed. Encyclopedia of Volcanoes. New York: Academic Press, 617~626.

    • Wang Pujun, Chi Yuanlin, Liu Wanzhu, Cheng Rihui, Shan Xuanlong, Ren Yanguang. 2003. Volcanic facies of the Songliao basin: Classification, characteristics and reservoir significance. Journal of Jilin University (Earth Science Edition), 33(4): 449~456 (in Chinese with English abstract).

    • Wang Pujun, Wu Keyong, Pang Yanming, Men Guangtian, Ren Yanguang, Liu Wanzhu, Bian Weihua. 2006. Volcanic facies of the Songliao basin: Sequence, model and the quantitative relationship with porosity and permeability of the volcanic reservoir. Journal of Jilin University (Earth Science Edition), 36(5): 805~812 (in Chinese with English abstract).

    • Wen Long, Li Ya, Yi Haiyong, Liu Xin, Zhang Benjian, Qiu Yuchao, Zhou Gang, Zhang Xihua. 2019. Lithofacies and reservoir characteristics of Permian volcanic rocks in the Sichuan basin. Natural Gas Industry, 39(2): 17~27 (in Chinese with English abstract).

    • Xie Jiaying, Tao Kuiyuan, Huang Guangzhao. 1994. The volcanic facies types of Mesozoic terrane in Southeast China continent. Volcano Geology and Resources, 15(4): 45~51 (in Chinese with English abstract).

    • Xue Huaimin, Cao Guangyue. 2021. Volcanic lithofacies, volcanic tectonic framework and volcanism process in the southwestern segment of Huanggangliang volcanic structural uplift in Great Xing'an Rang, NE China. Acta Geologica Sinica, 95(3): 643~666 (in Chinese with English abstract).

    • Zhang Xinghua. 2003. Volcanic lithofacies study of Oulituozi oilfield. Special Oil and Gas Reservoirs, 10(1): 40~42 (in Chinese with English abstract).

    • Zhao Jianbin, Huang Xianhua, Liu Xiaoyan, Li Zhenlin, Tian Yang, Ding Wei, Liu Lingli. 2020. Effectiveness evaluation of extra-low permeability andesite reservoirs in Wulanhua sag, Erlian basin. Acta Petrolei Sinica, 41(10): 1188~1196 (in Chinese with English abstract).

    • 陈欢庆, 石为为, 杜宜静, 邓晓娟. 2022. 火山岩储层岩相研究进展. 地质科学, 57(4): 1307~1323.

    • 地球科学大辞典编委会. 2006. 地球科学大辞典. 北京: 地质出版社, 1~1173.

    • 黄雷, 王应斌, 武强, 王强. 2012. 渤海湾盆地莱州湾凹陷新生代盆地演化. 地质学报, 86(6): 867~876.

    • 金伯禄, 张希友. 1994. 长白山火山地质研究. 长春: 东北朝鲜民族教育出版社, 40~49.

    • 李石, 王彤. 1980. 火山岩. 北京: 地质出版社, 20~40.

    • 牛成民. 2012. 渤海南部海域莱州湾凹陷构造演化与油气成藏. 石油与天然气地质, 33(3): 424~431.

    • 邱家骧, 陶奎元, 赵俊磊. 1996. 火山岩. 北京: 地质出版社, 10~22.

    • 任宪军. 2022. 松辽盆地长岭断陷盆缘陡坡带中性火山岩相模式及其对储层的控制作用. 吉林大学学报(地球科学版), 52(3): 816~828.

    • 单玄龙, 牟汉生, 刘玉虎, 李瑞磊, 朱建峰, 石云倩, 冷庆磊, 衣健. 2023. 湖盆水下喷发火山岩相类型、特征与储集意义: 以松辽盆地南部查干花地区白垩系为例. 石油勘探与开发, 50(4): 1~12.

    • 史浩, 周东红, 吕丁友. 2014. 莱州湾凹陷东部新生代走滑构造特征及油气勘探意义. 海洋石油, 34(3): 34~39.

    • 唐华风, 孔坦, 刘祥, 杨迪, 霍宏宇, 黄玉龙. 2016. 松辽盆地下白垩统沉火山碎屑岩优质储层特征和形成机理. 石油学报, 37(5): 631~643.

    • 唐华风, 赵鹏九, 高有峰, 王璞珺, 齐雨宁. 2017. 盆地火山地层时空属性和岩石地层单位. 吉林大学学报(地球科学版), 47(4): 949~973.

    • 唐华风, 戴岩林, 郭天婵, 刘钊, 何贤培, 张一弛. 2020a. 侵出式火山机构储层的分布模式——以伊通火山群为例. 石油学报, 41(7): 809~820.

    • 唐华风, 王璞珺, 边伟华, 黄玉龙, 高有峰, 代晓娟. 2020b. 火山岩储层地质研究回顾. 石油学报, 41(12): 1744~1773.

    • 陶奎元. 1994. 火山岩相构造学. 南京: 江苏科学技术出版社, 12~31.

    • 王璞珺, 迟元林, 刘万洙, 程日辉, 单玄龙, 任延广. 2003. 松辽盆地火山岩相: 类型、特征和储层意义. 吉林大学学报(地球科学版), 33(4): 449~456.

    • 王璞珺, 吴河勇, 庞颜明, 门广田, 任延广, 刘万洙, 边伟华. 2006. 松辽盆地火山岩相: 相序、相模式与储层物性的定量关系. 吉林大学学报(地球科学版), 36(5): 805~812.

    • 文龙, 李亚, 易海永, 刘鑫, 张本健, 邱玉超, 周刚, 张玺华. 2019. 四川盆地二叠系火山岩岩相与储层特征. 天然气工业, 39(2): 17~27.

    • 谢家莹, 陶奎元, 黄光昭. 1994. 中国东南大陆中生代火山岩带的火山岩相类型. 火山地质与矿产, 15(4): 45~51.

    • 薛怀民, 曹光跃. 2021. 大兴安岭黄岗梁火山构造隆起西南段火山岩相, 火山构造格架与火山作用过程重溯. 地质学报, 95(3): 643~666.

    • 张兴华. 2003. 欧利坨子油田火山岩相研究. 特种油气藏, 10(1): 40~42.

    • 赵建斌, 黄显华, 刘晓燕, 李振林, 田扬, 丁伟, 刘玲莉. 2020. 二连盆地乌兰花凹陷特低渗安山岩储层的有效性评价. 石油学报, 41(10): 1188~1196.