腾冲地块那俄铍矿床成矿时代和流体包裹体特征
doi: 10.19762/j.cnki.dizhixuebao.2023456
明添学1,2,3 , 何小虎2,4,5 , 唐忠1,2,6 , 陈雷1 , 杨清标1,2,3 , 薛戈1,3 , 王云晓7 , 苏肖宇1,3
1. 云南省地质调查院(云南省地质科学研究院),云南昆明, 650051
2. 自然资源部三江成矿作用及资源勘查利用重点实验室,云南昆明, 650051
3. 云南省三江成矿作用及资源勘查利用重点实验室,云南昆明, 650051
4. 云南大学地球科学学院,云南昆明, 650500
5. 云南省关键矿产成矿过程和机制国际联合实验室,云南昆明, 650500
6. 昆明理工大学国土资源工程学院,云南昆明, 650093
7. 云南省地质勘查基金管理中心,云南昆明, 650224
基金项目: 本文为云南省地质勘查基金项目(编号D202101、D202305、Y202305) ; “云南省兴滇英才计划项目(编号C6213001155)联合资助的成果
Mineralization timing and fluid inclusion characteristics of Na'e beryllium deposit in the Tengchong block
MING Tianxue1,2,3 , HE Xiaohu2,4,5 , TANG Zhong1,2,6 , CHEN Lei1 , YANG Qingbiao1,2,3 , XUE Ge1,3 , WANG Yunxiao7 , SU Xiaoyu1,3
1. Institute of Yunnan Geology Survey (Institute of Yunnan Geological Sciences), Kunming, Yunnan 650051 , China
2. Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization Ministry of Natural and Resources, Kunming, Yunnan 650051 , China
3. Yunnan Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization, Ministry of Natural Resources, Kunming, Yunnan 650051 , China
4. School of Earth Sciences, Yunnan University, Kunming, Yunnan 650500 , China
5. Yunnan International Joint Laboratory of Critical Mineral Resource, Kunming, Yunnan 650500 , China
6. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 , China
7. Yunnan Geological Survey Fundation Management Center, Kunming, Yunnan 650224 , China
摘要
铍(Be)广泛应用于国防尖端科技和战略新兴领域,是一种国家亟需的战略性资源。寻找铍的潜力资源区是快速解决我国铍资源困境的“捷径”。腾冲地块是东特提斯构造域的重要组成部分,经历了复杂的地质构造过程,其中早白垩世—新生代以来岩浆活动频繁,发育大量与岩浆作用相关的锡(钨)稀有金属矿床(点)。地质调查评价表明该区域可能形成潜在的铍、铷、铌、钽等稀有金属矿床,那俄铍矿床是其中发育的典型花岗伟晶岩型矿床,含矿花岗伟晶岩侵入到早白垩世二长花岗岩围岩中。本文通对花岗伟晶岩和二长花岗岩围岩开展锆石U-Pb年代学,并对花岗伟晶岩中绿柱石和石英开展流体包裹体研究,从而探讨那俄铍矿床成矿年代及成矿物理化学条件。LA-ICP-MS锆石U-Pb年代学研究显示,那俄地区含绿柱石花岗伟晶岩年龄为46.9~44.3 Ma,二长花岗岩围岩年龄为122.9 Ma,表明那俄铍矿床形成于始新世,二长花岗岩围岩形成于早白垩世,两者不存在成因关联。结合腾冲地块岩浆活动和构造演化历史,我们认为那俄铍矿床可能是印度-欧亚板块碰撞后构造背景下地壳物质熔融的产物,为典型的造山期后LCT伟晶岩型铍矿床。绿柱石和石英中流体包裹体特征显示,那俄铍矿床中主要发育气液两相NaCl-H2O包裹体以及少量纯液相水包裹体、CO2包裹体,成矿流体具有中低温 (172.0~299.4℃)、低盐度(0.70%~3.87% NaCleq)、低密度(0.723~0.913 g/cm3)的特征。成矿流体压力和深度估算,表明那俄铍矿床形成于浅层低压环境。腾冲地块锂铍地球化学异常中心与腾冲地块主要锡矿化、伟晶岩带分布一致,暗示腾冲地块稀有金属成矿作用与锡矿化、伟晶岩带关系密切。结合区域已发现铌钽、铷、锂等矿化点,表明腾冲地块存在较大的稀有金属成矿潜力。该研究结果对理解那俄铍矿床的成因和地质背景提供了重要的科学依据,同时也为腾冲地块的稀有金属矿产勘查和开发提供了有益的指导。
Abstract
Beryllium (Be) is widely used in advanced science, technology, and emerging strategic fields, making it a vital strategic resource for our country. Exploring potential beryllium resource areas offers a promising solution to China's beryllium resource shortage. The Tengchong block, characterized by complex geological processes, is an important part of the East Tethys tectonic domain. Extensive magmatic activities spanning the Early Cretaceous to the Cenozoic have resulted inthe formation of numerous tin (tungsten)-rare metal deposits in this block. Geological survey and evaluation suggest the potential for beryllium, rubidium, niobium, and tantalum rare-metal deposits in this area. The Na'e beryllium deposit, a typical granitic pegmatite-type deposit, is discovered in the Tengchong block. The rare-metal mineralized granitic pegmatite intruded into wall rocks comprisedof Early Cretaceous monzogranite. This study investigates the zircon U-Pb chronology of the granitic pegmatite, monzogranite (wall rocks), and fluid inclusions in beryl and quartz from the granitic pegmatite to discuss the ore-forming timing and physico-chemical conditions of the Na'e beryllium deposit. LA-ICP-MS zircon U-Pb dating yielded ages of 44.3~46.9 Ma for the beryl-bearing granitic pegmatite, whereas the monzogranite yielded an age of 122.9 Ma. This indicates that the Na'e beryllium deposit formed during the Eocene, whereas the monzogranite (wall rock) formed in the Early Cretaceous. Consequently, we suggest that there is no genetic relationship between the granitic pegmatite and the monzogranite. Combined with the magmatic activities and tectonic evolution of the Tengchong block, we suggest that the Na'e beryllium deposit may be the result of crustal melting in a post-collisional setting caused by the convergence of the Indian and Eurasian plates. It represents a typical LCT pegmatite beryllium deposit formed during a post-orogenic stage. Beryl and quartz from the Na'e beryllium deposit contain vapor-liquid two-phase (NaCl-H2O) inclusions, with a few pure liquid-phase water and CO2 inclusions. The ore-forming fluids are characterized by medium-low temperature (172~299.4℃), low salinity (0.70%~3.87% NaCleq), and low density (0.723~0.913 g/cm3). According to pressure and depth estimations, the Na'e beryllium deposit formed in a low-pressure, shallow environment. The concentration centers of lithium and beryllium in geochemical anomaly maps coincides patially with the locations of tin mineralization and pegmatite belts, suggesting a close relationship between rare-metal mineralization, tin mineralization, and pegmatite belts in the Tengchong block. Furthermore, the discovery of niobium, tantalum, rubidium, and lithium mineralization in this district supports the potential for widespread rare-metal mineralization in the Tengchong block. This study provides important scientific evidence for understanding the genesis and geological background of the Na'e beryllium deposit, as well as provides valuable guidance for the exploration and development of rare-metal minerals in the Tengchong district.
金属铍(Be)和氧化铍(BeO)由于具有低密度、高中子慢化和反射能力的优点,成为原子能、火箭、导弹、航空以及冶金工业不可或缺的材料,被广泛应用于电子工业、原子能、汽车、耐火材料和陶瓷材料等国防尖端科技和战略新兴领域(金庆花,2015王仁财等,2014Foley et al.,2017李建康等,20172021)。随着中国航天工业、核工业、军工行业等高精尖产业的迅速发展,对金属Be的需要量越来越大,而中国50%以上的铍需要从美国进口,属于被美国“卡脖子”的元素,是一种国家亟需的战略性资源(王登红等,20172019李娜等,2019)。铍(Be)元素在上地壳中的丰度为3×10-6Taylor and McLennan,1995),由于其低电价(+2价)、较小的离子半径、较高的电离电位等特征,使得Be难以进入大部分矿物晶体结构中而呈现出高度不相容性,在岩浆分异作用的晚期可以导致铍的进一步富集,有利于岩浆期后铍矿床的形成(李晓峰等,2022)。因此,火山岩型和伟晶岩型铍矿床是世界上最重要的含铍矿床,前者以美国犹他州为代表,矿石矿物以羟硅铍石、硅铍石为主;后者主要分布在中国、巴西,矿石矿物以绿柱石为主。我国可工业开采的铍矿床主要分布在四川、江西、新疆、云南和河南等省份,主要类型包括花岗伟晶岩型、岩浆热液型和岩浆型铍矿床,大部分铍矿床富矿少、品位低、规模小(李建康等,2017王臻等,2022)。我国伟晶岩型铍成矿作用集中在中生代和新生代,如川西甲基卡、可尔因等稀有金属矿床主要形成于早侏罗世(~199 Ma;李建康,2006Li Jiankang et al.,2013李建康等,2023)、新疆阿尔泰地区稀有金属矿床形成于晚三叠世—早侏罗世(王倩等,2019李杭等,20202022)。
腾冲地块经历了古—中—新特提斯构造演化、印度-欧亚板块俯冲碰撞、青藏高原隆升等复杂的地质构造过程,是重要的金属成矿带。近些年在该带铍矿找矿方面取得了重要成果,可能形成潜在的铍、铷、铌、钽等稀有金属矿产资源基地(张传昱等,2021余勇等,2022)。然而,目前关于该地区铍矿的研究还非常匮乏,仅有少许的年代学、矿床学研究(李再会等,2014燕利军等,2021),制约了我们对该成矿带的认识以及指导找矿工作。那俄铍矿床是腾冲地块发现的典型花岗伟晶岩型铍多金属矿床,以铍矿化为主,同时共伴生铌、钽、铷等稀有金属矿产。本文通过对那俄铍矿床开展年代学、地球化学、流体包裹体等方面的研究,旨在揭示那俄铍矿成矿年代及成矿物理化学条件,探讨那俄铍矿床的成因。并结合区域研究资料,对腾冲地块稀有金属找矿勘探提出一些思考和可能的方向。
1 区域地质背景
腾冲地块位于东特提斯构造域东南段,被东部的高黎贡韧性剪切带和西部的密支那缝合带所围限(图1aReplumaz and Tapponnier,2003)。东特提斯古地理演化研究表明腾冲地块在早古生代位于冈瓦纳超大陆的北缘,并于晚中生代拼贴到欧亚板块(Cocks and Torsvik, 2013Metcalfe,2013Burrett et al.,2014)。腾冲地块被大盈江断裂分割成东、西两部分,地块内发育北北东走向右旋那邦剪切带,东边缘发育近南北走向右旋高黎贡韧性剪切带。高黎贡韧性剪切带将腾冲地块和保山地块分开,并在18~13 Ma发生活动(根据40Ar/39Ar 定年数据;Lin Tehsien et al.,2009;Xie Jincheng et al.,2016Cao Huawen et al.,2019)。古元古界高黎贡山群(Pt1GL,副片麻岩锆石年龄为1053~635 Ma;Song Shuguang et al.,2010)被认为是腾冲地块中最古老的变质结晶基底,该群主要由角闪岩、片岩、石英岩、蓝片岩、大理岩和板岩组成(Zhao Shaowei et al.,2016)。在其之上主要发育有古生代冰川-海洋相混杂岩、砂岩和灰岩地层序列。区内岩浆活动强烈,大量的中生代—新生代岩浆岩侵入到地体中,并被新生代玄武岩、安山岩等火山岩所覆盖(Zhao Dapeng and Liu Lucy,2010)。区内缺失白垩系—始新统。根据前人测年结果,将区内中生代—新生代岩浆作用分为3个阶段(He Xiaohu et al.,20202021):① 早白垩世(135~110 Ma)含基性包体的二长花岗岩、花岗闪长岩和辉绿岩(Cong Feng et al.,2011a2011b;Zhu Renzhi et al.,2015,2017Xie Jincheng et al.,2016Fang Yi et al.,2018Zhang Jingyi et al.,2018Qi Xuexiang et al.,2019He Xiaohu et al.,2020);② 中生代晚期—新生代早期(75~64 Ma)含闪长岩包体的二长花岗岩和花岗闪长岩(Xu Yigang et al.,20082012Cao Huawen et al.,201420182019Xie Jincheng et al.,2016Zhao Shaowei et al.,2019);③ 始新世(55~47 Ma)含基性包体的二长花岗岩、花岗闪长岩和基性岩(Xu Yigang et al.,20082012Cao Huawen et al.,201420182019Xie Jincheng et al.,2016Liu Huichuan et al.,2017Zhao Shaowei et al.,2019He Xiaohu et al.,2021)。三个时期的岩浆作用与区域稀有金属和钨锡矿化关系密切(Cao Huawen et al.,2018)。
2 矿床地质背景
那俄(亦称章巴)铍多金属矿床位于梁河县芒东镇,矿区出露的地层以古元古界高黎贡山岩群(Pt1GL)高级变质岩、新生界新近系芒棒组(N2m)碎屑岩、火山岩和第四系(Q)沉积物为主。矿区出露的岩浆岩主要有勐养岩体,它是由细—中粒二长花岗岩、中粗粒黑云母二长花岗岩、片麻状细粒二长花岗岩、细粒花岗闪长岩、片麻状中粒英云闪长岩等组成的杂岩体,锆石U-Pb年代学表明其侵位年龄为早白垩世(127.9±1.0~115.2±1.1 Ma;丛峰等,2010李再会等,20122014邹光富等,2013)。在该区域发现的矿床(点)还有杞木寨、麻栗脑、何家寨、平坝、城墙坡、老中山、曼满铍矿等(图1b)。那俄矿区内含绿柱石花岗伟晶岩(矿体)分布于勐养岩体北西缘,花岗伟晶岩脉、石英脉、长英质岩脉在该区域广泛发育,仅在那俄地区就发现70余条长30~1100 m、宽0.3~3.7 m花岗伟晶岩脉。这些花岗伟晶岩脉规模差异较大,与区域铍钽等稀有金属矿化关系密切,总体呈北东向产出(图1b),受节理裂隙控制明显。铍矿体主要赋存在钠长石化花岗伟晶岩脉中,形态与花岗伟晶岩脉一致,主要呈脉状和透镜状(图2)。含绿柱石花岗伟晶岩中共伴生铌钽铷等稀有金属矿产,BeO平均品位为0.163%,(Ta,Nb)2O5平均品位0.0220%,Rb2O平均品位0.161%。目前,在那俄地区已发现含绿柱石花岗伟晶岩18条,铍、钽矿体15个,规模较大的伟晶岩脉带走向延长可达1~2 km,矿体品位BeO=0.040%~1.790%,Ta2O5=0.0025%~0.0530%。钻探岩芯显示,区内伟晶岩脉多数呈薄脉状(图2图3a),内部可见边缘带——长英岩带、准文象结构带典型分带结构,仅局部地段可见伟晶岩脉长石石英核部带(图3a)。地质调查评价结果显示,伟晶岩脉在空间上存在一定分带性。如在矿区西南缘二长花岗岩中发育十余条无矿花岗伟晶岩脉,以KT7、KT6铍矿化伟晶岩脉为中心,北东与北西两个方向约800~1000 m范围内发育以钽矿化为主的伟晶岩脉。那俄铍矿床局部显示出二长花岗岩→无矿化伟晶岩→Be矿化伟晶岩脉→Be、Ta、Nb矿化伟晶岩脉的分带特征。
1滇西地区构造地质图(a,据Qi Xuexiang et al.,2019修改)和那俄区域地质简图(b,年龄数据[1]来自李再会等,2014;[2]来自赵少伟等,2017
Fig.1Tectonic map of the district in the western Yunnan (a, modified after Qi Xuexiang et al., 2019) and geological map of Na'e area (b, age data [1] are after Li Zaihui et al., 2014; [2] are after Zhao Shaowei et al., 2017)
2那俄铍矿区勘探线剖面图(剖面位置位于图1采样位置附近)
Fig.2Profiles of the exploration lines in the Na'e beryllium deposit (profile locations are near the sampling locations in Fig.1)
野外观察表明钠长石化花岗伟晶岩是主要的含矿岩石,绿柱石在其中不均匀分布(图3b),边缘往往发生钠长石化(图3a),局部可见粗大的钾长石中有规律地镶嵌着他形粒状石英形成文象结构(图3a、b),白云母呈片状集合体(图3c、e)。矿石以花岗伟晶结构为主,半自形中晶、微晶、粗晶结构次之,以块状构造和脉状构造为主。主要的矿石矿物为绿柱石(Brl)、铌钽铁矿(CGM),脉石矿物多为石英(Q)、钾长石(Kfs)、白云母(Mus)、石榴子石(Grt)、钠长石等(Ab)。绿柱石呈自形—半自形六方柱状零星分布于花岗伟晶岩中,被微—细粒石英、白云母沿裂纹交代(图3c)。钾长石呈自形—他形、斜长石呈半自形柱状、石英呈他形粒状混杂不均匀分布在花岗伟晶岩中(图3d)。铌钽铁矿颗粒较小,肉眼和镜下较难识别和寻找,仅在能谱分析中发现。白云母局部揉皱变形呈眼球状,石英重结晶明显,并呈弱定向分布(图3e、f)。二长花岗岩为典型的花岗结构,主要矿物由石英、斜长石、钠长石、黑云母等矿物组成(图3h~g)。
3 样品采集和分析方法
本文在那俄铍矿区不同的花岗伟晶岩脉及围岩二长花岗岩不同部位采集新鲜无明显蚀变的花岗伟晶岩样品9件(样品B7、B10、B11、B14、L10-1、L10-2、L10-3、D1、N01-1)、二长花岗岩样品3件(样品B8、B9、B13)开展了主微量元素分析。并在典型含绿柱石伟晶岩脉的不同部位采集6件样品,从中挑选出石英、绿柱石等矿物开展流体包裹体分析。
选取3件新鲜无明显蚀变含绿柱石花岗伟晶岩(样品L10-2、N01-1、B10)和1件新鲜无蚀变二长花岗岩围岩(样品B12),从中挑选出锆石开展年代学研究。样品经过人工破碎后,将粉末用清水淘洗,得到重砂部分,再经过重选和电磁选分离出锆石,在双目镜下挑选出颗粒完整、无裂隙、透明度好的锆石。然后将锆石粘于环氧树脂表面,固化后打磨抛光至露出一个光洁平面用于开展透反射和阴极发光(CL)照相,结合图像选择适宜的测试点位开展分析测试。LA-ICP-MS锆石U-Pb年龄测定在北京科荟测试技术有限公司完成,分析测试所用仪器为AnalytikJena PQMS型ICP-MS连接RESOlution 193 nm准分子激光剥蚀系统。激光剥蚀以He为载气,采用斑束直径为24 μm,频率为6 Hz,能量密度约为5 J/cm2。锆石U-Pb定年以91500标样为外标,微量元素含量采用NIST610为外标、Si为内标的方法进行定量计算。详细实验测试过程可参考侯可军等(2009)。数据处理采用LADR_1.1.07(Norris et al.,2018)软件程序。测量过程中剔除受包体等普通Pb的影响导致204Pb含量异常高的分析点,锆石年龄谐和图采用Isoplot 4.15程序获得。样品测试过程中,Plesovice标样作为未知样品的分析结果为339.3±2.4 Ma(n=11,2σ),对应的年龄推荐值为337.13±0.37 Ma(2σ; Sláma et al.,2008),两者在误差范围内一致。
花岗伟晶岩和二长花岗岩共12件样品全岩主量元素在北京科荟测试技术有限公司采用波长色散X射线荧光光谱仪(XRF-1800)测定,样品处理流程如下:将200目样品置于105℃烘箱中烘干12 h,称取1.0 g烘干样品置于恒重陶瓷坩埚内,在马弗炉中从低温逐渐升温至1000℃灼烧2 h,取出放置30 min冷却至室温再称量,计算烧失量。分别称取5.9 g助熔剂、0.7 g样品、0.3 g氧化剂置于铂金合金坩埚中,在1150~1250℃熔样炉中熔融15 min,取出坩埚转移到耐火砖上冷却,然后将玻璃片取出以备XRF测试。在X射线管电压为50 kV,电流为50 mA,视野光栏直径30 mm条件下测定主量元素,分析结果的相对偏差优于5%。全岩微量元素(包括稀土元素)分析在北京科荟测试技术有限公司采用ICP-MS(Jena PQ MS)完成,用于ICP-MS分析的样品处理如下:将200目样品置于105℃烘箱中烘干12 h。准确称取粉末样品50 mg置于Teflon溶样弹中。先后依次缓慢加入0.5 mL高纯HNO3和1 mL高纯HF,将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中加热48 h以上,待溶样弹冷却,开盖后置于140℃电热板上蒸干,然后加入1 mL的HNO3蒸干,重复一次。加入5 mL的30%HNO3,再次将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中。将溶液转入聚乙烯塑料瓶中,加入Rh内标,并用2%HNO3稀释至100 g以备用于ICP-MS测试。多数微量元素的测试精度为5%。
3那俄铍矿床钻孔岩芯、矿石野外露头和显微镜下照片
Fig.3Photos of drilling core, ore outcrop and microscope of Na'e beryllium deposit
(a)—钻孔岩芯中花岗伟晶岩脉边缘带可见钠长石化,白云母呈片状集合体;(b)—含绿柱石花岗伟晶岩,石英颗粒呈不规则状分布于长石中形成文象结构;(c)—绿柱石被白云母、长英质矿物沿边缘交代;(d)—钾长石中分布不规则状石英、白云母;(e)—白云母揉皱变形;(f)—白云母呈眼球状变形,石英颗粒发生塑性变形与重结晶;(g)—中细粒黑云二长花岗岩;(h)—斜长石、黑云母、石英等矿物杂乱分布于二长花岗岩中;(i)—二长花岗岩中自形—半自形斜长石、钠长石;Brl—绿柱石;Mus—白云母;Ab—钠长石;Kfs—钾长石;Q—石英;Bt—黑云母;Pl—斜长石
(a) —albite can be seen in the edge zone of the granitic pegmatite vein in the drilled core, and Muscovite is a lamellar aggregate; (b) —quartz particles are irregularly distributed in feldspar to form a graphic structure in beryl bearing granitic pegmatite; (c) —beryl is metasomasomatic along the margin by muscovite and felsic minerals; (d) —quartz and muscovite were irregular distributioned in K-feldspar; (e) —muscovite has been crumpled deformation; (f) —muscovite has an ophthalmic deformation, quartz grains have a new deformation and recrystallization; (g) —medium-fine biotite monzogranite; (h) —plagioclase, biotite, quartz and other minerals are scattered in monzogranite; (i) —idiomorphic-semi-idiomorphic plagioclase and albite in monzogranite; Brl—beryl; Mus—muscovite; Ab—albite; Kfs—K-feldspar; Q—quartz; Bt—biotite; Pl—plagioclase
为探讨那俄铍矿床成矿流体性质、特征和矿化物理化学条件,对那俄铍矿床含绿柱石花岗伟晶岩脉中的石英和绿柱石矿物开展了流体包裹体显微测温分析。包裹体形态和均一温度分析测试在南京宏创地质勘查技术服务有限公司使用Nikon ECLIPSE LV100POL偏光显微镜完成。包裹体冰点温度测试过程如下:先在室温下观察并记录包裹体的类型、大小、形态以及产状等,随后迅速降温至~100℃使包裹体完全冻住,接着以-20℃/min速率升温至20℃,同时观察包裹体中冰晶的变化情况,然后以3℃/min缓慢升温至-10℃,并持续观察包裹体中冰晶变化,最后以1℃/min缓慢升温至0℃,持续观察冰晶以及气泡变化情况,最后一块小冰晶的融化温度即为冰点,若包裹体太小冰晶难以观察则可通过观察包裹体从明暗相间变得光滑透明的瞬间温度即为冰点,或包裹体中气泡突然出现、跳动等变化的瞬间温度也为冰点温度。包裹体均一温度测试过程:观察常温下包裹体中气泡的类型、大小、形态以及产状等,以10~20℃/min升温,每升高5~10℃,暂停观察包裹体相变化,在接近气相或液相消失前,升温速度降至0.5~1℃/min,记录气泡完全消失时候的温度为均一温度。当包裹体到达均一温度后仍要升温5~10℃,仔细观察包裹体是否均一。
4 结果
4.1 锆石年代学
锆石阴极发光图像显示含绿柱石花岗伟晶岩中锆石有两类,一类是大多数锆石颗粒自形程度较高,多为长柱状晶体,部分短柱状,长约100~200 μm,长宽比为1.5∶1~3∶1(图4),多数锆石振荡环带和生长环带清晰可见,Th/U比值(0.12~1.92)均大于0.1,为典型的岩浆成因锆石。另一类为部分锆石呈海绵状残留骸,阴极发光图像呈暗黑色,为典型的伟晶岩锆石,其微量元素Hf异常富集(70875×10-6~156476×10-6),远高于其他锆石中Hf含量(7908×10-6~14653×10-6),锆石Th/U比值大多数小于0.1(0.03~0.11,平均值为0.052),显示出典型伟晶岩锆石的成因特征(Schiøtte et al.,1988)。那俄铍矿床中含绿柱石花岗伟晶岩脉(样品L10-2、N01-1、B10)和二长花岗岩(样品B12)锆石LA-ICP-MS U-Pb同位素结果列于附表1。结果显示含绿柱石花岗伟晶岩样品L10-2、N01-1、B10的锆石加权平均年龄分别为44.3±0.6 Ma(MSWD=1.4,1σ)、46.3±0.8 Ma(MSWD=1.7,1σ)和46.9±1.1 Ma(MSWD=2.3,1σ)(图5a~c)。这些年龄代表了那俄铍矿床含绿柱石花岗伟晶岩结晶年龄,同时暗示了腾冲地块始新世稀有金属成矿事件。花岗伟晶岩中206Pb/238U年龄在141.2~106.3 Ma之间的锆石可能多为含绿柱石花岗伟晶岩从围岩中捕获的锆石(Wu Fuyuan et al.,2020)。围岩黑云二长花岗岩(样品B12)20个测点均分布在谐和线上或其附近(图5d),加权平均年龄122.8±0.9 Ma(MSWD=1.5,1σ),与花岗伟晶岩中残留锆石年龄在误差范围内一致,表明含绿柱石伟晶岩中残留锆石来源于黑云二长花岗岩含矿围岩。野外观察发现,含绿柱石花岗伟晶岩穿插侵入到黑云二长花岗岩中,二者具有截然的接触界线(图3a),表明含绿柱石花岗伟晶岩形成晚于围岩二长花岗岩。
4.2 全岩地球化学特征
本文分析了那俄地区花岗伟晶岩、二长花岗岩围岩全岩主量、微量元素组成,结果列于附表2。手标本和镜下显微观察显示,花岗伟晶岩和二长花岗岩围岩中矿物较少发生蚀变,结合较低的烧失量(LOI=0.13~0.77)表明样品较新鲜,其主微量元素可用于岩浆演化讨论。花岗伟晶岩具有高SiO2(69.40%~77.89%),高碱(K2O+Na2O=7.49%~11.93%),过铝质(A/CNK=1.04~1.23)的特征;Al2O3(11.21%~17.53%)、K2O(0.70%~6.18%)、Na2O(2.76%~8.45%)含量变化较大,其他氧化物CaO(0.14%~0.54%)、TFe2O3(0.09%~0.63%)、TiO2(0.05%~0.08%)、MnO(0.04%~0.54%)、MgO(0.01%~0.08%)含量较低。二长花岗岩中SiO2(63.08%~71.80%)、Al2O3(14.29%~15.01%)、Na2O(2.41%~3.65%)、K2O(3.24%~6.70%)、TFe2O3(1.92%~5.42%)含量较高,铝饱和指数均大于1.1(A/CNK=1.17~1.37)。其他氧化物TiO2(0.24%~0.80%)、MnO(0.07%~0.10%)、MgO(0.42%~1.78%)、CaO(1.10%~4.50%)较花岗伟晶岩高。在TAS图解(图6a)中,花岗伟晶岩落在花岗岩—石英闪长岩区域,二长花岗岩均落在花岗岩区域。在铝饱和指数图解(图6b)中,花岗伟晶岩和二长花岗岩均显示出过铝质的特征。
4那俄地区花岗伟晶岩(a~c)和二长花岗岩(d)中锆石CL图
Fig.4CL images of zircons from granitic pegmatite (a~c) and monzogranite (d) from the Na'e area
花岗伟晶岩中Rb(413×10-6~1373×10-6)、Be(4.81×10-6~163×10-6)、Nb(31.0×10-6~266×10-6)、Ta(12.7×10-6~295×10-6)含量较高,Ba(2.84×10-6~113×10-6)、Sr(2.81×10-6~32.44×10-6)、La(1.31×10-6~11.3×10-6)、Ce(0.90×10-6~36.9×10-6)、Eu(0.05×10-6~0.16×10-6)、Zr(2.05×10-6~78.2×10-6)、Hf(0.20×10-6~14.6×10-6)含量较低。δEu(0.01~0.19)显示出极大的负异常。在稀土元素配分图上显示出明显的四分组效应(图7a),轻稀土(LREE)总体含量较低,重稀土(HREE)相对富集。在微量元素蛛网图(图7b)上显示出Rb、Ta、Pb元素相对富集,Ba、La、Ce、Sr、Eu相对亏损。然而,二长花岗岩中Rb(179×10-6~281×10-6)、Be(3.21×10-6~4.32×10-6)、Nb(17.1×10-6~24.1×10-6)、Ta(1.09×10-6~2.39×10-6)含量较花岗伟晶岩低,Ba(386×10-6~692×10-6)、Sr(70.2×10-6~168×10-6)、La(40.2×10-6~60.9×10-6)、Ce(58.5×10-6~116×10-6)、Eu(0.73×10-6~0.95×10-6)含量较花岗伟晶岩高。Zr(2.05×10-6~78.2×10-6)、Hf(0.20×10-6~14.6×10-6)含量变化较大。δEu(0.34~0.78)显示出比花岗伟晶岩较低的负异常。在稀土元素配分图上显示右倾轻稀土富集型(图7c),轻稀土(LREE)和重稀土(HREE)含量较花岗闪长岩高,轻重稀土(LREE/HREE=3.82~6.91)分异较弱。二长花岗岩中Rb、Th、Pb元素相对富集,Ba、Nb、Ta、Sr、Eu相对亏损(图7d)。
5那俄地区花岗伟晶岩(a~c))和二长花岗岩(d)锆石U-Pb谐和图
Fig.5Zircon U-Pb concordant diagram of granitic pegmatite (a~c) and monogranite (d) from the Na'e area
6那俄地区花岗伟晶岩、二长花岗岩TAS(a)和 A/NK-A/CNK(b)图解
Fig.6TAS (a) and A/NK-A/CNK (b) diagrams of granitic pegmatites and monzogranites in the Na'e area
4.3 流体包裹体特征
本文对那俄含绿柱石花岗伟晶岩(矿石)中的绿柱石和石英矿物开展了流体包裹体研究。流体包裹体显微观察表明,绿柱石、石英普遍发育包裹体,流体包裹体与寄主矿物界限明显,透明度较好。绿柱石中的包裹体主要沿生长带分布(图8a~c)、少数随机孤立分布(图8d)。包裹体主要为不规则状、椭圆形、近圆、负晶形、长条状;长轴直径集中在7.9~13.0 μm、22.7~27.1 μm,包裹体相对较大,充填度集中在20%~30%,包裹体以气-液两相NaCl-H2O包裹体居多。石英中包裹体呈随机孤立状、愈合裂隙带、簇状、生长带状等分布,形态以不规则状、椭圆形、近圆、负晶形、长条状为主。包裹体长轴直径集中在7.1~15.4 μm,气相充填度集中在10%~35%。以富液相的气-液两相NaCl-H2O包裹体,富气相的气-液两相NaCl-H2O包裹体和纯液相的包裹体为主(图8e~h)。综合来看,绿柱石和石英中发育的流体包裹体特征有一定的相似性。野外和手标本观察表明花岗伟晶岩样品中石英矿物存在两个世代,第一个世代(Q-S1)为成矿阶段早期与绿柱石、钾长石共存于花岗伟晶岩脉核部的石英;第一个世代(Q-S2)为成矿阶段晚期分布于伟晶岩脉边缘带的石英。与早期石英(Q-S1)、绿柱石中的流体包裹体不同,晚期石英(Q-S2)中可见纯液相CO2包裹体(图8g、h)。根据流体包裹体在室温下相态分类准则以及室温条件下和均一状态时流体包裹体的相态特征,那俄铍矿床绿柱石和石英中原生包裹体可以分为Ⅰ、Ⅱ、Ⅲ类。Ⅰ类为富液相的气-液两相NaCl-H2O包裹体,是绿柱石和石英中发育最广泛的包裹体,加热后为液相均一,极少数临界均一,气相充填度为5%~40%。Ⅱ类为富气相的气-液两相NaCl-H2O包裹体,加热后为气相均一,气相充填度在40%以上,通常呈椭圆形分布(图8e)。Ⅲ类为纯液相H2O或者CO2包裹体,其中CO2包裹体一般见于伟晶岩脉演化后期石英中。
本文对绿柱石和石英开展详细的流体包裹体显微测温分析,发现所测流体包裹体全部可以均一到液相,测温数据列于附表3。绿柱石中流体包裹体均一温度分布区间为186.3~286.1℃,主要峰值为215~235℃(图9a),平均值233.9℃。冰点温度为-2.0~-0.6℃,对应的盐度为1.05%~3.39%NaCleq,峰值集中在2.0%~3.5%NaCleq(图9b),平均值2.45%NaCleq,密度区间为0.763~0.903 g/cm3,主要峰值为0.80~0.90 g/cm3,均值为0.837 g/cm3图9c),表明绿柱石成矿流体具有中温-低盐度流体特点。早期石英(Q-S1)中流体包裹体均一温度分布区间为172.0~299.4℃,显示两个峰值区间,核部峰值为260~280℃、中部峰值为175~195℃(图9a)。冰点温度为-2.3~-0.4℃,对应的盐度为0.70%~3.87%NaCleq,峰值集中在2%~2.5% NaCleq(图9b),密度区间为0.723~0.913 g/cm3图9c)表明早期石英(Q-S1)具有中温-低盐度流体特点。晚期石英(Q-S2)中流体包裹体均一温度分布区间为115.2~192.2℃,主要峰值为115~135℃(图9a);冰点温度为-2.1~-0.4℃,对应的盐度为0.70%~3.55% NaCleq,峰值集中在1.0%~2.0% NaCleq(图9b),平均值2.03% NaCleq,密度区间为0.901~0.959 g/cm3,主要峰值为0.90~0.95 g/cm3,均值为0.932 g/cm3图9c),表明晚期石英(Q-S2)具有中低温—低盐度流体特点。晚期石英(Q-S2)位于伟晶岩边部,可能处于伟晶岩演化后期阶段。
7那俄地区花岗伟晶岩、二长花岗岩原始地幔标准化稀土元素配分图(a、c)和球粒陨石标准化微量元素蛛网图(b、d)(标准化数据来自Sun and McDonough,1989)
Fig.7Chondrite normalized REE patterns (a, c) and primitive mantle normalized trace elements spider diagrams (b, d) of the granitic pegmatites and monzogranites from the Na'e area (normalization values from Sun and McDonough, 1989)
5 讨论
5.1 那俄铍矿床成矿时代
本文含绿柱石花岗伟晶岩中的锆石由于高的U、Th含量多表现出显著的蜕晶化,具有热液锆石的特征(Zhou Qifeng et al.,2015徐兴旺等,2019王倩等,2019)。这些锆石可以代表绿柱石花岗伟晶岩结晶年龄,表明那俄铍矿床含绿柱石花岗伟晶岩形成于始新世(46.9~44.3 Ma),与区域上麻栗脑、杞木寨和那俄东部何家寨含绿柱石花岗伟晶岩年龄(48~40 Ma)相似(李再会等,2014)。滇西地区伟晶岩型稀有金属成矿时代总体研究较为薄弱,根据极少的年代学资料,多数学者认为滇西地区稀有金属花岗伟晶岩的主要成岩成矿时代为喜马拉雅造山期(张传昱等,2021余勇等,2022)。例如,陶琰等(2015)获得高黎贡山变质带龙陵县黄连沟伟晶岩锆石U-Pb年龄为59.9 Ma。赵少伟等(2017)在早白垩世勐养岩体中识别出始新世(50~48 Ma)黑云母花岗岩小岩体,显示那俄地区存在始新世岩浆活动,地球化学和同位素特征显示这些始新世花岗岩为壳源岩石高温条件下部分熔融的产物(赵少伟等,2017)。而伟晶岩热液锆石年龄峰值区为47~44 Ma,伟晶岩形成年龄与区域上始新世岩浆活动时间相似,但地球化学特征上存在差异,是不同岩浆系列的产物。与侵入的早白垩世二长花岗岩形成年龄差异较大,暗示那俄地区的伟晶岩很可能是经后期部分熔融(深熔)作用形成的,含稀有金属岩浆经裂隙或断裂运移至二长花岗岩中,形成稀有金属矿化花岗伟晶岩,与区域早白垩世勐养岩体演化无关。
8那俄铍矿床花岗伟晶岩中绿柱石、石英中流体包裹体显微特征
Fig.8Microscopic characteristics of fluid inclusions in beryl and quartz of granitic pegmatite from the Na'e beryllium deposit
(a)—绿柱石中不规则状富液相盐水和纯液相的水包裹体;(b)—绿柱石中椭圆状富液相盐水包裹;(c)—绿柱石中NaCl-H2O包裹体孤立状分布;(d)—绿柱石三角形状、椭圆状NaCl-H2O包裹体;(e)—S1石英中近圆状富气相盐水包裹体沿生长带分布;(f)—S1石英中沿裂隙分布的包裹体,主要为近椭圆,近圆富液相NaCl-H2O包裹体以及长条状纯液相水包裹体;(g)—S2石英中椭圆富气相盐水包裹体和不规则状纯液相CO2包裹体;(h)—S2石英中不规则状纯液相CO2包裹体
(a) —irregular liquid-rich NaCl-H2O and pure liquid-phase water inclusions in beryl; (b) —elliptic liquid-rich NaCl-H2O inclusions in beryl; (c) —isolated distribution of NaCl-H2O inclusions in beryl; (d) —triangular shape and elliptic NaCl-H2O inclusions in beryl; (e) —nearly round vapor-rich NaCl-H2O inclusions are distributed along the growth zone in the S1 quartz; (f) —nearly elliptical or circular liquid-rich NaCl-H2O and elongated strip pure liquid-phase water inclusions are distributed along crack in the S1 quartz; (g) —elliptical vapor-rich NaCl-H2O and irregular pure liquid phase CO2 inclusions in the S2 quartz; (h) —irregular pure liquid phase CO2 inclusions in S2 quartz
9那俄铍矿床花岗伟晶岩中绿柱石、石英流体包裹体均一温度、盐度、密度特征图(幕府山、甲基卡、党坝包裹体数值据李建康,2006刘聪宇,2019季根源等,2020熊欣等,2022
Fig.9Characteristics of homogenization temperature, salinity and density of fluid inclusions in beryl and quartz of granitic pegmatite from the Na'e beryllium deposit (other inclusion values from Li Jiankang, 2006; Liu Congyu, 2019; Ji Genyuan et al., 2020; Xiong Xin et al., 2022)
5.2 那俄铍矿床成矿环境
那俄铍矿床绿柱石、石英等矿物中存在大量气液两相NaCl-H2O包裹体。形成绿柱石阶段流体具有中低温(172.0~299.4℃)、低盐度(0.70%~3.87% NaCleq)、低密度(0.723~0.913 g/cm3)的特征,随着伟晶岩的演化程度越高,铍矿床中流体温度、盐度逐渐降低(图9d),密度变大(均小于1.0 g/cm3),属于岩浆流体(Roedder,1976)。一般认为,由沸腾作用而形成的富气相的气-液两相包裹体可以用来估算成矿深度(Shepherd et al.,1985)。那俄铍矿床中存在大量气-液两相包裹体,这些包裹体盐度随均一温度的降低而降低,显示出一定的相关性(图9d)。因此,可以认为气-液两相包裹体是在流体沸腾时捕获的,可用其测定压力值估算伟晶岩侵位深度。本文通过不同密度溶液等容线图进行估算以及利用Flincor软件(Brown,1989)校正,得出那俄铍矿流体形成压力为13.57~21.73 MPa,为低压环境。依据地压梯度0.0265 GPa/km(胡宝群等,2003)对那俄铍矿床形成深度进行估算,结果显示形成于近地表浅成环境(深度约512~820 m)。这与新疆阿尔泰可可托海3号伟晶岩脉和内蒙古巴彦淖尔伟晶岩脉形成深度在300~800 m产出环境相似(叶琳,2010),都属中低温中低盐度流体条件和浅层环境下形成的伟晶岩型铍矿床。
我国典型的伟晶岩型稀有金属矿床均发育有大量的NaCl-H2O包裹体,形成流体密度小于1 g/cm3李建康,2006邓运等,2018季根源等,2020),形成压力一般上百兆帕(MPa),深度6~8 km不等,成矿流体温度从115~700℃不等,盐度从0~19% NaCleq,均一温度和盐度差异较大。那俄铍矿床成矿流体温度115.2~286.1℃,形成绿柱石阶段峰值温度215~235℃,远低于伟晶岩早期锂辉石阶段成矿温度290~360℃(图9d)。与江南造山带湖南仁里铌钽矿床具有相似的成矿温度范围,但成矿流体盐度2.0%~3.5% NaCleq远低于典型伟晶岩型稀有金属矿床盐度4.0%~10.0% NaCleq(图9d),暗示那俄铍矿床可能是伟晶岩演化后期的产物。本次工作通过气-液两相NaCl-H2O包裹体获得的成矿流体压力平均值为16.71 MPa,成矿深度仅有512~820 m,暗示那俄铍矿床形成于浅成低压环境中。
5.3 那俄铍矿床成因及对区域找矿的指示
稀有金属花岗伟晶岩的成因目前存在争论,一种观点认为是高度结晶分异的岩浆演化后期富含易挥发组分的残余岩浆缓慢结晶分异形成,与其侵位的花岗岩形成年龄一致、地球化学特征相似,两者具有明显的演化关系(赵振华和严爽,2023);另一种观点认为稀有金属花岗伟晶岩形成于地壳深熔作用(Černý,1992Shaw et al.,2016张辉等,2019),稀有金属花岗伟晶岩与所赋存或相邻花岗岩存在显著时差或年龄间断,其形成与围岩花岗岩无直接关系,是地壳岩石部分熔融(深熔)的结果(冉子龙和李艳军,2021赵振华和严爽,2023)。勘查成果显示,那俄铍矿含矿伟晶岩脉厚度一般1~3 m,长几百米至千余米不等,矿化分布不均匀(图2)。伟晶岩脉中成矿元素具有局部发育花岗岩→无矿化伟晶岩→Be矿化伟晶岩→Be、Ta矿化伟晶岩的空间分带特征。本文中含绿柱石伟晶岩显示出过铝质的特征(ANCK=1.04~1.23),富Li和Ta,Nb/Ta比值(0.34~3.00)远低于5,为典型的LCT型伟晶岩(张辉等,2021)。
根据前人对区域岩浆岩的研究,腾冲地块广泛发育始新世岩浆(55~47 Ma;He Xiaohu et al.,2021)活动,代表性的岩石包括二长花岗岩、花岗闪长岩和基性岩(Xu Yigang et al.,20082012Cao Huawen et al.,201420182019Xie Jincheng et al.,2016Liu Huichuan et al.,2017Zhao Shaowei et al.,2019He Xiaohu et al.,2021),并导致了大量与这些岩浆活动密切相关的锡(钨)、稀有金属矿化(Cao Huawen et al.,2018)。这些岩浆岩记录了新特提斯板块汇聚阶段腾冲地块演化过程(He Xiaohu et al.,20202021)。晚白垩世以来,腾冲地块经历了76~70 Ma新特提斯板片向东俯冲发生板片回转诱发的地壳伸展、古新世板片俯冲导致的短暂地壳加厚、和始新世(55~40 Ma)新特提斯板片断离诱发的高分异花岗岩,I型、A型、S型花岗岩及来源于壳幔相互作用富钾基性岩浆岩的形成(Xu Yigang et al.,2012Ma Liyan et al.,2014Cao Huawen et al.,2018He Xiaohu et al.,2021)。腾冲地块中大量始新世岩浆岩形成于印度-欧亚板块碰撞后板片断离构造背景,板片断离诱发地幔物质上涌,为地壳物质熔融和深熔作用提供了能量来源(He Xiaohu et al.,2021)。从区域背景推断,那俄铍矿床可能也是印度-欧亚板块碰撞后构造背景下地壳物质熔融的产物。这与前人统计的含稀有金属花岗伟晶岩往往产出在造山期后或同造山阶段(李建康等,2017Lü Zhenghang et al.,2018张辉等,2021),且与过铝质S型花岗岩密切相关(Černý et al.,1986Williams and Mckibben,1989)的观点比较一致。腾冲地块东部高黎贡山变质带已发现摆夷寨、白华寺、三洞水、回欢、南坑、马山等多处与韧性剪切带、构造破碎带相关的伟晶岩型铍矿(化)点,花岗伟晶岩中有绿柱石、铌钽铁矿等稀有金属矿物,局部还有锂辉石、铁锂云母等富锂矿物。锆石U-Pb年龄显示花岗伟晶岩多为始新世(~42 Ma;牛布特,2020),由此可见,始新世是腾冲地区非常重要的稀有金属成矿期,在与始新世有关的花岗伟晶岩和蚀变花岗岩中寻找稀有金属矿,存在较大的潜力。腾冲地块锂铍稀有元素异常分布范围大,异常浓集中心明显(图10),异常主要分布于勐养—小龙河—古永—板瓦以东地区和高黎贡山变质带,异常中心分布与腾冲地块主要锡矿化、伟晶岩带分布一致,暗示腾冲地块稀有金属成矿作用与锡矿化、伟晶岩带关系密切。腾冲地块晚白垩世—始新世岩浆活动形成矽卡岩型、云英岩型锡矿化(崔晓琳等,2022),其中小龙河和大松坡云英岩型锡矿脉中已发现有绿柱石、锂黑云母(贵颖,2017)。腾冲新岐地区已发现蚀变花岗岩和钠长石化细粒花岗岩风化壳中富含铌钽、铷、锂等稀有金属(施玉北等,2023),显示岩浆热液阶段和表生风化阶段稀有金属的超常富集。区域上出露有大量相似的成矿地质体,暗示腾冲地块存在较大成矿潜力。
10腾冲地块Be地球化学异常图(据施玉北等,2023修改)
Fig.10Be geochemical anomaly maps of the Tengchong block (modified after Shi Yubei et al., 2023)
6 结论
(1)腾冲地块那俄铍矿床含绿柱石伟晶岩形成于始新世(46.9~44.3 Ma),暗示腾冲地块存在始新世稀有金属成矿事件。
(2)那俄铍矿床中存在大量气-液两相NaCl-H2O包裹体,绿柱石阶段流体具有中低温(172.0~299.4℃)、低盐度(0.70%~3.87% NaCleq)、低密度(0.723~0.913 g/cm3)的特征,是伟晶岩演化后期的产物。
(3)结合区域岩浆岩发育和构造演化,腾冲地块始新世发育一期与花岗伟晶岩、蚀变花岗岩密切相关的稀有金属矿化,这些稀有金属矿化主要发生在造山后期,是印度-欧亚板块碰撞后构造背景下地壳物质熔融的响应。
致谢:感谢崔子良、张兴恒、陈明伟等项目监审专家在项目执行过程中的指导和帮助。衷心感谢审稿专家提出的宝贵意见,对论文质量的提升起到了关键作用。
附件:本文附件(附表1~3)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202504092?st=article_issue
1滇西地区构造地质图(a,据Qi Xuexiang et al.,2019修改)和那俄区域地质简图(b,年龄数据[1]来自李再会等,2014;[2]来自赵少伟等,2017
Fig.1Tectonic map of the district in the western Yunnan (a, modified after Qi Xuexiang et al., 2019) and geological map of Na'e area (b, age data [1] are after Li Zaihui et al., 2014; [2] are after Zhao Shaowei et al., 2017)
2那俄铍矿区勘探线剖面图(剖面位置位于图1采样位置附近)
Fig.2Profiles of the exploration lines in the Na'e beryllium deposit (profile locations are near the sampling locations in Fig.1)
3那俄铍矿床钻孔岩芯、矿石野外露头和显微镜下照片
Fig.3Photos of drilling core, ore outcrop and microscope of Na'e beryllium deposit
4那俄地区花岗伟晶岩(a~c)和二长花岗岩(d)中锆石CL图
Fig.4CL images of zircons from granitic pegmatite (a~c) and monzogranite (d) from the Na'e area
5那俄地区花岗伟晶岩(a~c))和二长花岗岩(d)锆石U-Pb谐和图
Fig.5Zircon U-Pb concordant diagram of granitic pegmatite (a~c) and monogranite (d) from the Na'e area
6那俄地区花岗伟晶岩、二长花岗岩TAS(a)和 A/NK-A/CNK(b)图解
Fig.6TAS (a) and A/NK-A/CNK (b) diagrams of granitic pegmatites and monzogranites in the Na'e area
7那俄地区花岗伟晶岩、二长花岗岩原始地幔标准化稀土元素配分图(a、c)和球粒陨石标准化微量元素蛛网图(b、d)(标准化数据来自Sun and McDonough,1989)
Fig.7Chondrite normalized REE patterns (a, c) and primitive mantle normalized trace elements spider diagrams (b, d) of the granitic pegmatites and monzogranites from the Na'e area (normalization values from Sun and McDonough, 1989)
8那俄铍矿床花岗伟晶岩中绿柱石、石英中流体包裹体显微特征
Fig.8Microscopic characteristics of fluid inclusions in beryl and quartz of granitic pegmatite from the Na'e beryllium deposit
9那俄铍矿床花岗伟晶岩中绿柱石、石英流体包裹体均一温度、盐度、密度特征图(幕府山、甲基卡、党坝包裹体数值据李建康,2006刘聪宇,2019季根源等,2020熊欣等,2022
Fig.9Characteristics of homogenization temperature, salinity and density of fluid inclusions in beryl and quartz of granitic pegmatite from the Na'e beryllium deposit (other inclusion values from Li Jiankang, 2006; Liu Congyu, 2019; Ji Genyuan et al., 2020; Xiong Xin et al., 2022)
10腾冲地块Be地球化学异常图(据施玉北等,2023修改)
Fig.10Be geochemical anomaly maps of the Tengchong block (modified after Shi Yubei et al., 2023)
Brown P E. 1989. Flincor: A microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist, 74(11): 1390~1393.
Burrett C, Zaw K, Meffre S, Lai C K, Khositanont S, Chaodumrong P, Udchachon M, Ekins S, Halpin J. 2014. The configuration of Greater Gondwana: Evidence from LA-ICPMS, U-Pb geochronology of detrital zircons from the Paleozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 26: 31~51.
Cao Huawen, Zhang Shouting, Lin Jinzhan, Zheng Luo, Wu Junde, Li Dong, 2014. Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong County, western Yunnan (China): Regional tectonic implications. Journal of Asian Earth Sciences, 81: 142~152.
Cao Huawen, Zou Hao, Zhang Yunhui, Zhang Shouting, Luo Zheng, Zhang Linkui, Tang Li, Pei Qiuming. 2016. Late Cretaceous magmatism and related metallogeny in the Tengchong area: Evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China. Ore Geology Reviews, 78: 196~212.
Cao Huawen, Zhang Yunhui, Santosh M, Zhang Shouting, Tang Li, Pei Qiuming. 2018. Mineralogy, zircon U-Pb-Hf isotopes, and whole-rock geochemistry of Late Cretaceous-Eocene granites from the Tengchong terrane, western Yunnan, China: Record of the closure of the Neo-Tethyan Ocean. Geological Journal, 53: 1423~1441.
Cao Huawen, Zhang Yunhui, Tang Li, Hollis S P, Zhang Shouting, Pei Qiuming, Yang Chang, Zhu Xiaoshuan. 2019. Geochemistry, zircon U-Pb geochronology and Hf isotopes of Jurassic-Cretaceous granites in the Tengchong terrane, SW China: Implications for the Mesozoic tectono-magmatic evolution of the Eastern Tethyan Tectonic Domain. International Geology Review, 61(3): 257~279.
Černý P. 1992. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry, 7(5): 393~416.
Černý P. 2002. Mineralogy of beryllium in granitic pegmatites. In: Grew ES, ed. Beryllium mineralogy, petrology, and geochemistry. Reviews in Mineralogy and Geochemistry, 50(1): 405~444.
Černý P, Goad B E, Hawthorne F C. 1986. Fractionation trends of the Nb and Ta bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitaba. American Mineralogist, 71(3): 501~517.
Cocks L R M, Torsvik T H. 2013. The dynamic evolution of the Paleozoic geography of eastern Asia. Earth-Science Reviews, 117: 40~79.
Cong Feng, Lin Shiliang, Tang Hongfeng, Xie Tao, Li Zaihui, Zou Guangfu, Peng Zhimin, Liang Ting. 2010. Trace elements and Hf isotope compositions and U-Pb age of igneous zircons from the triassic granite in Lianghe, western Yunnan. Acta Geologica Sinica, 84(8): 1155~1164 (in Chinese with English abstract).
Cong Feng, Lin Sshiliang, Zou Guangfu, Li Zaihui, Xie Tao, Peng Zhimin, Liang Ting. 2011a. Magma mixing of granites at Lianghe: In-situ zircon analysis for trace elements, U-Pb ages and Hf isotopes. Science China Earth Sciences, 54: 1346~1359.
Cong Feng, Lin Shiliang, Zou Guangfu, Xie Tao, Li Zaihui, Tang Fawei, Peng Zhimin, 2011b. Geochronology and petrogenesis for the protolith of biotite plagioclase gneiss at Lianghe, Western Yunnan. Acta Geologica Sinica-English Edition, 85: 870~880.
Cui Xiaolin, Zhang Qiwei, Wu Huaying, Song Zhijie, Zhang Huijuan, Dai Liguo. 2022. Formation of the Late Cretaceous-Paleogene Sn-rich granites in the Tengchong block: The magma origin and differentiation conditions. Acta Petrologica Sinica, 38(1): 253~266 (in Chinese with English abstract).
Deng Yun, Fei Guangchun, Li Jian, Tang Wenchun, Zhong Wei, Yang Guibing. 2018. Study of C-H-O isotopes and geochronology of the Lijiagou pegmatite spodumene deposit in Sichuan Province. Journal of Mineralogy and Petrology, 38(3): 40~47 (in Chinese with English abstract).
Fang Yi, Zhang Yunhui, Zhang Shouting, Cao Huawen, Zou Hao, Dong Jianhui. 2018. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the late Mesozoic tectonic evolution of southwestern China. Geoscience Frontiers, 9: 459~470.
Foley N K, Jaskula B W, Piatak N M, Schulte R F. 2017. Beryllium. In: Schulz K J, De Young J H J, Seal R R, Bradley D C, eds. Critical mineral resources of the United States-economic and Environmental Geology and Prospects for Future Supply. U. S. Geological Survey Professional Paper, 1802, E1~E23.
Gui Ying. 2017. Study on geological characteristics and prospecting direction of Xiaolonghe tin deposit in Tengchong, western Yunnan Province. Master's dissertation of Kunming University of Science and Technology (in Chinese with English abstract).
He Xiaohu, Liu Zheng, Wang Guocang, Nicole L, Wang Tao, Tan Shucheng. 2020. Petrogenesis and tectonic setting of the Early Cretaceous granitoids in the eastern Tengchong terrane, SW China: Constraint on the evolution of Meso-Tethys. Lithosphere, 12(1): 150~165.
He Xiaohu, Zhou Renjie, Tan Shucheng, Liu Zheng, Wang Guocang, Jiang Ziqi, Cao Yuan. 2021. Late Cretaceous-Eocene magmatism induced by slab rollback and breakoff in the Tengchong terrane, SW China. International Geology Review, 63 (3): 294~316.
Hou Kejun, Li Yanhe, Tian Yourong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion couting-ICP-MS. Mineral Deposits, 28(4): 481~492 (in Chinese with English abstract).
Hu Baoqun, Wang Fangzheng, Sun Zhanxue, Liu Chengdong, Bai Lihong. 2003. The pressure gradient in the lithosphere. Earth Science Frontiers, 10(3): 129~133 (in Chinese with English abstract).
Ji Genyuan, Jiang Sihong, Xia Haodong, Feng Yuzhou, Zhang Hongping. 2020. Characteristics and geological significance of fluid inclusions in Dangba pegmatite spodumene deposit in Aba Prefecture, Sichuan Province. Contributions to Geology and Mineral Resources Research, 35(1): 33~41 (in Chinese with English abstract).
Jin Qinghua. 2015. Comparative study and prospecting research of geological and geochemical volcano rock type beryllium deposits. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
Li Hang, Hong Tao, Yang Zhiquan, Chen Jianzhong, Ke Qiang, Wang Xuehai, Niu Lei, XuXingwang. 2020. Comparative studying on zircon, cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatites: A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh. Acta Petrologica Sinica, 36(9): 2869~2892 (in Chinese with English abstract).
Li Hang, Hong Tao, Yang Zhiquan, Liu Shanke, Wang Xuehai, Ma Yince, Niu Lei, Xu Xingwang. 2022. Multi-stage magmatism-mineralization and tectonic setting of the North Tugeman granitic pegmatite lithium-beryllium deposit in the middle of Altyn Tagh. Acta Petrologica Sinica, 36(9): 2869~2892 (in Chinese with English abstract).
Li Jiankang. 2006. Mineralizing mechanism and continental geodynamics of typical pegmatite deposits in western Sichuan, China. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
Li Jiankang, Wang Denghong, Chen Yuchuan. 2013. The ore-forming mechanism of the Jiajika pegmatite type rare metal deposit in western Sichuan Province: evidence from isotope dating. Acta Geologica Sinica-English Edition, 87(1): 91~101.
Li Jiankang, Zou Tianren, Wang Denghong, Ding Xin. 2017. A review of beryllium metallogenic regularity in China. Mineral Deposits, 36(4): 951~978 (in Chinese with English abstract).
Li Jiankang, Li Peng, Yan Qinggao, Liu Qiang, Xiong Xin. 2021. History of granitic pegmatite research in China. Acta Geologica Sinica, 95(10): 2996~3016 (in Chinese with English abstract).
Li Jiankang, Li Peng, Yan Qinggao, Wang Denghong, Ren Guangli, Ding Xin. 2023. Geology and mineralization of the Songpan-Ganze-West Kunlun pegmatite-type rare-metal metallogenic belt in China: An overview and synthesis. Science China Earth Sciences, 53(8): 1718~1740 (in Chinese with English abstract).
Li Xiaofeng, Wu Fuyuan, Wei Xinglin, Che Xudong, Rao Can, Chen Zhenyu, Ge Wenchun, Zhu Yiting. 2022. Metallogenic potential and prospecting prospect of volcanic-hosted beryllium-uranium deposits in eastern China. Acta Petrologica Sinica, 38(7): 1861~1878 (in Chinese with English abstract).
Li Zaihui, Lin Shiliang, Cong Feng, Zou Guangfu, Xie Tao. 2012. U-Pb dating and Hf isotopic compositions of quartz diorite and monzonitic granite from the Tengchong-Lianghe Block, western Yunnan, and its geological implications. Acta Geologica Sinica, 86(7): 1047~1062 (in Chinese with English abstract).
Li Zaihui, Tang Fawei, Lin Shiliang, Cong Feng, Xie Tao, Zou Guangfu. 2014. Zircon LA-ICP-MS U-Pb geochronology of the beryl-bearing pegmatite and its geological significance, western Yunnan, Southwest China. Journal of Jilin University (Earth Science Edition), 44(2): 554~565 (in Chinese with English abstract).
Lin T H, Lo Chinghua, Chung Sunlin, Hsu Fangjui, Yeh Mengwan, Lee Tungyi, Ji Jianqing, Wang Yizhau, Liu Dunyi. 2009. 39Ar/40Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 34: 674~685.
Liu Congyu. 2019. Study on fluid characteristics and metallogenic temperature and pressure conditions of Renli deposit in Mufushan area. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
Liu Huichuan, Wang Yuejun, Cawood P A, Guo Xiaofei. 2017. Episodic slab rollback and back-arc extension in the Yunnan-Burma region: Insights from Cretaceous Nb-enriched and oceanic-island basalt-like mafic rocks. Geological Society of America Bulletin, 129 (5-6): 698~714.
Lü Zhenghang, Zhang Hui, Tang Yong, Liu Yunlong, Zhang Xin. 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geology Reviews, 95: 161~181.
Ma Liyan, Wang Yuejun, Fan Weiming, Geng Hongyang, Cai Yongfeng, Zhong Hong, Liu Huichuan, Xing Xiaowan. 2014. Petrogenesis of the early Eocene I-Type granites in west Yingjiang (SW Yunnan) and its implication for the eastern extension of the Gangdese batholiths. Gondwana Research, 25: 401~419.
Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1~33.
Niu Bute. 2020. Age, petrogenesis and tectonic implications of Gaoligong (meta-) magmatic rocks in the western Yunnan Province. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
Norris A, Danyushevsky L. 2018. Towards Estimating the Complete Uncertainty Budget of Quantified Results Measured by LA-ICP-MS. Goldschmidt Conference Abstracts (Bostan, Massachusetts), 1894.
Qi Xuexiang, Wei Cheng, Zhang Chao, Zhang Shiqi, Hu Zhaochu, Ji Fengbao. 2019. Southward extension of the Bangonghu-Nujiang Suture: Evidence from Early Cretaceous intermediate and felsic magmatism in the Gaoligong Orogen, China. Journal of Asian Earth Sciences, 175: 1~25.
Ran Zilong, Li Yanjun. 2021. Research advances on rare metal pegmatite deposits. Bulletin of Geological Science and Technology, 40(2): 13~23 (in Chinese with English abstract).
Replumaz A, Tapponnier P. 2003. Reconstruction of deformed collision zone between India and Asia by backward motion of lithospheric blocks. Journal of Geophysical Research 108 (B6), 2285.
Roedder E. 1976. Fluid-inclusion evidence on the genesis of ores in sedimentary and volcanic rocks, Handbook of Strata-bound and Stratiform Ore Deposits. Geochemical Studies, 2(1): 67~110.
Schiøtte L, Compston W, Bridgwater D. 1988. Late Archaean ages for the deposition of clastic sediments belonging to the Malene supracrustals, southern West Greenland: Evidence from an ion probe U-Pb zircon study. Earth and Planetary Science Letters, 87(1-2): 45~58.
Shaw R A, Goodenough K M, Roberts N M W, Horstwood M S A, Chenery S R, Gunn A G. 2016. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian gneiss complex of north-west Scotland. Precambrian Research, 281: 338~362.
Shepherd T H, Rankin A H, Alderdon D H M. 1985. A Practical Guide to Fluid Inclusion Studies. London: Blackie.
Sláma J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1~35.
Song Shuguang, Niu Yaoling, Wei Chunjing, Ji Jianqing, Su Li. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continental eastern extension of the Lhasa Block. Lithos, 120: 327~346.
Tao Yan, Deng Xianze, Xiong Feng. 2015. U-Pb age of zircon pegmatite from Huanglonggou, Longling, Yunnan. Acta Mineralogica Sinica, 35(S1): 344~345 (in Chinese).
Taylor S R, McLennan S M. 1985. Geochemistry of Archean metasedimentary rocks from west Greenland. Geochimica et Cosmochimica Acta, 48(1): 1~13.
Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241~265.
Wang Denghong, Wang Chenghui, Sun Yan, Li Jiankang, Liu Shanbao, Rao Kuiyuan. 2017. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China. Ggological Survey of China, 4(5): 1~8 (in Chinese with English abstract).
Wang Denghong, Sun Yan, Dai Hongzhang, Guo Weiming, Zhao Zhi, Zhao Ting, Li Jiankang, Wang Chenghui, Huang Fan, Yu Yang, Li Dexian. 2019. Characteristics and exploitation of rare earth, rare metal and rare-scattered element minerals in China. Strategic Study of CAE, 21(1): 119~127 (in Chinese with English abstract).
Wang Rencai, Xing Jiayun, Peng Hao. 2014. Enlightenment of United States' beryllium resources strategy. China Mining Magazine, 23(10): 21~24 (in Chinese with English abstract).
Wang Qian, Hou Kejun, Zou Tianren. 2019. Isotopicdating method suitable for rare-metal deposits and its application. Acta Geologica Sinica, 93(6): 1523~1532 (in Chinese with English abstract).
Wang Zhen, Chen Zhenyu, Li Jiankang, Chen Yuchuan. 2022. Mineralogical characteristics and their constraints on the magmatic-hydrothermal evolution for the Jiajika No. 308 pegmatite, western Sichuan, China. Acta Geologica Sinica, 96(6): 2039~2061 (in Chinese with English abstract).
Williams A E, McKibben M A. 1989. A brine interface in the Salton sea geothermal system, California: Fluid geochemical and isotopic characteristics. Geochimica and Cosmochimica Acta, 53(8): 1905~1920.
Wu Fuyuan, Liu Xiaochi, Liu Zhichao, Wang Rucheng, Xie Lei, Wang Jiamin, Ji Weiqiang, Yang Lei, Liu Chen, Khanal G P, He Shaoxiong. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352~353: 105319.
Xie Jincheng, Zhu Dicheng, Dong Guocheng, Zhao, Zhidan, Wang Qing, Mo Xuanxue. 2016. Linking the Tengchong terrane in SW Yunnan with the Lhasa terrane in southern Tibet through magmatic correlation. Gondwana Research, 39: 217~229.
Xiong Xin, Ding Xin, Li Jiankang, Li Peng, Deng Jingyi, Zhang Jiaming. 2022. Metallogenic process of the Jiajika Li-Be deposit in west Sichuan: Constraints from fluid inclusions of No. 308 pegmatite. Acta Petrologica Sinica, 38(2): 323~340 (in Chinese with English abstract).
Xu Xingwang, Li Hang, Shi Fupin, Yao Fojun, Chen Jianzhong, Yang Zhiquan, Hong Tao, Ke Qiang. 2019. Metallogenic characteristics and prospecting of granitic pegmatite-type rare metal deposits in the Tugeman area, middle part of Altyn Tagh. Acta Petrologica Sinica, 35(11): 3303~3316 (in Chinese with English abstract).
Xu Yigang, Lan Jiangbo, Yang Qijun, Huang Xiaolong, Qiu Huaning. 2008. Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chemical Geology, 255: 439~453.
Xu Yigang, Yang Qijun, Lan Jiangbo, Luo Zhenyu, Huang Xiaolong, Shi Yuruo, Xie Liewen. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, 53: 151~175.
Yan Lijun, Wang Shengjiang, Chen Caojun, Yan Zhian, She Zhongming, Deng Zhixiang, Wu Qinghua, Yin Wei. 2021. Geochemistry of granite, tectonic environment and ore-forming event of the new-found Nae beryllium deposit in the Lianghe area, western Yunnan. Geology and Exploration, 57(4): 739~750 (in Chinese with English abstract).
Ye Lin. 2010. Study on fluid inclusions of beryl in pegmatites from Xinjiang and Neimeng. Master's dissertation of China University of Geosciences (Beijing).
Yu Yong, Li Zufu, Bai Lingan, Xu Heng, Zhang Qineng, Liang Ji. 2022. Metallogenic regularity and prospecting direction of pegmatitic rare-mental deposits in western Yunnan. Acta Petrologica Sinica, 38(7): 2052~2066 (in Chinese with English abstract).
Zhang Chuanyu, Cao Xiaomin, Li Wenchang, Tang Zhong, Yu Haijun, Chen Caojun, Cheng Yong, Li Rong. 2021. A preliminary study of metallogenic regularity of beryllium deposits in Yunnan Province. Acta Petrologica et Mineralogica, 40(2): 452~464 (in Chinese with English abstract).
Zhang Hui, Lü Zhenghang, Tang Yong. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Mineral Deposits, 38(4): 792~814 (in Chinese with English abstract).
Zhang Hui, Lü Zhenghang, Tang Yong. 2021. A review of LCT pegmatite and its lithium ore genesis. Acta Geologica Sinica, 95(10): 2955~2970 (in Chinese with English abstract).
Zhang Jingyi, Peng Touping, Fan Weiming, Zhao Gguochun, Dong Xiaohan, Gao Jianfeng, Peng Bingxia, Wei Chao, Xia Xiaoping, Chen Linli, Liang Xirong. 2018. Petrogenesis of the Early Cretaceous granitoids and its mafic enclaves in the Northern Tengchong Terrane, southern margin of the Tibetan Plateau and its tectonic implications. Lithos, 318~319: 283~298.
Zhao Dapeng, Liu Lucy. 2010. Deep structure and origin of active volcanoes in China. Geoscience Frontiers, 1(1): 31~44.
Zhao Shaowei, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi. 2016. Petrogenesis of Eocene granitoids and microgranular enclaves in the western Tengchong Block: Constraints on eastward subduction of the Neo-Tethys. Lithos, 264: 96~107.
Zhao Shaowei, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Gan Baoping. 2017. The Petrogenesis and implications of the Early Eocene granites in Lianghe area, Tengchong block. Acta Petrologica Sinica, 33(1): 191~203.
Zhao Shaowei, Lai Shaocong, Pei Xianzhi, Qin Jiangfeng, Zhu Renzhi, Tao Ni, Gao Liang. 2019. Compositional variations of granitic rocks in continental margin arc: Constraints from the petrogenesis of Eocene granitic rocks in the Tengchong block, SW China. Lithos, 326~327: 125~143.
Zhao Zhenhua, Yan Shuang. 2023. Some issues relevant to rare metal metallogeny of granitic pegmatite. Geotectonica et Metallogenia, 47(1): 1~41 (in Chinese with English abstract).
Zhou Qifeng, Qin Kezhang, Tang Dongmei, Tian Ye, Cao Mmingjian, Wang Chunlong. 2015. Formation age and evolution time span of the Koktokay No. 3 pegmatite, Altai, NW China: Evidence from U-Pb zircon and 40Ar-39Ar muscovite ages. Resource Geology, 65(3): 210~231.
Zhu Dicheng, Wang Qiang, Zhao Zhidan, Chung Sunlin, Cawood P A, Niu Yaoling, Liu Shengao, Wu Fuyuan, Mo Xuanxue. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5: 14289.
Zhu Renzhi, Lai Shaocong, Santosh M, Qin Jiangfeng, Zhao Shaowei. 2017. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean. Lithos, 286~287: 175~190.
Zou Guangfu, Mao Ying, Lin Shiliang, Cong Feng, Li Zaihui, Xie Tao, Gao Yongjuan. 2013. Zircon U-Pb age and geochemistry of Mengyang intrusion and its tectonic implications in the Lianghe, western Yunnan. Mineralogy and Petrology, 33(1): 87~99 (in Chinese with English abstract).
丛峰, 林仕良, 唐红峰, 谢韬, 李再会, 邹光富, 彭智敏, 梁婷. 2010. 滇西梁河三叠纪花岗岩的锆石微量元素、U-Pb和Hf同位素组成. 地质学报, 84(8):1155~1164.
崔晓琳, 张琦玮, 吴华英, 宋志杰, 张慧娟, 戴荔果. 2022. 腾冲地块晚白垩世—古近纪富锡花岗岩成因: 岩浆源区及分异演化条件. 岩石学报, 38(1): 253~266.
邓运, 费光春, 李剑, 唐文春, 钟伟, 杨贵兵. 2018. 四川李家沟伟晶岩型锂辉石矿床碳氢氧同位素及成矿时代研究. 矿物岩石, 38(3): 40~47.
高亢亢, 马靖, 韦娉婷, 洪涛. 2023. 超级金属铍: 未来路在何方. 矿物岩石地球化学通报, 42(1): 248~252.
贵颖.2017. 滇西腾冲小龙河锡矿床地质特征及找矿方向研究. 昆明理工大学硕士学位论文.
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481~492.
胡宝群, 王方正, 孙占学, 刘成东, 白丽红. 2003. 岩石圈中的地压梯度. 地学前缘, 10(3): 129~133.
季根源, 江思宏, 夏浩东, 冯雨周, 张洪平. 2020. 四川阿坝州党坝伟晶岩型锂辉石矿床流体包裹体特征及地质意义. 地质找矿论丛, 35(1): 33~41.
金庆花. 2015. 火山岩型铍矿床地质地球化学特征对比研究与找矿方向. 中国地质大学(北京)博士学位论文.
鞠建华, 张照志, 潘昭帅, 李厚民. 2022. 我国战略性新兴产业矿产厘定与“十四五”需求分析. 中国矿业, 31(9): 1~11.
李杭, 洪涛, 杨智全, 陈建中, 柯强, 王学海, 牛磊, 徐兴旺. 2020. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar /39Ar 测年对比研究——以阿尔金中段吐格曼北锂铍矿床为例. 岩石学报, 36(9): 2869~2892.
李杭, 洪涛, 杨智全, 刘善科, 王学海, 马垠策, 牛磊, 徐兴旺. 2022. 阿尔金中段吐格曼北花岗伟晶岩型锂铍矿床多阶段岩浆-成矿作用. 岩石学报, 38(10): 3085~3103.
李建康. 2006. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景. 中国地质大学(北京)博士学位论文.
李建康, 邹天人, 王登红, 丁欣. 2017. 中国铍矿成矿规律. 矿床地质, 36(4): 951~978.
李建康, 李鹏, 严清高, 刘强, 熊欣. 2021. 中国花岗伟晶岩的研究历程及发展态势. 地质学报, 95(10): 2996~3016.
李建康, 李鹏, 严清高, 王登红, 任广利, 丁欣. 2023. 松潘-甘孜-西昆仑花岗伟晶岩型稀有金属成矿带成矿规律. 中国科学: 地球科学, 53(8): 1718~1740.
李娜, 高爱红, 王小宁. 2019. 全球铍资源供需形势及建议. 中国矿业, 28(04): 69~73.
李晓峰, 吴福元, 韦星林, 车旭东, 饶灿, 陈振宇, 葛文春, 朱艺婷. 2022. 中国东部火山岩型铍铀矿床成矿潜力与找矿远景. 岩石学报, 38(7): 1861~1878.
李再会, 林仕良, 丛峰, 邹光富, 谢韬. 2012. 滇西腾冲-梁河地块石英闪长岩-二长花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 地质学报, 86(7): 1047~1062.
李再会, 唐发伟, 林仕良, 丛峰, 谢韬, 邹光富. 2014. 滇西含绿柱石伟晶岩锆石U-Pb年代学及其地质意义. 吉林大学学报(地球科学版). 44(2): 554~565.
刘聪宇. 2019. 幕阜山地区仁里矿床成矿流体特征及成矿温压条件研究. 中国地质大学(北京)硕士学位论文.
牛布特. 2020. 滇西高黎贡(变)岩浆岩时代、成因及构造指示. 中国地质大学(北京)硕士学位论文.
冉子龙, 李艳军. 2021. 伟晶岩型稀有金属矿床成矿作用研究进展. 地质科技通报, 40(2): 13~23.
施玉北, 曾妍, 李蓉, 程胜辉, 邹积林. 2023. 滇西地区稀有金属宝石矿床成矿系列成矿规律与找矿方向. 地球学报, 44(4): 707~722.
陶琰, 邓贤泽, 熊风. 2015. 云南龙陵黄龙沟伟晶岩锆石U-Pb年龄. 矿物学报. 35(S1): 344~345.
王登红, 王成辉, 孙艳, 李建康, 刘善宝, 饶魁元. 2017. 我国锂铍钽矿床调查研究进展及相关问题简述. 中国地质调查, 4(05): 1~8.
王登红, 孙艳, 代鸿章, 郭唯明, 赵芝, 赵汀, 李建康, 王成辉, 黄凡, 于扬, 李德先. 2019. 我国“三稀矿产”的资源特征及开发利用研究. 中国工程科学, 21(1): 119~127.
王仁财, 邢佳韵, 彭浩. 2014. 美国铍资源战略启示. 中国矿业, 23(10): 21~24.
王倩, 侯可军, 邹天人. 2019. 适合于稀有金属矿床的同位素定年方法及其应用. 地质学报, 93(6): 1523~1532.
王臻, 陈振宇, 李建康, 陈毓川. 2022. 川西甲基卡308号脉的矿物学特征及其岩浆-热液演化示踪. 地质学报, 96(6): 2039~2061.
熊欣, 丁欣, 李建康, 李鹏, 邓静仪, 张珈铭. 2022. 川西甲基卡花岗伟晶岩的锂铍成矿作用过程——来自308号脉流体包裹体的约束. 岩石学报, 38(2): 323~340.
徐兴旺, 李杭, 石福品, 姚佛军, 陈建中, 杨智全, 洪涛, 柯强. 2019. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测. 岩石学报, 35(11): 3303~3316.
燕利军, 王胜江, 陈曹军, 严志安, 佘中明, 邓志祥, 吴清华, 殷伟. 2021. 滇西梁河县新发现那俄铍矿岩石地球化学特征及铍成矿事件. 地质与勘探, 57(4): 739~750.
叶琳. 2010. 新疆、内蒙两地伟晶岩中绿柱石流体包裹体研究. 中国地质大学(北京)硕士学位论文.
余勇, 李祖福, 白令安, 徐恒, 张岐能, 梁吉. 2022. 滇西伟晶岩型稀有金属矿床成矿规律与找矿方向. 岩石学报, 38(7): 2052~2066.
张传昱, 曹晓民, 李文昌, 唐忠, 余海军, 陈曹军, 程涌, 李蓉. 2021. 云南省铍矿床成矿规律初探. 岩石矿物学杂志, 40(2): 452~464.
张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792~814.
张辉, 吕正航, 唐勇. 2021. LCT型伟晶岩及其锂矿床成因概述. 地质学报, 95(10): 2955~2970.
赵少伟, 赖绍聪, 秦江锋, 朱韧之, 甘保平. 2017. 腾冲地块梁河早始新世花岗岩成因机制及其地质意义. 岩石学报, 33(1): 191~203.
赵振华, 严爽. 2023. 花岗伟晶岩成矿有关的几个问题讨论. 大地构造与成矿学, 47(1): 1~41.
邹光富, 毛英, 林仕良, 丛峰, 李再会, 谢韬, 高永娟. 2013. 滇西粱河勐养花岗岩的锆石U-Pb年龄、地球化学特征及其地质意义. 矿物岩石, 33(1): 87~99.