en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

余文强,男,1999年生。在读硕士研究生。E-mail:ywq1149617935@163.com。

通讯作者:

杨田,男,1989年生。研究员,博士生导师,主要从事沉积学和油气储层地质学的教学和科研工作。E-mail:yangtian19@cdut.edu.cn。

参考文献
Cao Ke, Li Xianghui, Wang Chengshan, Wang Licheng, Wang Pingkang. 2010. Clay minerals of the middle Jurassic-lower Cretaceous in the Guangyuan area, northern Sichuan: Implications to paleoclimate. Journal of Mineralogy Petrology, 30(1): 41~46 (in Chinese with English abstract).
参考文献
Chen Xiaohui, Zeng Jianli, Zhang Tingshan, Zhu Haihua, Zhang Jingxuan, Li Yaoyu. 2019. Geochemical response to paleoclimate fluctuation during Xintiangou Period (Middle Jurassic), northeastern Sichuan. Acta Geologica Sinica, 93(12): 3223~3238 (in Chinese with English abstract).
参考文献
Deng Shenghui, Lu Yuanzheng, Zhao Yi, Fan Ru, Wang Yongdong, Yang Xiaoju, Li Xin, Sun Bainian. 2017. The Jurassic paleoclimate regionalization and evolution of China. Earth Science Frontiers, 24(1): 106~142 (in Chinese with English abstract).
参考文献
Deng Tao, Li Yong, Wang Zhengjiang, Yu Qian, Dong Shunli, Yan Liang, Hu Wenchao, Chen Bin. 2019. Geochemical characteristics and organic matter enrichment mechanism of black shale in the Upper Triassic Xujiahe Formation in the Sichuan basin: Implications for paleoweathering, provenance and tectonic setting. Marine and Petroleum Geology, 109: 698~716.
参考文献
Dera G, Brigaud B, Monna F, Fabrice M, Rémi L, Emmanuelle P, Jean-François D, Pierre P, Michael M J, Christophe D. 2011. Climatic ups and downs in a disturbed Jurassic world. Geology, 39(3): 215~218.
参考文献
Fu Jinhua, Li Shixiang, Xu Liming, Niu Xiaobing. 2018. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos basin, NW China. Petroleum Exploration and Development, 45(6): 998~1008.
参考文献
Gao Yang, Hu Xiangyang, Zeng Daqian, Zhao Xiangyuan, Jia Ying, Yu Qingyan, Wang Yongfei. 2019. Sandbodytype and distribution characteristics of shallow-water delta in Shaximiao Formation, Xinchang gas field west Sichuan. Geoscience, 33(6): 1163~1173 (in Chinese with English abstract).
参考文献
Gerhard E. 2000. Sedimentary Basins Evolution, Facies, and Sediment Budget. 2nd ed. Berlin, Heidelberg: Springer.
参考文献
Hallam A. 1993. Jurassic climates as inferred from the sedimentary and fossil record. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 341(1297): 287~296.
参考文献
He Dengfa. 2022. Formation, evolution, geologic framework and hydrocarbon occurrence of multi-cycle superimposed sedimentary basins in China. Earth Science Frontiers, 29(6): 24~59 (in Chinese with English abstract).
参考文献
Huang Lei, Zhang Xiaojing, Li Xingkai, Han Xuan, Wang Zhenyi, Liu Zhiqiang, Hou Zeming, Ai Zihan. 2023. Sporopollen assemblage from the Middle Jurassic of the northeastern Ordos basin, Inner Mongolia, and their paleoclimatic implications. Acta Geologica Sinica, 97(5): 1390~1406 (in Chinese with English abstract).
参考文献
Jenkyns H C. 1988. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. American Journal of Science, 288(2): 101~151.
参考文献
Jiang Haoyuan, Xia Yanqing, Liu Shanpin, Zhang Xilong, Li Jiyong, Wang Yongchao. 2021. Weathering intensity and color genesis of continental sediments: A case study from the Shangshaximiao Formation of the Middle Jurassic in the Sichuan basin. Acta Sedimentologica Sinica, 41(4): 1~19 (in Chinese with English abstract).
参考文献
Jiang Lianting, Chen Guoneng, Rodney G, Peng Zhuolun. 2015. Thermal origin of continental red beds in SE China: An experiment study. Journal of Asian Earth Sciences, 101: 14~19.
参考文献
Jones A M, Griffin P J, Collins R N, Waite T D. 2014. Ferrous iron oxidation under acidic conditions: The effect of ferric oxide surfaces. Geochimica et Cosmochimica Acta, 145: 1~12.
参考文献
Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111~129.
参考文献
Korte C, Hesselbo S P, Ullmann C V, Dietl G, Ruhl M, Schweigert G, Thibault N. 2015. Jurassic climate mode governed by ocean gateway. Nature Communications, 6: 10015.
参考文献
Li Jianghai, Jiang Hongfu. 2013. Global Ancient Plate Reconstruction, Lithofacies, Paleogeography and Ancient Environment Atalas. Beijing: Geological Publishing House (in Chinese).
参考文献
Li Jun, Huang Chengmin, Wen Xingyue, Zhang Maochao. 2020. Mesozoic paleoclimate reconstruction in Sichuan basin, China: Evidence from deep-time paleosols. Acta Sedimentologica Sinica, 39(5): 1157~1170 (in Chinese with English abstract).
参考文献
Li Jun, Huang Chengmin, Yang Guolin, Pan Yuanyuan, Wen Xingyue. 2022a. Middle Jurassic climate oscillations from paleosol records of the Sichuan basin, SW China. Journal of Palaeogeography, 11(1): 97~122.
参考文献
Li Jun, Wen Xingyue, Pan Yuanyuan, Huang Chengmin. 2022b. Multiproxy paleosol evidence for Jurassic paleoclimate fluctuations in the Sichuan basin, SW China. Acta Geologica Sinica (English Edition), 96(6): 2105~2124.
参考文献
Li Ruibao, Pei Xianzhi, Liu Zhanqing, Li Zuochen, Ding Saping, Liu Zhigang, Zhang Xiaofei, Chen Guochao, Chen Youxin, Wang Xueliang. 2010. Basin-mountain coupling relationship of foreland basins between Dabashan and northeastern Sichuan: The evidence from LA-ICP-MS U-Pb dating of the detrital zircons. Acta Geologica Sinica, 84(8): 1118~1134 (in Chinese with English abstract).
参考文献
Li Xiangbo, Liu Huaqing, Huang Junping, Wang Yating, Hao Bin, Long Liwen, Wang Jing, Wei Lihua. 2023. Alternation of arid-humid climate, and formation and distribution of fluvial fan sand in the central area of Inland Lake basin: A case study of the Yanchang Formation in Ordos basin. Acta Geologica Sinica, 97(3): 822~838 (in Chinese with English abstract).
参考文献
Liu Xin, Shang Ting, Tian Jingchun, Wang Feng, Liu Baojun, Zhang Xiaolei, Xu Zhi. 2021. Paleo-sedimentary environmental conditions and its significance of Chang 4+5 Member of Triassic Yanchang Formation in the Zhenbei area, Ordos basin, NW China. Acta Geologica Sinica, 95(11): 3501~3518 (in Chinese with English abstract).
参考文献
Luo Wei. 2010. Regionalization of Mesozoic-Cenozoic strata and analysis of basin evolution of Sichuan basin. Master's thesis of Chengdu University of Technology (in Chinese with English abstract).
参考文献
Ma Di, Zhang Zhijie, Zhou Chuanmin, Cheng Dawei, Hong Haitao, Meng Hao, Yu Xinghe, Peng Zixiao. 2023. Element geochemical characteristics and geological significance of mudstones from the Middle Jurassic Shaximiao Formation in Sichuan basin, Southwest China. ACS Omega, 8(33): 29979~30000.
参考文献
Mountney N P, Thompson D B. 2002. Stratigraphic evolution and preservation of aeolian dune and damp/wet interdune strata: An example from the Triassic Helsby Sandstone Formation, Cheshire basin, UK. Sedimentology, 49: 805~833.
参考文献
Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715~717.
参考文献
Panahi A, Young G M, Rainbird R H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Que'bec, Canada. Geochimica et Cosmochimica Acta, 64(13): 2199~2220.
参考文献
Qian Lijun, Chen Hongde, Lin Liangbiao, Xu Shenglin, Ou Lihua. 2012. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan basin. Acta Sedimentologica Sinica, 30(6): 1061~1071 (in Chinese with English abstract).
参考文献
Rodríguez-López J P, Clemmensen L B, Lancaster N, Mountney N P, Veiga G D, Bristow C. 2014. Archean to recent aeolian sand systems and their sedimentary record: Current understanding and future prospects. Sedimentology, 61(6): 1487~1534.
参考文献
Roy D K, Roser B P. 2013. Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Research, 23(3): 1163~1171.
参考文献
Scotese C R. 2015. Paleomap project: Climate history. http: //www. scotese. com/climate. htm.
参考文献
Sellwood B W, Valdes P R. 2008. Jurassic climates. Proceedings of the Geologists' Association, 119: 5~17.
参考文献
Sheldon N D. 2005. Do red beds indicate paleoclimatic conditions? A Permian case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3-4): 305~319.
参考文献
Singh S, Parkash B, Awasthi A K. 2009. Origin of red color of the Lower Siwalik palaeosols: A micromorphological approach. Journal of Mountain Science, 6(2): 147~154.
参考文献
Torres M A, Gaines R R. 2013. Paleoenvironmental and paleoclimatic interpretations of the Late Paleocene Goler Formation, Southern California, U. S. A. , based on paleosol geochemistry. Journal of Sedimentary Research, 83(8): 591~605.
参考文献
Wang Aihua, Wang Zhanghua, Liu Jiankun, Xu Naicen, Li Hualing. 2021. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta. Chemical Geology, 559: 119923.
参考文献
Wang Hongmei, Liu Yuyan, Wang Zhiyuan. 2001. Molecular fossils as indicators for paleoenvironment and paleo-climate form red clastic rocks of Middle Jurassic-Early Cretaceous in Jianmenguan, Sichuan basin of China. Earth Science-Journal of China University of Geosciences, 26(3): 229~234 (in Chinese with English abstract).
参考文献
Wang Xiaojuan, Hong Haitao, Wu Changjiang, Liu min, Guan Xu, Cheng Shuangling, Zhang Shaomin, Liang Qingshao, Yang Tian. 2022. Characteristics and formation mechanisms of tight sandstone reservoirs in Jurassic Shaximiao Formation, Central of Sichuan basin. Journal of Jilin University (Earth Science Edition), 52(4): 1037~1051 (in Chinese with English abstract).
参考文献
Wang Yongbiao, Xu Haijun. 2001. Relations between evolution of sedimentary cycles and tectonic uplift around Sichuan basin from Jurassic to Early Cretaceous. Earth Science-Journal of China University of Geosciences, 26(3): 241~246 (in Chinese with English abstract).
参考文献
Wang Yuxuan, Xu Shang, Hao Fang, Lu Yangbo, Shu Zhiguo, Yan Detian, Lu Yongchao. 2019. Geochemical and petrographic characteristics of Wufeng-Longmaxi shales, Jiaoshiba area, southwest China: Implications for organic matter differential accumulation. Marine and Petroleum Geology, 102: 138~154.
参考文献
Wei Wei, Algeo T J, Lu Yangbo, Lu Yongchao, Liu Huiming, Zhang Shoupeng, Peng Li, Zhang Jingyu, Chen Lin. 2018. Identifying marine incursions into the Paleogene Bohai Bay basin lake system in northeastern China. International Journal of Coal Geology, 200: 1~17.
参考文献
Wolgemuth K, Broecker W S. 1970. Barium in sea water. Earth and Planetary Science Letters, 8(5): 372~378.
参考文献
Wu Zhongrui, He Sheng, He Zhiliang, Li Xincheng, Zhai Gangyi, Huang Zhengqing. 2022. Petrographical and geochemical characterization of the Upper Permian Longtan Formation and Dalong Formation in the Lower Yangtze region, South China: Implications for provenance, paleoclimate, paleoenvironment and organic matter accumulation mechanisms. Marine and Petroleum Geology, 139: 105580.
参考文献
Xiao Fusen, Wei Tengqiang, Wang Xiaojuan, Guan Xu, Wu Changjiang, Hong Haitao. 2020. Research on the sequence stratigraphy of the Shaximiao Formation in Chuanzhong-Chuanxi area, Sichuan basin. Natural Gas Geoscience, 31(9): 1216~1224 (in Chinese with English abstract).
参考文献
Xu Jinjun, Liu Zhaojun, Bechtel Achim, Meng Qingtao, Sun Pingchang, Jia Jianliang, Cheng Lijuan, Song Yu. 2015. Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao basin (NE China): Implications from sequence stratigraphy and geochemistry. International Journal of Coal Geology, 149: 9~23.
参考文献
Yang Shuai. 2014. Sedimentary evolution during Jurassic and faces-controlling reservoir prediction in Sichuan basin, China. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).
参考文献
Yang Yueming, Wang Xiaojuan, Chen Shuangling, Wen Long, Wu Changjiang, Guan Xu, Wei Tengqiang, Yang Xiran. 2022. Sedimentary system evolution and sandbody development characteristics of Jurassic Shaximiao Formation in the central Sichuan basin. Natural Gas Industry, 42(1): 12~24 (in Chinese with English abstract).
参考文献
Yu Wei, Tian Jingchun, Wang Feng, Liang Qingshao, Yang Tian, Kneller B, Liang Xiaowei. 2022. Sedimentary environment and organic matter enrichment of black mudstones from the upper Triassic Chang-7 member in the Ordos basin, northern China. Journal of Asian Earth Sciences, 224: 105009.
参考文献
Zhou Min, Li Xianghui, Wang Jingyu. 2022. Sedimentary environments and paleoclimate of the Middle-Upper Jurassic in the northeastern Sichuan basin. Acta Sedimentologica Sinica, 1~22 (in Chinese with English abstract).
参考文献
曹珂, 李祥辉, 王成善, 王立成, 王平康. 2010. 四川广元地区中侏罗世—早白垩世粘土矿物与古气候. 矿物岩石, 30(1): 41~46.
参考文献
陈晓慧, 曾建理, 张廷山, 祝海华, 张婧璇, 李世鑫, 李耀羽. 2019. 川东北地区中侏罗世新田沟期古气候波动的地球化学响应. 地质学报, 93(12): 3223~3238.
参考文献
邓胜徽, 卢远征, 赵怡, 樊茹, 王永栋, 杨小菊, 李鑫, 孙柏年. 2017. 中国侏罗纪古气候分区与演变. 地学前缘, 24(1): 106~142.
参考文献
高阳, 胡向阳, 曾大乾, 赵向原, 贾英, 于清艳, 王勇飞. 2019. 川西新场气田沙溪庙组浅水三角洲砂体类型与展布特征. 现代地质, 33(6): 1163~1173.
参考文献
何登发. 2022. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律. 地学前缘(中国地质大学(北京);北京大学), 29(6): 24~59.
参考文献
黄磊, 张晓晶, 王振义, 李钢柱, 刘志强, 季兴开, 侯泽明, 韩萱, 艾子涵. 2023. 鄂尔多斯东北部中侏罗世孢粉化石及古气候意义. 地质学报, 97(5): 1390~1406.
参考文献
蒋昊原, 夏燕青, 刘善品, 张喜龙, 李继永, 王永超. 2021. 陆相沉积物风化强度与颜色成因探讨——以四川盆地中侏罗统上沙溪庙组为例. 沉积学报, 41(4): 1~19.
参考文献
李江海, 姜洪福. 2013. 全球古板块再造、岩相古地理及古环境图集. 北京: 地质出版社.
参考文献
李军, 黄成敏, 文星跃, 张茂超. 2020. 四川盆地中生代古气候变化来自深时古土壤的证据. 沉积学报, 39(5): 1157~1170.
参考文献
李瑞保, 裴先治, 刘战庆, 李佐臣, 丁仨平, 刘智刚, 张晓飞, 陈国超, 陈有炘, 王学良. 2010. 大巴山及川东北前陆盆地盆山物质耦合: 来自LA-ICP-MS 碎屑锆石U-Pb 年代学证据. 地质学报, 84(8): 1118~1134.
参考文献
李相博, 刘化清, 黄军平, 王雅婷, 郝彬, 龙礼文, 王菁, 魏立花. 2023. 干湿气候交替与内陆湖盆河流扇砂体的形成与分布——以鄂尔多斯盆地延长组为例. 地质学报, 97(3): 822~838.
参考文献
刘鑫, 田景春, 王峰, 刘宝珺, 张晓磊, 徐智. 2021. 鄂尔多斯盆地镇北地区延长组长4+5段沉积期古环境条件及意义. 地质学报, 95(11): 3501~3518.
参考文献
罗威. 2010. 四川盆地中新生代地层区划及盆地演化分析. 成都理工大学硕士学位论文.
参考文献
钱利军, 陈洪德, 林良彪, 徐胜林, 欧莉华. 2012. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义. 沉积学报, 30(6): 1061~1071.
参考文献
王红梅, 刘育燕, 王志远. 2001. 四川剑门关侏罗—白垩系红层分子化石的古环境和古气候意义. 地球科学——中国地质大学学报, 26(3): 229~234.
参考文献
王小娟, 洪海涛, 吴长江, 刘敏, 关旭, 陈双玲, 张少敏, 梁庆韶, 杨田. 2022. 四川盆地川中地区侏罗系沙溪庙组致密砂岩储层特征及成因. 吉林大学学报(地球科学版), 52(4): 1037~1051.
参考文献
王永标, 徐海军. 2001. 四川盆地侏罗纪至早白垩世沉积旋回与构造隆升的关系. 地球科学——中国地质大学学报, 26(3): 241~246.
参考文献
肖富森, 韦腾强, 王小娟, 关旭, 吴长江, 洪海涛. 2020. 四川盆地川中—川西地区沙溪庙组层序地层特征. 天然气地球科学, 31(9): 1216~1224.
参考文献
杨帅. 2014. 四川盆地侏罗系沉积演化与相控储层预测. 成都理工大学博士学位论文.
参考文献
杨跃明, 王小娟, 陈双玲, 文龙, 吴长江, 关旭, 韦腾强, 杨曦冉. 2022. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征. 天然气工业, 42(1): 12~24.
参考文献
周敏, 李祥辉, 王旌羽. 2022. 四川盆地东北中—晚侏罗世沉积环境与古气候. 沉积学报, 1~22.
目录contents

    摘要

    四川盆地中部中侏罗统沙溪庙组沉积期古环境与古气候研究对揭示该时期盆内的沉积格局、重建古地理及油气形成与演化具有重要的理论和实践意义。本文以四川盆地中部永浅1井的47件泥岩样品为研究对象,通过主微量元素的变化特征恢复研究区沙溪庙组沉积期的古环境与古气候演化过程。研究结果表明,Sr/Ba比值、Rb/K2O比值、Ca/Mg比值和Ca/(Ca+Fe)比值指示川中地区中侏罗统沙溪庙组沉积期整体为淡水环境,但在沙溪庙组一段沉积中、晚期出现了短暂的水体盐度升高;V/(V+Ni)比值、U/Th值、V/Cr比值与Ni/Co比值指示沙溪庙组沉积期整体为间歇暴露的浅水氧化环境,局部为弱氧化或还原环境;C值、CIA值和Rb/Sr比值等指标显示,沙溪庙组沉积期古气候总体为温暖湿润的气候环境,但期间发生波动性干旱,在温暖湿润和半干旱—半湿润之间频繁波动。多元地球化学参数为川中地区中侏罗统沙溪庙组沉积期的古气候演化和区域性古气候对比提供了新的证据。

    Abstract

    The study of the paleoenvironment and paleoclimate during the depositional period of the Middle Jurassic Shaximiao Formation in the central Sichuan basin has important theoretical and practical implications for revealing sedimentary patterns, reconstructing paleogeography, and understanding the oil and gas formation and evolution within the basin during that period. This paper analyzed 47 mudstone samples obtained from well Yongqian 1, utilizing variations in major and trace elements to reconstruct the paleoenvironment and paleoclimate evolution. The results show that the Sr/Ba ratio, Rb/K2O ratio, Ca/Mg ratio, and Ca/(Ca+Fe) ratio indicate that the Middle Jurassic Shaximiao Formation was mainly deposited in a freshwater environment. However, a temporary increase in salinity occurred in the middle and late depositional periods of the first member of the Shaximiao Formation. The V/(V+Ni) ratio, U/Th ratio, V/Cr ratio, and Ni/Co ratio suggest that the Shaximiao Formation depositional period was generally characterized by shallow water-oxidizing conditions with intermittent exposure and localized weakly oxidizing or reducing environments. The C value, CIA value, and Rb/Sr ratio indicate that the paleoclimate during the Shaximiao Formation depositional period was predominantly warm and humid but experienced intermittent fluctuations, ranging from warm and humid to semi-arid to semi-humid conditions. The multivariate geochemical parameters provide new evidence for the paleoclimate evolution of the Middle Jurassic Shaximiao Formation during its depositional period in the central Sichuan basin, which is beneficial for the regional paleoclimate comparison.

  • 近年来,全球气候变暖对地球环境造成的改变与破坏日益严重,其对人类未来生存的威胁也引起了各国政府与科学家的高度重视(黄磊等,2023)。因此,为了有效预测与应对未来气候变化,有必要了解和探索温室气候状态下气候与环境的演变规律(黄磊等,2023)。侏罗纪是地质历史时期典型的温室气候时期之一,其CO2浓度与温度均高于现今水平,是研究温室气候环境响应的重要窗口(Sellwood et al.,2008黄磊等,2023)。然而,有学者研究发现侏罗纪时期全球气候存在强烈的起伏波动,Dera et al.(2011)运用欧洲各地生物化石中的碳-氧同位素数据建立了侏罗纪时期海水温度波动曲线,认为中侏罗世阿伦期(Aalenian)早期温度突然下降,持续到中侏罗世晚期逐渐回升,直到晚侏罗世晚期,形成牛津期—基默里奇期(Oxfordian-Kimmeridgian)高温平台。Korte et al.(2015)发表对西欧各地氧同位素研究的结果,认为早侏罗世晚期温度还处于较高水平,至中侏罗世早期突然降温,一直持续到中侏罗世中期,温度下降幅度可达10~15℃。自中侏罗世中晚期开始,在南非、北美和巴西等地区则发育典型的干热气候条件下风成沉积(Mountney and Thompson,2002Rodríguez-López et al.,2014)。

  • 亦有学者对中国侏罗纪气候展开研究,邓胜徽等(2017)以古生物学和沉积学资料为主,辅以少量地球化学和植物气孔器参数等资料,将中国侏罗纪时期陆地生态系统气候划分为5个演化阶段,并指出各阶段气候还存在一定幅度的频繁波动,需要进一步研究。四川盆地是中国侏罗纪最具代表性的陆相沉积盆地之一,位于亚洲大陆中南部,中国西南部,周边山系在侏罗纪时期开始活动隆升,对四川盆地的古气候演化产生了显著影响(王永标和徐海军,2001)。中侏罗世中晚期四川盆地中部沙溪庙组发育典型红层沉积。关于沙溪庙组沉积期古气候与古环境方面前人开展了许多研究,部分学者通过分子化石、沉积相及生物特征认为四川盆地边缘中侏罗世为温暖湿润环境(王红梅等,2001王永标和徐海军,2001),地球化学分析结果指示川西沙溪庙组沉积期整体为温暖干旱气候(钱利军等,2012),黏土矿物分析结果则揭示川西北地区中侏罗世早中期为干冷或半干旱气候,晚期出现短期的干冷气候(曹珂等,2010)。近年来,部分学者采用古土壤重建、元素地球化学特征等手段对川中、川东、川东北等地区展开研究,认为其在中侏罗世中晚期主要发育半干旱—半湿润气候(陈晓慧等,2019李军等,2020Li Jun et al.,2022a2022bMa Di et al.,2023),碳-氧同位素、二氧化碳浓度重建等方法研究揭示川东北地区中晚侏罗世属于温凉—温暖的干旱—半干旱环境(周敏等,2022)。

  • 但由于陆相地层的沉积和分布局限性,出露化石样点受限制,研究区块与方法不同等诸多因素,导致前人对盆地内该时期古环境与古气候的认识持不同观点,且前人研究样品点位较为分散,垂向上连续性差,缺乏系统的高精度连续性的古气候环境变化过程研究。为弥补以上不足,进一步明确川中地区沙溪庙组沉积期的古环境与古气候演化过程,本文以取芯连续,资料详实的永浅1井为例,通过对47件泥岩样品中的元素含量及化学指标进行分析,探讨该沉积期古盐度、古氧化还原与古气候等环境演变过程,不仅可以揭示该区域在侏罗纪时期的气候特征与变化过程,还可以为理解全球侏罗纪气候格局和演化提供新视角,为预测和应对未来气候变化提供科学依据和启示。

  • 1 地质概况

  • 四川盆地位于中国西南部,属扬子板块西缘,为典型的多期次、多旋回沉积盆地(李军等,2020何登发,2022杨跃明等,2022)。四川盆地的构造-沉积可大致划分为两大旋回:① 震旦纪—中三叠世为海相沉积,以碳酸盐岩为主;中三叠世末,受印支运动影响,上扬子地区整体遭受抬升,海侵作用结束,盆地内部遭到剥蚀;② 晚三叠世,发生浅海台地到内陆湖泊的转变,发育海陆过渡相沉积;侏罗纪—古近纪发育陆相沉积,沉积一套厚层碎屑岩(肖富森等,2020)。晚印支运动后,四川盆地由前陆盆地向陆内凹陷盆地转换,由此进入侏罗纪“红色盆地”演化阶段(图1a),侏罗纪时期,东北部的米仓山与大巴山隆升,成为当时的主要物源区(王小娟等,2022)。此时期盆地周缘的松潘-甘孜造山带及秦岭造山带均对盆地产生影响,控制了盆地内部沉积体系的展布及沉降中心和沉积中心的迁移。中侏罗世早期,盆地主要发育有冲积相、三角洲相及湖泊相沉积,最大沉降中心位于米仓山山前部位(罗威,2010杨帅,2014)。中侏罗世中、晚期(沙溪庙组沉积期)的沉积遍布全盆,主要发育有冲积相、河流相、三角洲相及湖泊相沉积,该时期盆地的沉积中心主要位于西南部的峨眉至马边一带,沙溪庙组厚度总体为由南西向北东逐渐增厚,最大沉降中心转移至大巴山前缘(罗威,2010杨帅,2014)。

  • 侏罗系整体残余厚度一般在1500~4700 m,自下而上发育自流井组、凉高山组,沙溪庙组,遂宁组与蓬莱镇组。沙溪庙组在盆地内广泛发育,由于厚度较大,常以全盆稳定分布的叶肢介页岩为界将沙溪庙组分为下部的沙溪庙组一段(沙一段,J2s1)和上部的沙溪庙组二段(沙二段,J2s2),其中沙溪庙组二段又可根据4个基准面旋回划分成4个亚段(罗威,2010肖富森等,2020杨跃明等,2022)。沙溪庙组与下伏凉高山组以沙一段底部厚层关口砂岩或凉高山组顶部的灰黑色泥页岩为界,亦可平行不整合超覆于自流井组之上,与上覆遂宁组为整合接触,地层厚度约为650~2000 m(王小娟等,2022)。永浅1井位于川中古隆中斜平缓带,沙溪庙组沉积发育,为一套浅水三角洲相-河流相沉积,整体以厚层紫红色泥岩为主,夹有多套砂岩沉积。其中沙一段取芯段以灰色、灰白色、灰绿色砂岩与紫红色、砖红色、灰绿色泥岩构成的几个较大的岩性组合为特征,顶部发育灰黑色叶肢介页岩。沙二段取芯段整体砂泥岩厚度较沙一段变薄,以灰色、灰绿色砂岩与紫红色、杂色泥岩或古土壤层不等厚互层为特征(图1b)。

  • 2 样品采集与测试方法

  • 由于沉积物的矿物学和地球化学成分是许多相互关联因素的产物,包括母岩成分、气候、分选、粒度、再循环、成岩作用和构造作用等(Roy and Roser,2013),因此在取样过程中,选取的样品岩性均为泥岩或者粉砂质泥岩,以便在最大程度上减少或消除由于粒度、分选以及取样差异等因素造成的元素成分的差异性,最大限度地接近真实的古环境与古气候。研究样品均来自永浅1井钻井岩芯,永浅1井泥岩类型众多,囊括了紫红色泥岩、砖红色泥岩、灰绿色泥岩、暗绿色泥岩、灰黑色泥岩、杂色泥岩及古土壤层等,各色样品对于当时古环境古气候的演化具有高度的代表性,样品在垂向上具有高精度连续性,共采集泥岩样品47件,自下往上覆盖了沙一段与沙二段底部,其中沙二段21件,沙一段26件,详细采样位置见图2。对泥岩样品进行主微量元素测试分析,分析测试在大庆昂然科技有限公司完成。先将样品在玛瑙研磨钵中研磨至粒径200目以下,取样品粉末与四硼酸锂熔剂混合均匀后融制成玻璃样片,样片用X荧光光谱仪进行主量元素测定;微量元素测定使用ICP-MS电感耦合等离子体质谱仪进行测定。测试结果见表1、2。

  • 图1 四川盆地构造概况(a)及永浅1井沙溪庙组单井柱状图(b)(据王小娟等,2022修改)

  • Fig.1 Tectonic overview of the Sichuan basin (a) and single-well columnar diagram of the Shaximiao Formation in well Yongqian 1 (b) (after Wang Xiaojuan et al., 2022)

  • F1—安宁河断裂;F2—龙门山断裂;F3—城口断裂;f1—彭灌断裂;f2—熊坡断裂;f3—龙泉山断裂;f4—华蓥山断裂;f5—七跃山断裂;f6—万源断裂;f7—峨眉-瓦山断裂;f8—汉源断裂;f9—普熊河断裂;f10—垭都-马山断裂

  • F1—Anning River fault; F2—Longmen Mountain fault; F3—Chengkou fault; f1—Pengguan fault; f2—Xiongpo fault; f3—Longquan Mountain fault; f4—Huaying Mountain fault; f5—Qiyue Mountain fault; f6—Wanyuan fault; f7—Emei-Washan fault; f8—Hanyuan fault; f9—Puxiong River fault; f10—Yadu-Mashan fault

  • 3 沙溪庙组沉积特征

  • 3.1 岩性特征

  • 永浅1井沙溪庙组取芯段总长288 m,其岩石类型多样,砾岩、砂岩、泥岩均有发育。砾岩和含砾粗砂岩整体较少,颜色以灰色或灰白色为主,仅在部分河道底部发育,分选较差,磨圆中等(图3a、b);砂岩主要为中—粗砂岩,沙二段粉细砂岩发育较多,整体颜色以灰色、灰白色和灰绿色为主,砂岩中还常见灰绿色泥砾,表明砂体沉积于浅水环境,局部砂岩中碳质夹层发育,表明沉积时为湿润气候(图3c~e)。泥岩为永浅1井最主要的岩石类型,其颜色多变,除最发育的紫红色泥岩外,亦有砖红色、灰绿色、暗绿色及灰黑色等泥岩(图3f~k),泥岩颜色的不断变化反映出湖平面的频繁变化。沙一段顶部黑色叶肢介页岩发育,表明在沙一段沉积末期湖泊水体深度不断加深,直至达到最大湖泛面。沙二段古土壤层广泛发育,呈黄、红相间,整体较为疏松,固结程度低,层理不发育,内可见零星分布的钙质结核与植物根迹等(图3l、m)。古土壤层是一个没有明显沉积作用与剥蚀作用的间断面,代表先前的沉积物在被后来的沉积物覆盖之前经受了一定程度的土壤化作用,是地层长期暴露的标志(李相博等,2023)。

  • 图2 川中地区永浅1井沙溪庙组单井综合柱状图

  • Fig.2 Comprehensive columnar diagram of well Yongqian 1 in the Shaximiao Formation in central Sichuan basin

  • 岩性特征反映沙溪庙组沉积期经历过多个气候波动,沙一段底部厚层河道砂与灰绿色泥岩或粉砂岩(图4a),向上转变为杂色泥岩与紫红色泥岩(图4b),到中部又转变为厚层河道砂与灰绿色、暗绿色泥岩,内部发育薄层碳质层(图4c),再向上又形成大套紫红色与砖红色泥岩(图4d),最后在顶部发育灰绿色与灰黑色泥页岩(图4e),由下往上整体表现为湿—干—湿—干—湿的气候波动特征。沙二段底部由沙一段顶部的灰黑色页岩变为杂色与古土壤层,层内钙质结核发育(图4f),表现为不断变干旱的环境特征(Li Jun et al.,2022a2022b),向上发育灰绿色粉砂岩与古土壤层,但古土壤层内部钙质结核发育程度较低(图4g),因此其与底部古土壤层相比显得较为湿润,再往上则多发育紫红色泥岩(图4h),表明气候持续干旱,由下往上整体表现为干—湿—干的气候波动特点。沙溪庙组岩性特征表明其沉积期整体为间歇暴露或浅水氧化沉积环境,局部为弱氧化或偏还原沉积环境。

  • 表1 川中地区永浅1井沙溪庙组主量元素分析结果(%)

  • Table1 Major element analysis results (%) of the Shaximiao Formation in well Yongqian 1 in central Sichuan basin

  • 表2 川中地区永浅1井沙溪庙组部分微量元素分析结果(μg/g)

  • Table2 Part of trace element analysis results (μg/g) of the Shaximiao Formation in well Yongqian 1 in central Sichuan basin

  • 3.2 沉积构造特征

  • 沙溪庙组整体沉积构造类型丰富,粒度较粗的砂岩中广泛发育各类反应河道冲刷充填的沉积构造,如槽状交错层理、板状交错层理、平行层理。槽状交错层理特点是单个层系厚度变化极快,各层系底界强烈下凹,具明显的槽状侵蚀底界,常与板状交错层理、平行层理共生(图5a)。板状交错层理大小尺度不一,层系间的界面间距从不到1 cm至3~4 cm均有发育(图5b、c)。平行层理单个纹层厚度为毫米级至厘米级,沙一段平行层理纹层厚度多<1 cm,纹层为重矿物或炭屑顺层富集形成(图5d)。砂岩底部常发育侵蚀冲刷面(图5e),这些构造均指示砂体形成于一种较强水动力环境。在粒度较细的砂岩中,砂纹交错层理较为常见(图5f、g),其为砂波迁移所形成的产物,砂波依顺流方向沿其迎水面向上爬升,后一层系叠置在前一层系之上,形成具有爬升或上攀特点的交错层理,局部粉细砂岩中可见生物扰动现象发育(图5i、j),亦有部分砂岩发育反应快速堆积的块状层理(图5h、k)。沿层面常见云母碎屑富集,指示广泛发育的滞水环境沉积卸载作用,沉积环境更趋向于三角洲(高阳等,2019)。

  • 图3 川中地区永浅1井沙溪庙组岩性特征

  • Fig.3 Lithological characteristics of the Shaximiao Formation in well Yongqian 1 in the central Sichuan basin

  • (a)—2205.57 m,沙一段,块状细砾岩;(b)—2205.38 m,沙一段,含砾粗砂岩可见灰绿色泥砾叠瓦状排列; (c)—2185.81 m,沙一段,粗砂岩碳质夹层发育;(d)—2049.47 m,沙二段,灰绿色粉砂岩;(e)—2015.50 m,沙二段,底部灰绿色滞留砾石发育;(f)—2153.44 m,沙一段,暗绿色泥岩;(g)—2103.34 m,沙一段,灰黑色泥岩可见叶肢介;(h)—2240.53 m,沙一段,紫红色泥岩可见根迹;(i)—1993.73 m,沙二段,灰绿色泥岩和紫红色泥岩;(j)—1998.56 m,沙二段,紫红色泥岩;(k)—1988.93 m,沙二段,杂色泥岩;(l)—1985.37 m,沙二段,古土壤层;(m)—2060.02 m,沙二段,古土壤层可见植物根迹化石;图中红色箭头所指方向为岩芯底部,黄色三角为发育叶肢介处

  • (a) —2205.57 m, massive fine-grained conglomerate; (b) —2205.38 m, imbricated arrangement of gray-green mud clasts in gravelly coarse-grained sandstone; (c) —2185.81 m, coarse-grained sandstone with carbonaceous interbeds; (d) —2049.47 m, gray-green siltstone; (e) —2015.50 m, gray-green lag gravel at the bottom; (f) —2153.44 m, dark-green mudstone; (g) —2103.34 m, gray-black mudstone with visible conchostraca; (h) —2240.53 m, purple-red mudstone with visible root traces; (i) —1993.73 m, gray-green mudstone and purple-red mudstone; (j) —1998.56 m, purple-red mudstone; (k) —1988.93 m, mottled mudstone; (l) —1985.37 m, paleosoil layers; (m) —2060.02 m, plant root trace fossils in the paleosoil layers; the direction pointed by the red arrow in the picture is the lower part of the core, and the yellow triangle is the center of the developing conchostraca; among them, Fig.3a~c, f~h are from the first Member of Shaximiao Formation, and Fig.3d~e, i~m are from the second Member of Shaximiao Formation

  • 4 沙溪庙组沉积期古环境及古气候

  • 4.1 古盐度特征

  • Sr/Ba比值是古盐度的经验指标。在低盐度水体中,Sr和Ba均存在于可溶性碳酸氢盐中;但在高盐度水体中,Ba会析出形成BaSO4,导致水中Ba的浓度低于Sr。因此Sr/Ba比值越高,说明水体盐度越高,反之则表示水体盐度较低(Wolgemuth and Broecker,1970)。通常情况下,淡水沉积物的Sr/Ba比值<0.6,微咸水环境中Sr/Ba比值一般为0.6~1,而海洋咸水沉积物中的Sr/Ba比值通常>1(Wei Wei et al.,2018)。沙溪庙组Sr/Ba比值明显较低,为0.15~0.33,平均值为0.25,整体均<0.6,表明沙溪庙组沉积期川中地区古盐度较低,水体为淡水环境(图6a)。将沙溪庙组所采样品依据不同取样深度、相邻间隔深度及不同的泥岩类型分为A~F6个阶段(图7),其中A~D阶段对应沙一段,E~F阶段对应沙二段。A阶段(2261.5~2273 m)至B阶段(2210~2261.5 m)Sr/Ba比值呈现上升趋势表明水体盐度略有增加,但依旧处于淡水环境。C阶段(2132.5~2210 m)整体比值较为稳定,局部急剧变化,表明其古盐度在短期内有过大幅变化。D阶段(2088.5~2132.5 m)Sr/Ba比值整体较为稳定,表明该阶段淡水环境的古盐度较为稳定。E阶段(2059~2088.5 m)和F阶段(2015~2059 m)Sr/Ba比值均呈现下降趋势,表明环境水体仍以淡水环境为主。

  • 图4 川中地区永浅1井沙溪庙组沉积期气候波动的沉积记录响应

  • Fig.4 Sedimentary record response of climate fluctuations during the depositional period of the Shaximiao Formation in well Yongqian 1 in central Sichuan basin

  • (a)—沙一段,2261.92 m,槽状交错层理粗砂岩,可见灰绿色泥砾与底冲刷构造,2249.61 m,灰绿色粉砂岩;(b)—沙一段,2240.53 m,紫红色泥岩可见根迹,2233.91 m,杂色泥岩; (c)—沙一段,2185.81 m,粗砂岩,碳质夹层发育,2155.93 m,灰绿色泥岩;(d)—沙一段,2139.76 m,砖红色泥岩,2136.46 m,紫红色泥岩;(e)—沙一段,2103.24 m,灰黑色叶肢介页岩;(f)—沙二段,2090.92 m,杂色泥岩,2078.19 m,古土壤层内部钙质结核发育;(g)—沙二段,2072.84 m,灰绿色粉砂岩,2060.02 m,古土壤层可见植物根迹化石,钙质结核不发育;(h)—沙二段,1998.56 m,紫红色泥岩,1994.73 m,紫红色泥岩;图中红色箭头所指方向为岩芯底部

  • (a) —2261.92 m, trough cross-bedding coarse-grained sandstone, with visible gray-green mud clasts and bottom scour structures, 2249.61 m, gray-green siltstone; (b) —2240.53 m, root traces in purple-red mudstone, 2233.91 m, mottled mudstone; (c) —2185.81 m, coarse-grained sandstone with carbonaceous interbeds, 2155.93 m, gray-green mudstone; (d) —2139.76 m, brick-red mudstone, 2136.46 m, purple-red mudstone; (e) —2103.24 m, gray-black shale with conchostraca; (f) —2090.92 m, mottled mudstone, 2078.19 m, calcareous nodules in the paleosoil layers; (g) —2072.84 m, gray-green siltstone, 2060.02 m, paleosoil layers with visible plant root traces and no calcareous nodules; (h) —1998.56 m, purple-red mudstone, 1994.73 m, purple-red mudstone; the direction pointed by the red arrow in the picture is the lower part of the core; among them, Fig.4a~e are from the first Member of Shaximiao Formation, and Fig.4f~h are from the second Member of Shaximiao Formation

  • Rb/K2O也是古盐度的常用指标(Fu Jinhua et al.,2018)。K主要与泥岩中黏土矿物含量有关,而Rb更容易被黏土和有机质吸附,吸附程度随盐度的增加而增加,导致Rb含量增加,Rb/K2O比值相应增加。由于Rb和K的丰度差异很大,因此使用1000×Rb/K2O的比值来表示结果:>6表示咸水,4~6表示微咸水,<4表示淡水(Fu Jinhua et al.,2018)。沙溪庙组Rb/K2O比值为3.57~5.51,平均值为4.48,表明环境水体整体以微咸水为主,局部为淡水环境(图6a)。沙溪庙组A阶段时水体从微咸水转为淡水,然而B阶段时Rb/K2O比值整体增大,环境水体多以微咸水为主,仅局部表现为淡水环境,至C阶段水体盐度进一步增加,但依旧表现为微咸水特征。D阶段时Rb/K2O比值较C阶段降低,水体盐度降低,局部表现为淡水环境,但E阶段时Rb/K2O比值显著增大,水体均呈微咸水特征,至F阶段水体盐度呈现下降趋势,Rb/K2O比值不断减小。

  • 图5 川中地区永浅1井沙溪庙组沉积构造

  • Fig.5 Sedimentary structure of the Shaximiao Formation in well Yongqian 1, central Sichuan basin

  • (a)—2252.87 m,沙一段,槽状交错层理粗砂岩;(b)—2170.50 m,沙一段,板状交错层理粗砂岩;(c)—2009.99 m,沙二段,板状交错层理中砂岩;(d)—2182.31 m,沙一段,平行层理中粗砂岩;(e)—2207.19 m,沙一段,底冲刷构造;(f)—2039.74 m,沙二段,双向砂纹层理粉砂岩;(g)—2265.90 m,沙一段,逆粒序、砂纹交错层理细砂岩;(h)—2032.97 m,沙二段,块状层理中砂岩;(i)—2110.39 m,沙一段,生物扰动构造;(j)—1990.64 m,沙二段,生物扰动构造;(k)—2254.5 m,沙一段,块状层理中细砂岩;图中红色箭头所指方向为岩芯底部

  • (a) —2252.87 m, trough cross-bedding coarse-grained sandstone in the first Member of Shaximiao Formation; (b) —2170.50 m, tabular cross-bedding coarse-grained sandstone in the first Member of Shaximiao Formation; (c) —2009.99 m, tabular cross-bedding medium-grained sandstone in the second Member of Shaximiao Formation; (d) —2182.31 m, medium and coarse grained sandstone with parallel bedding in the first Member of Shaximiao Formation; (e) —2207.19 m, bottom scour structure in the first Member of Shaximiao Formation; (f) —2039.74 m, bidirectional rippled cross-bedding siltstone in the second Member of Shaximiao Formation; (g) —2265.90 m, fine-grained sandstone with inverse graded sequence and ripple cross-bedding in the first Member of Shaximiao Formation; (h) —2032.97 m, massive bedding medium-grained sandstone in the second Member of Shaximiao Formation; (i) —2110.39 m, bioturbated structures in the first Member of Shaximiao Formation; (j) —1990.64 m, bioturbated structures in the second Member of Shaximiao Formation; (k) —2254.5 m, massive bedding fine and medium grained sandstone in the first Member of Shaximiao Formation; the direction pointed by the red arrow in the picture is the lower part of the core

  • 图6 川中地区永浅1井沙溪庙组古盐度指标地球化学图解

  • Fig.6 Geochemical diagram of paleosalinity index of the Shaximiao Formation in well Yongqian 1 in central Sichuan basin

  • (a)—Sr/Ba-Rb/K2O图解;(b)—Ca/Mg-Ca/(Ca+Fe)图解

  • (a) —Sr/Ba-Rb/K2O diagram; (b) —Ca/Mg-Ca/ (Ca+Fe) diagram

  • 图7 川中地区永浅1井沙溪庙组沉积期古环境与古气候演变的元素地球化学响应

  • Fig.7 Elemental geochemical response of the paleoenvironment and paleoclimate evolution during the depositional period of the Shaximiao Formation in well Yongqian 1 in central Sichuan basin

  • 此外,沉积物中Ca/Mg比值的增加也表明沉积过程中古盐度变化增强(Xu Jinjun et al.,2015)。研究表明,Ca/(Ca+Fe)比值也可以定性地指示古盐度(Deng Tao et al.,2019)。沙溪庙组Ca/Mg比值为0.29~19.33,平均值为1.47;Ca/(Ca+Fe)比值为0.06~0.93,平均值为0.19。两种指标整体较小,局部含量较高,表明沙溪庙组沉积环境整体为淡水环境,局部具有微咸或咸水特征(图6b)。沙溪庙组A阶段与B阶段两者比值均较小,表明环境水体整体为淡水环境,至C阶段Ca/Mg比值与Ca/(Ca+Fe)比值先显著增大再快速降低,表明该阶段湖泊水体盐度由原来的淡水环境在短时间内快速转变为微咸水或咸水环境,而后又快速恢复为淡水环境。D阶段时两者比值无显著变化,表明该阶段淡水环境的古盐度较为稳定。E阶段中两者比值表现出先增大后减小的趋势,表明该阶段水体盐度短暂升高,并且可能达到微咸水特征,而后又恢复为淡水环境。而F阶段整体比值无显著变化,可以推测湖泊仍处于淡水环境。

  • 综上所述,结合Sr/Ba、Rb/K2O、Ca/Mg和Ca/(Ca+Fe)比值4种指标,认为永浅1井沙溪庙组整体沉积环境为淡水环境,在C阶段水体盐度有过短暂大幅度升高,而后快速下降,E阶段时盐度小幅波动,表现出微咸水或咸水特征(图6、图7)。

  • 4.2 古氧化还原特征

  • 古氧化还原环境主要是通过分析V、Ni、Cr、Co、U、Th等对氧化还原条件敏感的元素来确定的(Jones and Manning,1994)。一般来说,V在还原条件下容易析出,在氧化条件下容易溶解,而Ni在这两种条件下都比V更稳定。部分学者认为V/(V+Ni)>0.77为缺氧环境,0.6~0.77为还原环境,<0.6为富氧环境(Fu Jinhua et al.,2018)。部分学者认为V/(V+Ni)<0.46为氧化环境,0.46~0.57为弱氧化环境,0.57~0.83为缺氧环境,0.83~1.00为极低氧环境(Yu Wei et al.,2022)。虽然不同的研究者有不同的分类标准,但他们都认为V/(V+Ni)随着还原程度的增加而逐渐增加,本文采用的划分方案为:V/(V+Ni)比值<0.6表示富氧环境,0.6~0.77表示弱氧环境,>0.77表示还原环境。沙溪庙组V/(V+Ni)比值为0.67~0.79,平均值为0.73,表明沙溪庙组整体为弱氧环境,局部发育还原环境(图8a、b)。沙溪庙组中,A阶段与B阶段中V/(V+Ni)比值均<0.77,表明整体为弱氧化环境,比值呈现降低趋势,指示氧化程度逐渐升高,C阶段比值整体较为稳定,局部波动较大,从原先的弱氧化环境转换到还原环境后又迅速转为弱氧化环境,D阶段时仅在末期由弱氧环境向还原环境靠近,E阶段时V/(V+Ni)比值变化频繁,表现为先增大后降低再增大的特征,氧化还原环境则经历了弱氧环境—还原环境—弱氧环境—还原环境的变化,F阶段则由还原环境又转为弱氧环境,且氧化程度不断增加。

  • U元素地球化学性质活跃,易氧化,迁移能力强,而Th为惰性元素,迁移能力较弱,通常吸附在细粒沉积物中,利用U/Th值可以有效判定氧化还原状态(刘鑫等,2021),当U/Th>1.25为还原环境,0.75~1.25为弱氧化环境,<0.75为氧化环境。研究区样品分析结果表明,沙溪庙组U/Th为0.13~0.95,平均值为0.23,整体以氧化环境为主,部分为弱氧化环境(图8a、c、d)。A阶段与B阶段U/Th均<0.75,且比值无显著变化,表明该阶段为氧化环境,氧化程度较为稳定,C阶段中期比值显著增大,而后快速降低,指示氧化还原环境由氧化环境快速转变成弱氧环境后又快速恢复为氧化环境,D阶段末期比值亦显著增大,由氧化环境向弱氧化环境转变,E阶段与F阶段则无显著变化,整体为稳定氧化环境。

  • 除此之外,前人研究表明V/Cr比值与Ni/Co比值亦可作为判断氧化还原环境的指标,通常V/Cr比值>4.25、2~4.25和<2分别表示还原、弱氧及富氧环境,而Ni/Co比值>7、5~7以及<5则代表了还原、弱氧和氧化环境(Ma Di et al.,2023)。研究区沙溪庙组V/Cr比值为1.18~2.53,平均值为1.51,Ni/Co比值为0.84~3.38,平均值为2.6,表明沙溪庙组整体为氧化环境,局部为弱氧环境(图8b、c、d)。其中A、B阶段V/Cr比值与Ni/Co比值均处于氧化环境区间内,且两者均较为稳定,无显著变化。C阶段时V/Cr比值呈现先增大后减小的趋势,Ni/Co比值依旧处于氧化环境区间,比值较B阶段呈现先减小后增大,而后趋于稳定的趋势,表明该阶段氧化还原环境先由原来的氧化环境转变为弱氧环境,复又转为氧化环境。D、E阶段V/Cr比值整体均较为稳定,仅在E阶段末期由氧化环境短暂演变为弱氧化环境,至F阶段又转变为氧化环境且氧化程度逐渐加深。而Ni/Co比值在D、E、F阶段亦均表现为氧化环境,在D阶段时呈现出氧化程度先增强后减弱的趋势,E、F阶段则表现为小范围的波动。

  • 综上所述,结合V/(V+Ni)、U/Th、V/Cr和Ni/Co比值,沙溪庙组古氧化还原环境整体以氧化—弱氧化为主,局部发育还原环境,由下至上详细演化过程为A、B阶段主要为氧化环境,至C、D阶段还原程度增加,局部转为弱氧环境甚至还原环境,E阶段则呈现小幅波动,F阶段则以氧化环境为主,且氧化程度逐渐增强(图7、图8)。

  • 图8 川中地区永浅1井沙溪庙组古氧化还原环境指标地球化学图解

  • Fig.8 Geochemical diagram of ancient redox environment indicators of the Shaximiao Formation in well Yongqian 1 in central Sichuan basin

  • (a)—U/Th-V/(V+Ni)图解;(b)—V/Cr-V/(V+Ni)图解;(c)—U/Th-Ni/Co图解;(d)—U/Th-V/Cr图解

  • (a) —U/Th-V/ (V+Ni) diagram; (b) —V/Cr-V/ (V+Ni) diagram; (c) —U/Th-Ni/Co diagram; (d) —U/Th-V/Cr diagram

  • 4.3 古气候特征

  • 古气候影响着沉积地球化学背景、化学风化强度和陆源物质的输入。因此,特定元素的相对浓度可以用来重建古气候(Wu Zhongrui et al.,2022)。其中,C值为易富集于潮湿气候下的Fe、Al、V、Ni、Ba、Zn和Co元素含量之和,与易在干旱气候下富集的Ca、Mg、Na、Cu、Sr、Mn等元素含量之和的比值,对古气候研究具有指示作用;C值>0.6时,指示温暖湿润气候,0.2~0.6指示半湿润—半干旱气候;<0.2指示干旱气候(Yu Wei et al.,2022Ma Di et al.,2023)。沙溪庙组C值为0.1~1.35,平均值为0.82,表明整体为湿润气候(图9)。A阶段C值均>0.6,指示温暖湿润气候;B阶段初始C值整体较为稳定,局部<0.6,指示气候由原来的温暖湿润转为半干旱—半湿润气候,而后C值增大,气候又转为温暖湿润;然而C阶段C值整体较B阶段下降,C阶段早期C值下降<0.6,后又增大,至中期显著下降,而后又快速增大,表明该阶段气候变化频繁,经历了温暖湿润—半干旱—半湿润—温暖湿润—干旱—半干旱—半湿润—温暖湿润的气候演变;D阶段时C值整体较C阶段增大,均表现为温暖湿润气候;E阶段较D阶段C值变化不大,局部具有小幅波动,表明该阶段整体为温暖湿润气候,但存在短期半干旱—半湿润气候,导致C值下降;F阶段早期C值较大,而后波动减小,表明气候正由温暖湿润开始逐渐向半干旱—半湿润转变。

  • 图9 川中地区永浅1井沙溪庙组沉积期古气候指标地球化学图解

  • Fig.9 Geochemical diagram of paleoclimate indicators during depositional period of the Shaximiao Formation in well Yongqian 1 in central Sichuan basin

  • CIA(化学蚀变指数)被广泛用于评价化学风化强度和气候变化(Wang Yuxuan et al.,2019)。由于陆地的化学风化主要受控于湿度与温度,通过研究,多位学者给出了CIA指数与气候状态的对应关系,低CIA值(50~70)表明在寒冷和干旱气候条件下化学风化程度较低,中等CIA值(70~80)表明为温暖湿润气候具有中等风化作用,高CIA值(>80)反映了与炎热潮湿的热带气候相关的强烈化学风化(Nesbitt and Young,1982Yu Wei et al.,2022Ma Di et al.,2023)。永浅1井沙溪庙组CIA值为67.49~77.9,平均为72.38,为中等CIA值。表明沙溪庙组沉积期整体为温暖湿润的气候,具有中等化学风化程度。K交代作用是高岭土向伊利石转变并最终降低CIA值的重要过程(Deng Tao et al.,2019)。因而需对CIA值进行K校正,采用Panahi et al.(2000)提出的方法进行校正,其校正公式为:

  • CIAcorr =100×Al2O3/Al2O3+Na2O+K2Ocorr +CaO*K2Ocorr =m×Al2O3+m×CaO*+Na2O× (1-m)

  • 其中,m是根据源岩成分计算得到的,其计算公式为m=K2O/(Al2O3+CaO*+Na2O+K2O)。永浅1井沙溪庙组校正后的CIA值为70.57~81.32,平均值为76.21,整体略高于校正前,表明沙溪庙组沉积期整体为温暖湿润气候,局部转变为炎热潮湿气候。并且由于CIA值对地表温度、湖盆纬度及流域土壤深度特别敏感,因此可通过经验关系式T=0.56×CIA-25.7对古温度进行量化,沙溪庙组古温度在13.8~19.8℃,平均值为17℃,整体较为凉爽(Ma Di et al.,2023)。A阶段均为中等CIA值,表明该阶段为温暖湿润气候;B阶段整体CIA值亦为中等,但较A阶段有所降低,表明气候虽仍为温暖湿润但较A阶段时寒冷、干燥;C阶段与D阶段则更进一步,在温暖湿润气候下寒冷、干燥进一步加剧,局部CIA值有所增大,表明气候存在波动;E阶段CIA值逐渐增大,气候由温暖湿润转为炎热潮湿;然而F阶段时CIA值再次降低,气候则从炎热潮湿转为温暖湿润。

  • 此外,喜湿型元素Rb和喜干型元素Sr的比值也可以有效、灵敏地反映古气候的变化(Fu Jinhua et al.,2018)。Rb相对稳定,更耐风化,而Sr通常在温暖潮湿的气候中损失,导致Rb/Sr值较高。相比之下,在干旱气候下,由于风化作用弱,Sr被保留,导致Sr比例增加。沙溪庙组的Rb/Sr值介于0.57~1.06之间,平均值为0.79,其中A阶段Rb/Sr比值较高,表明该阶段气候温暖潮湿;B阶段初始Rb/Sr比值略有降低,表明该阶段早期气候较A阶段干旱,而后Rb/Sr比值不断增大,表明该阶段气候不断向温暖潮湿演化;C阶段Rb/Sr比值表现出先减小再增大的趋势,体现出该阶段气候先由温暖潮湿向干旱转变再转变为温暖潮湿;D阶段Rb/Sr比值较C阶段减小,气候较C阶段干旱;E阶段Rb/Sr比值不断增大,表明气候愈发温暖潮湿;F阶段Rb/Sr比值无显著变化,表明气候仍为温暖潮湿。

  • 综上所述,结合C值、CIA值及Rb/Sr值,表明沙溪庙组沉积环境整体以温暖湿润为主,但变化频繁,不断在温暖湿润与半干旱—半湿润间变化,A阶段气候为温暖湿润;而后B阶段虽仍以温暖湿润气候,但较A阶段干旱,局部为半干旱—半湿润气候;C阶段时气候则先由温暖湿润逐渐转为干旱后又转为半干旱—半湿润最后转变为温暖湿润;至D阶段气候仍以温暖湿润为主;E、F阶段时期气候波动变化频繁,在温暖湿润与半干旱—半湿润气候间来回转变,但有向干、热转变的趋势(图7、图9)。前人通过古土壤研究得出的结论也支持这一结果,认为四川盆地沙溪庙组沉积期以半干旱和湿润气候为主,且在两者之间频繁交替演变(李军等,2020Li Jun et al.,2022a2022b)。

  • 5 讨论

  • 侏罗纪是地质历史时期中典型的温室气候时期,大气CO2浓度为现今的4倍,气温比现今高5~10℃(Sellwood et al.,2008黄磊等,2023)。赤道至两极的热梯度小,整个地球处于均一、平静、温暖的热带气候之下(Jenkyns,1988Hallam,1993)。然而近年来,越来越多的证据表明,侏罗纪全球发生了多次气候波动,传统“温室”气候模型正在逐渐被打破,中侏罗世中晚期,南非和北美地区等地发育典型的干热气候条件下的风成沉积(Mountney and Thompson,2002; Rodríguez-López et al.,2014),而欧洲侏罗纪海相沉积地层研究显示,中—晚侏罗世之交北方高纬度海域表层海水出现了大范围的急剧降温(Korte et al.,2015)。采取移动平均值对研究区还原的古温度进行温度曲线重建,提高了温度曲线的准确性与稳定性,并将其与同时期同纬度其他地区的气候变化进行对比,可发现研究区古气候演化与Dera et al.(2011)通过欧洲附近海相箭石与双壳化石碳-氧同位素分析取得的结果具有较高的相似性,整体呈现先下降后上升的趋势,中间有小幅波动,通过CIA值求得的古温度均值为17℃,与全球古气候温度亦较为一致,表明在中侏罗世中晚期四川盆地所在区域古气候演化与全球气候演化具有一致性(图10、图11)。

  • 关于陆相红层的起因,前人曾认为陆相红层为炎热干旱气候下形成,但近年来有许多学者在沉积物颜色与气候变化间开展工作,研究表明陆相红层亦可在潮湿炎热的热带气候作用下形成(Gerhard,2000),但亦有许多红色沉积物并非由于炎热气候形成,陆相红层的形成存在更多成因。研究人员认为陆相红层主要由沉积物的埋藏成岩作用、物源风化产物的继承色以及炎热潮湿或炎热干旱的环境这三种成因中的一种占主导作用(Sheldon,2005Singh et al.,2009Jiang Lianting et al.,2015蒋昊原等,2021)。前人研究认为四川盆地周边缺乏大规模的红层物源区,无法为其红层的形成提供物质来源(李瑞保等,2010),因此四川盆地红层应为自生色而不是继承色,且目前研究发现沙溪庙组红层的主要致色矿物为赤铁矿,而在长期的高温干燥及短期湿润的整体为蒸发量大于降水量的干旱环境下更有利于赤铁矿的形成(Jones et al.,2014蒋昊原等,2021)。同时,蒋昊原等(2021)认为由于古近系与新近系红层温度并未达到转化线,因此红层埋藏成因这一观点目前仍存在争议,且其研究表明不同颜色样品的形成与沉积环境中的氧气波动具有相关性。沙溪庙组红层的形成不能简单归因于炎热干旱的气候条件,其周期性的变红与沉积环境中的氧气波动有关,是一种蒸发大于降水或降水大于蒸发交替变化、湖平面频繁升降的沉积环境。此次研究表明沙溪庙组沉积期正是处于侏罗纪温室气候下的短期湿润时期,在红层沉积期,其古气候由温暖潮湿向半干旱—半湿润甚至干旱气候转化,水体盐度上升指示当时环境蒸发量大于降水量,且湖平面的频繁变化导致风化作用增强,加速Fe元素从硅酸盐或黏土矿物中迁移出来,为沙溪庙组红层中赤铁矿的形成提供充分条件。除此之外,其古氧化还原条件整体呈现氧化特征,表明沙溪庙组红层不仅仅是由干旱这一气候条件所形成,亦与沉积环境中的氧气浓度波动、风化作用强弱等有所关联。

  • 图10 全球中—晚侏罗世(175~146 Ma)古地理格局(据李江海等,2013修改)

  • Fig.10 Global Middle-Late Jurassic (175~146 Ma) paleogeographic pattern (after Li Jianghai et al., 2013)

  • 图11 中侏罗统沙溪庙组沉积期古气候变化趋势与同纬度不同地区变化趋势对比

  • Fig.11 Comparison of paleoclimate change trends during the depositional period of the Middle Jurassic Shaximiao Formation and changes in different regions at the same latitude

  • 本次研究运用多种元素地球化学指标恢复了研究区中侏罗统沙溪庙组沉积期的古环境特征,并建立了较为系统的古气候演化序列。结果显示沙溪庙组沉积期古气候整体呈波动状态,结合前人研究显示古气温与古降水也呈现波动状态,表明当时气候是在一定幅度内频繁变化,而非以往认为的简单、均一温室气候模型所能概括。沙溪庙组沉积期气候波动可能与当时盘古大陆的裂解导致全球古地理格局产生变化,四川盆地周边山系的大幅度隆升以及在侏罗纪时期东亚地区可能存在的季风环流有关(王永标和徐海军,2001Torres and Gaines,2013Scotese,2015李军等,2020)。前人研究认为研究区沙二段较沙一段要更为干旱,分析认为沙二段整体厚度较沙一段厚,但是受样品限制无法在垂向上连续反映出从沙一段到沙二段整体的变化过程。本次垂向上高精度、连续分析认为沙二段整体气候虽较沙一段更为干旱,但其早期在经历过最大湖泛面后亦维持了一段稳定的温暖湿润气候时期,而后开始逐渐转变为干旱气候,因此可认为沙溪庙组沉积期的干旱过程是一个渐变过程。由于元素地球化学仅能提供定性研究结果,难以精细定量气候的干湿程度,对于气候波动的驱动机制还有待进一步考证,在前人研究的基础上,运用更多定量、半定量研究,才能更好地回答以上问题,建立起更加具体精细的古气候演化序列。

  • 6 结论

  • (1)通过对四川盆地中部地区永浅1井沙溪庙组的Sr/Ba、Rb/K2O、Ca/Mg及Ca/(Ca+Fe)比值等古盐度指标分析认为沙溪庙组沉积环境整体为淡水环境,由下至上整体盐度变化幅度较小,仅在沙一段中、晚期水体盐度大幅上升,具微咸或咸水特征。

  • (2)根据沙溪庙组V/(V+Ni)、U/Th、V/Cr及Ni/Co比值等古氧化还原指标分析,认为沙溪庙组整体为氧化环境,部分为弱氧化环境或还原环境,整体氧化还原环境波动较古盐度频繁,由下至上经历了氧化环境—弱氧环境甚至还原环境—氧化环境的过程。

  • (3)根据沙溪庙组C值、CIA值及Rb/Sr值分析,表明沙溪庙组沉积环境虽整体为温暖湿润环境,但不断在温暖湿润与半干旱—半湿润间变化,由下至上演化过程为温暖湿润—半干旱—半湿润气候—温暖湿润—干旱—半干旱—半湿润—温暖湿润,最后在温暖湿润与半干旱—半湿润气候间来回转变,但有向干、热转变的趋势。沙溪庙组沉积期整体气候波动频繁是中侏罗世时期气候波动变化的局部体现,为全球气候变化与区域环境因素相结合的结果,且与全球气候演化具有一致性。

  • 参考文献

    • Cao Ke, Li Xianghui, Wang Chengshan, Wang Licheng, Wang Pingkang. 2010. Clay minerals of the middle Jurassic-lower Cretaceous in the Guangyuan area, northern Sichuan: Implications to paleoclimate. Journal of Mineralogy Petrology, 30(1): 41~46 (in Chinese with English abstract).

    • Chen Xiaohui, Zeng Jianli, Zhang Tingshan, Zhu Haihua, Zhang Jingxuan, Li Yaoyu. 2019. Geochemical response to paleoclimate fluctuation during Xintiangou Period (Middle Jurassic), northeastern Sichuan. Acta Geologica Sinica, 93(12): 3223~3238 (in Chinese with English abstract).

    • Deng Shenghui, Lu Yuanzheng, Zhao Yi, Fan Ru, Wang Yongdong, Yang Xiaoju, Li Xin, Sun Bainian. 2017. The Jurassic paleoclimate regionalization and evolution of China. Earth Science Frontiers, 24(1): 106~142 (in Chinese with English abstract).

    • Deng Tao, Li Yong, Wang Zhengjiang, Yu Qian, Dong Shunli, Yan Liang, Hu Wenchao, Chen Bin. 2019. Geochemical characteristics and organic matter enrichment mechanism of black shale in the Upper Triassic Xujiahe Formation in the Sichuan basin: Implications for paleoweathering, provenance and tectonic setting. Marine and Petroleum Geology, 109: 698~716.

    • Dera G, Brigaud B, Monna F, Fabrice M, Rémi L, Emmanuelle P, Jean-François D, Pierre P, Michael M J, Christophe D. 2011. Climatic ups and downs in a disturbed Jurassic world. Geology, 39(3): 215~218.

    • Fu Jinhua, Li Shixiang, Xu Liming, Niu Xiaobing. 2018. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos basin, NW China. Petroleum Exploration and Development, 45(6): 998~1008.

    • Gao Yang, Hu Xiangyang, Zeng Daqian, Zhao Xiangyuan, Jia Ying, Yu Qingyan, Wang Yongfei. 2019. Sandbodytype and distribution characteristics of shallow-water delta in Shaximiao Formation, Xinchang gas field west Sichuan. Geoscience, 33(6): 1163~1173 (in Chinese with English abstract).

    • Gerhard E. 2000. Sedimentary Basins Evolution, Facies, and Sediment Budget. 2nd ed. Berlin, Heidelberg: Springer.

    • Hallam A. 1993. Jurassic climates as inferred from the sedimentary and fossil record. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 341(1297): 287~296.

    • He Dengfa. 2022. Formation, evolution, geologic framework and hydrocarbon occurrence of multi-cycle superimposed sedimentary basins in China. Earth Science Frontiers, 29(6): 24~59 (in Chinese with English abstract).

    • Huang Lei, Zhang Xiaojing, Li Xingkai, Han Xuan, Wang Zhenyi, Liu Zhiqiang, Hou Zeming, Ai Zihan. 2023. Sporopollen assemblage from the Middle Jurassic of the northeastern Ordos basin, Inner Mongolia, and their paleoclimatic implications. Acta Geologica Sinica, 97(5): 1390~1406 (in Chinese with English abstract).

    • Jenkyns H C. 1988. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. American Journal of Science, 288(2): 101~151.

    • Jiang Haoyuan, Xia Yanqing, Liu Shanpin, Zhang Xilong, Li Jiyong, Wang Yongchao. 2021. Weathering intensity and color genesis of continental sediments: A case study from the Shangshaximiao Formation of the Middle Jurassic in the Sichuan basin. Acta Sedimentologica Sinica, 41(4): 1~19 (in Chinese with English abstract).

    • Jiang Lianting, Chen Guoneng, Rodney G, Peng Zhuolun. 2015. Thermal origin of continental red beds in SE China: An experiment study. Journal of Asian Earth Sciences, 101: 14~19.

    • Jones A M, Griffin P J, Collins R N, Waite T D. 2014. Ferrous iron oxidation under acidic conditions: The effect of ferric oxide surfaces. Geochimica et Cosmochimica Acta, 145: 1~12.

    • Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111~129.

    • Korte C, Hesselbo S P, Ullmann C V, Dietl G, Ruhl M, Schweigert G, Thibault N. 2015. Jurassic climate mode governed by ocean gateway. Nature Communications, 6: 10015.

    • Li Jianghai, Jiang Hongfu. 2013. Global Ancient Plate Reconstruction, Lithofacies, Paleogeography and Ancient Environment Atalas. Beijing: Geological Publishing House (in Chinese).

    • Li Jun, Huang Chengmin, Wen Xingyue, Zhang Maochao. 2020. Mesozoic paleoclimate reconstruction in Sichuan basin, China: Evidence from deep-time paleosols. Acta Sedimentologica Sinica, 39(5): 1157~1170 (in Chinese with English abstract).

    • Li Jun, Huang Chengmin, Yang Guolin, Pan Yuanyuan, Wen Xingyue. 2022a. Middle Jurassic climate oscillations from paleosol records of the Sichuan basin, SW China. Journal of Palaeogeography, 11(1): 97~122.

    • Li Jun, Wen Xingyue, Pan Yuanyuan, Huang Chengmin. 2022b. Multiproxy paleosol evidence for Jurassic paleoclimate fluctuations in the Sichuan basin, SW China. Acta Geologica Sinica (English Edition), 96(6): 2105~2124.

    • Li Ruibao, Pei Xianzhi, Liu Zhanqing, Li Zuochen, Ding Saping, Liu Zhigang, Zhang Xiaofei, Chen Guochao, Chen Youxin, Wang Xueliang. 2010. Basin-mountain coupling relationship of foreland basins between Dabashan and northeastern Sichuan: The evidence from LA-ICP-MS U-Pb dating of the detrital zircons. Acta Geologica Sinica, 84(8): 1118~1134 (in Chinese with English abstract).

    • Li Xiangbo, Liu Huaqing, Huang Junping, Wang Yating, Hao Bin, Long Liwen, Wang Jing, Wei Lihua. 2023. Alternation of arid-humid climate, and formation and distribution of fluvial fan sand in the central area of Inland Lake basin: A case study of the Yanchang Formation in Ordos basin. Acta Geologica Sinica, 97(3): 822~838 (in Chinese with English abstract).

    • Liu Xin, Shang Ting, Tian Jingchun, Wang Feng, Liu Baojun, Zhang Xiaolei, Xu Zhi. 2021. Paleo-sedimentary environmental conditions and its significance of Chang 4+5 Member of Triassic Yanchang Formation in the Zhenbei area, Ordos basin, NW China. Acta Geologica Sinica, 95(11): 3501~3518 (in Chinese with English abstract).

    • Luo Wei. 2010. Regionalization of Mesozoic-Cenozoic strata and analysis of basin evolution of Sichuan basin. Master's thesis of Chengdu University of Technology (in Chinese with English abstract).

    • Ma Di, Zhang Zhijie, Zhou Chuanmin, Cheng Dawei, Hong Haitao, Meng Hao, Yu Xinghe, Peng Zixiao. 2023. Element geochemical characteristics and geological significance of mudstones from the Middle Jurassic Shaximiao Formation in Sichuan basin, Southwest China. ACS Omega, 8(33): 29979~30000.

    • Mountney N P, Thompson D B. 2002. Stratigraphic evolution and preservation of aeolian dune and damp/wet interdune strata: An example from the Triassic Helsby Sandstone Formation, Cheshire basin, UK. Sedimentology, 49: 805~833.

    • Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715~717.

    • Panahi A, Young G M, Rainbird R H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Que'bec, Canada. Geochimica et Cosmochimica Acta, 64(13): 2199~2220.

    • Qian Lijun, Chen Hongde, Lin Liangbiao, Xu Shenglin, Ou Lihua. 2012. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan basin. Acta Sedimentologica Sinica, 30(6): 1061~1071 (in Chinese with English abstract).

    • Rodríguez-López J P, Clemmensen L B, Lancaster N, Mountney N P, Veiga G D, Bristow C. 2014. Archean to recent aeolian sand systems and their sedimentary record: Current understanding and future prospects. Sedimentology, 61(6): 1487~1534.

    • Roy D K, Roser B P. 2013. Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Research, 23(3): 1163~1171.

    • Scotese C R. 2015. Paleomap project: Climate history. http: //www. scotese. com/climate. htm.

    • Sellwood B W, Valdes P R. 2008. Jurassic climates. Proceedings of the Geologists' Association, 119: 5~17.

    • Sheldon N D. 2005. Do red beds indicate paleoclimatic conditions? A Permian case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3-4): 305~319.

    • Singh S, Parkash B, Awasthi A K. 2009. Origin of red color of the Lower Siwalik palaeosols: A micromorphological approach. Journal of Mountain Science, 6(2): 147~154.

    • Torres M A, Gaines R R. 2013. Paleoenvironmental and paleoclimatic interpretations of the Late Paleocene Goler Formation, Southern California, U. S. A. , based on paleosol geochemistry. Journal of Sedimentary Research, 83(8): 591~605.

    • Wang Aihua, Wang Zhanghua, Liu Jiankun, Xu Naicen, Li Hualing. 2021. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta. Chemical Geology, 559: 119923.

    • Wang Hongmei, Liu Yuyan, Wang Zhiyuan. 2001. Molecular fossils as indicators for paleoenvironment and paleo-climate form red clastic rocks of Middle Jurassic-Early Cretaceous in Jianmenguan, Sichuan basin of China. Earth Science-Journal of China University of Geosciences, 26(3): 229~234 (in Chinese with English abstract).

    • Wang Xiaojuan, Hong Haitao, Wu Changjiang, Liu min, Guan Xu, Cheng Shuangling, Zhang Shaomin, Liang Qingshao, Yang Tian. 2022. Characteristics and formation mechanisms of tight sandstone reservoirs in Jurassic Shaximiao Formation, Central of Sichuan basin. Journal of Jilin University (Earth Science Edition), 52(4): 1037~1051 (in Chinese with English abstract).

    • Wang Yongbiao, Xu Haijun. 2001. Relations between evolution of sedimentary cycles and tectonic uplift around Sichuan basin from Jurassic to Early Cretaceous. Earth Science-Journal of China University of Geosciences, 26(3): 241~246 (in Chinese with English abstract).

    • Wang Yuxuan, Xu Shang, Hao Fang, Lu Yangbo, Shu Zhiguo, Yan Detian, Lu Yongchao. 2019. Geochemical and petrographic characteristics of Wufeng-Longmaxi shales, Jiaoshiba area, southwest China: Implications for organic matter differential accumulation. Marine and Petroleum Geology, 102: 138~154.

    • Wei Wei, Algeo T J, Lu Yangbo, Lu Yongchao, Liu Huiming, Zhang Shoupeng, Peng Li, Zhang Jingyu, Chen Lin. 2018. Identifying marine incursions into the Paleogene Bohai Bay basin lake system in northeastern China. International Journal of Coal Geology, 200: 1~17.

    • Wolgemuth K, Broecker W S. 1970. Barium in sea water. Earth and Planetary Science Letters, 8(5): 372~378.

    • Wu Zhongrui, He Sheng, He Zhiliang, Li Xincheng, Zhai Gangyi, Huang Zhengqing. 2022. Petrographical and geochemical characterization of the Upper Permian Longtan Formation and Dalong Formation in the Lower Yangtze region, South China: Implications for provenance, paleoclimate, paleoenvironment and organic matter accumulation mechanisms. Marine and Petroleum Geology, 139: 105580.

    • Xiao Fusen, Wei Tengqiang, Wang Xiaojuan, Guan Xu, Wu Changjiang, Hong Haitao. 2020. Research on the sequence stratigraphy of the Shaximiao Formation in Chuanzhong-Chuanxi area, Sichuan basin. Natural Gas Geoscience, 31(9): 1216~1224 (in Chinese with English abstract).

    • Xu Jinjun, Liu Zhaojun, Bechtel Achim, Meng Qingtao, Sun Pingchang, Jia Jianliang, Cheng Lijuan, Song Yu. 2015. Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao basin (NE China): Implications from sequence stratigraphy and geochemistry. International Journal of Coal Geology, 149: 9~23.

    • Yang Shuai. 2014. Sedimentary evolution during Jurassic and faces-controlling reservoir prediction in Sichuan basin, China. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Yang Yueming, Wang Xiaojuan, Chen Shuangling, Wen Long, Wu Changjiang, Guan Xu, Wei Tengqiang, Yang Xiran. 2022. Sedimentary system evolution and sandbody development characteristics of Jurassic Shaximiao Formation in the central Sichuan basin. Natural Gas Industry, 42(1): 12~24 (in Chinese with English abstract).

    • Yu Wei, Tian Jingchun, Wang Feng, Liang Qingshao, Yang Tian, Kneller B, Liang Xiaowei. 2022. Sedimentary environment and organic matter enrichment of black mudstones from the upper Triassic Chang-7 member in the Ordos basin, northern China. Journal of Asian Earth Sciences, 224: 105009.

    • Zhou Min, Li Xianghui, Wang Jingyu. 2022. Sedimentary environments and paleoclimate of the Middle-Upper Jurassic in the northeastern Sichuan basin. Acta Sedimentologica Sinica, 1~22 (in Chinese with English abstract).

    • 曹珂, 李祥辉, 王成善, 王立成, 王平康. 2010. 四川广元地区中侏罗世—早白垩世粘土矿物与古气候. 矿物岩石, 30(1): 41~46.

    • 陈晓慧, 曾建理, 张廷山, 祝海华, 张婧璇, 李世鑫, 李耀羽. 2019. 川东北地区中侏罗世新田沟期古气候波动的地球化学响应. 地质学报, 93(12): 3223~3238.

    • 邓胜徽, 卢远征, 赵怡, 樊茹, 王永栋, 杨小菊, 李鑫, 孙柏年. 2017. 中国侏罗纪古气候分区与演变. 地学前缘, 24(1): 106~142.

    • 高阳, 胡向阳, 曾大乾, 赵向原, 贾英, 于清艳, 王勇飞. 2019. 川西新场气田沙溪庙组浅水三角洲砂体类型与展布特征. 现代地质, 33(6): 1163~1173.

    • 何登发. 2022. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律. 地学前缘(中国地质大学(北京);北京大学), 29(6): 24~59.

    • 黄磊, 张晓晶, 王振义, 李钢柱, 刘志强, 季兴开, 侯泽明, 韩萱, 艾子涵. 2023. 鄂尔多斯东北部中侏罗世孢粉化石及古气候意义. 地质学报, 97(5): 1390~1406.

    • 蒋昊原, 夏燕青, 刘善品, 张喜龙, 李继永, 王永超. 2021. 陆相沉积物风化强度与颜色成因探讨——以四川盆地中侏罗统上沙溪庙组为例. 沉积学报, 41(4): 1~19.

    • 李江海, 姜洪福. 2013. 全球古板块再造、岩相古地理及古环境图集. 北京: 地质出版社.

    • 李军, 黄成敏, 文星跃, 张茂超. 2020. 四川盆地中生代古气候变化来自深时古土壤的证据. 沉积学报, 39(5): 1157~1170.

    • 李瑞保, 裴先治, 刘战庆, 李佐臣, 丁仨平, 刘智刚, 张晓飞, 陈国超, 陈有炘, 王学良. 2010. 大巴山及川东北前陆盆地盆山物质耦合: 来自LA-ICP-MS 碎屑锆石U-Pb 年代学证据. 地质学报, 84(8): 1118~1134.

    • 李相博, 刘化清, 黄军平, 王雅婷, 郝彬, 龙礼文, 王菁, 魏立花. 2023. 干湿气候交替与内陆湖盆河流扇砂体的形成与分布——以鄂尔多斯盆地延长组为例. 地质学报, 97(3): 822~838.

    • 刘鑫, 田景春, 王峰, 刘宝珺, 张晓磊, 徐智. 2021. 鄂尔多斯盆地镇北地区延长组长4+5段沉积期古环境条件及意义. 地质学报, 95(11): 3501~3518.

    • 罗威. 2010. 四川盆地中新生代地层区划及盆地演化分析. 成都理工大学硕士学位论文.

    • 钱利军, 陈洪德, 林良彪, 徐胜林, 欧莉华. 2012. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义. 沉积学报, 30(6): 1061~1071.

    • 王红梅, 刘育燕, 王志远. 2001. 四川剑门关侏罗—白垩系红层分子化石的古环境和古气候意义. 地球科学——中国地质大学学报, 26(3): 229~234.

    • 王小娟, 洪海涛, 吴长江, 刘敏, 关旭, 陈双玲, 张少敏, 梁庆韶, 杨田. 2022. 四川盆地川中地区侏罗系沙溪庙组致密砂岩储层特征及成因. 吉林大学学报(地球科学版), 52(4): 1037~1051.

    • 王永标, 徐海军. 2001. 四川盆地侏罗纪至早白垩世沉积旋回与构造隆升的关系. 地球科学——中国地质大学学报, 26(3): 241~246.

    • 肖富森, 韦腾强, 王小娟, 关旭, 吴长江, 洪海涛. 2020. 四川盆地川中—川西地区沙溪庙组层序地层特征. 天然气地球科学, 31(9): 1216~1224.

    • 杨帅. 2014. 四川盆地侏罗系沉积演化与相控储层预测. 成都理工大学博士学位论文.

    • 杨跃明, 王小娟, 陈双玲, 文龙, 吴长江, 关旭, 韦腾强, 杨曦冉. 2022. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征. 天然气工业, 42(1): 12~24.

    • 周敏, 李祥辉, 王旌羽. 2022. 四川盆地东北中—晚侏罗世沉积环境与古气候. 沉积学报, 1~22.

  • 参考文献

    • Cao Ke, Li Xianghui, Wang Chengshan, Wang Licheng, Wang Pingkang. 2010. Clay minerals of the middle Jurassic-lower Cretaceous in the Guangyuan area, northern Sichuan: Implications to paleoclimate. Journal of Mineralogy Petrology, 30(1): 41~46 (in Chinese with English abstract).

    • Chen Xiaohui, Zeng Jianli, Zhang Tingshan, Zhu Haihua, Zhang Jingxuan, Li Yaoyu. 2019. Geochemical response to paleoclimate fluctuation during Xintiangou Period (Middle Jurassic), northeastern Sichuan. Acta Geologica Sinica, 93(12): 3223~3238 (in Chinese with English abstract).

    • Deng Shenghui, Lu Yuanzheng, Zhao Yi, Fan Ru, Wang Yongdong, Yang Xiaoju, Li Xin, Sun Bainian. 2017. The Jurassic paleoclimate regionalization and evolution of China. Earth Science Frontiers, 24(1): 106~142 (in Chinese with English abstract).

    • Deng Tao, Li Yong, Wang Zhengjiang, Yu Qian, Dong Shunli, Yan Liang, Hu Wenchao, Chen Bin. 2019. Geochemical characteristics and organic matter enrichment mechanism of black shale in the Upper Triassic Xujiahe Formation in the Sichuan basin: Implications for paleoweathering, provenance and tectonic setting. Marine and Petroleum Geology, 109: 698~716.

    • Dera G, Brigaud B, Monna F, Fabrice M, Rémi L, Emmanuelle P, Jean-François D, Pierre P, Michael M J, Christophe D. 2011. Climatic ups and downs in a disturbed Jurassic world. Geology, 39(3): 215~218.

    • Fu Jinhua, Li Shixiang, Xu Liming, Niu Xiaobing. 2018. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos basin, NW China. Petroleum Exploration and Development, 45(6): 998~1008.

    • Gao Yang, Hu Xiangyang, Zeng Daqian, Zhao Xiangyuan, Jia Ying, Yu Qingyan, Wang Yongfei. 2019. Sandbodytype and distribution characteristics of shallow-water delta in Shaximiao Formation, Xinchang gas field west Sichuan. Geoscience, 33(6): 1163~1173 (in Chinese with English abstract).

    • Gerhard E. 2000. Sedimentary Basins Evolution, Facies, and Sediment Budget. 2nd ed. Berlin, Heidelberg: Springer.

    • Hallam A. 1993. Jurassic climates as inferred from the sedimentary and fossil record. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 341(1297): 287~296.

    • He Dengfa. 2022. Formation, evolution, geologic framework and hydrocarbon occurrence of multi-cycle superimposed sedimentary basins in China. Earth Science Frontiers, 29(6): 24~59 (in Chinese with English abstract).

    • Huang Lei, Zhang Xiaojing, Li Xingkai, Han Xuan, Wang Zhenyi, Liu Zhiqiang, Hou Zeming, Ai Zihan. 2023. Sporopollen assemblage from the Middle Jurassic of the northeastern Ordos basin, Inner Mongolia, and their paleoclimatic implications. Acta Geologica Sinica, 97(5): 1390~1406 (in Chinese with English abstract).

    • Jenkyns H C. 1988. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. American Journal of Science, 288(2): 101~151.

    • Jiang Haoyuan, Xia Yanqing, Liu Shanpin, Zhang Xilong, Li Jiyong, Wang Yongchao. 2021. Weathering intensity and color genesis of continental sediments: A case study from the Shangshaximiao Formation of the Middle Jurassic in the Sichuan basin. Acta Sedimentologica Sinica, 41(4): 1~19 (in Chinese with English abstract).

    • Jiang Lianting, Chen Guoneng, Rodney G, Peng Zhuolun. 2015. Thermal origin of continental red beds in SE China: An experiment study. Journal of Asian Earth Sciences, 101: 14~19.

    • Jones A M, Griffin P J, Collins R N, Waite T D. 2014. Ferrous iron oxidation under acidic conditions: The effect of ferric oxide surfaces. Geochimica et Cosmochimica Acta, 145: 1~12.

    • Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111~129.

    • Korte C, Hesselbo S P, Ullmann C V, Dietl G, Ruhl M, Schweigert G, Thibault N. 2015. Jurassic climate mode governed by ocean gateway. Nature Communications, 6: 10015.

    • Li Jianghai, Jiang Hongfu. 2013. Global Ancient Plate Reconstruction, Lithofacies, Paleogeography and Ancient Environment Atalas. Beijing: Geological Publishing House (in Chinese).

    • Li Jun, Huang Chengmin, Wen Xingyue, Zhang Maochao. 2020. Mesozoic paleoclimate reconstruction in Sichuan basin, China: Evidence from deep-time paleosols. Acta Sedimentologica Sinica, 39(5): 1157~1170 (in Chinese with English abstract).

    • Li Jun, Huang Chengmin, Yang Guolin, Pan Yuanyuan, Wen Xingyue. 2022a. Middle Jurassic climate oscillations from paleosol records of the Sichuan basin, SW China. Journal of Palaeogeography, 11(1): 97~122.

    • Li Jun, Wen Xingyue, Pan Yuanyuan, Huang Chengmin. 2022b. Multiproxy paleosol evidence for Jurassic paleoclimate fluctuations in the Sichuan basin, SW China. Acta Geologica Sinica (English Edition), 96(6): 2105~2124.

    • Li Ruibao, Pei Xianzhi, Liu Zhanqing, Li Zuochen, Ding Saping, Liu Zhigang, Zhang Xiaofei, Chen Guochao, Chen Youxin, Wang Xueliang. 2010. Basin-mountain coupling relationship of foreland basins between Dabashan and northeastern Sichuan: The evidence from LA-ICP-MS U-Pb dating of the detrital zircons. Acta Geologica Sinica, 84(8): 1118~1134 (in Chinese with English abstract).

    • Li Xiangbo, Liu Huaqing, Huang Junping, Wang Yating, Hao Bin, Long Liwen, Wang Jing, Wei Lihua. 2023. Alternation of arid-humid climate, and formation and distribution of fluvial fan sand in the central area of Inland Lake basin: A case study of the Yanchang Formation in Ordos basin. Acta Geologica Sinica, 97(3): 822~838 (in Chinese with English abstract).

    • Liu Xin, Shang Ting, Tian Jingchun, Wang Feng, Liu Baojun, Zhang Xiaolei, Xu Zhi. 2021. Paleo-sedimentary environmental conditions and its significance of Chang 4+5 Member of Triassic Yanchang Formation in the Zhenbei area, Ordos basin, NW China. Acta Geologica Sinica, 95(11): 3501~3518 (in Chinese with English abstract).

    • Luo Wei. 2010. Regionalization of Mesozoic-Cenozoic strata and analysis of basin evolution of Sichuan basin. Master's thesis of Chengdu University of Technology (in Chinese with English abstract).

    • Ma Di, Zhang Zhijie, Zhou Chuanmin, Cheng Dawei, Hong Haitao, Meng Hao, Yu Xinghe, Peng Zixiao. 2023. Element geochemical characteristics and geological significance of mudstones from the Middle Jurassic Shaximiao Formation in Sichuan basin, Southwest China. ACS Omega, 8(33): 29979~30000.

    • Mountney N P, Thompson D B. 2002. Stratigraphic evolution and preservation of aeolian dune and damp/wet interdune strata: An example from the Triassic Helsby Sandstone Formation, Cheshire basin, UK. Sedimentology, 49: 805~833.

    • Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715~717.

    • Panahi A, Young G M, Rainbird R H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Que'bec, Canada. Geochimica et Cosmochimica Acta, 64(13): 2199~2220.

    • Qian Lijun, Chen Hongde, Lin Liangbiao, Xu Shenglin, Ou Lihua. 2012. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan basin. Acta Sedimentologica Sinica, 30(6): 1061~1071 (in Chinese with English abstract).

    • Rodríguez-López J P, Clemmensen L B, Lancaster N, Mountney N P, Veiga G D, Bristow C. 2014. Archean to recent aeolian sand systems and their sedimentary record: Current understanding and future prospects. Sedimentology, 61(6): 1487~1534.

    • Roy D K, Roser B P. 2013. Climatic control on the composition of Carboniferous-Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Research, 23(3): 1163~1171.

    • Scotese C R. 2015. Paleomap project: Climate history. http: //www. scotese. com/climate. htm.

    • Sellwood B W, Valdes P R. 2008. Jurassic climates. Proceedings of the Geologists' Association, 119: 5~17.

    • Sheldon N D. 2005. Do red beds indicate paleoclimatic conditions? A Permian case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3-4): 305~319.

    • Singh S, Parkash B, Awasthi A K. 2009. Origin of red color of the Lower Siwalik palaeosols: A micromorphological approach. Journal of Mountain Science, 6(2): 147~154.

    • Torres M A, Gaines R R. 2013. Paleoenvironmental and paleoclimatic interpretations of the Late Paleocene Goler Formation, Southern California, U. S. A. , based on paleosol geochemistry. Journal of Sedimentary Research, 83(8): 591~605.

    • Wang Aihua, Wang Zhanghua, Liu Jiankun, Xu Naicen, Li Hualing. 2021. The Sr/Ba ratio response to salinity in clastic sediments of the Yangtze River Delta. Chemical Geology, 559: 119923.

    • Wang Hongmei, Liu Yuyan, Wang Zhiyuan. 2001. Molecular fossils as indicators for paleoenvironment and paleo-climate form red clastic rocks of Middle Jurassic-Early Cretaceous in Jianmenguan, Sichuan basin of China. Earth Science-Journal of China University of Geosciences, 26(3): 229~234 (in Chinese with English abstract).

    • Wang Xiaojuan, Hong Haitao, Wu Changjiang, Liu min, Guan Xu, Cheng Shuangling, Zhang Shaomin, Liang Qingshao, Yang Tian. 2022. Characteristics and formation mechanisms of tight sandstone reservoirs in Jurassic Shaximiao Formation, Central of Sichuan basin. Journal of Jilin University (Earth Science Edition), 52(4): 1037~1051 (in Chinese with English abstract).

    • Wang Yongbiao, Xu Haijun. 2001. Relations between evolution of sedimentary cycles and tectonic uplift around Sichuan basin from Jurassic to Early Cretaceous. Earth Science-Journal of China University of Geosciences, 26(3): 241~246 (in Chinese with English abstract).

    • Wang Yuxuan, Xu Shang, Hao Fang, Lu Yangbo, Shu Zhiguo, Yan Detian, Lu Yongchao. 2019. Geochemical and petrographic characteristics of Wufeng-Longmaxi shales, Jiaoshiba area, southwest China: Implications for organic matter differential accumulation. Marine and Petroleum Geology, 102: 138~154.

    • Wei Wei, Algeo T J, Lu Yangbo, Lu Yongchao, Liu Huiming, Zhang Shoupeng, Peng Li, Zhang Jingyu, Chen Lin. 2018. Identifying marine incursions into the Paleogene Bohai Bay basin lake system in northeastern China. International Journal of Coal Geology, 200: 1~17.

    • Wolgemuth K, Broecker W S. 1970. Barium in sea water. Earth and Planetary Science Letters, 8(5): 372~378.

    • Wu Zhongrui, He Sheng, He Zhiliang, Li Xincheng, Zhai Gangyi, Huang Zhengqing. 2022. Petrographical and geochemical characterization of the Upper Permian Longtan Formation and Dalong Formation in the Lower Yangtze region, South China: Implications for provenance, paleoclimate, paleoenvironment and organic matter accumulation mechanisms. Marine and Petroleum Geology, 139: 105580.

    • Xiao Fusen, Wei Tengqiang, Wang Xiaojuan, Guan Xu, Wu Changjiang, Hong Haitao. 2020. Research on the sequence stratigraphy of the Shaximiao Formation in Chuanzhong-Chuanxi area, Sichuan basin. Natural Gas Geoscience, 31(9): 1216~1224 (in Chinese with English abstract).

    • Xu Jinjun, Liu Zhaojun, Bechtel Achim, Meng Qingtao, Sun Pingchang, Jia Jianliang, Cheng Lijuan, Song Yu. 2015. Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao basin (NE China): Implications from sequence stratigraphy and geochemistry. International Journal of Coal Geology, 149: 9~23.

    • Yang Shuai. 2014. Sedimentary evolution during Jurassic and faces-controlling reservoir prediction in Sichuan basin, China. Doctoral dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Yang Yueming, Wang Xiaojuan, Chen Shuangling, Wen Long, Wu Changjiang, Guan Xu, Wei Tengqiang, Yang Xiran. 2022. Sedimentary system evolution and sandbody development characteristics of Jurassic Shaximiao Formation in the central Sichuan basin. Natural Gas Industry, 42(1): 12~24 (in Chinese with English abstract).

    • Yu Wei, Tian Jingchun, Wang Feng, Liang Qingshao, Yang Tian, Kneller B, Liang Xiaowei. 2022. Sedimentary environment and organic matter enrichment of black mudstones from the upper Triassic Chang-7 member in the Ordos basin, northern China. Journal of Asian Earth Sciences, 224: 105009.

    • Zhou Min, Li Xianghui, Wang Jingyu. 2022. Sedimentary environments and paleoclimate of the Middle-Upper Jurassic in the northeastern Sichuan basin. Acta Sedimentologica Sinica, 1~22 (in Chinese with English abstract).

    • 曹珂, 李祥辉, 王成善, 王立成, 王平康. 2010. 四川广元地区中侏罗世—早白垩世粘土矿物与古气候. 矿物岩石, 30(1): 41~46.

    • 陈晓慧, 曾建理, 张廷山, 祝海华, 张婧璇, 李世鑫, 李耀羽. 2019. 川东北地区中侏罗世新田沟期古气候波动的地球化学响应. 地质学报, 93(12): 3223~3238.

    • 邓胜徽, 卢远征, 赵怡, 樊茹, 王永栋, 杨小菊, 李鑫, 孙柏年. 2017. 中国侏罗纪古气候分区与演变. 地学前缘, 24(1): 106~142.

    • 高阳, 胡向阳, 曾大乾, 赵向原, 贾英, 于清艳, 王勇飞. 2019. 川西新场气田沙溪庙组浅水三角洲砂体类型与展布特征. 现代地质, 33(6): 1163~1173.

    • 何登发. 2022. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律. 地学前缘(中国地质大学(北京);北京大学), 29(6): 24~59.

    • 黄磊, 张晓晶, 王振义, 李钢柱, 刘志强, 季兴开, 侯泽明, 韩萱, 艾子涵. 2023. 鄂尔多斯东北部中侏罗世孢粉化石及古气候意义. 地质学报, 97(5): 1390~1406.

    • 蒋昊原, 夏燕青, 刘善品, 张喜龙, 李继永, 王永超. 2021. 陆相沉积物风化强度与颜色成因探讨——以四川盆地中侏罗统上沙溪庙组为例. 沉积学报, 41(4): 1~19.

    • 李江海, 姜洪福. 2013. 全球古板块再造、岩相古地理及古环境图集. 北京: 地质出版社.

    • 李军, 黄成敏, 文星跃, 张茂超. 2020. 四川盆地中生代古气候变化来自深时古土壤的证据. 沉积学报, 39(5): 1157~1170.

    • 李瑞保, 裴先治, 刘战庆, 李佐臣, 丁仨平, 刘智刚, 张晓飞, 陈国超, 陈有炘, 王学良. 2010. 大巴山及川东北前陆盆地盆山物质耦合: 来自LA-ICP-MS 碎屑锆石U-Pb 年代学证据. 地质学报, 84(8): 1118~1134.

    • 李相博, 刘化清, 黄军平, 王雅婷, 郝彬, 龙礼文, 王菁, 魏立花. 2023. 干湿气候交替与内陆湖盆河流扇砂体的形成与分布——以鄂尔多斯盆地延长组为例. 地质学报, 97(3): 822~838.

    • 刘鑫, 田景春, 王峰, 刘宝珺, 张晓磊, 徐智. 2021. 鄂尔多斯盆地镇北地区延长组长4+5段沉积期古环境条件及意义. 地质学报, 95(11): 3501~3518.

    • 罗威. 2010. 四川盆地中新生代地层区划及盆地演化分析. 成都理工大学硕士学位论文.

    • 钱利军, 陈洪德, 林良彪, 徐胜林, 欧莉华. 2012. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义. 沉积学报, 30(6): 1061~1071.

    • 王红梅, 刘育燕, 王志远. 2001. 四川剑门关侏罗—白垩系红层分子化石的古环境和古气候意义. 地球科学——中国地质大学学报, 26(3): 229~234.

    • 王小娟, 洪海涛, 吴长江, 刘敏, 关旭, 陈双玲, 张少敏, 梁庆韶, 杨田. 2022. 四川盆地川中地区侏罗系沙溪庙组致密砂岩储层特征及成因. 吉林大学学报(地球科学版), 52(4): 1037~1051.

    • 王永标, 徐海军. 2001. 四川盆地侏罗纪至早白垩世沉积旋回与构造隆升的关系. 地球科学——中国地质大学学报, 26(3): 241~246.

    • 肖富森, 韦腾强, 王小娟, 关旭, 吴长江, 洪海涛. 2020. 四川盆地川中—川西地区沙溪庙组层序地层特征. 天然气地球科学, 31(9): 1216~1224.

    • 杨帅. 2014. 四川盆地侏罗系沉积演化与相控储层预测. 成都理工大学博士学位论文.

    • 杨跃明, 王小娟, 陈双玲, 文龙, 吴长江, 关旭, 韦腾强, 杨曦冉. 2022. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征. 天然气工业, 42(1): 12~24.

    • 周敏, 李祥辉, 王旌羽. 2022. 四川盆地东北中—晚侏罗世沉积环境与古气候. 沉积学报, 1~22.