en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

范鹏啸,男,1998年生。硕士研究生,主要从事地球物理勘探数据处理及解释研究。E-mail: 1322958286@qq.com。

通讯作者:

于常青,男,1962年生。博士,研究员,主要从事地球物理勘探和处理解释研究。E-mail: geoyucq@qq.com。

参考文献
Bai Ling, Li Guohui, Song Bowen. 2017. The source parameters of the M6. 9 Mainling, Tibet earthquake and its tectonic implications. Chinese Journal of Geophysics, 60(12): 4956~4963 (in Chinese with English abstract).
参考文献
Booth A L, Chamberlain C P, Kidd W S F, Zeitler P K. 2009. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Journal Geological Society of America Bulletin, 121(3~4): 385~407.
参考文献
Chen Liyi, Wang Weilai, Cai Guangyao. 2023. Crustal thickness and Poisson's ratio beneath the middle-southern segment of Tan-Lu fault zone. Chinese Journal of Geophysics, 66(3): 1036~1049 (in Chinese with English abstract).
参考文献
Coudurier-Curveur A, Tapponnier P, Okal E. 2020. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis. Earth and Planetary Science Letters, 531: 115928.
参考文献
Ding Lin, Zhong Dalai. 2003. Geological evidence of thickening and uplift of the Gangdese crust before collision: The constraints of island arc collage on the uplift and expansion history of the Qinghai-Tibet Plateau. Chinese Science Bulletin, 8: 836~842.
参考文献
Ding Lin, Zhong Dalai. 2013. The tectonic evolution of the eastern Himalaya syntaxis since the collision of the Indian and Eurasian plates. Chinese Journal of Geology, 48(2): 317~333 (in Chinese with English abstract).
参考文献
Dong Hanwen, Xu Zhiqin, Cao Hui, Li Yuan, Liu Zhao, Li Huaqi, Yi Zhiyu, Chen Xijie, Ma Xuxuan, Wu Chan. 2018. Comparison of eastern and western boundary faults of Eastern Himalayan Syntaxis, and its tectonic evolution. Earth Science, 43(4): 933~951 (in Chinese with English abstract).
参考文献
Edwards M A, Harrison T M. 1997. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite. Geology, 25(6): 543~546.
参考文献
Feng Chengjun, Li Bin, Li Hui, Zhou Minghui, Zhang Peng, Zhu Siyu, Ren Yazhe, Qi Bangshen, Wang Miaomiao, Tan Chengxuan, Chen Qunce. 2022. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability. Journal of Geomechanics, 28(6): 919~937 (in Chinese with English abstract).
参考文献
Gao Li'e, Zeng Lingsen, Asimow P D. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45(1): 39~42.
参考文献
Gao Li'e, Zeng Lingsen, Zhao Linghao. 2021. Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources. China Geology, 4(1): 44~55.
参考文献
Hao Guangming, Zeng Lingsen, Zhao Linghao. 2021. Miocene-Pliocene crust deep melting in the Nanga Bawa region of southern Tibet. Acta Petrologica Sinica, 37(11): 3501~3512 (in Chinese with English abstract).
参考文献
Hao Hongtao, Li Hui, Hu Minzhang, Zheng Bing, Wang Tongqing, Liang Weifeng. 2015. Gravity variation observed by scientific expedition of Lushan earthquake. Journal of Geodesy and Geodynamics, 35(2): 331~335+341 (in Chinese with English abstract).
参考文献
Harrison T M, Copeland P, Kidd W. 1992. Raising Tibet. Science, 255(5052): 1663~1670.
参考文献
Hou Zunze, Yang Wenzai. 1995. Application research of wavelet analysis. Geophysical and geochemical exploration computing technology, (3): 1~9 (in Chinese with English abstract).
参考文献
Hou Zunze, Yang Wenzai, Yu Changqing. 2014. Three-dimensional density structure of North China's craton crust and its geological implications. Chinese Journal of Geophysics, 57(7): 2334~2343 (in Chinese with English abstract).
参考文献
Hou Zunze, Yang Wencai, Wang Yun, Li Chunhua. 2015. The production and application of irrational scale wavelet details for gravity field. Chinese Journal of Geophysics, 58(3): 1035~1041 (in Chinese with English abstract).
参考文献
Huang Yiyun. 1984. The characterization of three-dimensional radom surface topography. Journal of Zhejiang University, 18(2): 141~151 (in Chinese with English abstract).
参考文献
Li Guohui, Bai Ling, Ding Lin. 2020. Epicenter parameters and tectonic significance of the 2019 Meto Ms6. 3 earthquake in Tibet. Chinese Journal of Geophysics, 63(3): 1214~1223 (in Chinese with English abstract).
参考文献
Li Haibing, Pan Jiawei, Sun Zhiming, Si Jialiang, Pei Junling, Liu Dongliang, Chevalier M, Wang Huan, Lu Haijian, Zhang Yong, and Li Chunrui. 2021. Continental tectonic deformation and seismic activity: A case study from the Tibetan Plateau. Acta Geologica Sinica, 95(1): 194~213(in Chinese with English abstract).
参考文献
Li Hongru, Bai Ling, Zhan Huili. 2021. Research progress of Jiali fault acticity. Reviews of Geophysics and Planetary Physics, 52(2): 182~193 (in Chinese with English abstract).
参考文献
Li Weiqiang. 2019. Analysis of geophysical (gravity) response characteristics of volcanic-sedimentary boron ore area in Ali area, Tibet. Master thesis of Kunming University of Science and Technolody (in Chinese with English abstract).
参考文献
Li Weiqiang, Yu Changqing, Zou Changchun, Zeng Xiangzhi. 2023. Three-dimensional density distribution and earthquake activity of the northern Lancangjiang fault in eastern Tibet, Tectonophysics, https: //doi. org/10. 1016/j. tecto. 2023. 229864.
参考文献
Lin Changhong, Peng Miao, Tan Handong, Xu Zhiqin, Li Zhonghai, Kong Wenxin, Tong Tuo, Wang Mao, ZengWeihua. 2017. Crustal structure beneath Namche Barwa, eastern Himalayan syntaxis: New insights from three-dimensional magnetotelluric imaging. A Journal of Asian Earth Science, 34: 674~685.
参考文献
Liu Shijie, Lan Hengxing, Zhang Ning. 2022. Geomechanical analysis of major engineering region in middle segment of Jiali fault. Journal of Engineering Geology, 30(6): 1947~1961 (in Chinese with English abstract).
参考文献
Ma Xin, Fu Lei, Li Tie feng, Yan Jing, Liu Ting, Wang Mingguo, Shao Wei. 2021. Analysis of Geothermal Origin in Eastern Himalayan Syntaxis. Geoscience, 35(1): 209~219 (in Chinese with English abstract).
参考文献
Mallat S G. 1989. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(12): 2091~2110.
参考文献
Mukhopadhyay B, Dasgupta S. 2015. Earthquake swarms near eastern Himalayan Syntaxis along Jiali fault in Tibet: A seismotectonic appraisal. Geoscience Frontiers, 6(5): 715~722.
参考文献
Qin Xianghui, Chen Qunce, Meng Weng, Zhang Chongyuan, Sun Dongsheng, Yang Yuehui, Chen Hong, Li Ran. 2023. Determination of the current in-situ stress field of the Tongmai- Bomi section in the northern margin of the eastern Himalayan syntaxis. Acta Geologica Sinica, 97(7): 2126~2140(in Chinese with English abstract).
参考文献
Seward D and Burg JP. 2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data. Tectonophysics, 451 (1~4): 282~289.
参考文献
Shen Jun, Wang Yipeng, Ren Jinwei, Cao Zhongquan. 2003. Quaternary dextral shearing and crustal movement in Southeast TibentanPlateau. Xinjiang Geology, 21(1): 120~125.
参考文献
Song Jian, Tang Fangtou, Deng Zhihui, Cao Zhongquan, Zhou Bin, Xiao Genru, Chen Weitao, Ge Weipeng. 2011. Study on current movement characteristics and numerical simulation of the main faults around Eastern Himalayan Syntaxis. Chinese Journal of Geophysics, 54(6): 1536~1548 (in Chinese with English abstract).
参考文献
Song Jian, Tang Fangtou, Deng Zhihui. 2013. Late Quaternary movement characteristic of Jinali fault in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 973~980 (in Chinese with English abstract).
参考文献
Song Lirong, Yu Changqing, Li Guihua, Feng Yangyang, He Junjie. 2015. Characteristics of gravity anomalies and prediction of volcano sedimentary boron deposit distribution in the Xiongba area, Tibet. Applied Geophysics, 12(4): 516~522+627.
参考文献
Song Lirong, Yu Changqing, Zheng Jinping, Chen Wenxi, Wang Yongzhi, He Junjie, Li Guihua, Qian peng. 2017.
参考文献
Exploration of volcanosedimentary boron deposit by geophysical methods—Application in the Ngari area, Tibet. Chinese Journal of Geophysics, 60(4): 1584~1594 (in Chinese with English abstract).
参考文献
Sun Heping, Chen Xiaodong, Wei Zigen, Zhang Miaomiao, Zhang Geng, Ni Sidao, Chu Risheng, Xu Jianqiao, Cui Xiaoming, Xing Yuelin. 2022. A preliminary study on the ultra-wide band ambient noise of the deep underground based on observations of the seismometer and gravimeter. Chinese Journal of Geophysics, 65(12): 4543~4554 (in Chinese with English abstract).
参考文献
Sun Yanyun, Yang Wencai. 2014. Recognizing and extracting the information of crustal deformation belts from the gravity field. Chinese Journal of Geophysics, 57(5): 1578~1587 (in Chinese with English abstract).
参考文献
Sun Yanyun, Yang Wencai, Hou Zunze, Yu Changqing. 2015. Deformation scratches and crustal structures in Qinghai-Xizang (Tibet) Plateau. Geological Review, 61(2): 269~280 (in Chinese with English abstract).
参考文献
Tang Fangtou, You Huichuan, Liang Xiaohua, Song Jian, Wang Xiaonan. 2019. A discussion on seismogenic fault of the Milin MS6. 9 Earthquake, Tibet, and its tectonic attributes. Acta Geoscientica Sinica, 40(1): 213~218 (in Chinese with English abstract).
参考文献
Tang Jingtian, Yang Lei, Ren Zhengyong, Hu Shuanggui, Xu Zhimin. 2019. Characteristics of satellite gravity field and its seismic mechanism in Longmenshan fault zone. Seismology and Geology, 41(5): 1136~1154 (in Chinese with English abstract).
参考文献
Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China. Journal of Geophysical Research, 82(20): 2905~2930.
参考文献
Tikhonov A N. 1977. Solutions of Ill-posed Problems. Berlin: Winston & Sons.
参考文献
Tobing A A L, Sukarasa I K, Yusuf M. 2021. Analysis of gravity anomaly and seismicity in Bali region. International Journal of Physical Sciences and Engineering, 5(3): 34~43.
参考文献
Wang Hu, Li Kaijin, Chen Lichun, Chen Xingqiang, Li An. 2020.Evidence for Holocene activity on the Jiali fault, an active block boundary in the southeastern Tibetan Plateau. Seismological Research Letters, 91(3): 1776~1780.
参考文献
Wang Xiaonan, Tang Fangtou, Shao Cuiru. 2018. The current movement characters of main faults surrounding the Namcha Barwa Syntaxis. Technology for Earthquake Disaster Prevention, 13(2): 267~275 (in Chinese with English abstract).
参考文献
Wang Xin, Jiang Wenliang, Zhang Jingfa, Shen Wenhao, Fu Zhihao. 2022. Gravity anomaly and fine crustal structure in the middle segment of the Tan-Lu fault, eastern Chinese mainland. Journal of Asian Earth Sciences, 224: 105027.
参考文献
Wang Xinsheng, Fang Jian, Xu Houze, Zheng Wei. 2012. Density structure of the lithosphere beneath North China Craton. Chinese Journal of Geophysics, 55(4): 1154~1160 (in Chinese with English abstract).
参考文献
Wang Xinwei, Wang Tinghao, Gao Nanan, Liu Huiying, Mao Xiang, Luo Lu, Wu Chenbingjie, Cui Zixian. 2022. Formation mechanism and development potential of geothermal resources along Sichuan-Tibet Railway. Earth Sciences, 47(3): 995~1011 (in Chinese with English abstract).
参考文献
Wu Zhonghai, Wu Zhenhan, Han Jinliang, Zhang Yongshuang, Hu Daogong, Jiang Wan. 2005. The Late Quaternary Normal Faulting of Fenghuo Shan Thrust-Folds Belt in Certral Qinghai-Tibet Plateau. Geoscience, (2): 181~188 (in Chinese with English abstract).
参考文献
Xie Chao. 2018. A study on tectonic geomorphology of Namche Barwa and activity of the faults. Doctoral dissertation of Institute of Geology, China Earthquake Administration (in Chinese with English abstract).
参考文献
Xie Chao, Zhou Bengang, Yang Fan, Li Zhengfang, Cui Yueju, Pang Wei, Li Wei. 2021. Geological and geomorphological evidence for activity along the Motuo fault, eastern side of the Namche Barwa Syntaxis, Tibetan Plateau. Seismological Research Letters, 92(4): 2196~2205.
参考文献
Xiong Shengqing, Ding Yanyun, Li Zhankui. 2014. A new understanging on the pattern of deep faults in Xizang and the southwestern Sanjiang area. Chinese Journal of Geophysics, 57(12): 4097~4109 (in Chinese with English abstract).
参考文献
Xiong Wei, Che Wei n, Wen Yangmao, Liu Gang, Nie Zhaosheng, Qiao Xuejun, Xu Caijun. 2019. Insight into the 2017 Main-ling MW6. 5 earthquake: A complicated thrust event beneath the Namche Barwa syntaxis. Earth Planets Space, 71: 71~87.
参考文献
Xu Zhiqin, Cai Zhihui, Zhang Zeming, Li Qihua, Chen Fangyuan, Tang Zemin. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis. Acta Petrologica Sinica, 24(7): 1463~1476 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Yang Jingsui, Hou Zengqian, Zhang Zemming, Zeng Lingsen, Li Haibin, Zhang Xinjian, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau. Geology in China, 43(1): 1~42 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Li Guangwei, Zhang Zeming, Li Haibing, Wang Yuejun, Peng Miao, Hu Xiumian, Yi Zhiyu, Zheng Bihai. 2022. Review ten key geological issues of the Tibetan Plateau—Commemoration of the centennial anniversary of Acta Geologica Sinica. Acta Geologica Sinica, 96(1): 65~94(in Chinese with English abstract).
参考文献
Yan Jiayong, Lv Qingtian, Chen Chunming, Deng Zhen, Qi Guang, Zhang Kun, Liu Zhendong, Wang Jie, Liu Yan. 2015. Identification and ectraction of geological atructure information based on multi-scale edge detection of gravity and magnetic fields: An example of the Tongling ore concentration area. Chinese Journal of Geophysics, 4450~4464 (in Chinese with English abstract).
参考文献
Yang Jianya, Bai Ling, Li Guohui, Cheng Cheng. 2017. Seismicity in the eastern Himalayan syntaxis and its tectonic implications. Progress in Earthquake Sciences, (6): 12~18 (in Chinese with English abstract).
参考文献
Yang Wencai, Hou Zunze. 1996. Partition of crustal density structure of Chinese continent. Continental Dynamics, 1(2): 7~11.
参考文献
Yang Wencai, Shi Zhiqun, Hou Zunze, Cheng Zhenyan. 2001. Discrete wavelet transform for multiple decomposition of gravity anomalies. Chinese Journal of Geophysics, 44(4): 534~541 (in Chinese with English abstract).
参考文献
Yang Wencai, Xu Jiren, Cheng Zhenyan. 2005. Geophysics and Crust-mantle in the Sulu Dabetsu Orogenic Belt. Beijing: Geological Press (in Chinese).
参考文献
Yang Wencai, Sun Yanyun, Yu Changqin. 2015. Crustal density deformation zones of Qinghai-Tibet Plateau and their geological implications. Chinese Journal of Geophysics, 58(11): 4115~4128 (in Chinese with English abstract).
参考文献
Ye Jin, Zhao Junmeng, Liu Hongbin, Zhang Heng, Xu Qiang, Chen Shuze. 2020. Aftershocks localization and shallow crustal velocity structure following the MS6. 9 Mainling earthquake in Tibet, China. Chinese Science Bulletin, 65: 1496~1505 (in Chinese with English abstract).
参考文献
Zhang Guowei, Guo Anlin. 2013. Tectonics of South China continent and its implications. Science China: Earth Science, 43(10): 1553~1582.
参考文献
Zhang Jinjiang, Ji Jianqing, Zhong Dalai, Ding Lin, He Shundong. 2003. Discussion on the tectonic pattern and formation process of the Nanga Bawa tectonic junction in the East Himalayas. Scientia Sinica (Terrae), 33(4): 373~383 (in Chinese with English abstract).
参考文献
Zhang Ling, Liang Shiming, Yang Xiaoping, Gan Weijun, Dai Chenglong. 2021. Geometric and kinematic evolution of the Jiali fault, eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 212: 104722.
参考文献
Zhang Zeming, Wang Jinli, Zhao Guochun, Shi Chao. 2008. Geochronology and Precambrian tectonic evolution of the Namche Barwa complex from the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica, 24(7): 1477~1487 (in Chinese with English abstract).
参考文献
Zhao Yuanfang, Gong Wangbin, Jiang Wan, Chen Longyao, Qiu Duwei. 2021. Multi-stage characteristics and tectonic significance of the Jiali fault in Guxiang-Tongmai section, south Tibet. Geoscience, 35(1): 220~233 (in Chinese with English abstract).
参考文献
Zheng Lailin, Jin Zhenmin, Pan Guitang, Geng Quanru, Sun Zhimin. 2004. Geological features and tectonic evolution in the Namjagbarwa area, eastern Himalayas. Acta Geologica Sinica, 78(6): 743~751(in Chinese with English abstract).
参考文献
Zhong Ning, Guo Changbao, Huang Xiaolong, Wu Ruian, Ding Yingying, Zhang Xianbing, Li Haibing. 2021. Late Quaternary activity and paleoseismic records of the middle south section of the Jiali-Chayu fault. Acta Geologica Sinica, 95(12): 3642~3659 (in Chinese with English abstract).
参考文献
Zou Zinan. 2018. Study on rock types and tectonic characteristics in the east junction zone of the Namjagbarwa structural knot. Journal of Chengdu University of Technology (Science & Technology Edition), 45(3): 325~333 (in Chinese with English abstract).
参考文献
白玲, 李国辉, 宋博文. 2017. 2017 年西藏米林 6. 9 级地震震源参数及其构造意义. 地球物理学报, 60(12): 4956~4963.
参考文献
陈立艺, 王未来, 蔡光耀. 2023. 郯庐断裂带中南段地壳厚度与泊松比研究. 地球物理报, 66(3): 1036~1049.
参考文献
丁林, 钟大赉. 2013. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化. 地质科学, 48(2): 317~333.
参考文献
董汉文, 许志琴, 曹汇, 李源, 刘钊, 李化启, 易治宇, 陈希节, 马绪宣, 吴禅. 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933~951.
参考文献
丰成君, 李滨, 李惠, 周铭辉, 张鹏, 朱思雨, 任雅哲, 戚帮申, 王苗苗, 谭成轩, 陈群策. 2022. 南迦巴瓦地区地应力场估算与构造稳定性探讨. 地质力学学报, 28(6): 919~937.
参考文献
郝光明, 曾令森, 赵令浩. 2021. 西藏南部南迦巴瓦地区中新世—上新世地壳深熔作用. 岩石学报, 37(11): 3501~3512.
参考文献
郝洪涛, 李辉, 胡敏章, 郑兵, 王同庆, 梁伟锋. 2015. 芦山地震科学考察观测到的重力变化. 大地测量与地球动力学, 35(2): 331~335+341.
参考文献
侯遵泽, 杨文采. 1995. 小波分析应用研究. 物探化探计算技术, (3): 1~9.
参考文献
侯遵泽, 杨文采, 于常青. 2014. 华北克拉通地壳三维密度结构与地质含义. 地球物理学报, 57(7): 2334~2343.
参考文献
侯遵泽, 杨文采, 王允, 李春华. 2015. 重力场实数尺度小波分解及其应用. 地球物理学报, 58(3): 1035~1041.
参考文献
黄逸云. 1984. 三维随机表面形貌的识别. 浙江大学学报, 18(2): 141~151.
参考文献
李国辉, 白玲, 丁林等. 2020. 2019年西藏墨脱MS 6. 3 级地震震源参数及其构造意义. 地球物理学报, 63(3): 1214~1223.
参考文献
李海兵, 潘家伟, 孙知明, 司家亮, 裴军令, 刘栋梁, Chevalier M, 王焕, 卢海建, 郑勇, 李春锐. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报, 95(1): 194~213.
参考文献
李鸿儒, 白玲, 詹慧丽. 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论, 52(2): 182~193.
参考文献
李卫强. 2019. 西藏阿里地区火山-沉积型硼矿区地球物理(重力)响应特征分析. 昆明理工大学硕士学位论文.
参考文献
刘世杰, 兰恒星, 张宁. 2022. 嘉黎断裂中段重大工程区地质力学分析. 工程地质学报, 30(6): 1947~1961.
参考文献
马鑫, 付雷, 李铁锋, 闫晶, 刘延, 王明国, 邵炜.2021.喜马拉雅东构造结地区地热成因分析.现代地质, 35(1): 209~219.
参考文献
秦向辉, 陈群策, 孟文, 张重远, 孙东生, 杨跃辉, 陈虹, 李冉. 2023. 喜马拉雅东构造结北缘通麦—波密段现今地应力场特征研究. 地质学报, 97(7): 2126~2140.
参考文献
沈军, 汪一鹏, 任金卫, 曹忠权. 2003. 青藏高原东南部第四纪右旋剪切运动. 新疆地质, 21(1): 120~125.
参考文献
宋键, 唐方头, 邓志辉, 曹忠权, 周斌, 肖根如, 陈为涛, 葛伟鹏.2011. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究.地球物理学报, 54(6): 1536~1548.
参考文献
宋键, 唐方头, 邓志辉, 肖根如, 陈为涛. 2013. 青藏高原嘉黎断裂晚第四纪运动特征. 北京大学学报(自然科学版), 49(6): 973~980.
参考文献
宋丽蓉, 于常青, 郑绵平, 陈文西, 王永智, 何俊杰, 李桂花, 钱鹏. 2017. 利用地球物理方法探测火山沉积型硼矿——在西藏阿里地区的应用. 地球物理学报, 60(4): 1584~1594.
参考文献
孙艳云, 杨文采. 2014. 从重力场识别与提取地壳变形带信息的方法研究. 地球物理学报, 57(5): 1578~1587.
参考文献
孙艳云, 杨文采, 侯遵泽, 于常青. 2015. 青藏高原刻痕与地壳分层构造. 地质论评, 61(2): 269~280.
参考文献
孙和平, 陈晓东, 危自根, 张苗苗, 张赓, 倪四道, 储日升, 徐建桥, 崔小明, 邢乐林. 2022. 基于地震和重力观测的深地超宽频带背景噪声初探. 地球物理学报, 65(12): 4543~4554.
参考文献
唐方头, 尤惠川, 梁小华, 宋键, 王晓楠. 2019. 西藏米林MS 6. 9级地震发震断层判定及其构造属性讨论. 地球学报, 40(1): 213~218.
参考文献
汤井田, 杨磊, 任政勇, 胡双贵, 徐志敏. 2019. 龙门山断裂带卫星重力场特征及其发震机制. 地震地质, 41(5): 1136~1154.
参考文献
王晓楠, 唐方头, 邵翠茹. 2018. 南迦巴瓦构造结周边地区主要断裂现今运动特征. 震灾防御技术, 13(2): 267~275.
参考文献
王新胜, 方剑, 许厚泽, 郑伟. 2012. 华北克拉通岩石圈三维密度结构. 地球物理学报, 55(4): 1154~1160.
参考文献
汪新伟, 王婷灏, 高楠安, 刘慧盈, 毛翔, 罗璐, 吴尘冰洁, 崔梓贤. 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995~1011.
参考文献
吴中海, 吴珍汉, 韩金良, 张永双, 胡道功, 江万. 2005. 青藏铁路风火山段晚第四纪断裂活动分析. 现代地质, (2): 181~188
参考文献
谢超. 2018. 南迦巴瓦地区构造地貌及断裂活动特征. 中国地震局地质研究所博士学位论文.
参考文献
熊盛青, 丁燕云, 李占奎. 2014. 西藏及西南三江深断裂构造格局新认识. 地球物理报, 57(12): 4097~4109.
参考文献
许志琴, 蔡志慧, 张泽明, 李化启, 陈方远, 唐泽民. 2008. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学.岩石学报, 24(7): 1463~1476.
参考文献
许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016. 青藏高原大陆动力学研究若干进展. 中国地质, 43(1): 1~42.
参考文献
许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题——《地质学报》百年华诞纪念. 地质学报, 96(1): 65~94.
参考文献
严加永, 吕庆田, 陈明春, 邓震, 祁光, 张昆, 刘振东, 汪杰, 刘彦. 2015. 基于重磁场多尺度边缘检测的地质构造信息识别与提取——以铜陵矿集区为例. 地球物理学报, 58(12): 4450~4464.
参考文献
叶进, 赵俊猛, 刘红兵, 张衡, 徐强, 陈树泽. 2020. 西藏米林 MS 6. 9 级地震余震定位和地壳浅层速度结构. 科学通报, 65: 1496~1505.
参考文献
杨建亚, 白玲, 李国辉, 程成.2017. 东喜马拉雅构造结地区地震活动及其构造意义. 国际地震动态, (6): 12~18.
参考文献
杨文采, 施志群, 侯遵泽, 程振炎. 2001. 离散小波变换与重力异常多重分解. 地球物理学报, 44(4): 534~541.
参考文献
杨文采, 徐纪人, 程振炎. 2005. 苏鲁大别造山带地球物理与壳幔作用. 北京: 地质出版社.
参考文献
杨文采, 孙艳云, 于常青. 2015. 青藏高原地壳密度变形带及构造分区. 地球物理学报, 58(11): 4115~4128.
参考文献
张进江, 季建清, 钟大赉, 丁林, 何顺东.2003.东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨.中国科学(D 缉), 33(4): 373~383.
参考文献
张泽明, 王金丽, 赵国春, 石超. 2008. 喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化. 岩石学报, 24(7): 1477~1487.
参考文献
赵远方, 公王斌, 江万, 陈龙耀, 仇度伟. 2021. 藏南嘉黎断裂古乡—通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220~233.
参考文献
郑来林, 金振民, 潘桂棠, 耿全如, 孙志民.2004.东喜马拉雅构造结南迦巴瓦地区区域地质特征及构造演化.地质学报, 78(6): 743~751.
参考文献
钟宁, 郭长宝, 黄小龙, 吴瑞安, 丁莹莹, 张献兵, 李海兵. 2021. 嘉黎-察隅断裂带中南段晚第四纪活动性及其古地震记录. 地质学报, 95(12): 3642~3659.
参考文献
邹子南. 2018. 南迦巴瓦构造结东侧结合带岩石类型与构造特征. 成都理工大学学报(自然科学版), 45(3): 325~333.
目录contents

    摘要

    西藏波密地区位于南迦巴瓦构造结东北部,是研究喜马拉雅东构造结演化的关键地区。本文首次获得波密地区1∶20万布格重力数据,并利用小波变换多尺度分解方法、刻痕分析方法和重力三维反演方法,获得了不同尺度的重力异常、断层分布和密度结构。结果分析表明,波密地区整体地壳密度变化明显,与断裂分布密切相关。同时结合区域地质资料,在波密地区推断了20条断裂,发现了4处较大的横向密度不均匀带,并推断了贯穿研究区的嘉黎断裂带的产状。在此基础上利用该地区地震及余震活动记录,本文分析了深部密度结构与地震的关系。通过对研究区的断裂构造、地震活动与重力异常的密度横向变化可知,该地区地震活动、断裂带与岩石密度扰动的横向不均匀性密切相关,地震主要位于密度差异带整体的垂向的高密度区域。最后讨论了深部密度结构对波密地区大型工程建设的潜在影响。

    Abstract

    The Bomi region of Tibet is located in the northeast of the Namche Barwa Syntaxis. It is a key area for studying the evolution of eastern Himalayas syntaxis. This study obtained 1∶200000 Bouguer gravity data in Bomi region for the first time. First, using the wavelet transform multi-scale decomposition method, scratch analysis method and gravity 3D inversion method to divide the tectonic activity unit, we obtained the gravity anomalies of different, faults distribution and density structures. The analysis results show that the overall crust density in the Bomi region changes significantly and is closely related to the fault distribution. At the same time, combined with the regional geological data and our inferred 20 faults in the Bomi area, we found 4 large transverse density uneven zones and deduced the occurrence of Jiali fault zone which runs through the study area. In addition, using the seismic and aftershock activity records in the area, we analyzed the relationship between deep density structure and earthquakes. Finally, according to the transverse variation of fault structure density, seismic activity and gravity anomaly in the study area, it can be seen that the seismic, fault zone and rock density disturbance are closely related to the transverse unevenness, and the earthquakes are mainly located in the overall vertical high-density area of the density difference zone. Based on the above analysis, we discuss the potential influence of deep density structure on large-scale engineering construction in Bomi area.

  • 喜马拉雅造山带是印度板块和欧亚板块之间长期相互作用的结果,是全球地质活动最为强烈的地区之一(Tapponnier and Molnar,1977; Harrison et al.,1992; 许志琴等,20082022; 李海兵等,2021)。喜马拉雅东构造结是印度板块楔入和俯冲到欧亚板块的最东缘,是陆-陆碰撞的重点区域之一,强烈而持续的挤压碰撞作用导致该地区新生代以来发生多起强烈构造变形、岩浆和变质作用,最终形成现今的构造格架(Seward and Burg,2008; 许志琴等,20082022; Wang Hu et al.,2020; 郝光明,2021)。喜马拉雅东构造结由桑构造结、阿萨姆构造结及南迦巴瓦构造结组成。桑构造结形成于23~13 Ma,阿萨姆构造结由东北部和北部的主边界断裂以及东南部的那加山逆冲断裂所限,阿萨姆构造结形成时间为13~3 Ma,南迦巴瓦构造结形成时间为始新世末(Gao Li'e et al.,20172021; 谢超,2018; 赵远方等,2021)。据相关研究显示,区域内磷灰石裂变径迹年龄具有向南迦巴瓦峰地区变新的趋势,指示南迦巴瓦峰地区是东构造结的隆起中心(许志琴等,2008)。然而南迦巴瓦构造结深部构造活跃、活动断层发育、地震频发、地壳抬升与变形显著、高地应力特征明显、岩石破碎,从而造成现今地壳处于不稳定状态(Edwards and Harrison,1997; Booth et al.,2009; 杨建亚等,2017; 唐方头等,2019)。

  • 据美国USGS地震记录显示,在1970~2023年期间,南迦巴瓦构造结及附近地区共发生3级以上地震426次。通过现有的区域地震活动资料,不难发现南迦巴瓦构造结构造活动较为活跃,东部中、小震频繁发生。从地震活动情况上,南迦巴瓦构造结以东,地震活动性较强,然而构造结中西部地区地震活动较弱(谢超等,2018)。Zhang Ling et al.(2021)利用二维弹性位错模型及周围中小地震分布推断出了嘉黎断裂东段围绕东构造结顺时针水平旋转。丰成君等(2022)证明经过南迦巴瓦地区的嘉黎断裂滑动失稳概率较高,具有较强的地震活动危险性,由此表明经过波密地区的嘉黎断裂地震活动性较强。

  • 前人研究主要针对南迦巴瓦构造结的性质与构造演化,相关研究侧重于小比例尺的物性横向变化和构造单元边界识别(钟宁等,2021; 李鸿儒等,2021; 刘世杰等,2022),但其深部密度结构和断裂带空间分布特征尚不明确,尤其是波密地区。同时,波密地区附近海拔较高,生存环境较为恶劣。相关历史地震记录较少,又因为环境因素的影响,在南迦巴瓦地区地震情况、地质调查等工作进展较为困难,相关资料较难补充(许志琴等,2016; 董汉文等,2018)。经过前人的研究表明,南迦巴瓦构造结的相关地震活动特征展现出的构造活动十分剧烈。那么研究区范围内深部密度结构与地震活动又有何关系?研究该区域深部密度结构和地震活动的关系可以为该区域大型工程建设提供什么建议?本文分析这些问题对于了解波密地区地质演化、认识震源机理以及嘉黎断裂对某铁路工程灾害性评估都有重要的意义。

  • 1 地质背景

  • 南迦巴瓦构造结位于雅鲁藏布江大拐弯内部,为印度大陆和欧亚大陆碰撞的前缘地带,强烈挤压使南部印度大陆向北楔入亚欧大陆之下俯冲深度达到80~100 km(张泽明等,2008),在雅鲁藏布江缝合带形成拇指状构造结。此后,南迦巴瓦变质体以缝合带西侧左旋走滑断裂和东侧右旋走滑断裂为边界向北推进,并深深插入冈底斯花岗岩(拉萨地体)之下,形成南迦巴瓦构造结“雏形”,波密地区位于南迦巴瓦构造结东北部(Ding Lin et al.,2003许志琴等,2008)。

  • 在研究区发育有大面积的中、新生代碰撞-后碰撞型火成岩(图2)。地表出露的变质岩为念青唐古拉群,属于冈-念变质区域,其中元古宇念青唐古拉群属于冈底斯-察隅变质带,在研究区西南及南部有大面积分布。区内地表出露的岩浆岩以侏罗纪、白垩纪岩浆岩为主,基本属于冈底斯-念青唐古拉山构造岩浆岩带,区内地表出露的沉积岩以上古生界为主,属于冈底斯-腾冲地层区,包括中—上泥盆统松宗组、下石炭统诺错组、上石炭统—下二叠统来姑组以及洛巴堆组,第四系由更新统冰碛物以及更新统—全新统冲洪积物组成的松散堆积物组成,岩性主要为泥沙质砾石、卵石及漂砾(张进江等,2003;郑来林等,2021;马鑫等,2021秦向辉,2023)。

  • 嘉黎断裂是一条横贯藏南地区的大型走滑断裂(图1)(李鸿儒,2021),研究区位于嘉黎断裂的东南段。嘉黎断裂作为南迦巴瓦构造结地区重要的变形调节构造,也是地震活动较为频繁的地带(图3)。例如:1947年朗县MS7.7地震、1950年察隅MS8.6级地震(Coudurier-Curveur et al.,2020)、2017年米林MS6.9级地震(白玲等,2017; Xiong et al.,2019; 叶进等,2020)和2019年墨脱 MS6.3 地震(李国辉等,2020)。根据前人研究表明在嘉黎断裂古乡—通麦段发生过两次古地震事件(钟宁等,2021)。前人研究主要针对嘉断裂带的西北段(沈军等,2003),而针对嘉黎断裂带中段和东南段的研究相对较少(宋健等,2013)。据有记录的地震数据(包括中国地震台网中心记录、美国USGS地震记录和历史地震记录)共有17次记录(图3)。从而证明研究区附近地壳活动相对活跃,嘉黎断裂孕育的地质灾害对大型工程的建设和运营带来了巨大挑战(刘世杰,2022)。

  • 2 研究方法

  • 2.1 重力实测数据

  • 本文采集了1∶20万重力观测点327个,覆盖面积1500 km2(图4),测点重力值均方差为±0.038 mGal。对观测数据进行正常场改正、地形改正和布格校正等,计算获得研究区布格重力异常,布格重力异常其均方差为±0.060 mGal。高精度的地面观测数据,为开展研究区断裂带研究提供了有力的数据支撑(Song Lirong et al.,2015; 宋丽蓉等,2017; 李卫强,2019)。

  • 岩石样本统计结果揭示本区新生界、古生界、念青唐古拉群变质岩、岩浆岩以及混杂岩之间均存在明显的密度差异。这种差异引起的重力异常会叠加区域异常之上,因此结合研究目标首先进行重力异常场分离,将不同尺度、埋深的异常场分离出来,用于后续的处理和分析。

  • 岩石密度信息显示(表1),研究区内密度分布极不均匀。因此,相比于二分法的模糊概念,通过小波多尺度分解,不同尺度空间的重力异常可以更加有效地反映不同尺度地质体的重力效应。使得重力异常解释更具有地质意义(侯遵泽等,1995)。位场刻痕技术可以有效地增强地质体边缘信号,对不同幅值的地质体边缘具有很强的均衡能力,在识别地壳形变带的同时还反映了形变带局部各项异性的特征,对噪音敏感程度较小,可以准确有效地提取地壳形变带和构造单元边缘(孙艳云等,2015)信息。重力三维反演可以获取研究区内的三维精细密度结构模型,以直观了解到深部密度结构。

  • 图1 南迦巴瓦东构造结大地构造纲要图

  • Fig.1 Structure map of Namcha Barwa East Syntaxis

  • (a)—南迦巴瓦东构造结位置图;(b)—波密地区构造图 (据宋键等,2013; 刘世杰等,2022修改)

  • (a) —location of Namcha Barwa East Syntaxi; (b) —tectonic map of Bomi region (modified after Song Jian et al., 2013; Liu Shijie et al., 2022)

  • 图2 波密地区地质图

  • Fig.2 Geological map of Bomi area

  • 2.2 小波变换多尺度分析方法

  • 小波变换最早由Mallat(1989)提出,该变换可将信号分解成不同尺度的分量。近几十年来,小波变换在地球物理学等领域得到了广泛的应用,例如,重力异常分解等。 Yang Wencai et al.(1996)首次将小波变换应用到重力异常分离之中,使得重力场分离方法实现了真正的位场多尺度分解,异常解释更具有实际地质意义(杨文采等,20012005)。之后数年,国内外多位学者进一步发展了相关的理论和方法,并取得了较好的应用效果,如侯遵泽等(20142015)将此方法对我国诸多地区进行了地壳密度结构研究中,取得了较好效果。

  • 图3 南迦巴瓦东构造结周边地区的主要断裂(修改自王晓楠等,2018)及1970~2023年 M>3地震分布(据USGS)图

  • Fig.3 The main faults in the surrounding area of the Namcha Barwa East Syntaxis (modified from Wang Xiaonan et al., 2018) and the distribution map of M>3 earthquakes from 1970 to 2023 (after USGS)

  • 图4 西藏波密地区布格重力异常及1970~2023年M>3地震分布(据USGS)图

  • Fig.4 Bouguer gravity anomaly in Bomi area of Tibet and the distribution map of M>3 earthquakes from 1970 to 2023 (after USGS)

  • 表1 波密地区岩石密度统计表

  • Table1 Statistical table of rock density in Bomi area

  • 我们假设重力异常为:

  • Δg(x,y)=f(x,y)V02CL2R2
    (1)
  • 按照其原理进行分解:

  • (2)
  • 其中,pN+为最高小波变换的阶数,Δg为重力异常(单位mGal)。

  • (3)
  • (4)
  • 其中,Φx)和Ψx)分别为V02的尺度函数和小波函数,Cx)和dx)分别为尺度函数和小波函数的系数。

  • 小波变换基本原理是将信号(如:重力异常数据)分解成p阶尺度函数和1~p阶的小波函数的线性叠加。根据实验本次取小波数高阶p=3,取1~3阶小波细节对应尺度最小的重力异常背景,它们为浅层密度扰动源形成。3阶小波逼近对应尺度较大的重力异常组分,证明小波变换计算的高精度的同时,我们认为其为深层密度扰动源形成。

  • 2.3 刻痕分析方法

  • 刻痕分析方法是一种工程学中表面识别技术,通常用于研究构造三维表面特征的方法。孙艳云等(2014)将该方法引入到地球物理位场数据处理分析中,提出位场刻痕分析方法,用于提取位场表面隐含的各向异性等几何信息刻画地壳变形带及其边界。并在桐柏-大别碰撞造山带地区的应用中取得了精准构造分区的效果。理论试验和示范应用均表明方法在弱边界增强、分辨率、噪音压制及变形带刻画方面具有很大的优势。杨文采等(2015)将小波变换和刻痕分析方法结合,并应用于青藏高原地区,获得了该地区地壳变形带平面分布信息和随着深度的变化特征。

  • 位场刻痕分析方法基于位场表面的二阶谱矩(m20m11m02),其统计不变量M2Δ2如式5和式6(黄逸云等,1984):

  • M2=m20+m02
    (5)
  • 其中,M2为刻痕强度系数,为位场表面的空间导数的方差;Δ2通常被定义为脊形化系数,与位场在局部区域的各向异性程度有关。但是这种表征方法比较粗糙,不能准确地描述位场的刻痕。孙艳云(2015)同时使用两个二阶谱矩的统计不变量M2Δ2来描述所有可能的位场刻痕定义为刻痕的脊形化系数:

  • Λ=2Δ2M2
    (6)
  • 式中,Λ∈[0,1],既体现了表面形态的各向异性特征,又消除了刻痕强度的影响,Λ=0表示各向同性,Λ=1表明高度各向异性。高度各向异性是地壳变形带的典型特征(孙艳云等,2014)。

  • 2.4 三维重力反演

  • 一般空间域重力三维反演问题,可以离散并线性化为:

  • d=Gm
    (7)
  • 式中,d观测数据;G为核函数;m为模型矩阵;Gm是模型的正演响应。由于观测数据矩阵维度要小于模型矩阵,因此上述公式在数学上是没有唯一解的。Tikhonov et al.(1977)提出正则化反演方法,将地球物理反演问题转化为最优化问题,根据最小二乘原理最小化反演目标函数。

  • min(m)=d(m)+λm(m)
    (8)
  • 式中,Ødm)为数据拟合函数,Ømm)为模型目标函数; λ为正则化因子,用来平衡数据拟合函数和模型目标函数之间权重;该方法通过寻求一个模型m使得Øm)最小,最终获得反演模型。

  • 3 研究区重力特征

  • 3.1 重力场特征

  • 据区域地质资料(图2),研究区岩石主要为新生界、古生界、浅变质结晶基底和岩浆岩。本次采集标本273块。岩石密度测量结果(见表1),本区沉积岩、变质岩及岩浆岩均有发育,其中新生界岩石密度平均值为1.784 g/cm3; 古生界岩石密度平均值为2.676 g/cm3; 中—新元古界岩石密度平均值为2.681 g/cm3。新生界和古生界之间的岩石密度差为0.892 g/cm3,中—新元古界变质岩基地与上覆沉积地层之间的密度差为0.12 g/cm3,本区岩浆岩密度值变化范围为2.597~2.953 g/cm3,平均密度值为2.707 g/cm3。岩石密度差异是进行地球物理重力方法研究的基础。

  • 3.2 重力异常多尺度分解

  • 研究区布格重力异常表现为负异常特征,异常幅值在-514.410×10-5 m/s2~-424.216×10-5 m/s2之间变化,异常走向为近东西向,具有南北向分区的特征,是本区莫霍面、康氏面、褶皱基底、断裂构造及不同密度岩层的综合反映(图4)。研究区北部整体表现为相对重力低异常特征,结合地质和物性资料推断,可能是拉萨地体上古生界—新生界低密度沉积地层的反映。研究区南部整体表现为重力高异常特征,推断与本区深部密度界面起伏和具有相对较高剩余密度的念青唐古拉群变质岩、印支期岩浆岩及混杂岩的分布有关。

  • 我们利用小波变换多尺度分解获得不同尺度空间的重力异常,不同尺度空间的重力异常可以更有效地反映浅层地质体的重力效应。对布格重力异常进行3阶小波分析,得到了1~3阶细节和3阶逼近。

  • 图5显示了1~3阶小波细节图和3阶小波逼近,其结果表明,研究区的北部和南部表现出相对较高的重力异常,而中部表现出相对较低的重力异常。由于莫霍面波动等深层结构,整个研究区域的重力异常有明显的趋势。通过小波变换多尺度分解,不同尺度空间的重力异常可以更有效地反映浅层地质体的重力效应。1~3阶小波细节对应于由浅密度扰动源形成的小尺度重力异常分量,1阶小波细节对应于重力异常的的最小尺度分量,该分量由浅密度扰动源形成。3阶小波近似对应于重力异常的大尺度分量,被认为是由深密度扰动源形成的。

  • 3.3 构造边缘识别

  • 构造边缘是指两个板块的相互碰撞和挤压,传统地质工作方法主要根据地表地质观察给出构造信息,但由于环境等一系列复杂因素,难于给出准确的构造信息,即使在出露区,也往往只能给出经验性的推测,而重力场是地下地质体密度响应的综合,随着地质构造运动的不断进行,重力场受应力作用,产生形变。因此通过对重力场的边缘检测可以识别和提取对应的构造信息(熊盛青,2014严加永等,2015)。杨文采等(2015)将小波变换和刻痕分析方法结合,并应用于青藏高原地区,获得了该地区地壳变形带平面分布信息和随着深度的变化特征,在青藏高原地质构造解译中取得了较好的效果。

  • 图5 波密地区小波多尺度分解图

  • Fig.5 Wavelet multi-scale decomposition in Bomi region

  • (a)—小波1阶细节; (b)—小波2阶细节; (c)—小波3阶细节; (d)—小波3阶逼近

  • (a) —wavelet 1-order detail; (b) —wavelet 2-order detail; (c) —wavelet 3-order detail; (d) —wavelet 3-order approximation

  • 图6a表示研究区重力异常刻痕的脊形化系数分布,该分布反映了研究区构造变形带的分布和变形的程度;图6b显示了研究区重力异常刻痕的边界脊形化系数分布,据此可以进一步细化出研究区构造单元边界位置,有利于构造单元划分与定位。

  • 根据研究区重力异常提取的边界系数和研究区脊形化显示的构造边界聚集、连续性强的强异常展现了研究区内地壳形变带的分布,从而划分出了该区域的构造单元间的边界。据图6a所示,图中显示的研究区的地壳形变信息十分清晰,同时也为大地构造单元的划分提供了丰富的信息。研究区整体被脊化系数较大的重力异常覆盖,显示了该区具有形变程度强且复杂的特征。研究区北部脊化系数较中等,相对较为破碎,变形带较窄。整体反映了该地区构造变形较为缓和且方向较为多样的特点。研究区中部脊化系数相对较低,相对较为平缓,变形带较窄。整体反映了该地区构造变形较为缓和且方向单一。不同于北、中两处脊化系数值异常呈现较平缓现象。南部区域内的脊化系数较为强烈,相对比较密集,变形带较宽。整体反映了该区域构造变形较为强烈且方向多样的特点。由图6b可以发现,在南部区域,有一条明显的异常线,整体由较高的脊化系数值所覆盖,呈NW-SE向分布的特点。研究区北、中部整体构造边界分散,连续性较弱,推测为沉积岩分布较为稳定,内部构造变形程度较小。研究区南部整体异常较高。说明内部构造变形强烈,位于该区域的嘉黎断裂带具有较宽的变形带且变形程度较强。

  • 从研究区布格重力异常上提取边界脊形化系数,使用边界脊形化系数来刻画构造边界,较大的边界脊形化系数值刻画大地构造边界。结合地质资料(王晓楠等,2018邹子南等,2018),图7显示了研究较为清晰的地壳变形带和构造边界信息,推断了该区的断裂分布,共有20条断裂。重力推断的断裂带位置与地质结果基本一致。其原因是地质调查中主要依赖地表露头识别构造单元边界,无法准确有效地推断深部构造情况。

  • 由于重力场是地下不同深度场源的叠加效应,因而根据重力异常识别的边界是地壳内部不同深度岩石密度差异的综合体现(孙艳云等,2015)。位场刻痕分析方法提取的脊形体边界系数,其刻画的构造边界聚集、连续性强,因此推断的断层及大地构造单元边界的水平位置及形态更加准确。

  • 3.4 三维密度结构

  • 剩余重力异常由1~3阶小波细节相加得到,使用剩余重力异常进行重力三维反演。由于垂直分辨率对深度的增加而降低,因此本研究中的网格单元水平长度和宽度均为100 m,考虑到纵向分辨率随深度衰减,网格单元垂向厚度由浅至深从100 m增加到500 m。图8a所示为南迦巴瓦构造结地壳密度扰动体,反演深度20km,密度变化范围-0.005~0.005 g/cm3。为了更好地显示和分析密度扰动体,我们对密度扰动体分别做了垂向切片(图8b)和不同深度的截面(图9)。

  • 图6 波密地区刻痕及1972~2008年地震分布图

  • Fig.6 Scratches and earthquake distribution maps from 1972 to 2008 in Bomi

  • (a)—研究区重力异常刻痕的脊形化系数分布;(b)—研究区重力异常刻痕的边界脊形化系数

  • (a) —distribution of ridged coefficients for gravity anomalous scratches in the study area; (b) —boundary ridge coefficient for gravity anomalous scratches in the study area

  • 图7 波密地区断裂分布图

  • Fig.7 Fault distribution map in Bomi area

  • (a)—地表实际断裂分布;(b)—边界脊形化系数系数推测断裂

  • (a) —fault distribution; (b) —boundary ridge coefficient coefficient for inferred fault

  • 在进行重力三维反演后,并对三维反演结果进行垂直切割,从其中选取了3个垂直剖面进行分析。从3条垂直剖面所表现的的特征来看,地壳密度结构纵向构造界面清晰。不同的活动地块密度分层界面形态存在明显差异。并将垂直剖面划分出四个区域。I区和II区之间和II区和III区之间存在很明显的密度变化带.根据我们所得到的脊形化系数(图6a)和边界脊形化系数(图6b),我们推断此处为研究区内断层F3、F5。在II区内发现在地表处出现较小的密度变化带,从而推断此处为研究区断层F4。

  • 如图9所示,研究区及附近发生的地震,大部分发生在嘉黎断裂南侧,零散地震分布于研究区其他区域。嘉黎断裂位于低密度区和高密度区交汇区域,表现为密度急变的梯度带。其南西面的A区域为高密度区域,嘉黎断裂穿过该区域,该断裂附近的高密度体与基底的断陷及岩浆岩的侵入有关;根据地震事件分布表明,此处地震多发于高密度区域,且多分布于嘉黎断裂带上。

  • A区域为高密度异常区,地震多发于该区域,且分布于嘉黎断裂带上。随着深度的不断增加,高低密度交汇带逐渐向南西方向移动,说明嘉黎断裂呈SSE向倾斜延伸。嘉黎断裂NE向的B区域表现为低密度区域,反映了一定规模的新生界和古生界沉积层,根据刻痕信息(图6a),该区域各项异性较强,应力相对集中。如图8所示,在B、C区域带交界处有一个地震事件(MS4.1)且处于高密度带区域。C区域表现为高、低密度体的相间分布,反映了在多期构造运动下,基底遭受强烈的变形变质,起伏剧烈。C区域的高密度块体规模相比较A带较小,但各项异性十分明显,此区域曾发生MS3.9地震。D区域表现为低密度体随着深度的增加而逐渐减少,各项异性较小,应力较小,该区域无地震记录。

  • 4 讨论

  • 4.1 波密地区深部密度不均匀性

  • 本文实现了该区域1∶20万重力数据采集和分析,研究结果表明:小波变换分析方法可以有效分解不同深度和尺度引起的重力场,重力异常刻痕的边界系数所展示的边界信息和已知断层有较大关联,采用重力三维反演技术可以直观地认识深部岩石密度变化特征,基于上述三种方法综合分析波密地区深部密度不均匀性的地质意义。

  • 根据研究区布格重力异常图(图4)和三维密度扰动近地表截面图(图9),本文发现壳内剩余密度在横向上非均匀分布,其中以嘉黎断裂为界,地壳SW-NE向密度有明显差异,嘉黎断裂带与密度急剧变化的梯度带有很好的对应关系。这说明,嘉黎断裂波密段两盘存在巨大的密度差。因此,我们依据深部三维密度扰动(图8,图9)推断出了嘉黎断裂大倾向大致为SWW向,延伸方向分为两段:第一段,在向下0~14 km,产状走向NEE,倾向SSE,倾角56°;因此我们可以推测第二段,14 km以下,产状走向NEE,倾向SSE,倾角62°。这与前人所得到的结论相吻合(Mukhopadhyay et al.,2015; Wang Hu et al.,2020; Xie Chao et al.,2021)。

  • 图8 波密地区重力三维反演图及垂直剖面图

  • Fig.8 3D gravity inversion and vertical profile in Bomi area

  • (a)—三维密度扰动图;(b)—三维密度扰动垂直剖面图

  • (a) —3D density perturbation plot; (b) —3D density perturbation vertical profile

  • 此外,在嘉黎断裂(F2)和F3之间区域显示为重力低密度异常,沿断裂方向延伸,沿垂直断裂的切面上,表现为上小下大的锥形形态。据图7推测,此低密度扰动区反映了一定规模的新生界和古生界,并与岩浆岩侵入有关。在F3和F4之间区域显示为重力高密度异常,沿断裂方向(NW-SE)延伸,两端高密度体较小,中间高密度体较大;沿垂直断裂的切面上,两端存在明显的高低密度差异,中间部分高密度体向下延伸呈密度扰动不断减少的趋势。根据图6所得到的三维密度扰动垂直剖面,我们推测:由于多期构造运动,基底遭受到强烈的变形变质,造成深部密度起伏剧烈,与岩浆岩侵入挤压有关。在F4和F5之间显示为重力低密度异常。研究区地震大多数分布在高、低密度过渡带上,波密地区深部密度特征与断层分布密切相关。

  • 图9 波密地区重力三维密度异常深度截面及1972~2008年地震事件分布

  • Fig.9 Different depths plans of gravity 3D inversion and distribution of earthquake events from 1972 to 2008 in Bomi region

  • (a)—500 m深;(b)—5000 m深;(c)—10000 m深;(d)—15000 m深; 区域A为高密度扰动区域;区域B为低密度扰动区域;区域C为高密度扰动区域;区域D为低密度扰动区域

  • (a) —500 m depth; (b) —5000 m depth; (c) —10000 m depth; (d) —15000 m depth; area A is a high-density perturbation region; area B is a low-density perturbation region; area C is a high-density perturbation region; area D is a low-density perturbation region

  • 波密地区地下密度扰动相对较为剧烈,断裂分布控制着密度分布格局。从而表明波密地区深部密度不均匀性极为明显。

  • 4.2 波密地区深部密度结构与地震的关系分析

  • 在研究区内地震多发生在嘉黎断裂南部区域,少量发生在北部和中部区域,且地震大多沿断裂走向分布。以嘉黎断裂为界,南北部物性差异较为明显,地震多集中在高密度区域。如图8所示,在A区附近,共存在10处地震事件,相对集中。在B、C区域带交界处有一个地震事件(MS4.1)。C区域的曾发生MS3.9地震事件。综上,研究区地震事件主要位于密度差异带的高密度区域。

  • 另一方面,经过前人研究表明,断层两侧存在密度差异是发生中大型地震的必要条件(孙和平等,2022Wang Xin et al.,2022)。活动断裂往往对应着密度梯度带,其两盘的密度差通常较大,例如:1668年郯城8.5级地震发生在中国东部郯庐断裂带,断裂带西侧的高密度异常较东侧更为明显(陈立艺等,2023)。龙门山断裂带汶川地震震前处于明显的重力变化梯度带,深部物质的流速差异大,流体压力增强,造成物质和能量持续积累,导致深部应力失衡,造成了汶川地震的发生(汤井田等,2019)。2013年芦山7.0级地震,震前龙门山断裂带两侧表现为重力异常,以及龙门山、鲜水河、大凉山断裂平行或垂直的较大规模重力变化梯度带,并与汶川地震前重力变化特征一致(郝洪涛等,2015)。通过对东喜玛拉雅构造结的相关地球物理资料分析,说明了该地区周边地球深部具有很强的活动性,并推测了该地区的2.5~3 mm/a的隆升速率可能是下部地幔上拱的作用影响(钟宁等,2021)。Li Wenqiang et al.(2023)在西藏昌都地区研究北澜沧江断裂和昌都地震的关系时发现地层密度的差异导致了地层承受区域构造应力的能力不同。地壳内部岩石密度分布的差异性、动力学环境的变化和应力应变非均衡状态,体现了研究区地震孕育的深部动力学背景(Zhang Guowei et al.,2013)本段嘉黎断裂活动性显著,具有孕育地震的潜在可能(Wang Hu et al.,2020)。

  • 根据研究区物性的密度特征(表1),嘉黎断裂上盘是新元古代片麻状花岗闪长岩,它具有相对较高的密度。中间是早泥盆纪花岗岩,它具有相对较低的密度。据根刘世杰(2022)的地震波速剖面和Lin Changhong et al.(2017)的电阻率剖面所提供的信息,推测可能是地幔流上涌形成的侵入岩。本文推测图9中,B和D区域低密度体可能反应了深部低密度岩浆岩的侵入,A和C区域高密度体可能与深部岩浆岩的侵入挤压有关,使得原有基底遭受到了强烈的变质变形作用,导致该地区内部块体变形严重,受挤压作用加剧。Tobing(2021)分析了重力异常与地震活动的关系,揭示了岩石密度值越高,地震活动性越高。这与研究区地震多发生在高密度区域相吻合。

  • 研究表明,波密地区横向密度差异的存在导致不同地质构造区域承受区域构造应力的能力不同,这对该区域内地震的形成和发展具有重要作用。在横向密度急剧变化的地区,应力更容易集中,且高密度的新元古代片麻状花岗闪长岩更容易达到破碎的临界状态。因此,密度差异带整体的垂向高密度区域更容易发生地震,这和观测结果一致。

  • 研究区刻痕信息(图6)和三维密度扰动信息(图8,图9)表明,此段路线位于高密度区域,并表现为各向异性强、应力相对集中等特征,且恰好处在横向不均匀性导致的密度差异地带上。嘉黎断裂的活动性导致主断裂附近区域产生多处次级断裂(图7),造成周围围岩稳定性较差(吴中海等,2005),活断层的长期蠕滑错动也会带来工程体的变形开裂不均匀沉降等问题(刘世杰等,2022)。因此,在该区域重大工程建设及运行存在着安全风险。

  • 5 结论

  • (1)利用小波变换多尺度分解及刻痕分析方法,可以有效地提取地壳形变带和构造单元信息。通过综合分析,在波密地区发现了20条断层;利用重力三维反演获取研究区高精度地壳密度扰动体和断裂带的空间展布,发现该地区存在4处较大的横向密度不均匀带。

  • (2)波密地区的断裂构造、地震记录与重力异常的分布表明,波密地区地震分布和断裂带主要位于密度过渡带区域,与物质密度扰动和分布不均匀相关。该区的整体地壳密度东西向变化相对于南北向较低,南北向变化更强烈,结构变形更复杂。结合研究区密度结构和地震活动区域分析表明,波密地区地震与密度横向不均匀性导致的密度差异相关,且地震主要分布于密度差异带的整体垂向高密度区域。

  • (3)波密地区的地震集中在横向密度不均匀区域,在嘎朗村至雪瓦卡村规划的某铁路工程,此区域各向异性强,且恰好处在横向不均匀性导致的密度差异地带上,存在着安全风险。因此建议在嘎朗村至雪瓦卡村的区间范围内的某铁路工程及其他工程建设向北部偏移,这样更有利于该地区工程建设的安全与稳定。

  • 致谢:感谢中国地质调查局武汉地质调查中心刘圣博高级工程师给本文提出的建议与指导。感谢中石化石油工程地球物理有限公司对本次野外数据采集工作给予的大力支持。

  • 参考文献

    • Bai Ling, Li Guohui, Song Bowen. 2017. The source parameters of the M6. 9 Mainling, Tibet earthquake and its tectonic implications. Chinese Journal of Geophysics, 60(12): 4956~4963 (in Chinese with English abstract).

    • Booth A L, Chamberlain C P, Kidd W S F, Zeitler P K. 2009. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Journal Geological Society of America Bulletin, 121(3~4): 385~407.

    • Chen Liyi, Wang Weilai, Cai Guangyao. 2023. Crustal thickness and Poisson's ratio beneath the middle-southern segment of Tan-Lu fault zone. Chinese Journal of Geophysics, 66(3): 1036~1049 (in Chinese with English abstract).

    • Coudurier-Curveur A, Tapponnier P, Okal E. 2020. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis. Earth and Planetary Science Letters, 531: 115928.

    • Ding Lin, Zhong Dalai. 2003. Geological evidence of thickening and uplift of the Gangdese crust before collision: The constraints of island arc collage on the uplift and expansion history of the Qinghai-Tibet Plateau. Chinese Science Bulletin, 8: 836~842.

    • Ding Lin, Zhong Dalai. 2013. The tectonic evolution of the eastern Himalaya syntaxis since the collision of the Indian and Eurasian plates. Chinese Journal of Geology, 48(2): 317~333 (in Chinese with English abstract).

    • Dong Hanwen, Xu Zhiqin, Cao Hui, Li Yuan, Liu Zhao, Li Huaqi, Yi Zhiyu, Chen Xijie, Ma Xuxuan, Wu Chan. 2018. Comparison of eastern and western boundary faults of Eastern Himalayan Syntaxis, and its tectonic evolution. Earth Science, 43(4): 933~951 (in Chinese with English abstract).

    • Edwards M A, Harrison T M. 1997. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite. Geology, 25(6): 543~546.

    • Feng Chengjun, Li Bin, Li Hui, Zhou Minghui, Zhang Peng, Zhu Siyu, Ren Yazhe, Qi Bangshen, Wang Miaomiao, Tan Chengxuan, Chen Qunce. 2022. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability. Journal of Geomechanics, 28(6): 919~937 (in Chinese with English abstract).

    • Gao Li'e, Zeng Lingsen, Asimow P D. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45(1): 39~42.

    • Gao Li'e, Zeng Lingsen, Zhao Linghao. 2021. Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources. China Geology, 4(1): 44~55.

    • Hao Guangming, Zeng Lingsen, Zhao Linghao. 2021. Miocene-Pliocene crust deep melting in the Nanga Bawa region of southern Tibet. Acta Petrologica Sinica, 37(11): 3501~3512 (in Chinese with English abstract).

    • Hao Hongtao, Li Hui, Hu Minzhang, Zheng Bing, Wang Tongqing, Liang Weifeng. 2015. Gravity variation observed by scientific expedition of Lushan earthquake. Journal of Geodesy and Geodynamics, 35(2): 331~335+341 (in Chinese with English abstract).

    • Harrison T M, Copeland P, Kidd W. 1992. Raising Tibet. Science, 255(5052): 1663~1670.

    • Hou Zunze, Yang Wenzai. 1995. Application research of wavelet analysis. Geophysical and geochemical exploration computing technology, (3): 1~9 (in Chinese with English abstract).

    • Hou Zunze, Yang Wenzai, Yu Changqing. 2014. Three-dimensional density structure of North China's craton crust and its geological implications. Chinese Journal of Geophysics, 57(7): 2334~2343 (in Chinese with English abstract).

    • Hou Zunze, Yang Wencai, Wang Yun, Li Chunhua. 2015. The production and application of irrational scale wavelet details for gravity field. Chinese Journal of Geophysics, 58(3): 1035~1041 (in Chinese with English abstract).

    • Huang Yiyun. 1984. The characterization of three-dimensional radom surface topography. Journal of Zhejiang University, 18(2): 141~151 (in Chinese with English abstract).

    • Li Guohui, Bai Ling, Ding Lin. 2020. Epicenter parameters and tectonic significance of the 2019 Meto Ms6. 3 earthquake in Tibet. Chinese Journal of Geophysics, 63(3): 1214~1223 (in Chinese with English abstract).

    • Li Haibing, Pan Jiawei, Sun Zhiming, Si Jialiang, Pei Junling, Liu Dongliang, Chevalier M, Wang Huan, Lu Haijian, Zhang Yong, and Li Chunrui. 2021. Continental tectonic deformation and seismic activity: A case study from the Tibetan Plateau. Acta Geologica Sinica, 95(1): 194~213(in Chinese with English abstract).

    • Li Hongru, Bai Ling, Zhan Huili. 2021. Research progress of Jiali fault acticity. Reviews of Geophysics and Planetary Physics, 52(2): 182~193 (in Chinese with English abstract).

    • Li Weiqiang. 2019. Analysis of geophysical (gravity) response characteristics of volcanic-sedimentary boron ore area in Ali area, Tibet. Master thesis of Kunming University of Science and Technolody (in Chinese with English abstract).

    • Li Weiqiang, Yu Changqing, Zou Changchun, Zeng Xiangzhi. 2023. Three-dimensional density distribution and earthquake activity of the northern Lancangjiang fault in eastern Tibet, Tectonophysics, https: //doi. org/10. 1016/j. tecto. 2023. 229864.

    • Lin Changhong, Peng Miao, Tan Handong, Xu Zhiqin, Li Zhonghai, Kong Wenxin, Tong Tuo, Wang Mao, ZengWeihua. 2017. Crustal structure beneath Namche Barwa, eastern Himalayan syntaxis: New insights from three-dimensional magnetotelluric imaging. A Journal of Asian Earth Science, 34: 674~685.

    • Liu Shijie, Lan Hengxing, Zhang Ning. 2022. Geomechanical analysis of major engineering region in middle segment of Jiali fault. Journal of Engineering Geology, 30(6): 1947~1961 (in Chinese with English abstract).

    • Ma Xin, Fu Lei, Li Tie feng, Yan Jing, Liu Ting, Wang Mingguo, Shao Wei. 2021. Analysis of Geothermal Origin in Eastern Himalayan Syntaxis. Geoscience, 35(1): 209~219 (in Chinese with English abstract).

    • Mallat S G. 1989. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(12): 2091~2110.

    • Mukhopadhyay B, Dasgupta S. 2015. Earthquake swarms near eastern Himalayan Syntaxis along Jiali fault in Tibet: A seismotectonic appraisal. Geoscience Frontiers, 6(5): 715~722.

    • Qin Xianghui, Chen Qunce, Meng Weng, Zhang Chongyuan, Sun Dongsheng, Yang Yuehui, Chen Hong, Li Ran. 2023. Determination of the current in-situ stress field of the Tongmai- Bomi section in the northern margin of the eastern Himalayan syntaxis. Acta Geologica Sinica, 97(7): 2126~2140(in Chinese with English abstract).

    • Seward D and Burg JP. 2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data. Tectonophysics, 451 (1~4): 282~289.

    • Shen Jun, Wang Yipeng, Ren Jinwei, Cao Zhongquan. 2003. Quaternary dextral shearing and crustal movement in Southeast TibentanPlateau. Xinjiang Geology, 21(1): 120~125.

    • Song Jian, Tang Fangtou, Deng Zhihui, Cao Zhongquan, Zhou Bin, Xiao Genru, Chen Weitao, Ge Weipeng. 2011. Study on current movement characteristics and numerical simulation of the main faults around Eastern Himalayan Syntaxis. Chinese Journal of Geophysics, 54(6): 1536~1548 (in Chinese with English abstract).

    • Song Jian, Tang Fangtou, Deng Zhihui. 2013. Late Quaternary movement characteristic of Jinali fault in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 973~980 (in Chinese with English abstract).

    • Song Lirong, Yu Changqing, Li Guihua, Feng Yangyang, He Junjie. 2015. Characteristics of gravity anomalies and prediction of volcano sedimentary boron deposit distribution in the Xiongba area, Tibet. Applied Geophysics, 12(4): 516~522+627.

    • Song Lirong, Yu Changqing, Zheng Jinping, Chen Wenxi, Wang Yongzhi, He Junjie, Li Guihua, Qian peng. 2017.

    • Exploration of volcanosedimentary boron deposit by geophysical methods—Application in the Ngari area, Tibet. Chinese Journal of Geophysics, 60(4): 1584~1594 (in Chinese with English abstract).

    • Sun Heping, Chen Xiaodong, Wei Zigen, Zhang Miaomiao, Zhang Geng, Ni Sidao, Chu Risheng, Xu Jianqiao, Cui Xiaoming, Xing Yuelin. 2022. A preliminary study on the ultra-wide band ambient noise of the deep underground based on observations of the seismometer and gravimeter. Chinese Journal of Geophysics, 65(12): 4543~4554 (in Chinese with English abstract).

    • Sun Yanyun, Yang Wencai. 2014. Recognizing and extracting the information of crustal deformation belts from the gravity field. Chinese Journal of Geophysics, 57(5): 1578~1587 (in Chinese with English abstract).

    • Sun Yanyun, Yang Wencai, Hou Zunze, Yu Changqing. 2015. Deformation scratches and crustal structures in Qinghai-Xizang (Tibet) Plateau. Geological Review, 61(2): 269~280 (in Chinese with English abstract).

    • Tang Fangtou, You Huichuan, Liang Xiaohua, Song Jian, Wang Xiaonan. 2019. A discussion on seismogenic fault of the Milin MS6. 9 Earthquake, Tibet, and its tectonic attributes. Acta Geoscientica Sinica, 40(1): 213~218 (in Chinese with English abstract).

    • Tang Jingtian, Yang Lei, Ren Zhengyong, Hu Shuanggui, Xu Zhimin. 2019. Characteristics of satellite gravity field and its seismic mechanism in Longmenshan fault zone. Seismology and Geology, 41(5): 1136~1154 (in Chinese with English abstract).

    • Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China. Journal of Geophysical Research, 82(20): 2905~2930.

    • Tikhonov A N. 1977. Solutions of Ill-posed Problems. Berlin: Winston & Sons.

    • Tobing A A L, Sukarasa I K, Yusuf M. 2021. Analysis of gravity anomaly and seismicity in Bali region. International Journal of Physical Sciences and Engineering, 5(3): 34~43.

    • Wang Hu, Li Kaijin, Chen Lichun, Chen Xingqiang, Li An. 2020.Evidence for Holocene activity on the Jiali fault, an active block boundary in the southeastern Tibetan Plateau. Seismological Research Letters, 91(3): 1776~1780.

    • Wang Xiaonan, Tang Fangtou, Shao Cuiru. 2018. The current movement characters of main faults surrounding the Namcha Barwa Syntaxis. Technology for Earthquake Disaster Prevention, 13(2): 267~275 (in Chinese with English abstract).

    • Wang Xin, Jiang Wenliang, Zhang Jingfa, Shen Wenhao, Fu Zhihao. 2022. Gravity anomaly and fine crustal structure in the middle segment of the Tan-Lu fault, eastern Chinese mainland. Journal of Asian Earth Sciences, 224: 105027.

    • Wang Xinsheng, Fang Jian, Xu Houze, Zheng Wei. 2012. Density structure of the lithosphere beneath North China Craton. Chinese Journal of Geophysics, 55(4): 1154~1160 (in Chinese with English abstract).

    • Wang Xinwei, Wang Tinghao, Gao Nanan, Liu Huiying, Mao Xiang, Luo Lu, Wu Chenbingjie, Cui Zixian. 2022. Formation mechanism and development potential of geothermal resources along Sichuan-Tibet Railway. Earth Sciences, 47(3): 995~1011 (in Chinese with English abstract).

    • Wu Zhonghai, Wu Zhenhan, Han Jinliang, Zhang Yongshuang, Hu Daogong, Jiang Wan. 2005. The Late Quaternary Normal Faulting of Fenghuo Shan Thrust-Folds Belt in Certral Qinghai-Tibet Plateau. Geoscience, (2): 181~188 (in Chinese with English abstract).

    • Xie Chao. 2018. A study on tectonic geomorphology of Namche Barwa and activity of the faults. Doctoral dissertation of Institute of Geology, China Earthquake Administration (in Chinese with English abstract).

    • Xie Chao, Zhou Bengang, Yang Fan, Li Zhengfang, Cui Yueju, Pang Wei, Li Wei. 2021. Geological and geomorphological evidence for activity along the Motuo fault, eastern side of the Namche Barwa Syntaxis, Tibetan Plateau. Seismological Research Letters, 92(4): 2196~2205.

    • Xiong Shengqing, Ding Yanyun, Li Zhankui. 2014. A new understanging on the pattern of deep faults in Xizang and the southwestern Sanjiang area. Chinese Journal of Geophysics, 57(12): 4097~4109 (in Chinese with English abstract).

    • Xiong Wei, Che Wei n, Wen Yangmao, Liu Gang, Nie Zhaosheng, Qiao Xuejun, Xu Caijun. 2019. Insight into the 2017 Main-ling MW6. 5 earthquake: A complicated thrust event beneath the Namche Barwa syntaxis. Earth Planets Space, 71: 71~87.

    • Xu Zhiqin, Cai Zhihui, Zhang Zeming, Li Qihua, Chen Fangyuan, Tang Zemin. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis. Acta Petrologica Sinica, 24(7): 1463~1476 (in Chinese with English abstract).

    • Xu Zhiqin, Yang Jingsui, Hou Zengqian, Zhang Zemming, Zeng Lingsen, Li Haibin, Zhang Xinjian, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau. Geology in China, 43(1): 1~42 (in Chinese with English abstract).

    • Xu Zhiqin, Li Guangwei, Zhang Zeming, Li Haibing, Wang Yuejun, Peng Miao, Hu Xiumian, Yi Zhiyu, Zheng Bihai. 2022. Review ten key geological issues of the Tibetan Plateau—Commemoration of the centennial anniversary of Acta Geologica Sinica. Acta Geologica Sinica, 96(1): 65~94(in Chinese with English abstract).

    • Yan Jiayong, Lv Qingtian, Chen Chunming, Deng Zhen, Qi Guang, Zhang Kun, Liu Zhendong, Wang Jie, Liu Yan. 2015. Identification and ectraction of geological atructure information based on multi-scale edge detection of gravity and magnetic fields: An example of the Tongling ore concentration area. Chinese Journal of Geophysics, 4450~4464 (in Chinese with English abstract).

    • Yang Jianya, Bai Ling, Li Guohui, Cheng Cheng. 2017. Seismicity in the eastern Himalayan syntaxis and its tectonic implications. Progress in Earthquake Sciences, (6): 12~18 (in Chinese with English abstract).

    • Yang Wencai, Hou Zunze. 1996. Partition of crustal density structure of Chinese continent. Continental Dynamics, 1(2): 7~11.

    • Yang Wencai, Shi Zhiqun, Hou Zunze, Cheng Zhenyan. 2001. Discrete wavelet transform for multiple decomposition of gravity anomalies. Chinese Journal of Geophysics, 44(4): 534~541 (in Chinese with English abstract).

    • Yang Wencai, Xu Jiren, Cheng Zhenyan. 2005. Geophysics and Crust-mantle in the Sulu Dabetsu Orogenic Belt. Beijing: Geological Press (in Chinese).

    • Yang Wencai, Sun Yanyun, Yu Changqin. 2015. Crustal density deformation zones of Qinghai-Tibet Plateau and their geological implications. Chinese Journal of Geophysics, 58(11): 4115~4128 (in Chinese with English abstract).

    • Ye Jin, Zhao Junmeng, Liu Hongbin, Zhang Heng, Xu Qiang, Chen Shuze. 2020. Aftershocks localization and shallow crustal velocity structure following the MS6. 9 Mainling earthquake in Tibet, China. Chinese Science Bulletin, 65: 1496~1505 (in Chinese with English abstract).

    • Zhang Guowei, Guo Anlin. 2013. Tectonics of South China continent and its implications. Science China: Earth Science, 43(10): 1553~1582.

    • Zhang Jinjiang, Ji Jianqing, Zhong Dalai, Ding Lin, He Shundong. 2003. Discussion on the tectonic pattern and formation process of the Nanga Bawa tectonic junction in the East Himalayas. Scientia Sinica (Terrae), 33(4): 373~383 (in Chinese with English abstract).

    • Zhang Ling, Liang Shiming, Yang Xiaoping, Gan Weijun, Dai Chenglong. 2021. Geometric and kinematic evolution of the Jiali fault, eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 212: 104722.

    • Zhang Zeming, Wang Jinli, Zhao Guochun, Shi Chao. 2008. Geochronology and Precambrian tectonic evolution of the Namche Barwa complex from the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica, 24(7): 1477~1487 (in Chinese with English abstract).

    • Zhao Yuanfang, Gong Wangbin, Jiang Wan, Chen Longyao, Qiu Duwei. 2021. Multi-stage characteristics and tectonic significance of the Jiali fault in Guxiang-Tongmai section, south Tibet. Geoscience, 35(1): 220~233 (in Chinese with English abstract).

    • Zheng Lailin, Jin Zhenmin, Pan Guitang, Geng Quanru, Sun Zhimin. 2004. Geological features and tectonic evolution in the Namjagbarwa area, eastern Himalayas. Acta Geologica Sinica, 78(6): 743~751(in Chinese with English abstract).

    • Zhong Ning, Guo Changbao, Huang Xiaolong, Wu Ruian, Ding Yingying, Zhang Xianbing, Li Haibing. 2021. Late Quaternary activity and paleoseismic records of the middle south section of the Jiali-Chayu fault. Acta Geologica Sinica, 95(12): 3642~3659 (in Chinese with English abstract).

    • Zou Zinan. 2018. Study on rock types and tectonic characteristics in the east junction zone of the Namjagbarwa structural knot. Journal of Chengdu University of Technology (Science & Technology Edition), 45(3): 325~333 (in Chinese with English abstract).

    • 白玲, 李国辉, 宋博文. 2017. 2017 年西藏米林 6. 9 级地震震源参数及其构造意义. 地球物理学报, 60(12): 4956~4963.

    • 陈立艺, 王未来, 蔡光耀. 2023. 郯庐断裂带中南段地壳厚度与泊松比研究. 地球物理报, 66(3): 1036~1049.

    • 丁林, 钟大赉. 2013. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化. 地质科学, 48(2): 317~333.

    • 董汉文, 许志琴, 曹汇, 李源, 刘钊, 李化启, 易治宇, 陈希节, 马绪宣, 吴禅. 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933~951.

    • 丰成君, 李滨, 李惠, 周铭辉, 张鹏, 朱思雨, 任雅哲, 戚帮申, 王苗苗, 谭成轩, 陈群策. 2022. 南迦巴瓦地区地应力场估算与构造稳定性探讨. 地质力学学报, 28(6): 919~937.

    • 郝光明, 曾令森, 赵令浩. 2021. 西藏南部南迦巴瓦地区中新世—上新世地壳深熔作用. 岩石学报, 37(11): 3501~3512.

    • 郝洪涛, 李辉, 胡敏章, 郑兵, 王同庆, 梁伟锋. 2015. 芦山地震科学考察观测到的重力变化. 大地测量与地球动力学, 35(2): 331~335+341.

    • 侯遵泽, 杨文采. 1995. 小波分析应用研究. 物探化探计算技术, (3): 1~9.

    • 侯遵泽, 杨文采, 于常青. 2014. 华北克拉通地壳三维密度结构与地质含义. 地球物理学报, 57(7): 2334~2343.

    • 侯遵泽, 杨文采, 王允, 李春华. 2015. 重力场实数尺度小波分解及其应用. 地球物理学报, 58(3): 1035~1041.

    • 黄逸云. 1984. 三维随机表面形貌的识别. 浙江大学学报, 18(2): 141~151.

    • 李国辉, 白玲, 丁林等. 2020. 2019年西藏墨脱MS 6. 3 级地震震源参数及其构造意义. 地球物理学报, 63(3): 1214~1223.

    • 李海兵, 潘家伟, 孙知明, 司家亮, 裴军令, 刘栋梁, Chevalier M, 王焕, 卢海建, 郑勇, 李春锐. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报, 95(1): 194~213.

    • 李鸿儒, 白玲, 詹慧丽. 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论, 52(2): 182~193.

    • 李卫强. 2019. 西藏阿里地区火山-沉积型硼矿区地球物理(重力)响应特征分析. 昆明理工大学硕士学位论文.

    • 刘世杰, 兰恒星, 张宁. 2022. 嘉黎断裂中段重大工程区地质力学分析. 工程地质学报, 30(6): 1947~1961.

    • 马鑫, 付雷, 李铁锋, 闫晶, 刘延, 王明国, 邵炜.2021.喜马拉雅东构造结地区地热成因分析.现代地质, 35(1): 209~219.

    • 秦向辉, 陈群策, 孟文, 张重远, 孙东生, 杨跃辉, 陈虹, 李冉. 2023. 喜马拉雅东构造结北缘通麦—波密段现今地应力场特征研究. 地质学报, 97(7): 2126~2140.

    • 沈军, 汪一鹏, 任金卫, 曹忠权. 2003. 青藏高原东南部第四纪右旋剪切运动. 新疆地质, 21(1): 120~125.

    • 宋键, 唐方头, 邓志辉, 曹忠权, 周斌, 肖根如, 陈为涛, 葛伟鹏.2011. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究.地球物理学报, 54(6): 1536~1548.

    • 宋键, 唐方头, 邓志辉, 肖根如, 陈为涛. 2013. 青藏高原嘉黎断裂晚第四纪运动特征. 北京大学学报(自然科学版), 49(6): 973~980.

    • 宋丽蓉, 于常青, 郑绵平, 陈文西, 王永智, 何俊杰, 李桂花, 钱鹏. 2017. 利用地球物理方法探测火山沉积型硼矿——在西藏阿里地区的应用. 地球物理学报, 60(4): 1584~1594.

    • 孙艳云, 杨文采. 2014. 从重力场识别与提取地壳变形带信息的方法研究. 地球物理学报, 57(5): 1578~1587.

    • 孙艳云, 杨文采, 侯遵泽, 于常青. 2015. 青藏高原刻痕与地壳分层构造. 地质论评, 61(2): 269~280.

    • 孙和平, 陈晓东, 危自根, 张苗苗, 张赓, 倪四道, 储日升, 徐建桥, 崔小明, 邢乐林. 2022. 基于地震和重力观测的深地超宽频带背景噪声初探. 地球物理学报, 65(12): 4543~4554.

    • 唐方头, 尤惠川, 梁小华, 宋键, 王晓楠. 2019. 西藏米林MS 6. 9级地震发震断层判定及其构造属性讨论. 地球学报, 40(1): 213~218.

    • 汤井田, 杨磊, 任政勇, 胡双贵, 徐志敏. 2019. 龙门山断裂带卫星重力场特征及其发震机制. 地震地质, 41(5): 1136~1154.

    • 王晓楠, 唐方头, 邵翠茹. 2018. 南迦巴瓦构造结周边地区主要断裂现今运动特征. 震灾防御技术, 13(2): 267~275.

    • 王新胜, 方剑, 许厚泽, 郑伟. 2012. 华北克拉通岩石圈三维密度结构. 地球物理学报, 55(4): 1154~1160.

    • 汪新伟, 王婷灏, 高楠安, 刘慧盈, 毛翔, 罗璐, 吴尘冰洁, 崔梓贤. 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995~1011.

    • 吴中海, 吴珍汉, 韩金良, 张永双, 胡道功, 江万. 2005. 青藏铁路风火山段晚第四纪断裂活动分析. 现代地质, (2): 181~188

    • 谢超. 2018. 南迦巴瓦地区构造地貌及断裂活动特征. 中国地震局地质研究所博士学位论文.

    • 熊盛青, 丁燕云, 李占奎. 2014. 西藏及西南三江深断裂构造格局新认识. 地球物理报, 57(12): 4097~4109.

    • 许志琴, 蔡志慧, 张泽明, 李化启, 陈方远, 唐泽民. 2008. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学.岩石学报, 24(7): 1463~1476.

    • 许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016. 青藏高原大陆动力学研究若干进展. 中国地质, 43(1): 1~42.

    • 许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题——《地质学报》百年华诞纪念. 地质学报, 96(1): 65~94.

    • 严加永, 吕庆田, 陈明春, 邓震, 祁光, 张昆, 刘振东, 汪杰, 刘彦. 2015. 基于重磁场多尺度边缘检测的地质构造信息识别与提取——以铜陵矿集区为例. 地球物理学报, 58(12): 4450~4464.

    • 叶进, 赵俊猛, 刘红兵, 张衡, 徐强, 陈树泽. 2020. 西藏米林 MS 6. 9 级地震余震定位和地壳浅层速度结构. 科学通报, 65: 1496~1505.

    • 杨建亚, 白玲, 李国辉, 程成.2017. 东喜马拉雅构造结地区地震活动及其构造意义. 国际地震动态, (6): 12~18.

    • 杨文采, 施志群, 侯遵泽, 程振炎. 2001. 离散小波变换与重力异常多重分解. 地球物理学报, 44(4): 534~541.

    • 杨文采, 徐纪人, 程振炎. 2005. 苏鲁大别造山带地球物理与壳幔作用. 北京: 地质出版社.

    • 杨文采, 孙艳云, 于常青. 2015. 青藏高原地壳密度变形带及构造分区. 地球物理学报, 58(11): 4115~4128.

    • 张进江, 季建清, 钟大赉, 丁林, 何顺东.2003.东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨.中国科学(D 缉), 33(4): 373~383.

    • 张泽明, 王金丽, 赵国春, 石超. 2008. 喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化. 岩石学报, 24(7): 1477~1487.

    • 赵远方, 公王斌, 江万, 陈龙耀, 仇度伟. 2021. 藏南嘉黎断裂古乡—通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220~233.

    • 郑来林, 金振民, 潘桂棠, 耿全如, 孙志民.2004.东喜马拉雅构造结南迦巴瓦地区区域地质特征及构造演化.地质学报, 78(6): 743~751.

    • 钟宁, 郭长宝, 黄小龙, 吴瑞安, 丁莹莹, 张献兵, 李海兵. 2021. 嘉黎-察隅断裂带中南段晚第四纪活动性及其古地震记录. 地质学报, 95(12): 3642~3659.

    • 邹子南. 2018. 南迦巴瓦构造结东侧结合带岩石类型与构造特征. 成都理工大学学报(自然科学版), 45(3): 325~333.

  • 参考文献

    • Bai Ling, Li Guohui, Song Bowen. 2017. The source parameters of the M6. 9 Mainling, Tibet earthquake and its tectonic implications. Chinese Journal of Geophysics, 60(12): 4956~4963 (in Chinese with English abstract).

    • Booth A L, Chamberlain C P, Kidd W S F, Zeitler P K. 2009. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Journal Geological Society of America Bulletin, 121(3~4): 385~407.

    • Chen Liyi, Wang Weilai, Cai Guangyao. 2023. Crustal thickness and Poisson's ratio beneath the middle-southern segment of Tan-Lu fault zone. Chinese Journal of Geophysics, 66(3): 1036~1049 (in Chinese with English abstract).

    • Coudurier-Curveur A, Tapponnier P, Okal E. 2020. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis. Earth and Planetary Science Letters, 531: 115928.

    • Ding Lin, Zhong Dalai. 2003. Geological evidence of thickening and uplift of the Gangdese crust before collision: The constraints of island arc collage on the uplift and expansion history of the Qinghai-Tibet Plateau. Chinese Science Bulletin, 8: 836~842.

    • Ding Lin, Zhong Dalai. 2013. The tectonic evolution of the eastern Himalaya syntaxis since the collision of the Indian and Eurasian plates. Chinese Journal of Geology, 48(2): 317~333 (in Chinese with English abstract).

    • Dong Hanwen, Xu Zhiqin, Cao Hui, Li Yuan, Liu Zhao, Li Huaqi, Yi Zhiyu, Chen Xijie, Ma Xuxuan, Wu Chan. 2018. Comparison of eastern and western boundary faults of Eastern Himalayan Syntaxis, and its tectonic evolution. Earth Science, 43(4): 933~951 (in Chinese with English abstract).

    • Edwards M A, Harrison T M. 1997. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite. Geology, 25(6): 543~546.

    • Feng Chengjun, Li Bin, Li Hui, Zhou Minghui, Zhang Peng, Zhu Siyu, Ren Yazhe, Qi Bangshen, Wang Miaomiao, Tan Chengxuan, Chen Qunce. 2022. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability. Journal of Geomechanics, 28(6): 919~937 (in Chinese with English abstract).

    • Gao Li'e, Zeng Lingsen, Asimow P D. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45(1): 39~42.

    • Gao Li'e, Zeng Lingsen, Zhao Linghao. 2021. Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources. China Geology, 4(1): 44~55.

    • Hao Guangming, Zeng Lingsen, Zhao Linghao. 2021. Miocene-Pliocene crust deep melting in the Nanga Bawa region of southern Tibet. Acta Petrologica Sinica, 37(11): 3501~3512 (in Chinese with English abstract).

    • Hao Hongtao, Li Hui, Hu Minzhang, Zheng Bing, Wang Tongqing, Liang Weifeng. 2015. Gravity variation observed by scientific expedition of Lushan earthquake. Journal of Geodesy and Geodynamics, 35(2): 331~335+341 (in Chinese with English abstract).

    • Harrison T M, Copeland P, Kidd W. 1992. Raising Tibet. Science, 255(5052): 1663~1670.

    • Hou Zunze, Yang Wenzai. 1995. Application research of wavelet analysis. Geophysical and geochemical exploration computing technology, (3): 1~9 (in Chinese with English abstract).

    • Hou Zunze, Yang Wenzai, Yu Changqing. 2014. Three-dimensional density structure of North China's craton crust and its geological implications. Chinese Journal of Geophysics, 57(7): 2334~2343 (in Chinese with English abstract).

    • Hou Zunze, Yang Wencai, Wang Yun, Li Chunhua. 2015. The production and application of irrational scale wavelet details for gravity field. Chinese Journal of Geophysics, 58(3): 1035~1041 (in Chinese with English abstract).

    • Huang Yiyun. 1984. The characterization of three-dimensional radom surface topography. Journal of Zhejiang University, 18(2): 141~151 (in Chinese with English abstract).

    • Li Guohui, Bai Ling, Ding Lin. 2020. Epicenter parameters and tectonic significance of the 2019 Meto Ms6. 3 earthquake in Tibet. Chinese Journal of Geophysics, 63(3): 1214~1223 (in Chinese with English abstract).

    • Li Haibing, Pan Jiawei, Sun Zhiming, Si Jialiang, Pei Junling, Liu Dongliang, Chevalier M, Wang Huan, Lu Haijian, Zhang Yong, and Li Chunrui. 2021. Continental tectonic deformation and seismic activity: A case study from the Tibetan Plateau. Acta Geologica Sinica, 95(1): 194~213(in Chinese with English abstract).

    • Li Hongru, Bai Ling, Zhan Huili. 2021. Research progress of Jiali fault acticity. Reviews of Geophysics and Planetary Physics, 52(2): 182~193 (in Chinese with English abstract).

    • Li Weiqiang. 2019. Analysis of geophysical (gravity) response characteristics of volcanic-sedimentary boron ore area in Ali area, Tibet. Master thesis of Kunming University of Science and Technolody (in Chinese with English abstract).

    • Li Weiqiang, Yu Changqing, Zou Changchun, Zeng Xiangzhi. 2023. Three-dimensional density distribution and earthquake activity of the northern Lancangjiang fault in eastern Tibet, Tectonophysics, https: //doi. org/10. 1016/j. tecto. 2023. 229864.

    • Lin Changhong, Peng Miao, Tan Handong, Xu Zhiqin, Li Zhonghai, Kong Wenxin, Tong Tuo, Wang Mao, ZengWeihua. 2017. Crustal structure beneath Namche Barwa, eastern Himalayan syntaxis: New insights from three-dimensional magnetotelluric imaging. A Journal of Asian Earth Science, 34: 674~685.

    • Liu Shijie, Lan Hengxing, Zhang Ning. 2022. Geomechanical analysis of major engineering region in middle segment of Jiali fault. Journal of Engineering Geology, 30(6): 1947~1961 (in Chinese with English abstract).

    • Ma Xin, Fu Lei, Li Tie feng, Yan Jing, Liu Ting, Wang Mingguo, Shao Wei. 2021. Analysis of Geothermal Origin in Eastern Himalayan Syntaxis. Geoscience, 35(1): 209~219 (in Chinese with English abstract).

    • Mallat S G. 1989. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(12): 2091~2110.

    • Mukhopadhyay B, Dasgupta S. 2015. Earthquake swarms near eastern Himalayan Syntaxis along Jiali fault in Tibet: A seismotectonic appraisal. Geoscience Frontiers, 6(5): 715~722.

    • Qin Xianghui, Chen Qunce, Meng Weng, Zhang Chongyuan, Sun Dongsheng, Yang Yuehui, Chen Hong, Li Ran. 2023. Determination of the current in-situ stress field of the Tongmai- Bomi section in the northern margin of the eastern Himalayan syntaxis. Acta Geologica Sinica, 97(7): 2126~2140(in Chinese with English abstract).

    • Seward D and Burg JP. 2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data. Tectonophysics, 451 (1~4): 282~289.

    • Shen Jun, Wang Yipeng, Ren Jinwei, Cao Zhongquan. 2003. Quaternary dextral shearing and crustal movement in Southeast TibentanPlateau. Xinjiang Geology, 21(1): 120~125.

    • Song Jian, Tang Fangtou, Deng Zhihui, Cao Zhongquan, Zhou Bin, Xiao Genru, Chen Weitao, Ge Weipeng. 2011. Study on current movement characteristics and numerical simulation of the main faults around Eastern Himalayan Syntaxis. Chinese Journal of Geophysics, 54(6): 1536~1548 (in Chinese with English abstract).

    • Song Jian, Tang Fangtou, Deng Zhihui. 2013. Late Quaternary movement characteristic of Jinali fault in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 973~980 (in Chinese with English abstract).

    • Song Lirong, Yu Changqing, Li Guihua, Feng Yangyang, He Junjie. 2015. Characteristics of gravity anomalies and prediction of volcano sedimentary boron deposit distribution in the Xiongba area, Tibet. Applied Geophysics, 12(4): 516~522+627.

    • Song Lirong, Yu Changqing, Zheng Jinping, Chen Wenxi, Wang Yongzhi, He Junjie, Li Guihua, Qian peng. 2017.

    • Exploration of volcanosedimentary boron deposit by geophysical methods—Application in the Ngari area, Tibet. Chinese Journal of Geophysics, 60(4): 1584~1594 (in Chinese with English abstract).

    • Sun Heping, Chen Xiaodong, Wei Zigen, Zhang Miaomiao, Zhang Geng, Ni Sidao, Chu Risheng, Xu Jianqiao, Cui Xiaoming, Xing Yuelin. 2022. A preliminary study on the ultra-wide band ambient noise of the deep underground based on observations of the seismometer and gravimeter. Chinese Journal of Geophysics, 65(12): 4543~4554 (in Chinese with English abstract).

    • Sun Yanyun, Yang Wencai. 2014. Recognizing and extracting the information of crustal deformation belts from the gravity field. Chinese Journal of Geophysics, 57(5): 1578~1587 (in Chinese with English abstract).

    • Sun Yanyun, Yang Wencai, Hou Zunze, Yu Changqing. 2015. Deformation scratches and crustal structures in Qinghai-Xizang (Tibet) Plateau. Geological Review, 61(2): 269~280 (in Chinese with English abstract).

    • Tang Fangtou, You Huichuan, Liang Xiaohua, Song Jian, Wang Xiaonan. 2019. A discussion on seismogenic fault of the Milin MS6. 9 Earthquake, Tibet, and its tectonic attributes. Acta Geoscientica Sinica, 40(1): 213~218 (in Chinese with English abstract).

    • Tang Jingtian, Yang Lei, Ren Zhengyong, Hu Shuanggui, Xu Zhimin. 2019. Characteristics of satellite gravity field and its seismic mechanism in Longmenshan fault zone. Seismology and Geology, 41(5): 1136~1154 (in Chinese with English abstract).

    • Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China. Journal of Geophysical Research, 82(20): 2905~2930.

    • Tikhonov A N. 1977. Solutions of Ill-posed Problems. Berlin: Winston & Sons.

    • Tobing A A L, Sukarasa I K, Yusuf M. 2021. Analysis of gravity anomaly and seismicity in Bali region. International Journal of Physical Sciences and Engineering, 5(3): 34~43.

    • Wang Hu, Li Kaijin, Chen Lichun, Chen Xingqiang, Li An. 2020.Evidence for Holocene activity on the Jiali fault, an active block boundary in the southeastern Tibetan Plateau. Seismological Research Letters, 91(3): 1776~1780.

    • Wang Xiaonan, Tang Fangtou, Shao Cuiru. 2018. The current movement characters of main faults surrounding the Namcha Barwa Syntaxis. Technology for Earthquake Disaster Prevention, 13(2): 267~275 (in Chinese with English abstract).

    • Wang Xin, Jiang Wenliang, Zhang Jingfa, Shen Wenhao, Fu Zhihao. 2022. Gravity anomaly and fine crustal structure in the middle segment of the Tan-Lu fault, eastern Chinese mainland. Journal of Asian Earth Sciences, 224: 105027.

    • Wang Xinsheng, Fang Jian, Xu Houze, Zheng Wei. 2012. Density structure of the lithosphere beneath North China Craton. Chinese Journal of Geophysics, 55(4): 1154~1160 (in Chinese with English abstract).

    • Wang Xinwei, Wang Tinghao, Gao Nanan, Liu Huiying, Mao Xiang, Luo Lu, Wu Chenbingjie, Cui Zixian. 2022. Formation mechanism and development potential of geothermal resources along Sichuan-Tibet Railway. Earth Sciences, 47(3): 995~1011 (in Chinese with English abstract).

    • Wu Zhonghai, Wu Zhenhan, Han Jinliang, Zhang Yongshuang, Hu Daogong, Jiang Wan. 2005. The Late Quaternary Normal Faulting of Fenghuo Shan Thrust-Folds Belt in Certral Qinghai-Tibet Plateau. Geoscience, (2): 181~188 (in Chinese with English abstract).

    • Xie Chao. 2018. A study on tectonic geomorphology of Namche Barwa and activity of the faults. Doctoral dissertation of Institute of Geology, China Earthquake Administration (in Chinese with English abstract).

    • Xie Chao, Zhou Bengang, Yang Fan, Li Zhengfang, Cui Yueju, Pang Wei, Li Wei. 2021. Geological and geomorphological evidence for activity along the Motuo fault, eastern side of the Namche Barwa Syntaxis, Tibetan Plateau. Seismological Research Letters, 92(4): 2196~2205.

    • Xiong Shengqing, Ding Yanyun, Li Zhankui. 2014. A new understanging on the pattern of deep faults in Xizang and the southwestern Sanjiang area. Chinese Journal of Geophysics, 57(12): 4097~4109 (in Chinese with English abstract).

    • Xiong Wei, Che Wei n, Wen Yangmao, Liu Gang, Nie Zhaosheng, Qiao Xuejun, Xu Caijun. 2019. Insight into the 2017 Main-ling MW6. 5 earthquake: A complicated thrust event beneath the Namche Barwa syntaxis. Earth Planets Space, 71: 71~87.

    • Xu Zhiqin, Cai Zhihui, Zhang Zeming, Li Qihua, Chen Fangyuan, Tang Zemin. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis. Acta Petrologica Sinica, 24(7): 1463~1476 (in Chinese with English abstract).

    • Xu Zhiqin, Yang Jingsui, Hou Zengqian, Zhang Zemming, Zeng Lingsen, Li Haibin, Zhang Xinjian, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau. Geology in China, 43(1): 1~42 (in Chinese with English abstract).

    • Xu Zhiqin, Li Guangwei, Zhang Zeming, Li Haibing, Wang Yuejun, Peng Miao, Hu Xiumian, Yi Zhiyu, Zheng Bihai. 2022. Review ten key geological issues of the Tibetan Plateau—Commemoration of the centennial anniversary of Acta Geologica Sinica. Acta Geologica Sinica, 96(1): 65~94(in Chinese with English abstract).

    • Yan Jiayong, Lv Qingtian, Chen Chunming, Deng Zhen, Qi Guang, Zhang Kun, Liu Zhendong, Wang Jie, Liu Yan. 2015. Identification and ectraction of geological atructure information based on multi-scale edge detection of gravity and magnetic fields: An example of the Tongling ore concentration area. Chinese Journal of Geophysics, 4450~4464 (in Chinese with English abstract).

    • Yang Jianya, Bai Ling, Li Guohui, Cheng Cheng. 2017. Seismicity in the eastern Himalayan syntaxis and its tectonic implications. Progress in Earthquake Sciences, (6): 12~18 (in Chinese with English abstract).

    • Yang Wencai, Hou Zunze. 1996. Partition of crustal density structure of Chinese continent. Continental Dynamics, 1(2): 7~11.

    • Yang Wencai, Shi Zhiqun, Hou Zunze, Cheng Zhenyan. 2001. Discrete wavelet transform for multiple decomposition of gravity anomalies. Chinese Journal of Geophysics, 44(4): 534~541 (in Chinese with English abstract).

    • Yang Wencai, Xu Jiren, Cheng Zhenyan. 2005. Geophysics and Crust-mantle in the Sulu Dabetsu Orogenic Belt. Beijing: Geological Press (in Chinese).

    • Yang Wencai, Sun Yanyun, Yu Changqin. 2015. Crustal density deformation zones of Qinghai-Tibet Plateau and their geological implications. Chinese Journal of Geophysics, 58(11): 4115~4128 (in Chinese with English abstract).

    • Ye Jin, Zhao Junmeng, Liu Hongbin, Zhang Heng, Xu Qiang, Chen Shuze. 2020. Aftershocks localization and shallow crustal velocity structure following the MS6. 9 Mainling earthquake in Tibet, China. Chinese Science Bulletin, 65: 1496~1505 (in Chinese with English abstract).

    • Zhang Guowei, Guo Anlin. 2013. Tectonics of South China continent and its implications. Science China: Earth Science, 43(10): 1553~1582.

    • Zhang Jinjiang, Ji Jianqing, Zhong Dalai, Ding Lin, He Shundong. 2003. Discussion on the tectonic pattern and formation process of the Nanga Bawa tectonic junction in the East Himalayas. Scientia Sinica (Terrae), 33(4): 373~383 (in Chinese with English abstract).

    • Zhang Ling, Liang Shiming, Yang Xiaoping, Gan Weijun, Dai Chenglong. 2021. Geometric and kinematic evolution of the Jiali fault, eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 212: 104722.

    • Zhang Zeming, Wang Jinli, Zhao Guochun, Shi Chao. 2008. Geochronology and Precambrian tectonic evolution of the Namche Barwa complex from the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica, 24(7): 1477~1487 (in Chinese with English abstract).

    • Zhao Yuanfang, Gong Wangbin, Jiang Wan, Chen Longyao, Qiu Duwei. 2021. Multi-stage characteristics and tectonic significance of the Jiali fault in Guxiang-Tongmai section, south Tibet. Geoscience, 35(1): 220~233 (in Chinese with English abstract).

    • Zheng Lailin, Jin Zhenmin, Pan Guitang, Geng Quanru, Sun Zhimin. 2004. Geological features and tectonic evolution in the Namjagbarwa area, eastern Himalayas. Acta Geologica Sinica, 78(6): 743~751(in Chinese with English abstract).

    • Zhong Ning, Guo Changbao, Huang Xiaolong, Wu Ruian, Ding Yingying, Zhang Xianbing, Li Haibing. 2021. Late Quaternary activity and paleoseismic records of the middle south section of the Jiali-Chayu fault. Acta Geologica Sinica, 95(12): 3642~3659 (in Chinese with English abstract).

    • Zou Zinan. 2018. Study on rock types and tectonic characteristics in the east junction zone of the Namjagbarwa structural knot. Journal of Chengdu University of Technology (Science & Technology Edition), 45(3): 325~333 (in Chinese with English abstract).

    • 白玲, 李国辉, 宋博文. 2017. 2017 年西藏米林 6. 9 级地震震源参数及其构造意义. 地球物理学报, 60(12): 4956~4963.

    • 陈立艺, 王未来, 蔡光耀. 2023. 郯庐断裂带中南段地壳厚度与泊松比研究. 地球物理报, 66(3): 1036~1049.

    • 丁林, 钟大赉. 2013. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化. 地质科学, 48(2): 317~333.

    • 董汉文, 许志琴, 曹汇, 李源, 刘钊, 李化启, 易治宇, 陈希节, 马绪宣, 吴禅. 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933~951.

    • 丰成君, 李滨, 李惠, 周铭辉, 张鹏, 朱思雨, 任雅哲, 戚帮申, 王苗苗, 谭成轩, 陈群策. 2022. 南迦巴瓦地区地应力场估算与构造稳定性探讨. 地质力学学报, 28(6): 919~937.

    • 郝光明, 曾令森, 赵令浩. 2021. 西藏南部南迦巴瓦地区中新世—上新世地壳深熔作用. 岩石学报, 37(11): 3501~3512.

    • 郝洪涛, 李辉, 胡敏章, 郑兵, 王同庆, 梁伟锋. 2015. 芦山地震科学考察观测到的重力变化. 大地测量与地球动力学, 35(2): 331~335+341.

    • 侯遵泽, 杨文采. 1995. 小波分析应用研究. 物探化探计算技术, (3): 1~9.

    • 侯遵泽, 杨文采, 于常青. 2014. 华北克拉通地壳三维密度结构与地质含义. 地球物理学报, 57(7): 2334~2343.

    • 侯遵泽, 杨文采, 王允, 李春华. 2015. 重力场实数尺度小波分解及其应用. 地球物理学报, 58(3): 1035~1041.

    • 黄逸云. 1984. 三维随机表面形貌的识别. 浙江大学学报, 18(2): 141~151.

    • 李国辉, 白玲, 丁林等. 2020. 2019年西藏墨脱MS 6. 3 级地震震源参数及其构造意义. 地球物理学报, 63(3): 1214~1223.

    • 李海兵, 潘家伟, 孙知明, 司家亮, 裴军令, 刘栋梁, Chevalier M, 王焕, 卢海建, 郑勇, 李春锐. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报, 95(1): 194~213.

    • 李鸿儒, 白玲, 詹慧丽. 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论, 52(2): 182~193.

    • 李卫强. 2019. 西藏阿里地区火山-沉积型硼矿区地球物理(重力)响应特征分析. 昆明理工大学硕士学位论文.

    • 刘世杰, 兰恒星, 张宁. 2022. 嘉黎断裂中段重大工程区地质力学分析. 工程地质学报, 30(6): 1947~1961.

    • 马鑫, 付雷, 李铁锋, 闫晶, 刘延, 王明国, 邵炜.2021.喜马拉雅东构造结地区地热成因分析.现代地质, 35(1): 209~219.

    • 秦向辉, 陈群策, 孟文, 张重远, 孙东生, 杨跃辉, 陈虹, 李冉. 2023. 喜马拉雅东构造结北缘通麦—波密段现今地应力场特征研究. 地质学报, 97(7): 2126~2140.

    • 沈军, 汪一鹏, 任金卫, 曹忠权. 2003. 青藏高原东南部第四纪右旋剪切运动. 新疆地质, 21(1): 120~125.

    • 宋键, 唐方头, 邓志辉, 曹忠权, 周斌, 肖根如, 陈为涛, 葛伟鹏.2011. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究.地球物理学报, 54(6): 1536~1548.

    • 宋键, 唐方头, 邓志辉, 肖根如, 陈为涛. 2013. 青藏高原嘉黎断裂晚第四纪运动特征. 北京大学学报(自然科学版), 49(6): 973~980.

    • 宋丽蓉, 于常青, 郑绵平, 陈文西, 王永智, 何俊杰, 李桂花, 钱鹏. 2017. 利用地球物理方法探测火山沉积型硼矿——在西藏阿里地区的应用. 地球物理学报, 60(4): 1584~1594.

    • 孙艳云, 杨文采. 2014. 从重力场识别与提取地壳变形带信息的方法研究. 地球物理学报, 57(5): 1578~1587.

    • 孙艳云, 杨文采, 侯遵泽, 于常青. 2015. 青藏高原刻痕与地壳分层构造. 地质论评, 61(2): 269~280.

    • 孙和平, 陈晓东, 危自根, 张苗苗, 张赓, 倪四道, 储日升, 徐建桥, 崔小明, 邢乐林. 2022. 基于地震和重力观测的深地超宽频带背景噪声初探. 地球物理学报, 65(12): 4543~4554.

    • 唐方头, 尤惠川, 梁小华, 宋键, 王晓楠. 2019. 西藏米林MS 6. 9级地震发震断层判定及其构造属性讨论. 地球学报, 40(1): 213~218.

    • 汤井田, 杨磊, 任政勇, 胡双贵, 徐志敏. 2019. 龙门山断裂带卫星重力场特征及其发震机制. 地震地质, 41(5): 1136~1154.

    • 王晓楠, 唐方头, 邵翠茹. 2018. 南迦巴瓦构造结周边地区主要断裂现今运动特征. 震灾防御技术, 13(2): 267~275.

    • 王新胜, 方剑, 许厚泽, 郑伟. 2012. 华北克拉通岩石圈三维密度结构. 地球物理学报, 55(4): 1154~1160.

    • 汪新伟, 王婷灏, 高楠安, 刘慧盈, 毛翔, 罗璐, 吴尘冰洁, 崔梓贤. 2022. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995~1011.

    • 吴中海, 吴珍汉, 韩金良, 张永双, 胡道功, 江万. 2005. 青藏铁路风火山段晚第四纪断裂活动分析. 现代地质, (2): 181~188

    • 谢超. 2018. 南迦巴瓦地区构造地貌及断裂活动特征. 中国地震局地质研究所博士学位论文.

    • 熊盛青, 丁燕云, 李占奎. 2014. 西藏及西南三江深断裂构造格局新认识. 地球物理报, 57(12): 4097~4109.

    • 许志琴, 蔡志慧, 张泽明, 李化启, 陈方远, 唐泽民. 2008. 喜马拉雅东构造结——南迦巴瓦构造及组构运动学.岩石学报, 24(7): 1463~1476.

    • 许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016. 青藏高原大陆动力学研究若干进展. 中国地质, 43(1): 1~42.

    • 许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题——《地质学报》百年华诞纪念. 地质学报, 96(1): 65~94.

    • 严加永, 吕庆田, 陈明春, 邓震, 祁光, 张昆, 刘振东, 汪杰, 刘彦. 2015. 基于重磁场多尺度边缘检测的地质构造信息识别与提取——以铜陵矿集区为例. 地球物理学报, 58(12): 4450~4464.

    • 叶进, 赵俊猛, 刘红兵, 张衡, 徐强, 陈树泽. 2020. 西藏米林 MS 6. 9 级地震余震定位和地壳浅层速度结构. 科学通报, 65: 1496~1505.

    • 杨建亚, 白玲, 李国辉, 程成.2017. 东喜马拉雅构造结地区地震活动及其构造意义. 国际地震动态, (6): 12~18.

    • 杨文采, 施志群, 侯遵泽, 程振炎. 2001. 离散小波变换与重力异常多重分解. 地球物理学报, 44(4): 534~541.

    • 杨文采, 徐纪人, 程振炎. 2005. 苏鲁大别造山带地球物理与壳幔作用. 北京: 地质出版社.

    • 杨文采, 孙艳云, 于常青. 2015. 青藏高原地壳密度变形带及构造分区. 地球物理学报, 58(11): 4115~4128.

    • 张进江, 季建清, 钟大赉, 丁林, 何顺东.2003.东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨.中国科学(D 缉), 33(4): 373~383.

    • 张泽明, 王金丽, 赵国春, 石超. 2008. 喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化. 岩石学报, 24(7): 1477~1487.

    • 赵远方, 公王斌, 江万, 陈龙耀, 仇度伟. 2021. 藏南嘉黎断裂古乡—通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220~233.

    • 郑来林, 金振民, 潘桂棠, 耿全如, 孙志民.2004.东喜马拉雅构造结南迦巴瓦地区区域地质特征及构造演化.地质学报, 78(6): 743~751.

    • 钟宁, 郭长宝, 黄小龙, 吴瑞安, 丁莹莹, 张献兵, 李海兵. 2021. 嘉黎-察隅断裂带中南段晚第四纪活动性及其古地震记录. 地质学报, 95(12): 3642~3659.

    • 邹子南. 2018. 南迦巴瓦构造结东侧结合带岩石类型与构造特征. 成都理工大学学报(自然科学版), 45(3): 325~333.