-
白垩纪—古近纪(K-Pg,~66 Ma)界限发生了距今最近的大规模生物集群灭绝事件,约76%的物种,包括统治地球1.5亿年之久的非鸟类恐龙在这次浩劫中消失(Sepkoski,1984,1996;Barnosky et al.,2011),全球气候也发生了显著的波动(Hull et al.,2020;Milligan et al.,2022)。小行星撞击假说认为一颗直径约为180~200 km的小行星撞击了墨西哥湾尤卡坦半岛(Morgan et al.,1997),撞击事件形成的气溶胶造成了漫长的撞击冬天和急剧的全球降温(Kring et al.,2007;Tyrrell et al.,2015;Bardeen et al.,2017),对全球生态环境造成了灾难性的打击(Witts et al.,2016;Hull et al.,2020)。德干火山喷发假说则指出在小行星撞击前约300 ka,大规模火山喷发释放大量的CO2进入到大气中,造成全球性升温(Petersen et al.,2016a;Zhang Laiming et al.,2018;Gu Xue et al.,2022),导致生态系统失衡和生物多样性的持续降低(Keller,2014)。因此,重建白垩纪—古近纪界限时期古气候记录是厘清生物大灭绝原因的关键。此外,作为典型的温室气候时期(Takashima et al.,2006;Hay,2011;Friedrich et al.,2012;Tierney et al.,2020),研究白垩纪—古近纪界限时期的气候变化对预测未来全球变暖的气候演化趋势具有重要意义(Burke et al.,2018)。
-
前人针对该时期已经开展了大量定量古气候重建研究,但主要是基于海相剖面(Petersen et al.,2016a;Henehan et al.,2019;Meyer et al.,2019;Hull et al.,2020)。由于受到沉积剖面不连续、时间分辨率不够高和替代性指标多解性的多重影响,该时期陆相古气候重建仍相对滞后。由于陆地和海洋热力性质的差异,同时期陆地系统温度的变化幅度会显著大于海洋系统(Sutton et al.,2007;Seltzer et al.,2023),因此能够记录下来海相记录中识别不到的古气侯信息(王成善等,2009,2017;Wang Chengshan et al.,2013b),如一些快速气候变化事件(Burgener et al.,2019),其恰恰是判断生物绝灭机制的关键。近年来,随着科学钻探、高分辨率定年技术和多重替代性指标的发展,白垩纪—古近纪界限时期陆地古气候重建取得了长足的进步,但相比海相记录仍缺乏系统的研究。例如,Hull et al.(2020)对白垩纪—古近纪界限时期全球的温度数据进行了汇编,建立了界限前后400 ka时间范围内的温度演化曲线,但陆地古温度记录极少。因此,本文对近年来国内外在白垩纪—古近纪界限时期开展的定量陆相古气候研究进行了回顾和汇编,主要聚焦于德干火山喷发记录、古温度记录和大气CO2浓度记录等,旨在为未来其他白垩纪—古近纪界限时期陆相古气候重建研究提供参考。
-
1 白垩纪—古近纪界限陆相剖面
-
白垩纪—古近纪界限层型剖面(GSSP)为突尼斯El Kef剖面,界限为该剖面中黏土层的底部边界(Molina et al.,2006)。目前,世界范围已报道的白垩纪—古近纪界限剖面超过350个(Schulte et al.,2010),其中研究程度较高的大约50个(图1a)。根据距离希克苏鲁伯小行星撞击坑的远近,Schulte et al.(2010)将这些剖面大致分为四类:① 距离撞击坑<500 km,以巨厚的撞击沉积层为特征,撞击坑周缘获取的岩芯中撞击角砾岩厚度超过100 m,富含喷射物的沉积层厚度超过1 m(Urrutia-Fucugauchi et al.,1996;Arenillas et al.,2006;Goto et al.,2008);② 距离撞击坑500~1000 km,以一系列厘米到米级厚度的富含喷射物的碎屑事件层为特征(Claeys et al.,2002;Schulte et al.,2005);③ 距离撞击坑1000~5000 km,以2~10 cm厚的微球粒层及其上部0.2~0.5 cm厚的铂族元素异常富集层为特征,富含冲击矿物、花岗质碎屑和富镍尖晶石(Norris et al.,1999;Schulte et al.,2009);④ 距离撞击坑>5000 km,部分剖面可识别到2~5 mm厚的富含撞击喷射物的红色黏土层(Smit,1999)。
-
总的来说,在全球范围内研究程度较高的白垩纪—古近纪界限剖面中,陆相剖面数量低于海相剖面,仅有23个(图1a,表1);这些陆相剖面集中在北美洲,亚洲和大洋洲仅少量分布(Schulte et al.,2010)。其中,所有距离希克苏鲁伯撞击坑<5000 km的陆相白垩纪—古近纪界限剖面中均识别到小行星撞击记录,几乎均至少包括Ir含量异常、微球粒和冲击石英3项证据中的2项;而距离撞击坑>5000 km的陆相白垩纪—古近纪界限剖面中,除新西兰的Moody Creek Mine剖面识别到Ir含量异常和微球粒2项证据外,其他剖面仅能识别到1项或未能识别小行星撞击证据。中国是陆相白垩纪—古近纪界限剖面发育最多的国家之一,目前已经发现了超过30个陆相白垩纪—古近纪界限剖面(图1b)。这些剖面主要分布在中国东部,以河湖相沉积为主,由于白垩纪—古近纪界限时期中国剖面古地理位置距希克苏鲁伯小行星撞击坑和德干大火成岩省距离都很远,可以同时接收到这两个重大地质事件的气候学信号,因此在重建晚白垩世—早古新世陆地气候以及探究与这两个重大地质事件相关的远源气候上具有很大潜力。其中松辽盆地、胶莱盆地和南雄盆地已经建立了较好的年代学格架,前人已经开展了多项古气候研究(柳永清等,2011;Wang Chengshan et al.,2013a,2013b;Zhang Laiming et al.,2016,2018;Tan Jie et al.,2020;Gao Yuan et al.,2021a,2021b),重建了德干火山喷发记录(Li Sha et al.,2022;Gu Xue et al.,2022;Ma Mingming et al.,2022;Yin Yitian et al.,2023),然而目前除了在胶莱盆地发现代表小行星撞击的微球粒证据外(丁聪,2016),尚未有证据表明中国白垩纪—古近纪界限剖面中存在Ir含量异常黏土层。
-
2 白垩纪—古近纪界限时期的事件年代学研究进展
-
白垩纪—古近纪界限层型El Kef剖面基于连续的生物地层稳定同位素数据和有机碳数据获得了该时期高可信度的相对年龄,但缺乏绝对年龄(Molina et al.,2006)。20世纪末,随着墨西哥湾尤卡坦半岛希克苏鲁伯小行星撞击坑的发现(Hildebrand et al.,1991),通过对该地层中撞击产生的玻璃质熔岩样品进行高精度氩氩测年(40Ar/39Ar),前人将白垩纪—古近纪界限年龄限定为64.98 ± 0.05 Ma(Swisher et al.,1992)。然而由于撞击坑附近沉积速率快、地层扰动大,因此该年龄可靠性较低。近年来,随着放射性年代学技术的不断发展,研究人员对全球白垩纪—古近纪界限剖面开展了高精度测年研究。Renne et al.(2013)利用40Ar/39Ar测年法对火山灰形成的膨润土和小行星撞击产生的玻陨石进行了测试,将白垩纪—古近纪界限和小行星撞击事件的年龄分别限定为66.043+0.011/-0.043 Ma和66.038+0.025/-0.049 Ma。Clyde et al.(2016)对美国丹佛盆地白垩纪—古近纪界限剖面中火山灰夹层开展了高精度铀铅(U-Pb)锆石定年,得到白垩纪—古近纪界限的绝对年龄为66.021 ± 0.024/0.039/0.081 Ma。基于印度德干高原玄武岩火山灰层和土壤层,Sprain et al.(2019)使用40Ar/39Ar测年法得到白垩纪—古近纪界限年龄为66.052±0.008/0.043 Ma;通过对Clyde et al.(2016)定年结果进行贝叶斯校正,Schoene et al.(2019)使用U-Pb锆石定年法将白垩纪—古近纪界限的年龄限定为66.016±0.069 Ma(图2)。
-
图1 白垩纪—古近纪界限剖面分布图
-
Fig.1 Distribution of K-Pg boundary sections
-
(a)—全球主要白垩纪—古近纪界限剖面;(b)—中国陆相白垩纪—古近纪界限剖面;图1a中蓝色点代表海相剖面,橙色点代表陆相剖面,剖面点据Schulte et al.(2010)修改,古地理图据http://www.scotese.com修改;图1b中圆点的大小代表剖面研究程度的高低,圆点越大代表研究程度越高(不同颜色为了便于区分,无特殊含义),剖面点据江瑶等(2021)修改,中国地图来自http://bzdt.ch.mnr.gov.cn
-
(a) —global distribution of key K-Pg boundary sections; (b) —distribution of terrestrial K-Pg boundary sections in China; in Fig.1a, the blue dots represent the marine sections and the orange dots represent the terrestrial sections, section points are modified after Schulte et al. (2010) , the paleogeographic map is modified after http://www.scotese.com; in Fig.1b, the size of dots represents the degree of study, the larger the dot is, the higher the study degree is, and the different colors are used for easy distinguishing, the color has no practical significance, section points are modified after Jiang Yao et al. (2021) , map of China is from http://bzdt.ch.mnr.gov.cn
-
早期针对德干玄武岩的地质年代学研究表明,90%以上的玄武岩是在界限之前一个百万年内喷发的(Hofmann et al.,2000;Chenet et al.,2007)。然而,以上研究测年结果的误差甚至大于估算的火山喷发总持续时间,这限制了火山喷发记录、生物记录和气候记录之间的精确对比。近年来,多个研究团队分别使用U-Pb与40Ar/39Ar方法对德干高原玄武岩开展研究(Renne et al.,2015;Schoene et al.,2015,2019;Sprain et al.,2019),尽管由于方法学差异得出不同的火山喷发年龄,但被认为是误差范围内可以接受的结果(Schoene et al.,2021)。综合上述研究,本文选用Schoene et al.(2019)研究数据将德干火山喷发年龄标定如下:初始喷发年龄为66.296+0.042/-0.038 Ma;喷发峰值年龄为66.057+0.026/-0.024 Ma;末次喷发年龄为65.590+0.032/-0.033 Ma(图2)。
-
注:小行星撞击证据:1—铱异常,2—微球粒,3—冲击石英;德干火山证据:1—汞元素异常,2—汞同位素记录;剖面信息总结自Fendley et al.(2019),Schulte et al.(2010),Sial et al.(2016),Gu Xue et al.(2022),Li Sha et al.(2022),Ma Mingming et al.(2022)和Yin Yitian et al.(2023)。
-
此外,白垩纪—古近纪界限时期还发生了数次显著的碳同位素负偏,代表了数次全球性气候事件(Barnet et al.,2019;Milligan et al.,2022),如中马斯特里赫特期变暖事件(MMWE)、晚马斯特里赫特期变暖事件(LMWE)、丹麦期碳循环扰动事件2(Dan-C2)、晚C29n极性带事件(L.C29n)和中C27r极性带事件(M.C27r)。Mateo et al.(2017)对全球多个大洋的有孔虫稳定同位素数据开展了对比研究,将MMWE事件的年龄大致限定为69.5~68.0 Ma。Barnet et al.(2019)根据高分辨率轨道调谐气候变化和碳循环配对记录,分别对这些气候事件的年龄进行了限定(由于该研究未提供具体年龄,以下年龄据原文图片显示区间估计):LMWE:66.4~66.1 Ma;Dan-C2:65.9~65.7 Ma;L.C29n:65.4~65.2 Ma;M.C27r:63.4~63.2 Ma。
-
3 白垩纪—古近纪界限时期陆相剖面的火山记录
-
早期研究根据古地磁学和钾氩(40K/40Ar)测年法将德干火山喷发划分为三个阶段,每一阶段由若干个持续时间约数百年的极短喷发事件组成,其中第二阶段被认为是德干火山喷发的主幕,导致了白垩纪—古近纪界限时期气候和环境的变化(Chenet et al.,2007,2008;Keller,2014)。Renne et al.(2015)使用40Ar/39Ar测年法对印度德干高原玄武岩开展年龄测定,将小行星撞击事件限定在德干火山喷发第二阶段内,指出在小行星撞击后约50 ka内,德干火山喷发通量和速率均显著提高,玄武岩喷发量约占总喷发量的70%,火山平均喷发速率由界限前的0.4±0.2 km3/a升高至0.9±0.3 km3/a。在此基础上,Sprain et al.(2019)通过40Ar/39Ar测年法进一步细化了德干火山喷发通量、时间和速率,指出约75%的玄武岩在白垩纪—古近纪界限附近及之后约650 ka内喷出,界限前火山平均喷发速率为0.4±0.1 km3/a,界限后为0.6±0.2 km3/a,表明小行星撞击事件对德干火山喷发速率并没有造成显著影响。Schoene et al.(2019)使用U-Pb锆石定年法建立的高分辨率德干火山喷发速率模型显示德干火山作用共包含四次脉冲式喷发,每次喷发持续时间均不超过100 ka,喷发速率峰值发生在白垩纪—古近纪界限前数万年,约为现代全球火山喷发速率的两倍。
-
图2 白垩纪—古近纪界限时期地质事件年龄
-
Fig.2 Events and chronology of the K-Pg boundary interval
-
德干火山喷发速率模型据Schoene et al.(2021)修改;灰色条带代表气候事件:MMWE—中马斯特里赫特期变暖事件;LMWE—晚马斯特里赫特期变暖事件;Dan-C2—Dan-C2事件;L.C29n—下磁极条带29n事件;M.C27r—中磁极条带27r事件
-
Eruption rate model of Deccan Traps is modified from Schoene et al. (2021) ; the grey bands represent climate disturbance events: MMWE—Middle Maastrichtian warming event; LMWE—Late Maastrichtian warming event; Dan-C2—Dan-C2 event; L.C29n—Lower Chron 29n event; M.C27r—Middle Chron 27r event
-
此外,多个研究探讨了德干火山喷发和古气候演化之间的联系。Hernandez Nava et al.(2021)指出早期德干玄武质岩浆具有更高的CO2含量且在莫霍面或下地壳深度即达到CO2饱和点,导致大量CO2释放至地表,引发了晚马斯特里赫特期变暖事件。旋回地层学研究表明德干火山喷发初期对应着马斯特里赫特期最后一个405 ka偏心率的最大值,可能放大了气候对轨道强迫的敏感性,增强了全球气候的响应(Gilabert et al.,2021)。Tian Xiaochuan et al.(2022)建立的岩床侵入数值模型表明在德干大规模玄武岩喷出前需要大量玄武质岩浆侵入使地壳致密化,侵入体的结晶作用能够释放足量的CO2,在大规模火山喷发前推动全球大幅升温。
-
不同于小行星撞击事件导致的全球范围分布的Ir元素异常(Alvarez et al.,1980),大规模火山喷发并没有全球可追索的沉积学标志,这阻碍了白垩纪—古近纪界限时期火山喷发记录的建立。近年来,汞(Hg)元素和汞同位素被发现可以作为精确指示大规模火山喷发及其喷发强度的有效指标(Sanei et al.,2012;王柱红等,2012)。全球大气中的汞元素主要来自火山作用(Nriagu et al.,2003;Pyle et al.,2003;Selin,2009;Pirrone et al.,2010),自然环境中火山排放的汞元素主要是气态Hg0,在大气中的存留时间约为0.5~2 a,较全球大气混合时间更长,能够达到有效的全球性扩散(Bagnato et al.,2010;冯新斌等,2015)。因此当发生大规模火山喷发时,在同时期沉积记录中可捕捉到其所导致的汞元素含量异常(Bagnato et al.,2010;冯新斌等,2015;Grasby et al.,2019)。自然界中汞元素有7种稳定同位素,分别为196Hg、198Hg、199Hg、200Hg、 201Hg、202Hg和204Hg(Bergquist et al.,2009;Blum et al.,2014)。汞同位素的质量分馏(主要为δ202Hg)发生在多种平衡分馏和动力学分馏过程中,能够用来粗略地示踪汞元素来源(Bergquist et al.,2009;Blum et al.,2014;Yin Runsheng,2014),而汞同位素的非质量分馏(主要为Δ199Hg和Δ201Hg)仅发生于光化学还原过程和光化学降解过程中,能够更加准确地约束沉积物中汞元素的来源和运移机制(Blum et al.,2014;Yin Runsheng,2014,2016)。
-
目前,汞元素和汞同位素地球化学方法已被广泛应用于“深时”地层中,多项研究利用该方法对大规模火山喷发进行了示踪(Thibodeau et al.,2016;Percival et al.,2017;Meyer et al.,2019;Shen Jun et al.,2019)。例如,Thibodeau et al.(2016)对美国内华达州Muller Canyon海相三叠纪—侏罗纪界限剖面开展的汞元素地球化学研究指示了大西洋中部大火成岩省是导致该时期生物灭绝的主要原因;Shen Jun et al.(2019)通过分析中国两个陆相二叠纪—三叠纪界限剖面的汞元素和汞同位素含量变化特征,指出西伯利亚大火成岩省具有全球性影响;Font et al.(2016)对法国Bidart海相白垩纪—古近纪界限剖面进行了汞元素含量测试,认为德干火山喷发促使晚白垩世海洋生物多样性发生变化;Meyer et al.(2019)对全球多个海相白垩纪—古近纪界限剖面中的软体动物化石开展汞元素含量测试,指出德干火山喷发排放的汞元素和CO2共同对生态系统造成了影响。
-
本文系统整理了白垩纪—古近纪界限时期全球多个地区陆相剖面的汞元素异常记录(Fendley et al.,2019;Gu Xue et al.,2022;Li Sha et al.,2022;Ma Mingming et al.,2022;Yin Yitian et al.,2023)。在这些剖面中,前人均在白垩纪—古近纪界限前识别到了总有机碳(TOC)含量标准化后的汞元素含量的异常累积(图3),反映了德干火山喷发向大气中排放大量汞元素并迅速沉积到全球范围内的陆相沉积物中。
-
其中,中国东北部松辽盆地汞元素含量最大值为64×10-9,结合较低的δ202Hg值和负的Δ199Hg值信号,Gu Xue et al.(2022)认为德干火山喷发向大气中排放大量的汞元素,经由地表径流、土壤剥蚀等作用输入到松辽盆地湖泊中最终沉积下来。汞元素异常峰值期代表了德干火山喷发最剧烈时期,其持续时间约为50 ka,汞元素异常和生物量显著降低之间近乎一致的时间相关性表明德干火山作用触发了白垩纪末期生物大灭绝。中国东部胶莱盆地和平邑盆地汞元素含量最大值分别为287×10-9和133×10-9,结合正的Δ199Hg值,Li Sha et al.(2022)发现胶莱盆地和平邑盆地的汞元素异常来源于德干火山喷发的大气沉降汞元素,汞元素富集对应着显著的碳同位素负偏,表明在白垩纪末期生物大灭绝前,德干火山活动导致了晚马斯特里赫特期变暖事件。中国南部南雄盆地记录的汞元素异常信号与非鸟类恐龙开始灭绝的时间一致,且Δ199Hg值为趋近于零到正值,Ma Mingming et al.(2022)推断德干火山喷发在白垩纪末期生物大灭绝中起到了关键的作用。然而不同于其他陆相白垩纪—古近纪界限剖面,南雄盆地记录的汞元素含量峰值较低(图3),Yin Yitian et al.(2023)指出由于当时南雄盆地整体处于高温干旱的环境,湖面范围萎缩、地表径流作用减弱以及土壤含水量低导致湖泊既无法接收来自大气沉降的汞元素,也无法获得陆源输入的汞元素。此外,尽管美国Nirvana剖面与其他陆相剖面相比距离德干大火成岩省最远,但该剖面汞元素含量整体背景值和异常值均很高,分别为30×10-9~50×10-9和200×10-9(图3),Fendley et al.(2019)认为这可能与白垩纪—古近纪界限时期该地区频繁的区域性火山活动导致了额外的汞元素输入有关。
-
图3 白垩纪—古近纪界限时期德干火山喷发速率模型和全球陆相剖面汞元素异常记录
-
Fig.3 Eruption rate model of Deccan Traps and Hg anomaly records of terrestrial K-Pg boundary sections
-
图中黑色曲线代表汞(Hg)元素含量,浅蓝色阴影代表总有机碳(TOC)含量;松辽盆地汞元素含量和总有机碳(TOC)含量记录来自Gu Xue et al.(2022),胶莱盆地和平邑盆地记录来自Li Sha et al.(2022),南雄盆地记录来自Ma Mingming et al.(2022)和Yin Yitian et al.(2023),Nirvana剖面记录来自Fendley et al.(2019);德干火山喷发速率模型据Schoene et al.(2021)修改
-
The black curve represents mercury (Hg) content and the light blue shade represents total organic carbon (TOC) content; the Hg and TOC content records of Songliao basin are from Gu Xue et al. (2022) , the records of Jiaolai basin and Pingyi basin are from Li Sha et al. (2022) , the records of Nanxiong basin are from Ma Mingming et al. (2022) and Yin Yitian et al. (2023) , and the records of Nirvana are from Fendley et al. (2019) ; eruption rate model of Deccan Traps is modified from Schoene et al. (2021)
-
4 白垩纪—古近纪界限时期的陆地温度记录
-
目前,白垩纪—古近纪界限时期定量陆地温度重建主要基于以下方法:① 古土壤碳酸盐或生物壳体氧同位素(Dworkin et al.,2005;MacLeod et al.,2018);② 古土壤碳酸盐或生物壳体团簇同位素(Tobin et al.,2014;Petersen et al.,2016b;Zhang Laiming et al.,2018;Yin Yitian et al.,2023);③ 植物化石叶相分析(Davies-Vollum,1997;Wilf et al.,2003;Peppe,2010;Peppe et al.,2011;Lyson et al.,2019);④ 泥炭化石支链四醚脂(brGDGT)(O'Connor et al.,2023)等。这些不同指标的重建结果来自全球不同区域,反映了不同纬度的温度记录,其中部分数据可能存在季节性偏差,难以进行直接对比,为建立白垩纪—古近纪界限时期陆地温度综合记录设置了阻碍。
-
因此,本文对已发表的陆地温度数据进行了筛选和校正(表2),原则如下:① 为了体现白垩纪—古近纪界限时期(69~63 Ma)百万年时间尺度的温度变化,剔除了部分千年时间尺度温度记录(例如,MacLeod et al.,2018;O'Connor et al.,2023);② 基于Zhang Laiming et al.(2019)重建的白垩纪—古近纪界限时期全球陆地纬度温度梯度(0.36℃/°),将所有温度数据校正至同一纬度(45°);③ 季节性偏差方面,由于叶相分析结果为年平均温度(Lyson et al.,2019),本文对所有叶相温度数据Tleaf求平均值来获取白垩纪—古近纪界限时期的陆地年平均温度背景值,然后对每个具有季节性偏差的陆地温度数据集i求平均值并减去陆地年均温度背景值,得到针对每个数据集i的季节性偏差值γi;最后用数据集中的原始数据Ti减去该数据集的季节性偏差γi得到校正后的温度,公式如下:
-
需要说明的是,以上方法只能在不影响整体温度演化趋势的基础上做大致校正,精确限定地质历史时期古温度的季节性偏差仍具有很大的挑战性(Burgener et al.,2019)。最终,本文汇编得到了白垩纪—古近纪界限时期(69~63 Ma)中纬度(45°)陆地年平均温度综合曲线(图4),显示出陆地年平均温度在白垩纪—古近纪界限时期发生了多次快速波动,整体范围为5~25℃,平均值为16.8℃。
-
中晚马斯特里赫特期(约69~67 Ma)陆地温度呈现持续下降趋势,中纬度地区温度由~20℃降低至10℃之下,降温幅度高达~10℃,可能导致了恐龙及其他生物生存环境的改变,该时期北美地区和中国山阳盆地恐龙或恐龙蛋多样性均显著降低(Dean et al.,2020;Han Fei et al.,2022)。之后,德干火山作用导致全球气候频繁波动,陆地温度数据的LOESS拟合曲线趋势与Hull et al.(2020)的结果总体一致,但也存在一些差异。陆地温度从~66.7 Ma开始上升,到~66.3 Ma达到~20℃的峰值,略早于~66.2 Ma的海洋温度峰值,但均指示德干火山初始喷发(66.296+0.042/-0.038 Ma)前温度就已经开始上升,表明德干火山喷发前全球气候系统已经发生扰动。早期德干玄武质岩浆相对较高的CO2含量(Hernandez Nava et al.,2021),405 ka偏心率放大的全球气候响应(Gilabert et al.,2021)以及玄武质岩浆侵入体结晶作用释放的CO2(Tian Xiaochuan et al.,2022)均可能导致了德干火山初始喷发前全球大幅升温。白垩纪—古近纪界限前,陆地温度由~20℃下降至~16℃,降幅为~4℃,海洋温度则降低~2℃,前人多项研究中均识别到该降温事件(Barnet et al.,2018;Zhang Laiming et al.,2018;Hull et al.,2020;Gilabert et al.,2021),被认为可能与该时期德干玄武质岩浆相对较低的CO2含量(Hernandez Nava et al.,2021)和/或火山作用排放的硫化物气溶胶导致的“火山冬天”有关(Petersen et al.,2016a;Vellekoop et al.,2016),但该降温机制仍存在争议。白垩纪—古近纪界限后陆地温度再次上升,与前人基于brGDGT开展的千年尺度的陆地温度趋势一致(O'Connor et al.,2023)。此前,由于缺少底层水变暖证据,Dan-C2事件时期的气候状况一直存疑(Barnet et al.,2019)。Gilabert et al.(2021)认为该时期识别到的大洋碳同位素负偏双峰与古近纪其他热事件的碳同位素双峰类似,指示了德干火山喷发导致的全球大气CO2浓度上升与405 ka天文旋回对全球气候的共同调控。根据本文汇编的陆地年平均温度数据,Dan-C2事件时期发生了明显升温,温度升高至~20℃,几乎达到了界限前的最高值,进一步说明该时期全球温度发生了显著上升;L.C29n事件时期,陆地温度曲线几乎没有波动,事件后陆地温度短暂上升。
-
图4 白垩纪—古近纪界限时期陆地年平均温度综合记录
-
Fig.4 Mean annual terrestrial temperature during the K-Pg boundary interval
-
数据点后的浅灰色横线或竖线分别代表年龄或温度误差;蓝色曲线代表67~65 Ma所有温度记录的LOESS拟合结果(平滑因子=0.2,不包含氧同位素重建温度数据),粉红色条带代表95%置信区间;灰色条带代表气候事件:MMWE—中马斯特里赫特期变暖事件;LMWE—晚马斯特里赫特期变暖事件;Dan-C2—Dan-C2事件;L.C29n—下磁极条带29n事件;M.C27r—中磁极条带27r事件
-
The light gray line across each data point represents the age or temperature error; the blue line represents LOESS fit results for all temperature records from 67 to 65 Ma (smooth factor=0.2, excluding oxygen isotope results) , and the pink bands represents 95% confidence intervals; the grey bands represent climate disturbance events: MMWE—Middle Maastrichtian warming event; LMWE—Late Maastrichtian warming event; Dan-C2—Dan-C2 event; L.C29n—Lower Chron 29n event; M.C27r—Middle Chron 27r event
-
5 白垩纪—古近纪界限时期的大气二氧化碳记录
-
CO2是全球气候变化的主要因素之一(Boucot et al.,2001;Royer,2006;Fletcher et al.,2008),前人研究表明白垩纪—古近纪界限时期德干火山喷发可能对全球大气CO2浓度升高起主要作用(Officer et al.,1987;Self et al.,2006;Kring,2007;Chenet et al.,2009)。因此,该时期大气CO2浓度的定量重建,对探究白垩纪—古近纪界限时期大气CO2浓度与温度的耦合关系,以及白垩纪末期生物大灭绝的原因等具有重要意义(Beerling et al.,2002;Nordt et al.,2003)。目前,白垩纪—古近纪界限时期大气CO2浓度重建主要基于植物叶片气孔参数(Beerling et al.,2002,2009;Steinthorsdottir et al.,2016;Kowalczyk et al.,2018;Wang Yuqing et al.,2020)、气体交换模型(Kowalczyk et al.,2018;Milligan et al.,2019,2022)和古土壤碳酸盐碳同位素(Nordt et al.,2003;Oerlemans,2004;Huang Chengmin et al.,2013;Zhang Laiming et al.,2018);此外还有少量研究基于苔类化石(Kowalczyk et al.,2018)、海相生物碳酸盐硼同位素(Henehan et al.,2019)以及长链烯酮碳同位素(Pagani et al.,1999,2005;DeConto et al.,2003)等方法。本文对已发表的白垩纪—古近纪界限时期大气CO2浓度数据进行了汇编(表3,图5),简述涉及到的相关方法如下:
-
叶片气孔密度和气孔指数与大气CO2浓度呈负相关(Woodward,1987;Royer et al.,2001a,2001b),白垩纪—古近纪界限时期的大气CO2浓度重建记录较少,主要分布在界限后(图5),主要植物化石类群为银杏科(Beerling et al.,2002,2009;Royer,2003;Retallack,2009;Wan Chuanbiao et al.,2011)、樟科(Steinthorsdottir et al.,2016)和杉科(Wang Yuqing et al.,2020),范围约为300×10-6~600×10-6(Retallack,2009)。植物叶片气体交换模型基于C3植物光合作用模型,与气孔参数方法相比可以更准确地估算大气CO2浓度(Barclay et al.,2016;Konrad et al.,2021),适用于大多数具有冠层的C3植物类群(Franks et al.,2014)。白垩纪—古近纪界限时期基于该模型重建的记录同样较少(图5),范围约为290×10-6~1150×10-6(Beerling et al.,2002,2009;Steinthorsdottir et al.,2016;Kowalczyk et al.,2018; Wang Yuqing et al.,2020)。土壤碳酸盐的碳同位素来自于大气和土壤呼吸作用,因此同位素平衡分馏状态下形成的土壤碳酸盐可以用来定量重建大气CO2浓度(Cerling,1991;Breecker et al.,2014)。在白垩纪—古近纪界限时期,基于古土壤碳酸盐重建的记录较前两种方法更多且分辨率更高,范围约为30×10-6~1850×10-6(图5)。需要说明的是,界限后的记录主要来自上世纪末的研究,可能存在较大的误差。
-
图5 白垩纪—古近纪界限时期的大气CO2浓度记录
-
Fig.5 Atmospheric pCO2 records during the K-Pg boundary interval
-
数据点后的浅灰色横线或竖线分别代表年龄或大气CO2浓度误差;黑色曲线代表69~63 Ma所有CO2记录的LOESS拟合结果(平滑因子=0.09),粉红色条带代表95%置信区间;图中灰色条带代表气候扰动事件:MMWE—中马斯特里赫特期变暖事件;LMWE—晚马斯特里赫特期变暖事件;Dan-C2—Dan-C2事件;L.C29n—下磁极条带29n事件;M.C27r—中磁极条带27r事件
-
The light gray line across each data point represents the age or atmospheric pCO2 error, the black line represents LOESS fit results for all CO2 records from 69 to 63 Ma (smooth factor=0.09) , and the pink bands represents 95% confidence intervals; the grey bands represent climate disturbance events: MMWE—Middle Maastrichtian warming event; LMWE—Late Maastrichtian warming event; Dan-C2—Dan-C2 event; L.C29n—Lower Chron 29n event; M.C27r—Middle Chron 27r event
-
注:年龄和大气CO2浓度括号内的数字代表误差值。
-
总体上,白垩纪—古近纪界限时期大气CO2浓度呈现约69~68 Ma下降,68~66.2 Ma上升,随后多次大幅度快速波动,最后在65~63 Ma整体呈下降趋势的特征(图5)。69~68 Ma期间,大气CO2浓度呈长期下降趋势,从~1850×10-6下降到250×10-6(Ekart et al.,1999;Nordt et al.,2003;Hong et al.,2012;Huang Chengmin et al.,2013;Zhang Laiming et al.,2018),与本文汇编的该时期陆地年平均温度降低趋势一致(图4)。68~66.25 Ma期间,大气CO2浓度显著升高,从~250×10-6上升到1200×10-6,但在白垩纪—古近纪界限前快速下降到~700×10-6,对应陆地年平均温度~4℃的下降。白垩纪—古近纪界限后,大气CO2浓度显著升高,并在Dan-C2事件后(约65.7 Ma)达到界限前水平,该趋势与陆地年平均温度变化趋势一致。随后,大气CO2浓度显著下降,与陆地年平均温度趋势一致,并在L.C29n事件结束后,约64.75 Ma、64.2 Ma以及63.75 Ma呈现多个峰值。基于全球陆地温度数据汇编的年平均温度曲线与大气CO2浓度曲线近乎耦合的演化趋势有力地证明了大气CO2浓度变化是驱动白垩纪—古近纪界限时期全球温度变化的主要因素。
-
6 白垩纪—古近纪界限时期的陆地气候重建总结与存在不足
-
白垩纪—古近纪界限时期的陆地古气候研究对探究温室气候状态下地球气候系统的演化及其对生态系统的影响具有重要意义。目前,世界范围内研究程度较高的白垩纪—古近纪界限剖面呈现陆相剖面数量少于海相剖面的现象。中国是世界范围内陆相白垩纪—古近纪界限剖面发育最多的国家之一,在重建该时期陆地气候方面具有很大潜力,其中松辽盆地、胶莱盆地、平邑盆地和南雄盆地均重建了德干火山喷发记录,但由于该时期中国剖面古地理位置距小行星撞击坑较远,除胶莱盆地界限剖面外尚未有其他剖面发现小行星撞击证据。随着全球各地白垩纪—古近纪界限剖面研究的深入以及年代学方法的不断改进,更加精确的界限年龄、德干火山喷发年龄和古气候事件年龄为探索该时期地球系统的反馈和响应提供了更为可信的标尺。此外,基于地球化学示踪新方法建立的德干火山喷发记录反映陆相剖面中外源汞元素通量增加均在白垩纪—古近纪界限前,表明陆相地区德干火山喷发记录的一致性。尽管部分剖面汞元素富集受到区域性因素的影响,但外源汞元素通量增加与晚马斯特里赫特期碳同位素负偏的时间一致性表明德干火山作用导致了晚马斯特里赫特期变暖事件,外源汞元素通量增加和生物量显著降低之间的时间相关性指示德干火山作用触发了白垩纪末期生物大灭绝。通过对陆地温度和大气CO2浓度数据进行汇编和校正,本文重建了约69~63 Ma中纬度(45°)陆地年平均温度综合曲线和大气CO2浓度综合曲线,陆地年平均温度在白垩纪—古近纪界限时期多次快速波动,中晚马斯特里赫特期温度持续降低,降幅达~10℃,德干火山初始喷发前温度升高至~20℃,增幅~10℃,表明该时期全球气候系统已经发生扰动。界限前温度显著降低,降幅~4℃,界限后Dan-C2事件时期则再次增温~4℃。大气CO2浓度数据显示出与中纬度陆地年平均温度相似的变化趋势,表明大气CO2浓度变化是白垩纪—古近纪界限时期全球温度变化的主要驱动因素。
-
尽管近年来研究人员在白垩纪—古近纪界限时期陆地气候方面取得了许多新认识,针对该方面的研究仍存在以下不足:
-
(1)白垩纪—古近纪界限时期的陆地温度记录主要集中在67~65 Ma,前后记录缺失严重,尤其是界限后(65~63 Ma之间)几乎没有陆地温度记录,这严重限制了对白垩纪末期和古新世初期陆地温度与生物多样性演化关系的认识,因此今后应填补这几个空白期的陆地温度记录。
-
(2)与陆地温度记录相比,白垩纪—古近纪界限时期的大气CO2浓度记录更完整连续,但存在重建结果误差大和各指标重建结果不一致等问题,未来应继续加强不同指标对比研究,并不断开发新的重建指标。
-
(3)基于汞元素和汞同位素地球化学方法,前人基于许多海相剖面发现了德干火山喷发记录,但陆相剖面记录仍十分缺乏,亟需加强。未来应进一步开展火山记录-气候记录-生物记录之间的对比,重点评估德干火山不同期次喷发对陆地气候和生态环境的影响。
-
(4)白垩纪—古近纪界限时期各地质事件和气候事件之间的时间间隔很小,因此年代学研究的误差会影响事件对比和机制研究。进一步提高年代学研究精度,建立白垩纪—古近纪界限时期的高精度年龄框架是后续研究的基础。
-
致谢:感谢特邀主编胡修棉教授的约稿邀请。
-
参考文献
-
Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208(4448): 1095~1108.
-
Andrews J E, Tandon S K, Dennis P F. 1995. Concentration of carbon dioxide in the Late Cretaceous atmosphere. Journal of the Geological Society, 152(1): 1~3.
-
Arenillas I, Arz J A, Grajales-Nishimura J M, Murillo-Muñetón G, Alvarez W, Camargo-Zanoguera A, Molina E, Rosales-Domínguez C. 2006. Chicxulub impact event is Cretaceous/Paleogene boundary in age: New micropaleontological evidence. Earth and Planetary Science Letters, 249(3-4): 241~257.
-
Bagnato E, Aiuppa A, Parello F, Allard P, Shinohara H, Liuzzo M, Giudice G. 2010. New clues on the contribution of Earth's volcanism to the global mercury cycle. Bulletin of Volcanology, 73(5): 497~510.
-
Barclay R S, Wing S L. 2016. Improving the ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere. Earth and Planetary Science Letters, 439: 158~171.
-
Bardeen C G, Garcia R R, Toon O B, Conley A J. 2017. On transient climate change at the Cretaceous-Paleogene boundary due to atmospheric soot injections. Proceedings of the National Academy of Sciences, 114(36): E7415~E7424.
-
Barnet J S K, Littler K, Kroon D, Leng M J, Westerhold T, Röhl U, Zachos J C. 2018. A new high-resolution chronology for the late Maastrichtian warming event: Establishing robust temporal links with the onset of Deccan volcanism. Geology, 46(2): 147~150.
-
Barnet J S K, Littler K, Westerhold T, Kroon D, Leng M J, Bailey I, Röhl U, Zachos J C. 2019. A high-fidelity benthic stable isotope record of late Cretaceous-early Eocene climate change and carbon-cycling. Paleoceanography and Paleoclimatology, 34(4): 672~691.
-
Barnosky A D, Matzke N, Tomiya S, Wogan G O U, Swartz B, Quental T B, Marshall C, McGuire J L, Lindsey E L, Maguire K C, Mersey B, Ferrer E A. 2011. Has the Earth's sixth mass extinction already arrived? Nature, 471(7336): 51~57.
-
Beerling D J, Lomax B H, Royer D L, Upchurch G R, Kump L R. 2002. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proceedings of the National Academy of Sciences, 99(12): 7836~7840.
-
Beerling D J, Fox A, Anderson C W. 2009. Quantitative uncertainty analyses of ancient atmospheric CO2 estimates from fossil leaves. American Journal of Science, 309(9): 775~787.
-
Bergquist B A, Blum J D. 2009. The odds and evens of mercury isotopes: Applications of mass-dependent and mass-independent isotope fractionation. Elements, 5(6): 353~357.
-
Blum J D, Sherman L S, Johnson M W. 2014. Mercury isotopes in Earth and environmental sciences. Annual Review of Earth and Planetary Sciences, 42: 249~269.
-
Boucot A J, Gray J. 2001. A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere. Earth Science Review, 56(1-4): 1~159.
-
Breecker D O, Retallack G J. 2014. Refining the pedogenic carbonate atmospheric CO2 proxy and application to Miocene CO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 406: 1~8.
-
Burgener L, Hyland E, Huntington K W, Kelson J R, Sewall J O. 2019. Revisiting the equable climate problem during the late Cretaceous greenhouse using paleosol carbonate clumped isotope temperatures from the Campanian of the Western Interior basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 516(15): 244~267.
-
Burke K D, Williams J W, Chandler M A, Haywood A M, Lunt D J, Otto-Bliesner B L. 2018. Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences, 115(52): 13288~13293.
-
Cerling T E. 1991. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols. American Journal of Science, 291(4): 377~400.
-
Chenet A L, Quidelleur X, Fluteau F, Courtillot V, Bajpai S. 2007. 40K-40Ar dating of the main Deccan large igneous province: Further evidence of KTB age and short duration. Earth and Planetary Science Letters, 263(1-2): 1~15.
-
Chenet A L, Fluteau F, Courtillot V, Gérard M, Subbarao K V. 2008. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. Journal of Geophysical Research: Solid Earth, 113(B4): https: //doi. org/10. 1029/2006JB004635.
-
Chenet A L, Courtillot V, Fluteau F, Gérard M, Quidelleur X, Khadri S F R, Subbarao K V, Thordarson T. 2009. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. Journal of Geophysical Research, 114: B06103.
-
Claeys P, Kiessling W, Alvarez W. 2002. Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In: Koeberl C, MacLeod K G, eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America, 55~68.
-
Clyde W C, Ramezani J, Jonhson K R, Bowring S A, Jones M M. 2016. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth and Planetary Science Letters, 452(15): 272~280.
-
Cui Ying, Schubert B A. 2016. Quantifying uncertainty of past pCO2 determined from changes in C3 plant carbon isotope fractionation. Geochimica et Cosmochimica Acta, 172: 127~138.
-
Davies-Vollum K S. 1997. Early Palaeocene palaeoclimatic inferences from fossil floras of the western interior, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 136(1-4): 145~164.
-
Dean C D, Chiarenza A A, Maidment S C R. 2020. Formation binning: A new method for increased temporal resolution in regional studies, applied to the late Cretaceous dinosaur fossil record of North America. Palaeontology, 63(6): 881~901.
-
DeConto R M, Pollard D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421(6920): 245~249.
-
Diefendorf A F, Freeman K H, Wing S L, Currano E D, Mueller K E. 2015. Paleogene plants fractionated carbon isotopes similar to modern plants. Earth and Planetary Science Letters, 429: 33~44.
-
Ding Cong. 2016. The ostracod biostratigraphy and the K/Pg boundary discussion in LK1 core, Jiaolaibasin. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
-
Dworkin S I, Nordt L, Atchley S. 2005. Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth and Planetary Science Letters, 237(1-2): 56~68.
-
Ekart D D, Cerling T E, Montanez I P, Tabor N J. 1999. A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide. American Journal of Science, 299(10): 805~827.
-
Fendley I M, Mittal T, Sprain C J, Marvin-DiPasquale M, Tobin T S, Renne P R. 2019. Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models. Earth and Planetary Science Letters, 524: 115721.
-
Feng Xinbin, Yin Runsheng, Yu Ben, Du Buyun, Chen Jiubin. 2015. A review of Hg isotope geochemistry. Earth Science Frontiers, 22(5): 124~135 (in Chinese with English abstract).
-
Fletcher B J, Brentnall S J, Anderson C W, Berner R A, Beerling D J. 2008. Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nature Geoscience, 1(1): 43~48.
-
Font E, Adatte T, Sial A N, Drude de Lacerda L, Keller G, Punekar J. 2016. Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology, 44(2): 171~174.
-
Font E, Chen Jiubin, Regelous M, Regelous A, Adatte T. 2021. Volcanic origin of the mercury anomalies at the Cretaceous-Paleogene transition of Bidart, France. Geology, 50(2): 142~146.
-
Franks P J, Royer D L, Beerling D J, Van de Water P K, Cantrill D J, Barbour M M, Berry J A. 2014. New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophysical Research Letters, 41(13): 4685~4694.
-
Friedrich O, Norris R D, Erbacher J. 2012. Evolution of middle to Late Cretaceous oceans—A 55 m. y. record of Earth's temperature and carbon cycle. Geology, 40(2): 107~110.
-
Gao Yuan, Gao Youfeng, Ibarra D E, Du Xiaojing, Dong Tian, Liu Zhifei, Wang Chengshan. 2021a. Clay mineralogical evidence for mid-latitude terrestrial climate change from the latest Cretaceous through the earliest Paleogene in the Songliao basin, NE China. Cretaceous Research, 124: 104827.
-
Gao Yuan, Ibarra D E, Caves Rugenstein J K, Chen Jiquan, Kukla T, Methner K, Gao Youfeng, Huang He, Lin Zhipeng, Zhang Laiming, Xi Dangpeng, Wu Huaichun, Carroll A R, Graham S A, Chamberlain C P, Wang Chengshan. 2021b. Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliaobasin in northeastern China. Earth-Science Reviews, 216: 103572.
-
Gilabert V, Batenburg S J, Arenillas I, Arz J A. 2021. Contribution of orbital forcing and Deccan volcanism to global climatic and biotic changes across the Cretaceous-Paleogene boundary at Zumaia, Spain. Geology, 50(1): 21~25.
-
Ghosh P, Bhattacharya S K, Jani R A. 1995. Palaeoclimate and palaeovegetation in central India during the Upper Cretaceous based on stable isotope composition of the palaeosol carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 114(2-4): 285~296.
-
Goto K, Tada R, Tajika E, Iturralde-Vinent M A, Matsui T, Yamamoto S, Nakano Y, Oji T, Kiyokawa S, Delgado D E G. 2008. Lateral lithological and compositional variations of the Cretaceous/Tertiary deep-sea tsunami deposits in northwestern Cuba. Cretaceous Research, 29(2): 217~236.
-
Grasby S E, Them II T R, Chen, Zhuoheng, Yin Runsheng, Ardakani O H. 2019. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Science Reviews, 196: 102880.
-
Gu Xue, Zhang Laiming, Yin Runsheng, Grasby S E, Yao Hanwei, Tan Jie, Wang Chengshan. 2022. Deccan volcanic activity and its links to the end-Cretaceous extinction in northern China. Global and Planetary Change, 210: 103772.
-
Han Fei, Wang Qiang, Wang Huapei, Zhu Xufeng, Zhou Xinying, Wang Zhixiang, Fang Kaiyong, Stidham T A, Wang Wei, Wang Xiaolin, Li Xiaoqiang, Qin Huafeng, Fan Longgang, Wen Chen, Luo Jianhong, Pan Yongxin, Deng Chenglong. 2022. Low dinosaur biodiversity in central China 2 million years prior to the end-Cretaceous mass extinction. Proceedings of the National Academy of Sciences, 119(39): e2211234119.
-
Hay W W. 2011. Can humans force a return to a ‘Cretaceous’climate? Sedimentary Geology, 235(1-2): 5~26.
-
Henehan M J, Ridgwell A, Thomas E, Zhang Shuang, Alegret L, Schmidt D N, Rae J W, Witts J D, Landman N H, Greene S E. 2019. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proceedings of the National Academy of Sciences, 116(45): 22500~22504.
-
Hernandez Nava A, Black B A, Gibson S A, Bodnar R J, Renne P R, Vanderkluysen L. 2021. Reconciling early Deccan Traps CO2 outgassing and pre-KPB global climate. Proceedings of the National Academy of Sciences, 118(14): e2007797118.
-
Hildebrand A R, Penfield G T, Kring D A, Pilkongton M, Camargo Z A, Jacobsen S B, Boynton W V. 1991. Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucata'n Peninsula, Mexico. Geology, 19(9): 867~871.
-
Hofmann C, Feraud G, Courtillot V. 2000. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: Further constraints on duration and age of the Deccan traps. Earth and Planetary Science Letters, 180(1-2): 13~27.
-
Hong S K, Lee Y I. 2012. Evaluation of atmospheric carbon dioxide concentrations during the Cretaceous. Earth and Planetary Science Letters, 327: 23~28.
-
Huang Chengmin, Retallack G J, Wang Chengshan, Huang Qinghua. 2013. Paleoatmospheric pCO2 fluctuations across the Cretaceous-Tertiary boundary recorded from paleosol carbonates in NE China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 95~105.
-
Hull P M, Bornemann A, Penman D E, Henehan M J, Norris R D, Wilson P A, Blum P, Alegret L, Batenburg S J, Bown P R, Bralower T J, Cournede C, Deutsch A, Donner B, Friedrich O, Jehle S, Kim H, Kroon D, Lippert P C, Loroch D, Moebius I, Moriya K, Peppe D J, Ravizza G E, Röhl U, Schueth J D, Sepúlveda J, Sexton P F, Sibert E C, Śliwińska K K, Summons R E, Thomas E, Westerhold T, Whiteside J H, Yamaguchi T, Zachos J C. 2020. On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367(6475): 266~272.
-
Jiang Yao, Liu Xuemin, Shi Zhiqiang, Li Jiangting, Wang Yanyan. 2021. Review of terrestrial Cretaceous-Paleogene (K/Pg) boundary in China. Journal of Guilin University of Technology, 41(3): 484~496.
-
Keller G. 2014. Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: Coincidence? Cause and effect. Geological Society of America Special Paper, 505: 57~89.
-
Keller G, Mateo P, Monkenbusch J, Thibault N, Punekar J, Spangenberg J E, Abramovich S, Ashckenazi-Polivoda S, Schoene B, Eddy M P, Samperton K M, Khadri S F R, Adatte T. 2020. Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction. Global and Planetary Change, 194: 103312.
-
Konrad W, Royer D L, Franks P J, Roth-Nebelsick A. 2021. Quantitative critique of leaf-based paleo-CO2 proxies: Consequences for their reliability and applicability. Geological Journal, 56(2): 886~902.
-
Kowalczyk J B, Royer D L, Miller I M, Anderson C W, Beerling D J, Franks P J, Grein M, Konrad W, Roth-Nebelsick A, Bowring S A, Johnson K R, Ramezani J. 2018. Multiple proxy estimates of atmospheric CO2 from an early Paleocene rainforest. Paleoceanography and Paleoclimatology, 33(12): 1427~1438.
-
Kring D A. 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 255(1-2): 4~21.
-
Li Sha, Grasby S E, Zhao Xiangdong, Chen Jiubin, Zheng Daren, Wang He, Fang Yanan, Zhang Qi, Yu Tingting, Tian Jingxiang, Du Shengxian, Jarzembowski E A, Wang Qifei, Zhang Haichun, Wan Xiaoqiao, Wang Bo. 2022. Mercury evidence of Deccan volcanism driving the Latest Maastrichtian warming event. Geology, 50(10): 1140~1144.
-
Liu Yongqing, Kuang Hongwei, Peng Nan, Xu Huan, Liu Yanxue. 2011. Sedimentary facies of dinosaur trackways and bonebeds in the Cretaceous Jiaolai basin, eastern Shandong, China, and their paleogeographical implications. Earth Science Frontiers, 18(4): 9~24 (in Chinese with English abstract).
-
Lyson T R, Miller I M, Bercovici A D, Weissenburger K, Fuentes A J, Clyde W C, Hagadorn J W, Burim M J, Johnson K R, Fleming R F, Barclay R S, Maccracken S A, Lloyd B, Wilson G P, Krause D W, Chester S G B. 2019. Exceptional continental record of biotic recovery after the Cretaceous-Paleogene mass extinction. Science, 366(6468): 977~983.
-
Ma Mingming, Zhang Wenfang, Zhao Mengting, Qiu Yudan, Cai Hongming, Chen Jiubin, Liu Xiuming. 2022. Deccan Traps volcanism implicated in the extinction of non-avian dinosaurs in southeastern China. Geophysical Research Letters, 49: e2022GL100342.
-
MacLeod K G, Quinton P C, Sepúlveda J, Negra M H. 2018. Postimpact earliest Paleogene warming shown by fish debris oxygen isotopes (El Kef, Tunisia). Science, 360(6396): 1467~1469.
-
Mason I P. 2013. 40Ar/39Ar Chronostratigraphy of the late Cretaceous early Paleocene rocks of the San Juan basin, NM. Master's thesis of Baylor University, Waco, Texas.
-
Mateo P, Keller G, Punekar J, Spangenberg J E. 2017. Early to late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 121~138.
-
Meyer K W, Petersen S V, Lohmann K C, Blum J D, Washburn S J, Johnson M W, Gleason J D, Kurz A Y, Winkelstern I Z. 2019. Biogenic carbonate mercury and marine temperature records reveal global influence of late Cretaceous Deccan Traps. Nature Communications, 10(1): 1~8.
-
Milligan J N, Royer D L, Franks P J, Upchurch G R, McKee M L. 2019. No evidence for a large atmospheric CO2 spike across the Cretaceous-Paleogene boundary. Geophysical Research Letters, 46(6): 3462~3472.
-
Milligan J N, Flynn A G, Kowalczyk J B, Barclay R S, Geng Jie, Royer D L, Peppe D J. 2022. Moderate to elevated atmospheric CO2 during the early Paleocene recorded by Platanites leaves of the San Juan basin, New Mexico. Paleoceanography and Paleoclimatology, 37(4): e2021PA004408.
-
Molina E, Alegret L, Arenillas I, Arz J A, Gallala N, Hardenbol J, von Salis K, Steurbaut E, Vandenberghe N, Zaghbib-Turki D. 2006. The global boundary stratotype section and point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia-original definition and revision. Episodes, 29(4): 263~273.
-
Morgan J, Warner M, Group C W, Brittan J, Buffler R, Camargo A, Christeson G, Denton P, Hildebrand A, Hobbs R. 1997. Size and morphology of the Chicxulub impact crater. Nature, 390(6659): 472~476.
-
Nordt L, Atchley S, Dworkin S I. 2002. Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary. Geology, 30(8): 703~706.
-
Nordt L, Atchley S, Dworkin S. 2003. Terrestrial evidence for two greenhouse events in the latest Cretaceous. GSA Today, 13(12): 4~9.
-
Norris R, Huber B, Self-Trail J. 1999. Synchroneity of the KT oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic. Geology, 27(5): 419~422.
-
Nriagu J, Becker C. 2003. Volcanic emissions of mercury to the atmosphere: Global and regional inventories. Science of the Total Environment, 304(1-3): 3~12.
-
O'Connor L K, Crampton-Flood E D, Jerrett R M, Price G D, Naafs D A, Pancost R D, McCormack P, Lempotesis-Davies A, van Dongen B E, Lengger S K. 2023. Steady decline in mean annual air temperatures in the first 30 k. y. after the Cretaceous-Paleogene boundary. Geology, 51(5): 486~490.
-
Oerlemans J. 2004. Correcting the Cenozoic δ18O deep-sea temperature record for Antarctic ice volume. Palaeogeography, Palaeoclimatology, Palaeoecology, 208(3-4): 195~205.
-
Officer C B, Hallam A, Drake C L, Devine J D. 1987. Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions. Nature, 326: 143~149.
-
Pagani M, Arthur M A, Freeman K H. 1999. Miocene evolution of atmospheric carbon dioxide. Paleoceanography, 14(3): 273~292.
-
Pagani M, Zachos J C, Freeman K H, Tipple B, Bohaty S. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309(5734): 600~603.
-
Peppe D J. 2010. Megafloral change in the early and middle Paleocene in the Williston basin, North Dakota, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 298(3-4): 224~234.
-
Peppe D J, Royer D L, Cariglino B, Oliver S Y, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams J M, Correa E, Currano E D, Erickson M, Hinojosa L F, Hoganson J W, Iglesias A, Jaramillo C A, Johnson K R, Jordan G J, Kraft N J B, Lovelock E C, Lusk C H, Niinemets Ü, Peñuelas J, Rapson G, Wing S L, Wright I J. 2011. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications. New Phytologist, 190(3): 724~739.
-
Percival L M, Ruhl M, Hesselbo S P, Jenkyns H C, Mather T A, Whiteside J H. 2017. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of the National Academy of Sciences, 114(30): 7929~7934.
-
Petersen S V, Dutton A, Lohmann K C. 2016a. End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nature Communications, 7(1): 12079.
-
Petersen S V, Tabor C R, Lohmann K C, Poulsen C J, Mayer K W, Carpenter S J, Erickson J M, Matsunaga K K S, Smith S Y, Sheldon N D. 2016b. Temperature and salinity of the late Cretaceous western interior seaway. Geology, 44(11): 903~906.
-
Pirrone N, Cinnirella S, Feng Xinbin, Finkelman R B, Friedli H R, Leaner J, Mason R, Mukherjee A B, Stracher G B, Streets D G, Telmer K. 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13): 5951~5964.
-
Pyle D M, Mather T A. 2003. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment, 37(36): 5115~5124.
-
Renne P R, Deino A L, Hilgen F J, Kuiper K F, Mark D F, Mitchell W S, Morgan L E, Mundil R, Smit J. 2013. Time scales of critical events around the Cretaceous-Paleogene Boundary. Science, 339(6120): 684~687.
-
Renne P R, Sprain C J, Richards M A, Self S, Vanderkluysen L, Pande K. 2015. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, 350(6256): 76~78.
-
Retallack G J. 2002. Carbon dioxide and climate over the past 300 myr. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1793): 659~673.
-
Retallack G J. 2009. Greenhouse crises of the past 300 million years. Geological Society of America Bulletin, 121(9-10): 1441~1455.
-
Royer D L. 2003. Estimating latest Cretaceous and Tertiary atmospheric CO2 from stomatal indices. In: Wing S L, Gingerich P D, Schmitz B, Thomas E, eds. Causes and Consequences of Globally Warm Climates in the Early Paleogene: Boulder, Colorado. Geological Society of America Special Paper, 369: 79~93.
-
Royer D L. 2006. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta, 70(23): 5665~5675.
-
Royer D L, Berner R A, Beerling D J. 2001a. Phanerozoic atmospheric CO2 change: Evaluating geochemical and paleobiological approaches. Earth Science Review, 54(4): 349~392.
-
Royer D L, Wing S, Beerling D J, Jolley D W, Koch P L, Hickey L J, Berner R A. 2001b. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science, 292(5525): 2310~2313.
-
Sanei H, Grasby S E, Beauchamp B. 2012. Latest Permian mercury anomalies. Geology, 40(1): 63~66.
-
Schoene B, Samperton K M, Eddy M P, Keller G, Adatte T, Bowring S A, Khadri S F R, Gertsch B. 2015. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science, 347(6218): 182~184.
-
Schoene B, Eddy M P, Samperton K M, Keller C B, Keller G, Adatte T, Khadri S F R. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363(6429): 862~866.
-
Schoene B, Eddy M P, Keller C B, Samperton K M. 2021. An evaluation of Deccan Traps eruption rates using geochronologic data. Geochronology, 3(1): 181~198.
-
Schulte P, Kontny A. 2005. Chicxulub impact ejecta from the Cretaceous-Paleogene (KP) boundary in northeastern México. Geological Society of America Special Papers, 384: 191~221.
-
Schulte P, Deutsch A, Salge T, Berndt J, Kontny A, MacLeod K, Neuser R, Krumm S. 2009. A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous-Paleogene (K-Pg) boundary, Demerara Rise, western Atlantic. Geochimica et Cosmochimica Acta, 73(4): 1180~1204.
-
Schulte P, Alegret L, Arenillas I, Arz J A, Barton P J, Bown P R, Bralower T J, Christeson G L, Claeys P, Cockell C S, Collins G S, Deutsch A, Godlin T J, Goto K, Grajales-Nishimura J M, Grieve R A F, Gulick S P S, Johnson K R, Kiessling W, Koeberl C, Kring D A, MacLeod K G, Matsui T, Melosh J, Montanari A, Morgan J V, Neal C R, Nichols D J, Norris R D, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold W U, Robin E, Salge T, Speijer R P, Sweet A R, Urrutia-Fucugauchi J, Vajda V, Whalen M T, Willumsen P S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327(5970): 1214~1218.
-
Self S, Thordarson T, Widdowson M, Jay A E. 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 248(1-2): 518~532.
-
Selin N E. 2009. Global biogeochemical cycling of mercury: A review. Annual Review of Environment and Resources, 34: 43~63.
-
Seltzer A M, Blard P, Sherwood S C, Kageyama M. 2023. Terrestrial amplification of past, present, and future climate change. Science Advances, 9: eadf8119.
-
Sepkoski J J. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. post-Paleozoic families and mass extinctions. Paleobiology, 10(2): 246~267.
-
Sepkoski J J. 1996. Patterns of Phanerozoic extinction: A perspective from global data bases. Global Events and Event Stratigraphy in the Phanerozoic: Results of the International Interdisciplinary Cooperation in the IGCP-Project 216 “Global Biological Events in Earth History”: 35~51.
-
Shen Jun, Yu Jianxin, Chen Jiubin, Algeo T J, Xu Guozhen, Feng Qinglai, Shi Xiao, Planavsky N J, Shu Wenchao, Xie Shucheng. 2019. Mercury evidence of intense volcanic effects on land during the Permian-Triassic transition. Geology, 47(12): 1117~1121.
-
Sial A N, Chen Jiubin, Lacerda L D, Frei R, Tewari V C, Pandit M K, Gaucher C, Ferreira V P, Cirilli S, Peralta S, Korte C, Barbosa J A, Pereira N S. 2016. Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts. Cretaceous Research, 66: 60~81.
-
Smit J. 1999. The global stratigraphy of the Cretaceous-Tertiary Boundary Impact Ejecta. Annual Review of Earth and Planetary Sciences, 27(1): 75~113.
-
Sprain C J, Renne P R, Vanderkluysen L, Pande K, Self S, Mittal T. 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 363(6429): 866~870.
-
Steinthorsdottir M, Vajda V, Pole M. 2016. Global trends ofpCO2 across the Cretaceous-Paleogene boundary supported by the first Southern Hemisphere stomatal proxy-based pCO2 reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 464: 143~152.
-
Sutton R T, Dong Buwen, Gregory J M. 2007. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. GeophysicalResearch Letters, 34(2): L02701.
-
Swisher C C, Grajales-Nishimura J M, Montanari A, Margolis S V, Claeys P, Alvarez W, Renne P, Cedillo-Pardoa E, Maurrasse F J M R, Curtis G H, Smit J, Mcwilliams M O. 1992. Coeval 40Ar/39Ar ages of 65. 0 million years ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites. Science, 257(5072): 954~958.
-
Takashima R, Nishi H, Huber B T, Leckie R M. 2006. Greenhouse world and the Mesozoic ocean. Oceanography, 19(4): 82~92.
-
Tan Jie, Zhang Laiming, Wang Chengshan, Cao Ke, Li Xin. 2020. Late Cretaceous provenance change in the Jiaolaibasin, East China: Implications for paleogeographic evolution of East Asia. Journal of Asian Earth Sciences, 194: 104188.
-
Thibodeau A M, Bergquist B A. 2016. Do mercury isotopes record the signature of massive volcanism in marine sedimentary records? Geology, 45(1): 95~96.
-
Tian Xiaochuan, Buck W R. 2022. Intrusions induce global warming before continental flood basalt volcanism. Nature Geoscience, 15(5): 417~422.
-
Tierney J E, Poulsen C J, Montañez P, Bhattacharya T, Feng Ran, Ford H L, Hönisch B, Inglis G N, Petersen S V, Sagoo N, Tabor C L, Thirumalai K T, Zhu Jiang, Burls N J, Foster G L, Goddéris Y, Huber B T, Ivany L C, Turner S K, Lunt D J, Mcelwain J C, Mills B J W, Otto-Bliesner B L, Ridgwell A, Zhang Yige. 2020. Past climates inform our future. Science, 370(6517): eaay3701.
-
Tobin T S, Wilson G P, Eiler J M, Hartman J H. 2014. Environmental change across a terrestrial Cretaceous-Paleogene boundary section in eastern Montana, USA, constrained by carbonate clumped isotope paleothermometry. Geology, 42(4): 351~354.
-
Tyrrell T, Merico A, Armstrong McKay D I. 2015. Severity of ocean acidification following the end-Cretaceous asteroid impact. Proceedings of the National Academy of Sciences, 112(21): 6556~6561.
-
Urrutia-Fucugauchi J, Marin L, Trejo-Garcia A. 1996. UNAM scientific drilling program of Chicxulub impact structure—Evidence for a 300 kilometer crater diameter. Geophysical Research Letters, 23(13): 1565~1568.
-
Vellekoop J, Esmeray-Senlet S, Miller K G, Browning J V, Sluijs A, van de Schootbrugge B, Sinninghe Damste' J S, Brinkhuis H. 2016. Evidence for Cretaceous-Paleogene boundary bolide “impact winter” conditions from New Jersey, USA. Geology, 44(8): 619~622.
-
Wan Chuanbiao, Wang Dehai, Zhu Zhanping, Quan Cheng. 2011. Trend of Santonian (late Cretaceous) atmospheric CO2 and global mean land surface temperature: Evidence from plant fossils. Science China Earth Sciences, 54(9): 1338~1345.
-
Wang Chengshan, Cao Ke, Huang Yongjian. 2009. Sedimentary record and Cretaceous Earth surface system changes. Earth Science Frontiers, 16(5): 1~14 (in Chinese with English abstract).
-
Wang Chengshan, Feng Zhiqiang, Zhang Laiming, Huang Yongjian, Cao Ke, Wang Pujun, Zhao Bin. 2013a. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 17~30.
-
Wang Chengshan, Scott R W, Wan Xiaoqiao, Graham S A, Huang Yongjian, Wang Pujun, Wu Huaichun, Dean W E, Zhang Laiming. 2013b. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata. Earth-Science Reviews, 126: 275~299.
-
Wang Chengshan, Wang Tiantian, Chen Xi, Gao Yuan, Zhang Laiming. 2017. Paleoclimate implications for future climate change. Earth Science Frontiers, 24(1): 1~17 (in Chinese with English abstract).
-
Wang Yuqing, Li Wanga, Momohara A, Leng Qin, Huang Yongjiang. 2020. The Paleogene atmospheric CO2 concentrations reconstructed using stomatal analysis of fossil Metasequoia needles. Palaeoworld, 29(4): 744~751.
-
Wang Zhuhong, Chen Jiubin, Feng Xinbin, Cai Hongming. 2012. Progress in the study of stable Hg isotope geochemistry. Earth and Environment, 40(4): 599~610 (in Chinese with English abstract).
-
Wilf P, Johnson K R, Huber B T. 2003. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences, 100(2): 599~604.
-
Witts J D, Whittle R J, Wignall P B, Crame J A, Francis J E, Newton R J, Bowman V C. 2016. Macrofossil evidence for a rapid and severe Cretaceous-Paleogene mass extinction in Antarctica. Nature Communications, 7(1): 11738.
-
Woodward F I. 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327(6123): 617~618.
-
Yin Runsheng, Feng Xinbin, Li Xiangdong, Yu Ben, Du Buyun. 2014. Trends and advances in mercury stable isotopes as a geochemical tracer. Trends in Environmental Analytical Chemistry, 2: 1~10.
-
Yin Runsheng, Feng Xinbin, Hurley J P, Krabbenhoft D P, Lepak R F, Hu Ruizhong, Zhang Qian, Li Zhonggen, Bi Xianwu. 2016. Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites. Scientific Reports, 6(1): 18686.
-
Yin Yitian, Zhang Laiming, Gu Xue, Yin Runsheng, Wen Yixiong, Jin Tianjie, Wang Chengshan. 2023. High terrestrial temperature in the low-latitude Nanxiongbasin during the Cretaceous-Paleogene boundary interval. Palaeogeography, Palaeoclimatology, Palaeoecology, 617(1): 111489.
-
Zhang Laiming, Wang Chengshan, Cao Ke, Wang Qian, Tan Jie, Gao Yuan. 2016. High elevation of Jiaolai basin during the late Cretaceous: Implication for the coastal mountains along the East Asian margin. Earth and Planetary Science Letters, 456: 112~123.
-
Zhang Laiming, Wang Chengshan, Wignall P B, Kluge T, Wan Xiaoqiao, Wang Qian, Gao Yuan. 2018. Deccan volcanism caused coupledpCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China. Geology, 46(3): 271~274.
-
Zhang Laiming, Hay W W, Wang Chengshan, Gu Xue. 2019. The evolution of latitudinal temperature gradients from the latest Cretaceous through the Present. Earth-Science Reviews, 189: 147~158.
-
丁聪. 2016. 胶莱盆地鲁科1井多重地层划分及K/Pg界限探讨. 中国地质大学(北京)硕士学位论文.
-
冯新斌, 尹润生, 俞奔, 杜步云, 陈玖斌. 2015. 汞同位素地球化学概述. 地学前缘, 22(5): 124~135.
-
江瑶, 刘雪敏, 时志强, 李建亭, 王燕燕. 2021. 中国陆相白垩纪-古近纪(K/Pg)界限研究综述. 桂林理工大学学报, 41(3): 484~496.
-
柳永清, 旷红伟, 彭楠, 徐欢, 刘燕学. 2011. 山东胶莱盆地白垩纪恐龙足迹与骨骼化石埋藏沉积相与古地理环境. 地学前缘, 18(4): 9~24.
-
王成善, 曹轲, 黄永建. 2009. 沉积记录与白垩纪地球表层系统变化. 地学前缘, 16(5): 1~14.
-
王成善, 王天天, 陈曦, 高远, 张来明. 2017. 深时古气候对未来气候变化的启示. 地学前缘, 24(1): 1~17.
-
王柱红, 陈玖斌, 冯新斌, 蔡虹明. 2012. Hg稳定同位素地球化学研究进展, 地球与环境, 40(4): 599~610.
-
摘要
白垩纪—古近纪(K-Pg)界限时期发生了地质历史中最严重的生物大灭绝事件之一,重建该时期气候演化历史及其对生态系统的影响对理解深时气候演化规律和预测未来气候变化都具有重要意义。相比海相剖面而言,基于陆相剖面的白垩纪—古近纪界限时期古气候重建研究开展较晚,相关成果缺乏系统总结和集成。本文系统回顾了全球陆相白垩纪—古近纪界限剖面的分布情况和事件年代学新进展,总结了基于以上剖面重建的定量古气候记录和德干火山喷发记录,建立了界限时期中纬度陆地年平均温度和大气CO2浓度时间演化序列。陆相剖面分布相对集中且数量较少,中国是该时期陆相剖面发育最多的国家之一,多个盆地已经建立了德干火山喷发记录,在重建该时期陆地气候上具有很大潜力。基于陆相沉积物汞元素地球化学记录表明,德干火山作用导致了晚马斯特里赫特期变暖事件并触发了白垩纪末期生物大灭绝。中纬度陆地年平均温度重建结果显示马斯特里赫特期中期全球经历了~10℃的降温,到马斯特里赫特期晚期德干火山初始喷发前显著升温至~20℃,并在白垩纪—古近纪界限前后发生多次快速波动。尽管65~63 Ma之间陆地温度记录相对缺失,69~65 Ma之间重建的大气CO2浓度记录与陆地年平均温度记录之间具有良好的耦合性,表明白垩纪—古近纪界限时期大气CO2浓度变化是全球温度变化的主要驱动因素。
Abstract
One of the most catastrophic mass extinction events in geological history occurred during the Cretaceous-Paleogene (K-Pg) boundary interval. The reconstruction of the climate evolution and its impact on the ecosystem during this period is of great significance for understanding the climate evolution of deep time and predicting future climate change. Compared with marine sections, the paleoclimate reconstructions based on terrestrial sections were slower and lacked systematic summary and compilation. In this study, we systematically review the distribution of terrestrial K-Pg boundary sections and the progress of event chronology during the K-Pg boundary interval, summarize the quantitative terrestrial paleoclimate records and the Deccan Traps eruption records, establish the mean annual terrestrial temperature of mid-latitudes and atmospheric CO2 concentration. The distribution of terrestrial sections is relatively limited. China is one of the countries with the largest number of terrestrial K-Pg boundary sections, several basins have established Deccan eruption records, which has great potential for reconstructing the terrestrial climate during this period. The mercury geochemistry in terrestrial sediments suggest that Deccan volcanism caused the Late Maastrichtian Warming Event and triggered the end-Cretaceous mass extinction. The reconstruction results of the mean annual terrestrial temperature of mid-latitudes show that the global temperature decreased by ~10℃ in the middle Maastrichtian, and increased significantly to ~20℃ before the initial eruption of Deccan Traps in the late Maastrichtian, with multiple fluctuations across the K-Pg boundary. Although the terrestrial temperature records between 65~63 Ma are relatively absent, the coupling between atmospheric CO2 concentration and global mean annual terrestrial temperature from 69~65 Ma complicated in this study suggests that atmospheric CO2 concentration was the main driver of global temperature variation during the K-Pg boundary interval.