en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

程文斌,男,1982年生。博士,副教授,主要从事矿床学、矿床学地球化学研究。E-mail: haitianyisu@126.com。

通讯作者:

郎兴海,男,1982年生。博士,教授,主要从事矿床学、矿产普查与勘探方面的研究。E-mail: langxinghai@126.com。

参考文献
Albarède F, Blichert-Toft J, Rivoal M, Telouk P. 2016. A glimpse into the Roman finances of the Second Punic War through silver isotopes. Geochemical Perspectives Letters, 2(2): 127~137.
参考文献
Anderson C J, Mathur R, Rakovan J, Tremsin A S. 2019. Natural solid-state ion conduction induces metal isotope fractionation. Geology, 47(7): 617~621.
参考文献
Arribas A, Mathur R, Megaw P, Arribas I. 2020. The isotopic composition of silver in ore minerals. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009097.
参考文献
Artioli G, Angelini I, Nimis P, Villa I M. 2016. A lead-isotope database of copper ores from the Southeastern Alps: A tool for the investigation of prehistoric copper metallurgy. Journal of Archaeological Science, 75: 27~39.
参考文献
Asael D, Matthews A, Bar-Matthews M, Halicz L. 2007. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chemical Geology, 243(3-4): 238~254.
参考文献
Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L. 2009. Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits. Chemical Geology, 262(3-4): 147~158.
参考文献
Asael D, Matthews A, Bar-Matthews M, Harlavan Y, Segal I. 2012. Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes. Chemical Geology, 310: 23~35.
参考文献
Badullovich N, Moynier F, Creech J, Teng F Z, Sossi P A. 2017. Tin isotopic fractionation during igneous differentiation and Earth's mantle composition. Geochemical Perspectices Letters, 5: 24~28.
参考文献
Balistrieri L, Borrok D M, Wanty R B, Ridley W I. 2008. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta, 72: 311~328.
参考文献
Baron S, Tǎmaş C G, Le Carlier C. 2014. How mineralogy and geochemistry can improve the significance of Pb isotopes in metal provenance studies: the significance of Pb isotopes in metal provenance studies. Archaeometry, 56(4): 665~680.
参考文献
Baron S, Tǎma C G, Rivoal M, Cauuet B, Télouk P, Albarède F. 2019. Geochemistry of gold ores mined during Celtic times from the North-Western French Massif Central. Scientific Reports, 9(1): 1~15.
参考文献
Barrat J A, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G. 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochimica et Cosmochimica Acta, 83: 79~92.
参考文献
Berger D, Figueiredo E, Brügmann G, Pernicka E. 2018. Tin isotope fractionation during experimental cassiterite smelting and its implication for tracing the tin sources of prehistoric metal artefacts. Journal of Archaeological Science, 92: 73~86.
参考文献
Berger D, Brügmann G, Pernicka E. 2019a. On smelting cassiterite in geological and archaeological samples: Preparation and implications for provenance studies on metal artefacts with tin isotopes. Archaeological and Anthropological Sciences, 11(1): 293~319.
参考文献
Berger D, Soles J S, Giumlia-Mair A R, Brügmann G, Galili E, Lockhoff N, Pernicka E. 2019b. Isotope systematics and chemical composition of tin ingots from Mochlos (Crete) and other Late Bronze Age sites in the eastern Mediterranean Sea: An ultimate key to tin provenance? PloS One, 14(6): e0218326.
参考文献
Berger D, Brauns M, Brügmann G, Pernicka E, Lockhoff N. 2021. Revealing ancient gold parting with silver and copper isotopes: Implications from cementation experiments and for the analysis of gold artefacts. Archaeological and Anthropological Sciences, 13(9): 143.
参考文献
Bigalke M, Weyer S, Wilcke W. 2010. Stable copper isotopes: A novel tool to trace copper behavior in hydromorphic soils. Soil Science Society of America Journal, 74(1): 60~73.
参考文献
Bower N W, Hendin D B, Lundstrom C C, Epstein M S, Keller A T, Wagner A R, White Z R. 2013. “Biblical” bronze coins: New insights into their timing and attribution using copper and lead isotopes. Archaeological and Anthropological Sciences, 5(4): 287~298.
参考文献
Bower N W, Lundstrom C C, Hendin D B. 2019. MC-ICP-MS analyses of tin isotopes in Roman-era bronze coins reveal temporal and spatial variation. Archaeometry, 61(4): 891~905.
参考文献
Boyle E, John S, Abouchami W, Adkins J, Echegoyen-Sanz Y, Ellwood M, Flegal A, Fornace K, Gallon C, Galer S. 2012. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnology and Oceanography: Methods, 10: 653~665.
参考文献
Brauns M, Schwab R, Gassmann G, Wieland G, Pernicka E. 2013. Provenance of Iron Age iron in southern Germany: A new approach. Journal of Archaeological Science, 40(2): 841~849.
参考文献
Brügmann G, Berger D, Pernicka E. 2017. Determination of the tin stable isotopic composition in tin-bearing metals and minerals by MC-ICP-MS. Geostandards and Geoanalytical Research, 41(3): 437~448.
参考文献
Brügmann G, Brauns M, Maas R. 2019. Silver isotope analysis of gold nuggets: An appraisal of instrumental isotope fractionation effects and potential for high-resolution tracing of placer gold. Chemical Geology, 516: 59~67.
参考文献
Budd P, Haggerty R, Pollard A M, Scaife B, Thomas R G. 1996. Rethinking the quest for provenance. Antiquity, 70(267): 168~174.
参考文献
Chen J H, Wasserburg G J. 1983. Theisotopic composition of silver and lead in two iron meteorites: Cape york and grant. Geochimica et Cosmochimica Acta, 47(10): 1725~1737.
参考文献
Coutaud M, Meheut M, Glatzel P, Pokrovski G S, Viers J, Rols J, Pokrovsky O S. 2017. Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm. Geochimica et Cosmochimica Acta, 220: 1~18.
参考文献
Creech J B, Moynier F, Badullovich N. 2017. Tin stable isotope analysis of geological materials by double-spike MC-ICPMS. Chemical Geology, 457: 61~67.
参考文献
Creech J B, Moynier F. 2019. Tin and zinc stable isotope characterisation of chondrites and implications for early Solar System evolution. Chemical Geology, 511: 81~90.
参考文献
De Laeter J R, Jeffery P M. 1965. The isotopic composition of terrestrial and meteoritic tin. Journal of Geophysical Research, 70(12): 2895~2903.
参考文献
de Madinabeitia S G, Ibarguchi J G, Zalduegui J S. 2021. IBERLID: A lead isotope database and tool for metal provenance and ore deposits research. Ore Geology Reviews, 137: 104279.
参考文献
Deng Xiaohua, Mathur R, Li Yao, Mao Qigui, Wu Yanshuang, Yang Liya, Chen Xi, Xu Jun. 2019. Copper and zinc isotope variation of the VMS mineralization in the Kalatag district, eastern Tianshan, NW China. Journal of Geochemical Exploration, 196: 8~19.
参考文献
Desaulty A M, Telouk P, Albalat E, Albarède F. 2011. Isotopic Ag-Cu-Pb record of silver circulation through 16th-18th century Spain. Proceedings of the National Academy of Sciences, 108(22): 9002~9007.
参考文献
Desaulty A M, Albarède F. 2013. Copper, lead, and silver isotopes solve a major economic conundrum of Tudor and early Stuart Europe. Geology, 41(2): 135~138.
参考文献
Dong Ge, Wei Haizhen, Zhu Yuanfeng, Liu Xi, Guo Qi, Pu Wei, Lin Tibo, Wang Junlin. 2022. A preliminary study on silver isotopic composition in polymetallic ore deposits in eastern China. Journal of Earth Science, 33(1): 100~108.
参考文献
Duan Jilin. 2018. Cu and Zn isotopic features of typical magma-related deposit systems in Tibet and their geological significances. Doctoral dissertation of China University of Geoscience (Beijing) (in Chinese with English abstract).
参考文献
Duan Jilin, Tang Juxing, Li Yubin, Liu Songao, Wang Qin, Yang Chao, Wang Yiyun. 2016. Copper isotopic signature of the Tiegelongnan high-sulfidation copper deposit, Tibet: Implications for its origin and mineral exploration. Mineralium Deposita, 51: 591~602.
参考文献
Eshel T, Tirosh O, Yahalom-Mack N, Gilboa A, Erel Y. 2022. Silverisotopes in silver suggest Phoenician Innovation in metal production. Applied Sciences, 12(2): 741.
参考文献
Friedman A M, Conway M, Kastner M, Milsted J, Metta D, Fields P R, Olsen E. 1966. Copper artifacts: Correlation with some types of copper ores. Science, 152: 1504~1506.
参考文献
Fujii T, Albarede F. 2018. 109Ag-107Ag fractionation in fluids with applications to ore deposits, archeometry and cosmochemistry. Geochimica et Cosmochimica Acta, 234: 37~49.
参考文献
Gale N H. 1997. The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry, 39(1): 71~82.
参考文献
Gale N H, Stos-Gale Z A. 1982. Bronze Age copper sources in the Mediterranean: A new approach. Science, 216(4541): 11~19.
参考文献
Gale N H, Woodhead A P, Stos-Gale Z A, Walder A, Bowen I. 1999. Natural variations detected in the isotopic composition of copper, possible applications to archaeology and geochemistry. International Journal of Mass Spectrometry, 184(1): 1~9.
参考文献
Gale N H, Stos-Gale Z H. 2000. Lead isotope analysis applied to provenance studies. In: Modern Analytical Methods in Art and Archaeology. New York: John Wiley and Sons Publication.
参考文献
Glascock M D, Neff H. 2003. Neutron activation analysis and provenance research in archaeology. Measurement Science & Technology, 14(9): 1516~1526.
参考文献
Graham S, Pearson N, Jackson S, Griffin W, O'reilly S Y. 2004. Tracing Cu and Fe from source to porphyry: In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chemical Geology, 207(3-4): 147~169.
参考文献
Guo Qi, Wei Haizhen, Jiang Shaoyong, Simon H, Lin Yibo, Wang Yijing, Li Yinchuan. 2017. Matrix effects originating from coexisting minerals and accurate determination of stable silver isotopes in silver deposits. Analytical Chemistry, 89(24): 13634~13641.
参考文献
Haustein M, Gillis C, Pernicka E. 2010. Tin isotopy—a new method for solving old questions. Archaeometry, 52(5): 816~832.
参考文献
Hoefs J. 2021. Stable Isotope Geochemistry(9th Edition). Cham: Springer International Publishing AG.
参考文献
Hsu Y K, Sabatini B J. 2019. A geochemical characterization of lead ores in China: An isotope database for provenancing archaeological materials. PLoS One, 14(4): e0215973.
参考文献
Hu Wenfeng, Zhang Yekai, Liu Jinhua, Guo Liang, Zhou Lian. 2019. The isotopic compositions of copper and molybdenum from porphyry Cu-Mo deposit in the Gangdese, Tibet, and their significance. Earth Science, 44(6): 1923~1934 (in Chinese with English abstract).
参考文献
Ikehata K, Notsu K, Hirata T. 2011. Copper isotope characteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits, Japan, determined using a femtosecond LA-MC-ICP-MS. Economic Geology, 106(2): 307~316.
参考文献
Ikehata K, Hirata T. 2012. Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, Northern Japan. Economic Geology, 107: 1489~1497.
参考文献
Ikehata K, Hirata T. 2013. Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite. Analytical Sciences, 29: 1213~1217.
参考文献
Ixer R A. 1999. Role of ore geology and ores in the archaeological provenancing of metals. In: Young S M M, ed. Metals in Antiquity, BAR International Series 792. Oxford: Archaeo Press.
参考文献
Jansen M, Hauptmann A, Klein S, Seitz H M. 2017. The potential of stable Cu isotopes for the identification of Bronze Age ore mineral sources from Cyprus and Faynan: Results from Uluburun and Khirbat Hamra Ifdan. Archaeological and Anthropological Sciences, 10(6): 1485~1502.
参考文献
Jansen M, Hauptmann A, Klein J. 2018. Copper and lead isotope characterization of late bronze age copper ingots in the eastern mediterranean: Results from gelidonya, gournia, enkomi and mathiati. In: Giumlia-Mair A, Lo Schiavo F, eds. Bronze Age Metallurgy on Mediterranean Islands, Monographies Instrumentum 56. Drémil-Lafage: Éditions Mergiol, 552~578.
参考文献
Jin Zhengyao. 2008. Lead isotope Archaeology in China. Hefei: University of Science and Technology of China Press (in Chinese).
参考文献
Jin Zhengyao, Liu Ruiliang, Rawson J, Pollard A M. 2017. Revisiting lead isotope data in Shang and Western Zhou bronzes. Antiquity, 91(360): 1574~1587.
参考文献
Killick D J, Stephens J A, Fenn T R. 2020. Geological constraints on the use of lead isotopes for provenance in archaeometallurgy. Archaeometry, 62: 86~105.
参考文献
Klein S, Lahaye Y, Brey G P, Von Kaenel H M. 2004. The early Roman imperial aes coinage II: Tracing the copper sources by analysis of lead and copper isotopes—copper coins of Augustus and Tiberius. Archaeometry, 46(3): 469~480.
参考文献
Klein S, Brey G P, Durali-Müller S, Lahaye Y. 2010. Characterisation of the raw metal sources used for the production of copper and copper-based objects with copper isotopes. Archaeological and Anthropological Sciences, 2(1): 45~56.
参考文献
Klein S, Rose T. 2020. Evaluatingcopper isotope fractionation in the metallurgical operational chain: An experimental approach. Archaeometry, 62: 134~155.
参考文献
Larson P B, Maher K, Ramos F C, Chang Z, Gaspar M, Meinert L D. 2003. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chemical Geology, 201(3-4): 337~350.
参考文献
Lazarov M, Horn I. 2015. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochim Acta Part B-Atomic Spectr: 111: 64~73.
参考文献
Li Weiqiang, Jackson S E, Pearson N J, Alard O, Chappell B W. 2009. The Cu isotope signature of granites from the Lachlan Fold Belt, SE Australia. Chemical Geology, 258: 38~49.
参考文献
Li Weiqiang, Jackson S E, Pearson N J, Graham S. 2010. Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia. Geochimica et Cosmochimica Acta, 74: 4078~4096.
参考文献
Li Zhenqing, Yang Zhiming, Zhu Xiangkun, Hou Zengqian, Li Shizhen, Li Zhihong, Wang Yue. 2009. Cu isotope composition of Qulong porphyry Cu deposit, Tibet. Acta Geologica Sinica, 83(12): 1985~1996 (in Chinese with English abstract).
参考文献
Liu Ruiliang, Pollard A M, Rawson J, Tang Xiaojia, Bray P, Zhang Changping. 2019. Panlongcheng, Zhengzhou and the movement of metal in early bronze age china. Journal of World Prehistory, 32(4): 393~428.
参考文献
Liu Shengao, Huang Jian, Liu Jingao, Wörner G, Yang Wei, Tang Yanjie, Chen Yi, Tang Limei, Zheng Jianping, Li Shuguang. 2015. Copper isotopic composition of the silicate Earth. Earth and Planetary Science Letters, 427: 95~103.
参考文献
Luck J M, Ben Othman D, Barrat J A, Albarède F. 2003. Coupled 63Cu and 16O excesses in chondrites. Geochimica et Cosmochimica Acta, 67: 143~151.
参考文献
Luck J M, Ben Othman D, Albarède F. 2005. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et Cosmochimica Acta, 69: 5351~5263.
参考文献
Luo Yan, Dabek-Zlotorzynska E, Celo V, Muir D C G, Yang Lu. 2010. Accurate and precise determination of silver isotope fractionation in environmental samples by multicollector-ICPMS. Analytical Chemistry, 82(9): 3922~3928.
参考文献
Maher K C, Larson P B. 2007. Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Perú. Economic Geology, 102: 225~237.
参考文献
Maher K C, Jackson S, Mountain B. 2011. Experimental evaluation of the fluid-mineral fractionation of Cu isotopes at 250℃and 300℃. Chemical Geology, 286: 229~239.
参考文献
Malitch K N, Latypov R M, Badanina I Y, Sluzhenikin S F. 2014. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril'sk Province (Russia): Evidence from copper and sulfur isotopes. Lithos, 204: 172~187.
参考文献
Mason A H. 2020. Provenance oftin in the Late Bronze Age balkans: Preparation of cassiterite for Sn isotope analysis and the probabilistic and spatial analysis of Sn isotopes. Doctoral dissertation of the City University of New York.
参考文献
Mason A H, Powell W G, Bankoff H A, Mathur R, Bulatović A, Filipović V, Ruiz J. 2016. Tin isotope characterization of bronze artifacts of the central Balkans. Journal of Archaeological Science, 69: 110~117.
参考文献
Mason A, Powell W, Bankoff H A, Mathur R, Price M, Bulatović A, Filipović V. 2020. Provenance of tin in the Late Bronze Age balkans based on probabilistic and spatial analysis of Sn isotopes. Journal of Archaeological Science, 122: 105181.
参考文献
Mason T F, Weiss D J, Chapman J B, Wilkinson J J, Tessalina S G, Spiro B, Horstwood M S A, Spratt J, Coles B J. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221(3-4): 170~187.
参考文献
Mathur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga F, Maksaev V, Vervoort J, Hart G. 2009a. Exploration potential of Cu isotope fractionation in porphyry copper deposits. Journal of Geochemical Exploration, 102(1): 1~6.
参考文献
Mathur R, Titley S, Hart G, Wilson M, Davignon M, Zlatos C. 2009b. The history of the united states cent revealed through copper isotope fractionation. Journal of Archaeological Science, 36(2): 430~433.
参考文献
Mathur R, Dendas M, Titley S, Phillips A. 2010. Patterns in the copper isotopic composition of minerals in porphyry copper deposits in the Southwestern United States of America. Economic Geology, 105: 1457~1467.
参考文献
Mathur R, Ruiz J, Casselman M J, Megaw P, van Egmond R. 2012. Use of Cu isotopes to distinguishprimary and secondary Cu mineralization in the Cañariaco Norte porphyry copper deposit, Northern Peru. Mineralium Deposita, 47(7): 755~762.
参考文献
Mathur R, Wilson M, Parra M L. 2014. Challenges of using copper isotope ratios to trace the origin of native copper artifacts: An example from the Keweenaw Peninsula. Annals of Carnegie Museum, 82(3): 241~245.
参考文献
Mathur R, Arribas A, Megaw P, Wilson M, Stroup S, Meyer-Arrivillaga D, Arribas I. 2018. Fractionation of silver isotopes in native silver explained by redox reactions. Geochimica et Cosmochimica Acta, 224: 313~326.
参考文献
McNaughton N J, Rosman K J R. 1991. Tin isotope fractionation in terrestrial cassiterites. Geochimica et Cosmochimica Acta, 55(2): 499~504.
参考文献
Milot J, Malod-Dognin C, Blichert-Toft J, Télouk P, Albarède F. 2021. Sampling and combined Pb and Ag isotopic analysis of ancient silver coins and ores. Chemical Geology, 564: 120028.
参考文献
Milot J, Blichert-Toft J, Sanz M A, Malod-Dognin C, Télouk P, Albarède F. 2022. Silver isotope and volatile trace element systematics in galena samples from the Iberian Peninsula and the quest for silver sources of Roman coinage. Geology, 50(4): 422~426.
参考文献
Moeller K, Schoenberg R, Pedersen R B, Weiss D, Dong S. 2012. Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostandards and Geoanalytical Research, 36(2): 177~199.
参考文献
Moynier F, Blichert-Toft J, Telouk P, Luck J M, Albarède F. 2007. Comparative stable isotopegeochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 71: 4365~4379.
参考文献
Pearce M. 2016. Archaeology and archaeometallurgy: Some unresolved areas in the interpretation of analytical data. Star: Science & Technology of Archaeological Research, 2(1): 46~53.
参考文献
Pokrovsky O S, Viers J, Emnova E E, Kompantseva E I, Freydier R. 2008. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr) oxides: Possible structural control. Geochimica et Cosmochimica Acta, 72: 1742~1757.
参考文献
Pollard A M, Bray P, Hommel P, Hsu Y K, Liu R, Rawson J. 2017. Bronze age metal circulation in China. Antiquity, 91(357): 674~687.
参考文献
Powell L J, Murphy T J, Gramlich J W. 1982. The absolute isotopic abundance and atomic weight of a reference sample of silver. Journal of Research of the National Bureau of Standards, 87(1): 9.
参考文献
Powell W, Mathur R, Bankoff H A, Mason A, Bulatović A, Filipović V, Godfrey L. 2017. Digging deeper: Insights into metallurgical transitions in European prehistory through copper isotopes. Journal of Archaeological Science, 88: 37~46.
参考文献
Powell W, Mathur R, Bankoff A H, John J, Chvojka O, Tisucká M, Bulatović A, Filipović V. 2018. Copper isotopes as a means of determining regional metallurgical practices in European prehistory: A reply to Jansen. Journal of Archaeological Science, 93: 216~221.
参考文献
Powell W, Mathur R, John J, Price M, Bankoff H A, Tisucká M, Godfrey L. 2019. Unearthing Europe's Bronze Age mining heritage with tin isotopes: A case study from Central Europe. European Geologist, 48: 58~62.
参考文献
Powell W, Frachetti M, Pulak C, Bankoff H A, Barjamovic G, Johnson M, Mathur R, Pigott V C, Price M, Yener K A. 2022. Tin from Uluburun shipwreck shows small-scale commodity exchange fueled continental tin supply across Late Bronze Age Eurasia. Science Advances, 8(48): eabq3766.
参考文献
Qian Peng, Lu Jianjun, Liu Fengxiang. 2006. Isotopic tracing of ore-forming source materials in the porphyry copper deposit of Dexing Jiangxi Province. Global Geology, 25(2): 135~140 (in Chinese with English abstract).
参考文献
Rapp G, Henrickson E, Miller M, Aschenbrenner S. 1980. Trace-element fingerprinting as a guide to the geographic sources of native copper. JOM, 32: 35~45.
参考文献
Rapp G R, Allert J, Vitali V, Henrickson E, Jing Z. 2000. Determining geologic sources of artifact copper: Source characterization using trace element patterns. Lanham: University Press of America.
参考文献
Ripley E M, Dong S, Li C, Wasylenki L E. 2015. Cu isotope variations between conduit and sheet-style Ni-Cu-PGE sulfide mineralization in the Midcontinent Rift System, North America. Chemical Geology, 414: 59~68.
参考文献
Rosman K J R, Loss R D, Laeter J R D. 1984. The isotopic composition of tin. International Journal of Mass Spectrometry & Ion Processes, 56(3): 281~291.
参考文献
Saunders J A, Mathur R, Kamenov G D, Shimizu T, Brueseke M E. 2016. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes. Mineralium Deposita, 51: 1~11.
参考文献
Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy and Geochemistry, 55(1): 65~111.
参考文献
Schönbächler M, Carlson R W, Horan M F, Mock T D, Hauri E H. 2007. High precision Ag isotope measurements in geologic materials by multiple-collector ICPMS: An evaluation of dry versus wet plasma. International Journal of Mass Spectrometry, 261(2-3): 183~191.
参考文献
Schulze M, Ziegerick M, Horn I, Weyer S, Vogt C. 2017. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 130: 26~34.
参考文献
She Jiaxin, Wang Tianhua, Liang Hengdi, Muhtar M N, Li Weiqiang, Liu Xiandong. 2020. Sn isotope fractionation during volatilization of Sn (IV) chloride: Laboratory experiments and quantum mechanical calculations. Geochimica et Cosmochimica Acta, 269: 184~202.
参考文献
Shields W R, Goldich S S, Garner E L, Murphy T J. 1965. Natural variations in the abundance ratio and the atomic weight of copper. Journal of Geophysical Research, 70(2): 479~491.
参考文献
Stephens J A, Ducea M N, Killick D J, Ruiz J. 2021. Use of non-traditional heavy stable isotopes in archaeological research. Journal of Archaeological Science, 127: 105334.
参考文献
Tang Dongmei, Qin Kezhang, Su Benxun, Mao Yajing, Evans N J, Niu Yanjie, Kang Zhen. 2020. Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: Insights into the origin of magmatic Ni-Cu sulfide deposits. Geochimica et Cosmochimica Acta, 275: 209~228.
参考文献
Theis K J, Schönbächler M, Benedix G K, Rehkämper M, Andreasen R, Davies C. 2013. Palladium-silver chronology of IAB iron meteorites. Earth and Planetary Science Letters, 361: 402~411.
参考文献
Tomczyk C. 2022. A database of lead isotopic signatures of copper and lead ores for Europe and the Near East. Journal of Archaeological Science, 146: 105657.
参考文献
Vance D, Archer C, Bermin J, Perkins J, Statham P J, Lohan M C, Ellwood M J, Mills R A. 2008. The copper isotope geochemistry of rivers and the oceans. Earth and Planetary Science Letters, 274(1-2): 204~213.
参考文献
Vaxevanopoulos M, Davis G, Milot J, Blichert-Toft J, Malod-Dognin C, Albarède F. 2022. Narrowing provenance for ancient Greek silver coins using Ag isotopes and Sb contents of potential ores. Journal of Archaeological Science, 145: 105645.
参考文献
Voisey C R, Maas R, Tomkins A G, Brauns M, Brügmann G. 2019. Extreme silver isotope variation in orogenic gold systems implies multistaged metal remobilization during ore genesis. Economic Geology, 114(2): 233~242.
参考文献
Walker E C, Cuttitta F, Senftle F E. 1958. Some natural variations in the relative abundance of copper isotopes. Geochimica et Cosmochimica Acta, 15(3): 183~194.
参考文献
Wang Da, Mathur R, Powell W, Godfrey L, Zheng Youye. 2019. Experimental evidence for fractionation of tin chlorides by redox and vapor mechanisms. Geochimica et Cosmochimica Acta, 250: 209~218.
参考文献
Wang Da, Mathur R, Zheng Youye, Wu Hongjie, Lv Yiwen, Zhang Gangyang, Huan Ren, Yu Miao, Li Yujie. 2022. Constraints on ore-forming fluid evolution and guidance for ore exploration in the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: Insights from silver isotope fractionation of galena. Mineralium Deposita, 57(5): 701~724.
参考文献
Wang Junlin, Wei Haizhen, Williams-Jones A E, Dong Ge, Zhu Yuanfeng, Jiang Shaoyong, Ma Jing, Hohl S V, Liu Xi, Li Yinchuan, Lu Jianjun. 2022. Silver isotope fractionation in ore-forming hydrothermal systems. Geochimica et Cosmochimica Acta, 322: 24~42.
参考文献
Wang Peng, Dong Guochen, Santosh M, Liu Kairan, Li Xuefeng. 2017. Copper isotopes trace the evolution of skarn ores: A case study from the Hongshan-Hongniu Cu deposit, Southwest China. Ore Geology Reviews, 88: 822~831.
参考文献
Wang Tianhua, She Jiaxin, Yin Kun, Wang Kai, Zhang Yingjie, Lu Xiancai, Liu Xiandong, Li Weiqiang. 2021. Sn(Ⅱ) chloride speciation and equilibrium Sn isotope fractionation under hydrothermal conditions: A first principles study. Geochimica et Cosmochimica Acta, 300: 25~43.
参考文献
Wang Xueying, Fitoussi C, Bourdon B, Amet Q. 2017. A new method of Sn purification and isotopic determination with a double-spike technique for geological and cosmochemical samples. Journal of Analytical Atomic Spectrometry, 32(5): 1009~1019.
参考文献
Wang Xueying, Amet Q, Fitoussi C, Bourdon B. 2018. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth. Geochimica et Cosmochimica Acta, 228: 320~335.
参考文献
Wang Yue, Zhu Xiangkun, Mao Jingwen, Cheng Yanbo, Li Zhihong. 2014. Preliminarystudy on Cu isotopic geochemistry behavior of Dongguashan porphyry-skarn deposit, Tongling district. Acta Geologica Sinica, 88(12): 2413~2422 (in Chinese with English abstract).
参考文献
Wang Zaicong, Park J W, Wang Xia, Zou Zongqi, Kim J, Zhang Pingyang, Li Ming. 2019. Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi volcano, Tonga rear arc. Geochimica et Cosmochimica Acta, 250: 18~33.
参考文献
Wang Zezhou, Liu Shengao, Li Dandan, Lv Yiwen, Wu Song, Zhao Yun. 2015. A review of progress in copper stable isotope geochemistry. Earth Science Frontiers, 22(5): 72~83 (in Chinese with English abstract).
参考文献
Weinstein C, Moynier F, Wang K, Paniello R, Foriel J, Catalano J, Pichat S. 2011. Isotopic fractionation of Cu in plants. Chemical Geology, 286: 266~271.
参考文献
Woodhead A P, Gale N H, Stos-Gale Z A. 1999. An investigation into the fractionation of copper isotopes and its possible application to archaeometallurgy. In: Young S M M, ed. Metals in Antiquity. BAR International Series 792. Oxford: Archaeopress, 110~122.
参考文献
Woodland S J, Rehkämper M, Halliday A N, Lee D C, Hattendorf B, Günther D. 2005. Accurate measurement of silver isotopic compositions in geological materials including low Pd/Ag meteorites. Geochimica et Cosmochimica Acta, 69(8): 2153~2163.
参考文献
Wu Liyan, Hu Ruizhong, Li Xiaofeng, Liu Shengao, Tang Yanwen, Tang Yongyong. 2017. Copper isotopic compositions of the Zijinshan high-sulfidation epithermal Cu-Au deposit, South China: Implications for deposit origin. Ore Geology Reviews, 83: 191~199.
参考文献
Wu Song, Zheng Youye, Wang Da, Chang Huifang, Tan Meng. 2017. Variation of copper isotopes in chalcopyrite from Dabu porphyry Cu-Mo deposit in Tibet and implications for mineral exploration. Ore Geology Reviews, 90: 14~24.
参考文献
Yamazaki E, Yokoyama T, Ishihara S, Tang H. 2013. Tin isotope analysis of cassiterites from Southeastern and Eastern Asia. Geochemical Journal, 47(1): 21~35.
参考文献
Yamazaki E, Nakai S, Sahoo Y, Yokoyama T, Mifune H, Saito T, Chen J, Takagi N, Hokanishi N, Yasuda A. 2014. Feasibility studies of Sn isotope composition for provenancing ancient bronzes. Journal of Archaeological Science, 52: 458~467.
参考文献
Yao Junming, Mathur R, Powell W, Lehmann B, Tornos F, Wilson M, Ruiz J. 2018. Sn-isotope fractionation as a record of hydrothermal redox reactions. American Mineralogist, 103(10): 1591~1598.
参考文献
Zhao Yun, Xue Chunji, Liu Shengao, Symons D T, Zhao Xiaobo, Yang Yongqiang, Ke Junjin. 2017. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China. Lithos, 286: 206~215.
参考文献
Zhao Yun, Xue Chunji, Liu Shengao, Mathur R, Zhao Xiaobo, Yang Yongqiang, Dai Junfeng, Man Ronghao, Liu Ximeng. 2019. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system. Geochimica et Cosmochimica Acta, 249: 42~58.
参考文献
Zhao Yun, Liu Shengao, Xue Chunji, Li Menglun. 2022. Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit. American Mineralogist. Journal of Earth and Planetary Materials, 107(4): 673~683.
参考文献
Zhou Zhenhua, Mao Jingwen, Zhao Jiaqi, Gao Xu, Weyer S, Horn I, Holtz F, Sossi P A, Wang Dachuan. 2022. Tin isotopes as geochemical tracers of ore-forming processes with Sn mineralization. American Mineralogist, 107(11): 2111~2127.
参考文献
Zhu Xiangkun, O'nions R K, Guo Y, Belshaw N S, Rickard D. 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chemical Geology, 163(1-4): 139~149.
参考文献
段吉琳. 2018. 西藏典型岩浆-热液成矿系统铜锌同位素地球化学特征及其地质意义. 中国地质大学(北京)博士学位论文.
参考文献
胡文峰, 张烨恺, 刘金华, 郭亮, 周炼. 2019. 西藏冈底斯斑岩型铜钼矿床的Cu, Mo同位素组成及其意义. 地球科学, 44(6): 1923~1934.
参考文献
金正耀. 2008. 中国铅同位素考古. 合肥: 中国科学技术大学出版社.
参考文献
李振清, 杨志明, 朱祥坤, 侯增谦, 李世珍, 李志红, 王跃. 2009. 西藏驱龙斑岩铜矿铜同位素研究. 地质学报, 83(12): 1985~1996.
参考文献
钱鹏, 陆建军, 刘风香. 2006. 江西德兴斑岩铜矿成矿物质来源同位素示踪. 世界地质, 25(2): 135~140.
参考文献
王跃, 朱祥坤, 毛景文, 程彦博, 李志红. 2014. 铜陵矿集区冬瓜山矿床斑岩-矽卡岩型矿床成矿作用过程中的 Cu 同位素地球化学行为初步研究. 地质学报, 88(12): 2413~2422.
参考文献
王泽洲, 刘盛遨, 李丹丹, 吕逸文, 吴松, 赵云. 2015. 铜同位素地球化学及研究新进展. 地学前缘, 22(5): 72~83.
目录contents

    摘要

    近年来,随着同位素分析方法的不断突破和新一代多接收电感耦合等离子体质谱(MC-ICP-MS)测试技术的广泛应用,Cu、Sn、Ag等非传统同位素在古代金属制品溯源研究中显示出较好的应用前景。本文综述了近20年来Cu、Sn、Ag同位素在古代金属制品应用研究的相关进展,并展望了其应用前景:① 由于不同矿床之间Cu、Sn、Ag同位素存较大重叠,这些同位素均难以作为独立的证据追溯金属制品的地质来源;② Cu同位素在原生矿石与表生矿石之间存在较大的分馏,是示踪铜矿石类型的可靠方法,Ag同位素也具推断银矿石类型的潜力;③ 将Cu、Sn、Ag同位素与Pb同位素、微量元素相结合,并采用合理的统计方法,开展综合溯源研究将是今后应用非传统同位素进行古代金属制品溯源研究的发展方向。

    Abstract

    In recent years, there have been significant advancements in the field of isotope analysis. Particularly, the emergence of a new generation of multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) testing technology has greatly contributed to its widespread application. As a result, non-traditional isotopes (e.g., Cu, Sn and Ag isotopes) have demonstrated promising potential in tracing ancient metal products. This study aims to review and list below the progress made in the past two decades regarding the application of these isotopes in the research of ancient metal products, as well as their application prospects. ① The extensive and significant overlap of Cu, Sn, and Ag isotopes among different deposits makes it challenging to trace the geological source of metal products using these isotopes as independent evidence. ② Cu isotopes exhibit significant fractionation between primary and supergene ores, making them reliable for tracing copper ore types. Additionally, Ag isotopes have the potential to identify silver ore types. ③ By combining Cu-Sn-Ag isotopes with Pb isotopes and trace elements, comprehensive traceability research can be conducted using appropriate statistical methods. This integrated approach is expected to be the future direction for tracing ancient metal products using non-traditional isotopes.

  • 金属制品的使用在人类文明起源与发展过程中起到重要作用,对不同遗址/地区出土的古代金属制品开展矿石来源与类型的示踪分析,有助于探索不同地域文明冶炼技术的起源、发展,以及文明之间金属矿料的流通,进而为深入理解不同地域之间的政治、经济和文化交流活动提供重要的证据(Rapp et al.,2000; Jin Zhengyao et al.,2017; Pollard et al.,2017; Liu Ruiliang et al.,2019; Stephens et al.,2021)。因此,确定古代金属制品的矿石来源与类型,一直以来都是考古学界关注的热点问题之一。

  • 由于生产金属制品的Cu、Sn、Pb、Ag、Au等矿料源自于矿床中开采的矿石,在冶铸工艺过程中,一些微量元素或同位素组成具有基本保持不变的特性,因此,可以通过对比金属制品与不同矿床中矿石的微量元素/同位素地球化学特征,来示踪金属制品可能的矿石来源与矿石类型(Friedman et al.,1966; Rapp et al.,19802000; Gale and Stos-Gale,1982; 金正耀,2008; Klein et al.,2010; Desaulty et al.,2013; Powell et al.,2022)。

  • 在众多地球化学示踪方法中,微量元素与Pb同位素因应用早,理论和实验方法成熟,在古代金属制品溯源与贸易流通的研究领域得到了广泛应用,被称为传统方法(Rapp et al.,2000; Gale et al.,2000)。而Cu、Sn、Ag等同位素,由于早期采用的热电离质谱(TIMS)技术分析精度较低(Cu同位素为1‰~1.5‰; Walker et al.,1958; Shields et al.,1965; Sn同位素为0.5‰~1‰; De Laeter and Jeffery,1965; Rosman et al.,1984; Ag同位素为1‰~2‰; Chen and Wasserburg,1983),不能有效识别不同样品之间同位素组成的差异,难以用于古金属制品的溯源研究。近20年来,随着同位素分析方法的不断改进,特别是新一代多接收电感耦合等离子体质谱(MC-ICP-MS)测试技术的应用,高精度Cu、Sn、Ag同位素测量已成为了可能,并在古代金属制品溯源与贸易研究中显示出较广的应用前景,被称之为非传统方法(Stephens et al.,2021)。

  • 本文在前人的研究基础上,综述了近20年Cu、Sn、Ag等非传统同位素在古代金属制品溯源研究的重要进展和相关实例,简要分析了各方法的优势和局限性,展望了应用前景,为研究古代金属制品的矿石来源与矿石类型,探索不同文明之间金属矿料的贸易流通提供重要的参考。

  • 1 古代金属制品同位素溯源的前提

  • 同位素在古代金属制品溯源研究中,有3个需要考虑的前提:

  • (1)来源假设:该假设要求,要明确地将古代金属制品与其地质来源(矿床)相匹配,单个地质来源内部同位素组成的变化必须小于地质来源之间同位素组成的变化。对基于参照组的研究(Glascock and Neff,2003),即:将未知矿石来源的金属制品与已知矿石来源的金属制品(参照组)进行对比研究时,该假设仍然成立。因此,必须充分了解地质源或参照组的同位素组成(Budd et al.,1996; Ixer,1999; Baron et al.,2014; Pearce,2016)。如果地质来源或参照组不能通过同位素进行有效区分,那么溯源研究的唯一来源归属就不可靠。过去60年,基于传统方法(如:Pb同位素)研究积累了海量的矿床数据,构建了数据库(Artioli et al.,2016; Hsu et al.,2019; Killick et al.,2020; de Madinabeitia et al.,2021; Tomczyk,2022),来源假设与示踪的有效性得到了充分的论证,至少能够确定矿石的潜在来源(Gale and Stos-Gale et al.,2000)。但对于近10年才兴起的非传统Cu、Sn、Ag同位素,由于积累的矿床数据有限,相关研究还处于探索阶段,目前用于推断金属制品的矿石来源与类型尚存在较大的不确定性。

  • (2)冶炼过程不会发生明显同位素分馏。只有在满足该假设的前提下,才能通过金属制品与地质来源(矿床)的同位素对比,分析矿石来源与类型(Stephens et al.,2021)。

  • (3)实验室的提纯与测试分析过程不会引起同位素的分馏。古代金属制品(文物)非常宝贵,为确保测试数据的有效性,需了解实验提纯与测试分析过程。如果发生了同位素分馏(如:Sn同位素;Yamazaki et al.,2013),数据须加以校正。

  • 2 Cu同位素

  • 早在20世纪80年代初,Gale and Stos-Gale(1982)就提出了利用Cu同位素示踪青铜器中铜来源的设想,但受限于当时的测试分析技术与Cu同位素理论认识,该设想未能实现。直到20世纪末,多接收电感耦合等离子体质谱仪(MS-ICP-MS)技术的发展,Cu同位素才在考古学中得到应用。

  • 2.1 铜同位素概述

  • 铜(Z=29)是一种典型的强亲硫元素,主要有Cu+,Cu2+和Cu0三种价态。在自然界中Cu+和Cu2+通常赋存于硫化物(如:黄铜矿、斑铜矿、辉铜矿等)、硫盐矿物(如:黝铜矿)、氧化物(如:赤铜矿)和碳酸盐矿物(如:蓝铜矿、孔雀石)中;自然铜(Cu0)较为少见,但在一些地区(尤其是北美东部)具有重要的考古意义。铜有63Cu和65Cu两个稳定同位素,丰度分别为69.1%和30.9%(Hoefs,2021)。铜同位素组成通常用δ65Cu表示,但对于同位素分馏较小的样品,也可以用ε65Cu表示:

  • δ65Cu=65Cu/63CuSample 65Cu/63CuStandard -1×1000
    (1)
  • ε65Cu=65Cu/63CuSample 65Cu/63CuStandard -1×10000
    (2)
  • 目前Cu同位素的分析主要采用溶液法MC-ICP-MS,即溶解并通过离子交换树脂纯化分离Cu,最后利用MC-ICP-MS分析同位素,外部精度可达0.03‰~0.07‰。针对需高空间分辨率分析的样品,目前亦有学者在探索使用飞秒激光剥蚀多接收电感耦合等离子质谱技术(fs-LA-MC-ICP-MS)开展微区原位分析(Ikehata and Hirata,2013; Lazarov and Horn,2015)。

  • Cu标准溶液一般选用美国国家标准局的NIST SRM 976,其65Cu/63Cu=0.4456±0.0004(Shields et al.,1965)。目前,由于NIST SRM 976不断消耗,新的实验室标准物质(如:ERM-AE633、ERM-AE647; Möller et al.,2012)逐渐得到广泛应用。为方便对比,文中所引用的Cu同位素数据均已统一为国际标准NIST SRM 976。

  • 自然界Cu同位素的总变化接近10‰,大多数样品的δ65Cu值在-2‰~2‰之间(Hoefs,2021)。在陨石和地球各储库中,碳质球粒陨石的δ65Cu值为-1.51‰~-0.03‰,普通球粒陨石的δ65Cu值为-0.51‰~0.10‰;铁陨石的δ65Cu值为-0.34‰~0.49‰(Luck et al.,20032005; Moynier et al.,2007; Barrat et al.,2012);地幔和源于地幔的岩石(如:地幔橄榄岩、各类玄武岩等)的δ65Cu值总体在0附近(Li Weiqiang et al.,2009; Ikehata and Hirata,2012; Liu Shengao et al.,2015; Hoefs,2021);上地壳中,I型花岗岩的δ65Cu值为0.03‰±0.15‰,S型花岗岩的δ65Cu值为-0.03‰±0.42‰(Li Weiqiang et al.,2009),黄土的δ65Cu值为-0.13‰~0.17‰(Li Weiqiang et al.,2009; Bigalke et al.,2010);全球海洋和河流中溶解Cu的δ65Cu值分别为0.7‰~1.2‰和0.19‰~0.56‰(Vance et al.,2008; Boyle et al.,2012);整个硅酸盐地球的δ65Cu值估算为0.06‰±0.20‰(Liu Shengao et al.,2015)。

  • 在地质过程中,Cu同位素会发生分馏。通常,在高温岩浆-热液过程中,如:部分熔融、结晶分异、岩浆脱气及晚期热液成矿等,Cu同位素分馏程度有限(王泽洲等,2015; Liu Shengao et al.,2015; Wang Zaicong et al.,2019; Hoefs et al.,2021);但在低温条件下,氧化还原(Mathur et al.,2009a; Asael et al.,2009)、矿物表面与有机物吸附(Pokrovsky et al.2008; Balistrieri et al.2008)、无机和有机配体络合(Pokrovsky et al.2008)、生物分馏(Weinstein et al.2011; Coutaud et al.2017)等过程所引起的Cu同位素分馏显著。

  • 2.2 矿床中的铜同位素组成

  • 2.2.1 矿床中原生硫化物的铜同位素组成

  • 对世界范围内50个典型矿床的Cu同位素统计显示(图1),各类矿床中,原生硫化物的δ65Cu值整体变化于-4.67‰~3.8%之间,主要集中在-2‰~2‰之间。由于各地质储库的δ65Cu差异不大(均在0值附近),因此,各类矿床中δ65Cu值的变化应主要受控于成矿过程中的Cu同位素分馏。

  • 岩浆硫化物矿床的δ65Cu值为-2.30‰~1.84‰,其变化受控于岩浆熔离过程及熔离过程中氧化还原条件的变化(Ripley et al.,2015; Zhao Yun et al.,2017);斑岩-矽卡岩型矿床的δ65Cu值为-2.56‰~2.06‰,是高温条件下流体相分离以及硫化物沉淀过程中气、液相和硫化物之间Cu同位素分馏的结果(Maher and Larson 2007; Li Weiqiang et al.,2010; Maher et al.,2011);VMS型矿床和美国密歇根州热液自然铜矿床,δ65Cu值主要集中在为0值附近,表明Cu源区δ65Cu值较为均一(Larson et al.,2003; Mason et al.,2005)。浅成低温热液矿床δ65Cu值具有较大的变化范围,很可能与中低温条件下矿物结晶序列及部分酸性淋滤迁移有关(Duan Jilin et al.,2016; Wu Liyan et al.,2017);而沉积岩中的层状铜矿床中较大的变化范围δ65Cu值则受控于低温条件下的氧化还原过程(Asael et al.,200720092012)。整体上,矿床原生硫化物的δ65Cu值符合高温分馏有限,低温分馏显著的一般规律。

  • 2.2.2 表生作用对Cu同位素的影响

  • Mathur et al.(2009a,2010,2012)研究发现,世界范围内典型斑岩铜矿床中普遍存在深成原生矿物的平均δ65Cu值接近于零;深成原生矿物隆升到(近)地表遭受风化淋滤,原地残留的淋滤帽(铁帽)矿物富集铜的轻同位素;表生富集矿物则相对富集铜的重同位素(图2a)。他们认为,这是由于表生风化过程中淋滤液优先带走了铁帽中的65Cu,这些淋滤液有可能运移到淋滤带下部,发生次生富集作用,形成富含65Cu的高品位矿石。

  • Klein et al.(2010)在大量收集前人资料的基础上,对世界各地铜矿床的表生氧化物/碳酸盐(孔雀石、蓝铜矿)、表生硫化物和原生硫化物进行了Cu同位素测试,发现原生硫化物的δ65Cu值主要集中在-0.4‰~0.3‰之间,表生氧化物/碳酸盐的δ65Cu值整体>0.3‰,而表生硫化物的δ65Cu值大多<-0.4‰(图2b),与Mathur et al.(2009,2010,2012)总结的规律存在差异。

  • Powell et al.(2017,2018)系统分析了不同气候条件下,原生矿床的表生分带与Cu同位素分馏的差异,构建了干旱—半干旱气候下的表生富集模式和湿润气候条件下的原地氧化模式(图3),揭示了引起上述两种差异性规律的内在原因。表生富集模式:在智利、秘鲁和美国西南部等干旱—半干旱地区,从末次冰期到现在,地下水位的巨大变化极大地促进了铜矿床表生风化过程中铜离子的垂直迁移,矿床中铁帽、表生氧化物富集带和次生硫化物富集带普遍发育,Cu同位素分馏强烈(可>3‰),导致铁帽中的δ65Cu值<0,富集带中铜的表生氧化物/碳酸盐和次生硫化物δ65Cu值均可>3‰。原地氧化模式:在欧洲的湿润地区,由于地下水位无明显变化,不利于铁帽的形成,原生硫化物的氧化发生在静态地下水位之上的近地表,次生硫化物的富集只在地下水位处少量产生,Cu同位素分馏有限,地下水位以上的氧化物富集65Cu约1‰~2‰;地下水位附近风化残余硫化物则亏损65Cu约1‰。

  • 上述研究表明,矿床中原生硫化物的δ65Cu值的整体变化范围较小,且不同矿床间存在广泛的重叠,不满足金属制品同位素溯源的来源假设,Cu同位素难以作为独立证据追溯金属制品中Cu的地质来源(Stephens et al.,2021)。但由于表生风化过程会产生显著的Cu同位素分馏,因此,可根据古代金属制品的Cu同位素组成,推断铜矿石的类型(Klein et al.,2010; Powell et al.,2017)。

  • 图1 世界代表性矿床中原生硫化物的Cu同位素组成

  • Fig.1 Cu isotopic composition of primary sulfides from representative ore deposits in the world

  • 数据来源:Zhu Xiangkun et al.,2000; Larson et al.,2003; Graham et al.,2004; Mason et al.,2005; 钱鹏等,2006; Asael et al.,200720092012; Mathur et al.,2009a,2010,2012; 李振清等,2009; Ikehata et al.,2011; Malitch et al.,2014; 王跃等,2014; Ripley et al.,2015; Duan Jilin et al.,2016; Saunders et al.,2016; Wu Song et al.,2017; Wang Peng et al.,2017; Wu Liyan et al.,2017; Zhao Yun et al.,2017,2019,2022; 段吉林,2018; 胡文峰等,2019; Deng Xiaohua et al.,2019; Tang Dongmei et al.,2020

  • Data sources: Zhu Xiangkun et al., 2000; Larson et al., 2003; Graham et al., 2004; Mason et al., 2005; Qian Peng et al., 2006; Asael et al., 2007, 2009, 2012; Mathur et al., 2009a, 2010, 2012; Li Zhenqing et al., 2009; Ikehata et al., 2011; Malitch et al., 2014; Wang Yue et al., 2014; Ripley et al., 2015; Duan Jilin et al., 2016; Saunders et al., 2016; Wu Song et al., 2017; Wang Peng et al., 2017; Wu Liyan et al., 2017; Zhao Yun et al., 2017, 2019, 2022; Duan Jilin, 2018; Hu Wenfeng et al., 2019; Deng Xiaohua et al., 2019; Tang Dongmei et al., 2020

  • 图2 秘鲁Cañariaco Norte矿床与其他斑岩型铜矿床深成原生矿物、淋滤帽矿物和表生富集矿物中Cu同位素直方图(a) (据Mathur et al.,2012);西班牙伊比利亚中部地区(CIZ)铜矿床和世界其他铜矿床氧化矿石、原生硫化物和表生硫化物Cu同位素直方图(b)(据Klein et al.,2010

  • Fig.2 Histogram of Cu isotopes of hypogene primary minerals, leach cap minerals and supergene enrichment minerals from Cañariaco Norte porphyry copper deposit comparing with other PCD (a) (after Mathur et al., 2012) ; histogram of δ65Cu of oxidized ore, primary sulfides and supergene sulfides from copper deposits in the Central Iberia Zone in Spain and other copper deposits worldwide (b) (after Klein et al., 2010)

  • 图3 干旱和湿润条件下硫化物铜矿床的表生风化分带与 Cu同位素分层模式意图(据Powell et al.,2017

  • Fig.3 Schematic diagram illustrating the supergene weathering zoning and Cu isotopic stratification patterns of sulfide Cu deposits under arid and humid conditions (after Powell et al., 2017)

  • Az—蓝铜矿;Bn—斑铜矿;Cc—辉铜矿;Cov—铜蓝;Cp—黄铜矿;Cup—赤铜矿;Hm—赤铁矿;Lim—褐铁矿;Mal—孔雀石;Py—黄铁矿

  • Az—azurite; Bn—bornitea; Cc—chalcocite; Cov—covellite; Cp—chalcopyrite; Cup—cuprite; Hm—hematite; Lim—limonite; Mal—malachite; Py—pyrite

  • 2.3 熔炼过程中的铜同位素分馏

  • 早期实验研究指出,矿石在冶炼和精炼过程中Cu同位素不会发生分馏(Gale et al.,1999),但最近的模拟实验研究表明,该问题远比先前认识的复杂。

  • Klein and Rose(2020)模拟了古代冶炼条件下孔雀石和硫化物铜矿石的熔炼过程,并系统分析了各种原料和冶炼产品(矿石、木炭和木材燃料、炉渣、炉衬上的黏土、冰铜/铜锍、炉渣中捕获的铜颗粒等)中的铜同位素组成,发现:① 在实现铜与炉渣完全分离的情况下,矿石和金属之间没有显著的Cu同位素分馏;② 在没有实现铜与炉渣完全分离的情况下(炉渣中捕获有大量铜颗粒),矿石和金属之间可能出现显著的Cu同位素分馏;③ 炉渣通常富集65Cu,无法代表铜矿的原始同位素组成;④ 铜渣的再加工或从铜渣中提取铜颗粒产生的铜金属可能因显著的同位素分馏,而掩盖了原始矿石的Cu同位素组成。因此,在进行Cu同位素研究之前,需详尽调查用于生产铜合金的古代冶金技术。

  • 2.4 在古代金属制品溯源研究中的应用

  • 目前,Cu同位素主要用于古代铜制品(铜锭、铜币、铜器、青铜器)中Cu的溯源研究(Gale et al.,1999; Klein et al.,20042010; Jansen et al.,20172018; Powell et al.,20172018)。此外,由于Cu、Ag、Au具有相似的地球化学性质,近年来,亦有学者将其应用于贵金属(Ag、Au)制品中Ag、Au溯源研究。本节主要介绍Cu溯源研究的案例,Ag、Au溯源研究详见5.4.2。需要注意的是,由于氧化还原过程会引起铜同位素分馏,因此,在进行古代铜制品Cu同位素研究时,需对未腐蚀部分进行取样(Bower et al.,2013; Mathur et al.,2014)。

  • Gale et al.(1999)首次分析了地中海Cyprus、Crete和Sardinia三个地区8枚青铜时代铜锭的Cu同位素组成,发现Crete的3枚铜锭的铜同位素组成与其他两地明显不同,结合铅同位素,认为这3枚Crete铜锭的铜料很可能来自于地中海以外的地区,并进一步指出Cu同位素在古代铜制品溯源研究中有很大潜力。

  • 基于低温铜矿床的Cu同位素存在较大分馏,而高温铜矿床Cu同位素分馏不明显这一规律,Mathur et al.(2009b)系统分析了来自美国Denver、Philadelphia和San Francisco三个铸币厂于1828至1972年间生产的40个铜币的Cu同位素组成,发现产于1828、1830、1836、1838和1843年的5枚铜币δ65Cu值与英国Cornwall高温铜矿一致;产于1859年和1862年的2枚铜币δ65Cu值与美国Michigan低温铜矿一致;而1867年以后生产的铜币δ65Cu值有较大的变化范围,指示铜料来源不固定。该研究结果与历史文献非常吻合,显示了历史上美国铸币厂铜料来源的变化(图4)。

  • 图4 美国铜币Cu同位素组成变化图 (据Mathur et al.,2009b

  • Fig.4 Variation of Cu isotopic compositions for the US copper coins (after Mathur et al., 2009b)

  • 基于表生风化过程中Cu同位素的变化规律,Klein et al.(2004,2010)首次提出了以Pb同位素组成分析铜矿石来源,以Cu同位素组成分析铜矿石类型(原生硫化物矿石、表生硫化物矿石、氧化物/碳酸盐矿石)的研究方案,以探索古代矿石来源与采矿活动的变化。通过对公元前50年至公元250年古罗马铜币和铜锭的Pb同位素分析,将在该时间段内制造铜币和铜锭的铜矿石锁定在伊比利亚黄铁矿带(Iberian Pyrite Belt,IPB)和伊比利亚中部地区(Central Iberian Zone,CIZ)。Cu同位素分析显示(图5):① 在Augustus统治时期,IPB的采矿活动只局限于矿床浅部(只开采表生硫化物矿石),而CIZ的采矿活动则包括了矿床的浅部和深部(既开采了碳酸盐矿石和表生硫化物矿石,也开采了原生硫化物矿石);② 自Tiberius统治时期开始,CIZ的采矿活动只在矿床深部进行(只开采原生硫化物矿石),而IPB的采矿活动则继续在矿床浅部进行,在Caligula、Claudius和Nero统治时期,这一情况持续存在;③ 公元75年至公元90年期间,IPB矿石铸造的铜币的δ65Cu值明显升高,与碳酸盐矿石的δ65Cu值相吻合,指示该时期IPB有新矿山开发;④ 公元90年至公元250年,再无碳酸盐矿石铸造的铜币,指示IPB和CIZ的矿业活动均限定在已知矿床。

  • Bower et al.(2013)采用了Klein et al.(2010)的研究方案,探讨了Levant地区犹太硬币(Judean coins)的铜矿石来源与采矿活动的变化。发现在公元1世纪,犹太币的Pb同位素组成出现了较大变化,指示地中海地区铜矿石的来源由塞浦路斯地区转向了死海裂谷地区(Dead Sea Rift);犹太币δ65Cu值出现由正值向负值的转变进一步支持了上述结论,并推测δ65Cu值的变化与死海裂谷地区Faynan矿山的大规模开采,矿料由氧化物/碳酸盐矿石转变为硫化物矿石有关,而矿石类型转变亦体现了冶炼技术的发展。

  • Jansen et al.(2017,2018)将Cu和Pb同位素分析应用于地中海东部青铜时代金属的矿料溯源研究,指出Cu同位素在地区尺度上可作为Pb同位素分析的重要补充,以帮助解决Pb同位素重叠区域的问题。通过对约旦Faynan附近Khirbat Hamra Ifdan遗址铜锭的Cu同位素分析,发现铜锭的δ65Cu值与Faynan矿床的表生氧化矿一致,指示表生碳酸盐矿石是该地铜锭生产的主要矿石类型。Jansen et al.(2017,2018)还分析了地中海各地大量铜锭的Pb、Cu同位素组成,并重新解释了Gale et al.(1999)Woodhead et al.(1999)的Cu同位素数据,认为在公元前13世纪,地中海东部冶炼的铜矿石出现了由氧化物矿石向硫化物矿石的明显转变。

  • 图5 公元前16年至公元250年古罗马铜币和铜锭δ65Cu值的变化(据Klein et al.,2010修改)

  • Fig.5 Variation of δ65Cu values for the ancient Roman copper coins and ingots from 16 BC to 250 AD (modified from Klein et al., 2010)

  • Powell et al.(2017)系统分析了从红铜时代到青铜时代晚期(公元前5000年至公元前1000年)塞尔维亚及周边地区铜和青铜制品的Cu同位素组成,探讨了巴尔干半岛采矿活动和冶金技术的变化,结果显示:红铜时代早期(公元前5000年至公元前3700年),巴尔干半岛生产的铜器δ65Cu值多为正,与次生氧化物矿石一致;公元前3700年至公元前2500年,铜器生产明显中断;青铜时代早期铜器/青铜器恢复生产,但其δ65Cu值多为负(图6)。铜器/青铜器δ65Cu值的转变,指示巴尔干半岛冶炼的铜矿石从次生氧化物矿石转向了硫化物矿石;公元前3700年至公元前2500年铜器生产的中断,指示红铜时代氧化物矿石耗尽,巴尔干半岛无法冶炼硫化物矿石;青铜时代早期(EBA)铜器/青铜器恢复生产,则很可能反映了近东冶炼新技术的引进。虽然Jansen(2018)对上述结论提出过不同的认识,但Powell et al.(2018)结合另外44件样本的数据,重申了他们之前的结论,并进一步指出考古学家只有充分了解了矿床的地质特征和地区气候历史,才能对Cu同位素组成给出合理的解释。

  • 以上研究表明,Gale et al.(1999)Mathur et al.(2009b)的早期研究并未考虑不同地区、不同矿床之间Cu同位素的重叠问题,主要是探索Cu同位素示踪的可行性。自Klein et al.(2004,2010)提出以Pb同位素分析铜矿石来源,以Cu同位素分析铜矿石类型(原生矿石、表生矿石)的研究方案后,Cu同位素才逐渐成为一种相对确定的方法,用于推断含铜金属制品的铜矿石类型,探索采矿活动的变化与冶炼技术的发展。

  • 3 Sn同位素

  • 虽然Pb同位素可用于锡锭的溯源研究,但对于青铜器(Cu-Sn-Pb合金)中Sn的溯源却无能为力,因为合金中来自锡矿的Pb同位素信息会被大量来自铅矿的Pb同位素信息所掩盖。近年来随着测试分析方法的进步,Sn同位素越来越多的被用于青铜器锡料的溯源研究。

  • 3.1 锡同位素概述

  • 锡(Z=50)是一种经济价值很大的金属,具中等挥发性、亲铁性和亲铜性。在自然界中主要有Sn0、Sn2+和Sn4+三种价态,其中,自然锡(Sn0)极为罕见,而Sn2+和Sn4+通常存在于锡石(SnO2)和黄锡矿(Cu2FeSnS4)中。锡拥有112Sn、114Sn、115Sn、116Sn、117Sn、118Sn、119Sn、120Sn、122Sn和124Sn 共10个稳定同位素,其丰度分别为0.97%、0.66%、0.34%、14.54%、7.68%、24.22%、8.59%、32.58%、4.63%和5.79%,是元素周期表中稳定同位素最多的元素(Hoefs,2021)。Sn同位素组成通常用δ1XX/1XXSn表示:

  • 图6 塞尔维亚及周边地区红铜时代至铁器时代早期的铜/青铜制品中δ65Cu值的变化

  • Fig.6 Variation of δ65Cu in copper and bronze products from the Eneolithic to early Iron Age in Serbia and surrounding areas

  • 红铜时代的铜制品具显著的高δ65Cu值,指示当时开采和冶炼的矿石为表生氧化矿石(孔雀石);青铜时代和铁器时代早期的铜/青铜制品具较低的δ65Cu值,表明使用了未风化的硫化物矿石(Powell et al.,2017

  • The copper products of the Eneolithic Age have significantly higher δ65Cu values, indicating that the mined and smelted ores at that time were epigenetic oxidized ores (malachite) ; copper and bronze products from the Bronze Age and Iron Age have lower δ65Cu values, indicating the use of unweathered sulfide ores (Powell et al., 2017)

  • δ1XX/1XXSn=1XXSn/1XXSnSample 1XXSn/1XXSnStandard -1×1000
    (3)
  • 目前,Sn同位素分析主要有溶液法MC-ICP-MS和fs-LA-MC-ICP-MS。前者广泛用于全岩、单矿物、古金属等样品分析,外部精度为<0.03‰(Creech et al.,2017; Wang Xueying et al.,2018);后者可用于微区原位分析,外部精度为0.03‰~0.3‰(Schulze et al.,2017)。

  • 需要注意的是,由于Sn具有多个同位素,且目前学界尚没有统一的Sn同位素分析标样。因此,现有文献中所测定的Sn同位素组成,主要基于各实验室的标样,其表达形式存在不同,主要包括:① δ124/120Sn、δ124/117Sn(对应标样为SPEX; Yamazaki et al.,2013; Zhou Zhenhua et al.,2022);② δ122/118Sn(对应标样为IPGP; Creech et al.,2017);③ δ124/116Sn、δ120/118Sn和δ120/116Sn(对应标样为NIST3161a; Yao Junming et al.,2018)。

  • 现有研究显示,陨石和地球各储库中Sn同位素组成如下:

  • 球粒陨石:Creech and Moynier(2019)采用IPGP标准,测得碳质球粒陨石δ122/118Sn为0.43‰±0.12‰、顽火辉石球粒陨石的δ122/118Sn为0.8‰±0.21‰。

  • 地幔和源于地幔的岩石:Wang Xueying et al.(2017,2018)以NIST3161a为标准,测得地幔橄榄岩、BHVO-1和BHVO-2两件玄武岩地质标样、洋岛玄武岩(OIB)以及大洋中脊玄武岩(MORB)的δ124/118Sn值分别为-1.15‰~0.04‰、0.25‰±0.02‰、0.27‰±0.06‰、0.22‰±0.11‰和0.03‰±0.11‰,并估算硅酸盐地球(BSE)的δ124/118Sn为-0.08‰±0.11‰。此外,Creech et al.(2017)以IPGP为标准,测得BHVO-2和BCR-2两个玄武岩地质标样以及夏威夷Kilauea Iki(KI)熔岩湖玄武岩的δ122/118Sn值分别为0.452‰±0.027‰、0.404‰±0.065‰和0.33‰~0.53‰;Badullovich et al.(2017)以IPGP为标准测,测得Yilgarn,Kaapvaal和Superior 3个克拉通地区科马提岩的δ122/118Sn值变化于0.41‰~0.65‰之间,以此估算了硅酸盐地球(BSE)的δ122/118Sn值为0.49‰±0.11‰。

  • 地壳岩石:Wang Xueying et al.(2017)测得AGV-1安山岩地质标样的δ124/118Sn值为0.06‰± 0.11‰(NIST SRM 3161a)。Creech et al.(2017)测得AGV-2安山岩地质标样和GSP-2花岗闪长岩地质标样的δ122/118Sn值分别为0.310‰±0.120‰和0.180‰±0.022‰(IPGP)。Badullovich et al. (2017)测得夏威夷Kilauea Iki(KI)熔岩湖安山岩样品的δ122/118 Sn值为0.27‰±0.07‰(IPGP)。

  • 在地质过程中,Sn同位素会发生分馏,但无论高温(如:部分熔融、结晶分异)(Wang Xueying et al.,20172018; Badullovich et al.,2017)还是低温(如:热液成矿过程)(Wang Da et al.,2019; Wang Tianhua et al.,2021)过程,Sn同位素分馏受氧化还原条件控制明显,Sn4+相对富集Sn的重同位素,而Sn2+相对富集Sn的轻同位素(Schauble,2004)。此外,气液分离(Wang Da et al.,2019; She Jiaxin et al.,2020)、流体的pH值、盐度(McNaughton and Rosman,1991)、水岩作用(Zhou Zhenhua et al.,2022)等对Sn同位素分馏亦有重要影响。

  • 3.2 矿床中Sn同位素组成

  • 目前矿床中Sn同位素的研究资料还很少,且不同学者采用的标准及表示形式亦存在差异(图7、图8)。

  • Haustein et al.(2010)对德国-捷克Erzgebirge(50件样品)和英国Cornwall(30件样品)2个矿集区多个矿床中的锡石进行了Sn同位素测试,发现不同地区锡矿床的Sn同位素存在差异;Yamazaki(2013)测定了中国、日本、泰国和马来西亚17个锡矿床中18件锡石的Sn同位素组成,也发现不同地区、不同矿床的锡石,Sn同位素组成存在一定不同(图7),δ124/120Sn值整体变化可达0.77‰,但Haustein et al.(2010)Yamazaki(2013)均未对不同矿床Sn同位素差异的原因做出解释。

  • 图7 东南亚、东亚锡石和青铜器中的δ124/120Sn值 (据Yamazaki et al.,20132014

  • Fig.7 δ124/120Sn values of cassiterite and bronze samples from Southeast and East Asia (after Yamazaki et al., 2013, 2014)

  • Yao Junming et al.(2018)对美国South Dakota(伟晶岩型)、英国Cornwall(云英岩型脉状)、捷克Erzgebirge(云英岩型)和玻利维亚Potosí(斑岩型)4个锡矿集区的锡石和黄锡矿开展了Sn同位素研究,发现相对于晚期形成的黄锡矿,早期形成的锡石具有显著高的δ124/116Sn值(图8),并认为成矿过程中氧化还原条件变化所引起的Sn同位素分馏是导致锡石、黄锡矿具不同δ124/116Sn值的主要原因。早期氧化形成锡石,相对富集Sn的重同位素,而晚期形成的黄锡矿则相对富集Sn的轻同位素。此外,不同矿床之间,锡石δ124/116Sn值的差异很可能与源区或岩浆过程有关;而Δ124/116SnCassiterite-Stannite的差异则很可能与成矿深度有关。Wang Da et al.(2019)对比了产于火山/次火山岩和伟晶岩中锡石的Sn同为素组成(图8),进一步探讨了成矿深度对锡石中Sn同位素的影响,指出在接近地表的火山/次火山岩中,锡石的沉淀很可能受氧化作用和低压环境下气液分离的共同控制,因此,锡石有更高的δ124/116Sn最大值和更宽的δ124/116Sn变化范围;而伟晶岩中的锡石因形成环境更深,氧化还原很可能是唯一的主控制因素,因此,锡石的δ124/116Sn变化范围相对较小。Zhou Zhenhua et al.(2022)测定了我国毛登(Sn-Cu)、白音查干(Sn-Ag-Pb-Zn)和维拉斯托(Sn-W-Li)三个矿床中锡石的Sn同位素组成,进一步指出,成矿早期到晚期锡石的δ124/117Sn值逐渐降低(如:毛登和白音查干矿床)是矿物沉淀过程中瑞利分馏的结果;而晚期锡石富Sn的重同位素(如:维拉斯托矿床),则可能是流体-岩石不平衡作用的结果。

  • 图8 世界代表性矿床中矿物的Sn同位素组成 (据Yao Junming et al.,2018; Wang Da et al.,2019

  • Fig.8 Sn isotopic compositions of minerals from typical deposits in the world (after Yao Junming et al., 2018; Wang Da et al., 2019)

  • MEX—墨西哥(火山岩型);NM—美国新墨西哥州(火山岩型);BOL—玻利维亚(斑岩型);CZR—捷克厄尔士(云英岩型);ENG—英国康沃尔(云英岩型);AUS—澳大利亚(伟晶岩型);SD—美国南达科塔州(伟晶岩型)

  • MEX—Mexico (volcanic) ; NM—New Mexico U.S.A. (volcanic) ;BOL—Bolivia (porphyry) ; CZR—Erzgebirge, Czech Republic (greisen) ; ENG—Cornwall, England (greisen) ;AUS—Australia (pegmatite) ; SD—South Dakota, U.S.A. (pegmatite)

  • 综上所述,不同地区不同矿床锡石和黄锡矿的Sn同位素存在一定差异,这种差异与成矿地质条件及成矿过程中的Sn同位素分馏密切相关。Powell et al.(2019)Mason et al.(2020)Mason(2020)通过地质条件分析,区分了欧洲和西亚锡矿床中锡石的Sn同位素组成,探索了欧洲-西亚地区青铜器的锡矿石来源。

  • 3.3 熔炼过程中的Sn同位素分馏

  • 与Cu同位素类似,早期研究认为锡矿在熔炼过程中不会出现显著的Sn同位素分馏(Gale,1997; Haustein et al.,2010; Yamazaki et al.,2014),但最近Berger et al.(2018,2019a)的模拟实验显示,锡矿石在熔炼及青铜合金化过程中,Sn同位素都可能发生一定程度的分馏。

  • Berger et al.(2018)采用古代冶炼技术开展模拟实验,发现熔炼过程中的Sn同位素存在分馏,且分馏程度随还原程度的变化而变化:① 若锡石在熔炼中被完全还原,锡的重同位素在锡金属中富集,锡金属与锡石之间的Sn同位素分馏值较小(Δ124/120Sn=0.09‰~0.18‰),由此引起的Sn同位素变化远小于锡成矿省中Sn同位素的变化范围,因而锡金属的Sn同位素组成可用于示踪Sn的来源;② 若锡石未完全还原,锡金属与锡石之间的Sn同位素分馏值会显著增加(Δ124/120Sn=0.88‰),导致金属的Sn同位素组成不能有效示踪Sn的来源。此外,熔炼的副产物冷凝锡蒸汽和矿渣与锡石之间也存在较大的分馏,其Δ124/120Sn分别为1.13‰和0.42‰~1.32‰,不能用于示踪研究。

  • Berger et al.(2019a)在实验室条件下开展了系列锡矿石熔炼与青铜合金化实验,进一步探索了熔炼与合金化过程中的Sn同位素分馏,研究发现:在CO还原锡石和黄锡矿的熔炼实验中,锡的轻同位素在熔炼还原过程中优先挥发,得到的锡珠通常富集锡的重同位素(与原始锡矿之间的分馏值Δ124/120Sn≈0.1‰);锡矿石中的杂质(硅、钛、铌、钽、钨等)在熔炼中可能会增加锡的轻同位素的蒸发速率,进而加剧还原锡金属中锡的重同位素富集。在采用胶结技术(cementation technique,即将锡石与铜金属和木炭在坩埚中进行加热合金化)进行青铜合金化的实验中,Sn同位素发生的细微变化(Δ124/116Sn=0.02‰~0.03‰)是由离子交换提纯锡金属所引起,与合金化过程无关(Brügmann et al.,2017),青铜合金保留了锡矿的Sn同位素特征。在共熔炼(co-smelting,即将锡石与氧化铜矿石熔炼成铜锡合金)实验中,成功合成了青铜合金,但合金化有时并不完全,即同时产生了锡金属和青铜合金,这时锡金属比青铜合金更富Sn的重同位素,但其平均值应与原始锡石大致相当。此外,Berger et al.(2019a)还注意到古代青铜器中Sn同位素组成与锡的百分含量之间存在相关性,Sn<3%的低锡青铜合金受轻同位素优先挥发的影响较为明显(图9),其Sn同位素组成难以有效支持锡料的溯源研究。

  • 图9 德国中部青铜时代早期Únětice文化青铜器的 Sn同位素-Sn含量图解(据Berger et al.,2019a

  • Fig.9 Diagram of Sn isotopic compositions vs. Sn contents for the bronzes of the Únětice culture during Early Bronze Age in the Central Germany (after Berger et al., 2019a)

  • 尽管上述研究成果极大地加深了人们对熔炼过程中Sn同位素分馏过程的理解,但将其应用于古代金属中Sn的溯源研究,仍存在几个需要深入考虑的问题:① 虽然在熔炼中锡石被完全还原的情况下不会显著发生Sn同位素分馏,但不能对每一件古代金属样品都作此假设;② 虽然所有共熔炼产物Sn同位素的平均值大致相当于原始锡石的Sn同位素值,但这是在实验室理想条件下可以同时回收青铜合金和锡金属的结果,但在古代熔炼过程中,锡金属不太可能被回收,几乎不可能与同时产生的青铜合金相匹配,此外剩余的锡金属还可简单地回收到下一批金属中;③ 由于实验室和古代冶炼过程中锡的回收率存在差异,目前大多采用δ124/120Sn-0.1‰(Berger et al.,2018)或δ124/116Sn-0.2‰(Mason et al.,2020; Mason,2020)来进行修正(相当于回收率为30%的熔炼过程中Sn同位素分馏的程度),虽然这一修正值低于在矿体中Sn同位素的变化(Berger et al.,2018),且大多学者认为这一修正值有助于考古数据与矿床数据的对比(Berger et al.,2019b; Bower et al.,2019; Powell et al.,2019; Mason,2020; Mason et al.,2020),但这种修正依然比较主观,不能保证它适用于所有考古出土的锡金属和青铜合金。

  • 3.4 在古代金属制品溯源研究中的应用

  • Sn同位素在考古学中主要用于锡锭和青铜器中锡的溯源研究。需要注意的是,2018年之前的研究,多以简单对比,探索Sn同位素的示踪可行性为目的,且在溯源分类过程中并未考虑不同Sn矿床的成矿地质条件以及熔炼过程中的Sn同位素分馏,因此,需谨慎对待他们的结论。

  • Haustein et al.(2010)通过引入Sn同位素,区分了英国Cornwall和德国-捷克Erzgebirge两个矿集区的锡矿石,在此基础上,通过简单对比,提出了青铜器“内布拉星象盘”(内布拉星象盘:Himmelsscheibe von Nebra,发现于德国萨克森-安哈尔特的内布拉,年代为公元前1600年)的锡料很可能源自英国Cornwall矿集区,而非地理位置更接近的德国-捷克Erzgebirge矿集区的创新认识,开创了Sn同位素考古的先河。随后,Yamazaki et al.(2014)测定了我国湖北盘龙城商代遗址(4件)与北京房山琉璃河西周遗址(2件)共6件青铜器的Sn同位素组成,发现不同时代不同地区出土青铜器的Sn同位素组成存在一定差异,结合我国部分锡矿床中锡石的Sn同位素组成(Yamazaki et al.,2013),认为Sn同位素对示踪青铜器的锡料来源具潜在意义(图7)。Mason et al.(2016)分析了来自塞尔维亚和罗马尼亚西部52件青铜时代晚期(公元前1500年至公元前1100年)青铜器的Sn同位素组成,发现样品大致可分为3组:含中等δ120/116Sn和δ124/116Sn值的样品占大多数,广泛分布于塞尔维亚各地;但含高δ120/116Sn和δ124/116Sn值的样品仅局限于塞尔维亚北部的Vojvodina,含低δ120/116Sn和δ124/116Sn值的样品则局限在塞尔维亚和罗马尼亚边境的Banat以及罗马尼亚的Transylvania。Mason et al.(2016)根据塞尔维亚和罗马尼亚的锡矿位置与青铜器出土地点的关系,认为锡矿来源的不同很可能是青铜器样品间Sn同位素组成差异的主要原因。

  • 2018年之后,随着不同矿床、锡锭和青铜器Sn同位素数据的不断累积,成矿与熔炼过程中Sn同位素分馏机理的不断发展完善,以及概率统计、多同位素联合示踪等方法的综合运用,Sn同位素在考古学中的应用得到了较大的发展。

  • Powell et al.(2019)对来自德国-捷克Erzgebirge矿集区(43件)和英国Cornwall矿集区(14件)的锡石进行了Sn同位素测试,根据成矿地质条件和Sn同位素的分馏原理(Yao Junming et al.,2018; Wang Da et al.,2019),结合Haustein et al.(2010)的测试数据,把原德国-捷克Erzgebirge矿集区分解为East Pluton、Central Pluton和West Pluton三个矿集区,并区分了各矿集区锡石的Sn同位素组成(图10)。在充分考虑熔炼过程中的Sn同位素分馏的基础上(青铜器Sn同位素组成采用δ124/116Sn-0.2‰进行修正),应用贝叶斯条件概率分析,对德国南部、奥地利和捷克Bohemian地区青铜时代的含锡制品开展了Sn同位素溯源研究,指出青铜时代中期,锡料主要来自Erzgebirge Central Pluton矿集区;而到了青铜时代晚期,锡料则主要来自Erzgebirge West Pluton矿集区(图10)。上述锡料来源的转变亦反映了采矿活动地域的转变。

  • Mason(2020)Mason et al.(2020)沿用了Powell et al.(2019)的研究方案,在区分英国Cornwall、德国-捷克Erzgebirge(East Pluton、Central Pluton和West Pluton)和塞尔维亚(Cer和Bukulja)6个潜在锡矿源的Sn同位素组成的基础上,应用贝叶斯条件概率分析(图11),探讨了从中欧到巴尔干半岛中部青铜时代晚期青铜器的锡料来源。研究表明:① 出土于塞尔维亚中西部δ124/116Sn>0.7‰的青铜器主要采用了塞尔维亚西部的Cer矿区的锡矿石;该区具有高、低δ124/116Sn值混合特征的青铜器很可能采用了Cer和Bukulja两个矿区的锡矿石。② 发现于多瑙河中北部Vojvodina和Transylvania地区以及中欧地区中等δ124/116Sn值的青铜器,锡料应主要源自Erzgebirge West Pluton矿集区。③ 发现于塞尔维亚南部和多瑙河下游地区δ124/116Sn<0.2‰的青铜器,锡料来源未知,但很可能与巴尔干半岛南部未记录的锡矿床有关。④ 没有迹象表明在青铜时代晚期中欧-巴尔干半岛中部的人们使用了来自Cornwall、Erzgebirge East Pluton及巴尔干地区的锡矿石。

  • 由于不同锡矿床之间Sn同位素存在重叠,Berger et al.(2019b)提出了以Pb同位素确定潜在矿源(锡矿床),以Sn同位素和微量元素进一步缩小矿源范围的溯源方案,并应用于地中海地区(Gelidonya、Hishuley Carmel、Kfar Samir south、Haifa、Mochlos、Uluburun)青铜时代晚期锡锭的溯源研究中。结果显示:① 以色列Gelidonya、Hishuley Carmel、Kfar Samir south和Haifa地区锡锭的Pb-Pb同位素等时线年龄为291±17 Ma,表明潜在的锡矿源为欧洲海西期的锡矿床;进一步的锡锭-矿床Sn同位素对比与微量元素分析,指示锡料最可能来自英国Cornwall矿集区。② 土耳其Mochlos和Uluburun地区锡锭的锡料来源与以色列存在不同,但矿源尚不确定。尽管Berger et al.(2019b)并未给出土耳其地区可能的锡料来源,但上述溯源研究对进一步探索青铜时代晚期地中海地区锡料的流通与贸易路径提供了重要的依据。

  • 图10 英国康沃尔与德国/捷克厄尔士的锡石(a~d)以及德国南部、奥地利和捷克Bohemian地区青铜时代中、晚期青铜器的δ124/116Sn值(e)(据Powell et al.,2019

  • Fig.10 Histograms of δ124/116Sn values of cassiterite from Cornwall in UK and Erzgebirge in German/Czech Republic (a~d) and bronze of Middle and Late Bronze Age from southern Germany, Austria, and Bohemian in the Czech Republic (e) (after Powell et al., 2019)

  • 图11 布库利亚、采尔、康沃尔、厄尔士(西部岩体、中部岩体、东部岩体)6个锡矿源先验概率相等条件下,δ124/116Sn的后验概率频率函数(据Mason,2020; Mason et al.,2020

  • Fig.11 Posterior probability bands as a function of δ124/116Sn value assuming the prior probability of six tin sources that include Bukulja, Cer, Cornwall, Erzgebirge (East Pluton, Central Pluton and West Pluton) (after Mason, 2020; Mason et al., 2020)

  • 图12 土耳其Uluburun海岸沉船中锡锭的分组特征及其与欧洲、安纳托利亚和中亚锡矿床的δ124/116Sn对比(据Powell et al.,2022

  • Fig.12 Characteristics of tin ingots from the Uluburun shipwreck found off the Turkish coast used to define groupings and comparison of δ124/116Sn ranges of tin ore from Europe, Anatolia, and Central Asia (after Powell et al., 2022)

  • (a)—锡锭的同位素分组特征;(b)—中—新生代的锡矿床与相应的锡锭;(c)—古生代的锡矿床与相应的锡锭

  • (a) —isotopic characteristics of ingot groupings; (b) —Mesozoic-Cenozoic ores and corresponding ingots; (c) —Paleozoic ores and corresponding ingots

  • 最近,Powell et al.(2022)测定了土耳其Uluburun海岸沉船中105件青铜时代晚期锡锭的Pb、Sn同位素与微量元素组成,探讨了锡料来源和矿料贸易。根据锡锭的同位素特征和地质年代,结合t分布随机邻域嵌入算法,可将其分为8组(P1、P2A、P2B、MC1A、MC1B、MC2A、MC2B、MC1C),其中,3组锡锭的锡料来自的晚古生代锡矿床(图12 a),5组锡锭的锡料来自晚中生代的锡矿床;进一步的Sn同位素对比研究显示,105件锡锭中,35%锡料来自中亚(乌兹别克斯坦的Altai、塔吉克斯坦的Mušiston);65%锡料来自土耳其的Taurus地区(含Bolkardağ)(图12 b、c)。锡锭中锡料来源的不同,展示了青铜时代晚期欧亚之间存在广泛的锡料贸易与流通路径。

  • 以上研究表明,目前Sn同位素溯源分析虽取得了一定的成果,但由于已知矿床的Sn同位素数据积累太少(主要集中在欧洲—西亚—地中海一带),尚未形成可供考古对比的Sn同位素数据库,且不同矿床之间(特别是成矿地质条件相似的矿床,如:Erzgebirge East Pluton和Cornwall)Sn同位素数据存在较为广泛的重叠,难以构成独立的溯源证据。因此,在分析解释Sn同位素数据、示踪锡料来源的过程中,不仅需要在了解每个潜在矿源(锡矿床)成矿地质条件与成矿过程的基础上,对Sn同位素组成进行有效区分,还应将Sn同位素与Pb同位素、微量元素等相结合,采用合理的统计方法,开展综合溯源研究。

  • 4 Ag同位素

  • 4.1 Ag同位素概述

  • 银(Z=47)属过渡金属元素,具明显的亲硫性和中等挥发性,主要有Ag0和Ag+两种价态。在自然界中Ag0通常赋存于自然银和金银天然合金(金银矿)中,Ag+则以独立矿物或类质同象的形式赋存在硫化物(如:辉银矿、方铅矿)、硫盐矿物(如:深红银矿、淡红银矿、黝铜矿等)、硒化物(硒银矿)、碲化物(碲银矿)中。自然界Ag有107Ag和109Ag两个稳定同位素,丰度分别为48.6%和51.4%(Hoefs,2021)。与Cu同位素类似,Ag同位素组成通常用δ109Ag和ε109Ag表示:

  • δ109Ag=109Ag/107AgSample 109Ag/107AgStandard -1×1000
    (4)
  • ε109Ag=109Ag/107AgSample 109Ag/107AgStandard -1×10000
    (5)
  • Ag同位素的分析目前采用溶液法MC-ICP-MS,外部精度可达0.015‰(Luo Yan et al.,2010; Guo Qi et al.,2017)。国际上公认的Ag标准溶液SRM 978a(AgNO3),其109Ag/107Ag=0.92904±0.00022(Powell et al.,1982)。

  • 目前测定的地质样品还非常有限,地球主要地质储库(如:地壳、地幔等)银同位素端元组成尚在进一步建立中。Woodland et al.(2005)测得碳质球粒陨石的δ109Ag值的变化范围为-0.08‰~0.21‰,其中,碳质球粒陨石Allende的δ109Ag值为0.11‰±0.18‰,碳质球粒陨石Abee的δ109Ag值为0.05‰±0.22‰。Woodland et al.(2005)Schönbächler et al.(2007)分别测得夏威夷玄武岩(KOO49-1)的δ109Ag为1.046‰±0.025‰和0.935‰±0.068‰,并推测全硅酸盐地球(BSE)δ109Ag=0.22‰±0.07‰(Schönbächler et al.,2007)。Woodland et al.(2005)Theis et al.(2013)分别测得USGS标准岩石科迪页岩(SCO-1)的δ109Ag为0.1‰±0.21‰和0.12‰±0.59‰。

  • 自然界中,物理化学条件的变化(如:氧化还原反应、相分离、流体pH值变化、被铁锰氧化物吸附等)可导致Ag同位素分馏。Fujii and Albarede(2018)研究发现,在Ag+-Cl--HS-流体系统中,不同含银分子团簇、水合物、氯化物、硫化物、硫酸盐的络合物之间Ag同位素存在着平衡分馏,以及由核体积效应引起的Ag同位素分馏,这些分馏通常在低温条件下强烈,在约300℃时变得微弱。Mathur et al.(2018)实验研究表明,在氧化(Ag0→Ag+)过程中,Δsolution-native109Ag=0.12‰;在还原(Ag+→Ag0)且被锰氧化物吸附沉淀的过程中,Δsolution-MnO2109Ag=0.68‰,但在仅被铁锰氧化物的吸附沉淀过程中Δsolution-MnO2109Ag=0.10‰,表明还原过程中Ag同位素分馏显著,Δ值可达-0.58‰,相对于107Ag,109Ag更易进入氧化相。Wang Junlin et al.(2022)蒸发实验显示,相对于中性溶液,在酸性溶液中Ag更易迁至蒸汽相,蒸汽相富集107Ag,流体相富集109Ag。此外,Anderson et al.(2019)还发现了固态离子传导(solid-state ion conduction,SSIC)过程中的Ag同位素分馏。

  • 4.2 矿床中的Ag同位素组成

  • 世界范围内不同类型矿床335个Ag同位素数据统计显示,各类矿床δ109Ag值整体变化于-3.65‰~6.07‰之间,主要集中在-0.4‰~0.6‰,不同类型的矿床以及同一类型不同地区的矿床δ109Ag值存在着较大范围重合(图13)。在矿物类型上,深成自然银以及辉银矿的δ109Ag值变化范围较窄(-0.4‰~0.4‰),可代表原生银矿床的Ag同位素组成;但深成含银硫盐样品δ109Ag值变化范围相对较大(-0.6‰~2.0‰)。相较于深成矿物,表生自然银具有更大的银同位素比值变化范围(-0.335‰~2.142‰);表生卤化银的δ109Ag值均高于0.5‰,最高可达2.287‰(平均值为1.023‰)(Arribas et al.,2020;本文统计数据)(图14)。此外,方铅矿中的δ109Ag值也有较大的变化范围(-3.65‰~6.07‰),其中来自伊比利亚半岛及希腊等地的方铅矿δ109Ag值相对集中,而我国藏南扎西康矿床的δ109Ag值则较为分散。

  • Fujii and Albarede(2018)和Milot et al.(2021)认为δ109Ag值介于-0.1‰~0.1‰之间,主要继承了源区的特征(最有可能来自地幔),很少或没有同位素分馏。不同矿床、不同矿物之间δ109Ag值的差异性变化,大多学者认为与中低温条件下(包括表生风化)氧化还原过程有关(Fujii and Albarède2018; Mathur et al.,2018; Voisey et al.,2019; Arribas et al.,2020),但某些矿床的硫化物中,δ109Ag值的变化亦可能与相分离(Wang Da et al.,2022)以及表面吸附和/或晶格替代(Dong Ge et al.,2022)所引起的Ag同位素分馏有关。

  • 与Cu同位素类似,不同矿床间含银矿物的δ109Ag值存在广泛重叠,Ag同位素同样难以作为独立证据追溯古代金属制品的地质来源;但由于中低温条件下(特别是表生风化)的氧化还原过程会导致Ag同位素的分馏,因此,Ag同位素具备推断矿石类型的潜力(Stephens et al.,2021; Eshel et al.,2022)。

  • 图13 世界代表性矿床的Ag同位素组成

  • Fig.13 Ag isotopic compositions from representative ore deposits in the world

  • 数据来源(Data sources):Mathur et al.,2018; Voisey et al.,2019; Arribas et al.,2020; Milot et al.,20212022; Dong Ge et al.,2022; Wang Da et al.,2022; Vaxevanopoulos et al.,2022

  • 图14 世界代表性矿床中不同矿物的Ag同位素组成(数据来源同图13)

  • Fig.14 Ag isotopic compositions of different Ag-bearing minerals from representative deposits in the world (the data source is the same as Fig.13)

  • 4.3 冶炼过程中的Ag同位素分馏

  • 现有研究显示,在冶炼过程中,只要银的提取率足够高,就不会产生的Ag同位素的显著分馏(Desaulty et al.,2011)。由于Ag是贵金属,古代工匠在冶炼过程中通常会极力保障银的高提取率,因此,目前研究大都未考虑Ag同位素分馏。

  • 4.4 在古代金属制品溯源研究中的应用

  • 4.4.1 Ag制品的溯源研究

  • Ag同位素最早由Albarède研究团队于2011年引入到考古学研究中,主要用于示踪古代银制品(银锭、银币、银器)中Ag的来源(Desaulty et al.,2011; Desaulty and Albarède,2013; Albarède et al.,2016; Milot et al.,20212022; Vaxevanopoulos et al.,2022; Eshel et al.,2022)。需要注意的是,在Ag同位素的早期溯源研究中,受矿床δ109Ag数据量限制,Albarède团队并未意识到在不同地区、不同矿床的Ag同位素存在着较大重叠,但他们在溯源研究过程中都采用了Ag同位素与Pb、Cu等多元同位素相联合示踪的方式(Desaulty et al.,2011; Desaulty and Albarède,2013; Albarède et al.,2016),因此,其结论现在来看依然有效。

  • 估算贵金属在全球的流通是理解早期货币体系的关键。Desaulty et al.(2011)通过对古地中海代、古罗马、中世纪西欧、16~18世纪的西班牙、墨西哥和安第斯地区共91枚银币的Pb、Cu、Ag同位素分析,追踪了银币中世纪以来欧洲银币中Ag来源的变化。研究显示:公元1492年以前的欧洲银币的Pb、Cu、Ag同位素组成可与墨西哥和安第斯的银币相互区分,可构建欧洲、墨西哥和安第斯3个主要的银源(图15);公元1492年至费利佩三世(Philip III,公元1598年至1621年)之前,来自欧洲的白银一直主宰着西班牙的货币市场,但在80年后费利佩五世(Philip V,公元1700年至1746年)统治时期,欧洲白银被墨西哥白银取代,退出了货币市场。该项研究开创了Ag同位素示踪贵金属来源的先河,展示了其广泛的应用前景。

  • Desaulty and Albarède(2013)在Desaulty et al.(2011)的研究基础上,进一步对公元1550~1650年的英国银币开展了Pb、Cu、Ag同位素分析,探讨了全球白银的贸易路径。结果表明,在该时间段内,来自欧洲和墨西哥的白银在英国银币中占主导地位,而来自秘鲁总督区(Potosí矿区)的白银则很少(图16),这一结果与西班牙在美洲银矿的生产记录形成鲜明对比。Desaulty and Albarède(2013)认为墨西哥生产的白银向东出口到了欧洲,而秘鲁总督区(Potosí矿区)生产的白银则很可能向西出口到了中国。在秘鲁和中国之间很可能存在一条Potosí-China白银贸易路线,该路线在很大程度上与墨西哥-欧洲白银矿贸易路线无关。

  • Milot et al.(2022)将Pb、Ag同位素与微量元素Bi、Sb、As相结合,评估了古罗马占领伊比利亚期间伊比利亚的方铅矿是否构成了古罗马银币中Ag的主要来源。研究表明,来自伊比利亚半岛Eastern Betics、Linares-La Carolina、Alcudia Valley-Los Pedroches、Catalonian Coastal Ranges、Ossa Morena Zone、Western Betics、South Portuguese Zone和Cantabrian Zone 8个矿区(多为罗马时代开采过的)的47件方铅矿样品中,Pb和Ag同位素组成无相关关系,指示Pb和Ag同位素的变化取决于的不同的成矿地质过程。此外,ε109Ag值的变化范围远大于(6倍于)世界范围内(尤其是古罗马)银币所显示的ε109Ag值变化范围。尽管来自Betics的方铅矿Pb同位素组成与古罗马银币最为匹配,但Ag同位素组成的匹配程度却极低。结合微量元素组成和Ag同位素的分馏理论,Milot et al.(2022)认为伊比利亚半岛方铅矿中的 Ag、Sb、Bi、As很可能主要来自于幔源岩浆所分泌的成矿流体,这种成矿流体与早期形成的方铅矿发生反应形成了富Ag的方铅矿。ε109Ag值为~0且异常富含Ag、Sb、Bi和As的方铅矿是古罗马银币中Ag最可能的来源;而ε109Ag值明显偏离~0的样品则反映了上地壳中Ag同位素的分馏过程。

  • 图15 古地中海和罗马帝国、中世纪欧洲、16~18世纪欧洲、安第斯与墨西哥银币的δ65Cu-ε109Ag图解(a)和 Pb模式年龄-ε109Ag图解(b)(据Desaulty et al.,2011修改)

  • Fig.15 Diagrams of δ65Cu vs. ε109Ag (a) and Pb model ages vs. ε109Ag (b) for silver coins from Ancient Mediterranean, Roman Empire, Medieval Europe, 16th~18th century Europe, Andes and Mexico (modified from Desaulty et al., 2011)

  • Vaxevanopoulos et al.(2022)系统分析了来自爱琴海古代矿区的29件含银硫化物样品,以及公元前6世纪~公元前4世纪晚期铸造的34枚古希腊银币的Pb、Ag、S同位素与微量元素组成,探讨了银币中Ag的来源。频率分析显示,古希腊银币可分为-1×10-4<ε109Ag<1×10-4和-2×10-4<ε109Ag<-1×10-4两组,结合Pb同位素与微量元素组成,认为银币中的Ag主要来自Lavrion(Attica)地区。进一步对比研究还发现,无论爱琴海还是伊比利亚半岛,古代矿区矿石硫化物的δ34S值和ε109Ag值之间无任何相关性,表明古代Ag矿的开采与其成因类型无关。Vaxevanopoulos et al.(2022)指出,Ag同位素可作为Pb同位素分析的重要补充,能高度可靠地排除大部分由Pb同位素所确定的Ag的潜在矿源。

  • Eshel et al.(2022)在前人Pb同位素研究的基础上,对来自Levant南部腓尼基人(Phoenician)的4个窑藏(Dor、‘Akko、‘Ein Hofez、Arad)以及Shiloh、Tell el-‘Ajjul和‘Ein Gedi3个窑藏中45件青铜时代中期至铁器时代末期(公元前1650~600年)的银锭和银器进行了Ag同位素测试,分析了Ag的来源和银矿开采情况。Pb同位素研究显示,7个窑藏银制品的Ag主要来自撒丁岛(Sardinia)、伊比利亚(Iberia)、安纳托利亚(Anatolia)和希腊(Greece),4件来自腓尼基人窑藏的样品为安纳托利亚银和伊比利亚银的混合(图17),很可能与公元前950~700年腓尼基人(Phoenician)对银矿资源的利用有关。所有样品的ε109Ag值介于-2×10-4~1.5×10-4之间,指示Ag主要来自深成原生含银矿物(图17);来自腓尼基人(Phoenician)窑藏的样品接近一半ε109Ag值介于-0.5×10-4~0.5×10-4之间,无明显的Ag同位素分馏,而其他3个窑藏的样品则大多ε109Ag<0.5×10-4,显示出一定的分馏特征(图17)。Eshel et al.(2022)根据Ag同位素的分馏机理,认为虽然所有的Ag主要来自深成原生矿石,但腓尼基人(Phoenician)的开采深度更深,矿石未经历任何风化作用。

  • 图16 英格兰、中世纪欧洲、Potosí(秘鲁总督区,现玻利维亚)和墨西哥银币的Th/U 比值-构造Pb模式年龄图解(a)和ε109Ag-δ65Cu图解(b)

  • Fig.16 Diagrams of Th/U ratios vs. tectonic Pb model ages (a) and ε109Ag vs. δ65Cu (b) for silver coins from England, medieval Europe, Potosí (Viceroyalty of Peru, now Bolivia) and Mexico

  • (a)—Th/U比值-构造Pb模式年龄图解,图顶部为主要矿床的成矿期(海西期、南美科迪勒拉Ⅰ期和墨西哥科迪勒拉Ⅱ期),Pb同位素显示:在Mary Ⅰ之前,英国银币的Ag主要来自中欧海西期矿床,而Mary Ⅰ及之后的银币中含有大量来自墨西哥的银,仅一例来自Potosí银矿区;(b)—ε109Ag-δ65Cu图解,样品表达与(a)相同;根据英国银币数据点的分布,进一步证明了Mary Ⅰ之前英国银币的Ag主要来自欧洲,来自墨西哥的Ag在Mary Ⅰ及之后的银币中普遍存在,而来自秘鲁总督区(Potosí矿区)的银,贡献很小(引自Desaulty and Albarède,2013)

  • (a) —diagrams of Th/U ratios vs. tectonic Pb model ages; the range of ages for the main tectonic episodes (Hercynian, South American Cordillera Ⅰ, and Mexican Cordillera Ⅱ) characteristic of the major ore fields is shown at the top of the diagram for comparison; lead in pre-Mary Ⅰ English silver coinage is clearly dominated by Hercynian sources from central Europe, whereas MaryⅠand later silver contains large fractions of Mexico silver, with one exception; (b) —ε109Ag and δ65Cu in the same samples as those shown in (a) ; the relative positions of the points representing English coins confirm the European origin of pre-Mary Ⅰ English silver coinage, the prevalence of Mexican metals in later coins, and the small overall contribution of Viceroyalty of Peru (Potosí) silver (after Desaulty and Albarède, 2013)

  • 4.4.2 黄金制品溯源探索

  • Au、Ag、Cu地球化学性质相似,且在矿床中往往共伴生,2018年之后,也有学者在探索Cu、Ag同位素示踪古代黄金制品矿石来源的可能性(Baron et al.,2019; Brügmann et al.,2019)。

  • Baron et al.(2019)对来自法国Limousin地区(Celtic时期的重要金矿区)的40件金矿样品开展了Pb、Cu和Ag同位素研究,发现:① 根据Pb模式年龄可将40件矿石可分晚元古代至早古生代和海西期两组,反映了原生金矿的源区和地质历史;② Ag同位素与Pb同位素之间没有明显的相关关系,但与Cu同位素之间大致呈负相关,指示Ag同位素在金矿物中的分馏与在银矿物中的分馏行为相似,反映了成矿温度、深度、氧化还原条件和流体性质,且在铁帽形成过程中Ag的活动性相对于Cu较低,更多保留了原生矿石的特征。③ Ag、Cu同位素具备示踪古代黄金制品物源的潜力,金矿石Cu同位素可建立类似于铜矿石的分馏机制(Klein et al.,2010),用于识别砂金矿与岩金矿。此外,古代金币的Cu同位素还可用于识别优质金币与含铜劣质金币。

  • 然而,Brügmann et al.(2019)对非洲中部、玻利维亚和德国莱茵河三个地区砂金矿床中块金的Ag同位素研究,却显示出Ag同位素在识别砂金矿与岩金矿的不确定性。根据他们的研究,尽管来自三个地区砂金矿的块金δ109Ag值介于-0.58‰~0.83‰之间,高于原生金矿床(岩金矿)δ109Ag值的变化范围(-0.42‰~0.5‰),且来自玻利维亚的块金样品受机械搬运过程中Ag增加或损失的影响,δ109Ag值差异很大(-0.512‰~0.774‰);但来自德国莱茵河沿岸(480 km)3个砂金矿的块金却因搬运、混合过程中发生了均一化,δ109Ag值差异不大(-0.005‰~0.124‰),且在岩金矿床的范围内,指示Ag同位素用于识别砂金矿与岩金矿存在不确定性。此外,Berger et al.(2021)采用古代盐胶结(salt cementation)技术开展了Au的提纯模拟实验,发现Au在提纯过程中存在着Ag、Cu同位素的分馏,提纯Au富集Ag、Cu的重同位素。

  • 图17 Levantine南部窑藏青铜器-铁器时代银制品的206Pb/204Pb vs. ε109Ag图解(据Eshel et al.,2022修改)

  • Fig.17 206Pb/204Pb vs. ε109Ag values of Bronze and Iron Age silver products from the hoards in the southern Levantine (modified from Eshel et al., 2022

  • 以上探索性研究表明,Ag、Cu同位素在用于黄金制品溯源研究存在着较大的局限性,只有在了解古代黄金制品Au的提纯工艺的基础上,开展Ag、Cu、Pb及微量元素综合研究,才可能获得相对可靠的认识。

  • 5 结语

  • (1)本文综述了非传统Cu、Sn、Ag同位素在古代金属制品溯源研究中的应用,为得出有意义的溯源结论,同位素示踪溯源需符合三个前提:物源假设(即:潜在同位素组成在矿源之间的差异大于潜在矿源内部的差异)、冶炼过程无显著的同位素分馏、实验室的提纯与分析测试不会引起同位素的改变。此外,任何关于来源的推断都应与考古学和其他考古证据相一致。但遗憾的是本文综述的非传统Cu、Sn、Ag同位素都不满足所有前提。

  • (2)Sn同位素有助于示踪青铜器和锡锭中Sn的来源,但由于目前矿床的Sn同位素数据太少,尚未形成可供考古对比的Sn同位素数据库,且不同矿床之间Sn同位素数据存在一定的重叠,难以构成独立的溯源证据。Sn同位素与Pb同位素、微量元素相结合,采用合理的统计方法,开展综合溯源研究将是今后Sn同位素溯源研究的发展方向。

  • (3)Cu和Ag同位素,由于矿床内部的差异大于矿床之间的差异,因此,这两种同位素都不能单独用来示踪古代金属制品的矿石来源。但由于原生矿石与表生矿石之间存在较大的分馏,Cu同位素已经成为一种确定的方法,用于推断含铜金属制品的矿石类型。最近研究表明,Ag同位素在的风化过程中亦会发生显著分馏,未来Ag同位素很可能会遵循Cu同位素研究的线索,推断用制造古代金属制品的矿石类型。

  • (4)虽然非传统Cu、Sn、Ag同位素难以作为独立的溯源证据,但可与传统的Pb同位素、微量元素及考古材料学相结合,综合分析古代金属制品的地质来源,再现不同地域文明冶炼技术的起源与发展,文明之间金属矿料的流通。从这个意义上说,每一种方法都不是多余的,只有将所有方法结合起来才能更好地得出有意义的认识。

  • 参考文献

    • Albarède F, Blichert-Toft J, Rivoal M, Telouk P. 2016. A glimpse into the Roman finances of the Second Punic War through silver isotopes. Geochemical Perspectives Letters, 2(2): 127~137.

    • Anderson C J, Mathur R, Rakovan J, Tremsin A S. 2019. Natural solid-state ion conduction induces metal isotope fractionation. Geology, 47(7): 617~621.

    • Arribas A, Mathur R, Megaw P, Arribas I. 2020. The isotopic composition of silver in ore minerals. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009097.

    • Artioli G, Angelini I, Nimis P, Villa I M. 2016. A lead-isotope database of copper ores from the Southeastern Alps: A tool for the investigation of prehistoric copper metallurgy. Journal of Archaeological Science, 75: 27~39.

    • Asael D, Matthews A, Bar-Matthews M, Halicz L. 2007. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chemical Geology, 243(3-4): 238~254.

    • Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L. 2009. Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits. Chemical Geology, 262(3-4): 147~158.

    • Asael D, Matthews A, Bar-Matthews M, Harlavan Y, Segal I. 2012. Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes. Chemical Geology, 310: 23~35.

    • Badullovich N, Moynier F, Creech J, Teng F Z, Sossi P A. 2017. Tin isotopic fractionation during igneous differentiation and Earth's mantle composition. Geochemical Perspectices Letters, 5: 24~28.

    • Balistrieri L, Borrok D M, Wanty R B, Ridley W I. 2008. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta, 72: 311~328.

    • Baron S, Tǎmaş C G, Le Carlier C. 2014. How mineralogy and geochemistry can improve the significance of Pb isotopes in metal provenance studies: the significance of Pb isotopes in metal provenance studies. Archaeometry, 56(4): 665~680.

    • Baron S, Tǎma C G, Rivoal M, Cauuet B, Télouk P, Albarède F. 2019. Geochemistry of gold ores mined during Celtic times from the North-Western French Massif Central. Scientific Reports, 9(1): 1~15.

    • Barrat J A, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G. 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochimica et Cosmochimica Acta, 83: 79~92.

    • Berger D, Figueiredo E, Brügmann G, Pernicka E. 2018. Tin isotope fractionation during experimental cassiterite smelting and its implication for tracing the tin sources of prehistoric metal artefacts. Journal of Archaeological Science, 92: 73~86.

    • Berger D, Brügmann G, Pernicka E. 2019a. On smelting cassiterite in geological and archaeological samples: Preparation and implications for provenance studies on metal artefacts with tin isotopes. Archaeological and Anthropological Sciences, 11(1): 293~319.

    • Berger D, Soles J S, Giumlia-Mair A R, Brügmann G, Galili E, Lockhoff N, Pernicka E. 2019b. Isotope systematics and chemical composition of tin ingots from Mochlos (Crete) and other Late Bronze Age sites in the eastern Mediterranean Sea: An ultimate key to tin provenance? PloS One, 14(6): e0218326.

    • Berger D, Brauns M, Brügmann G, Pernicka E, Lockhoff N. 2021. Revealing ancient gold parting with silver and copper isotopes: Implications from cementation experiments and for the analysis of gold artefacts. Archaeological and Anthropological Sciences, 13(9): 143.

    • Bigalke M, Weyer S, Wilcke W. 2010. Stable copper isotopes: A novel tool to trace copper behavior in hydromorphic soils. Soil Science Society of America Journal, 74(1): 60~73.

    • Bower N W, Hendin D B, Lundstrom C C, Epstein M S, Keller A T, Wagner A R, White Z R. 2013. “Biblical” bronze coins: New insights into their timing and attribution using copper and lead isotopes. Archaeological and Anthropological Sciences, 5(4): 287~298.

    • Bower N W, Lundstrom C C, Hendin D B. 2019. MC-ICP-MS analyses of tin isotopes in Roman-era bronze coins reveal temporal and spatial variation. Archaeometry, 61(4): 891~905.

    • Boyle E, John S, Abouchami W, Adkins J, Echegoyen-Sanz Y, Ellwood M, Flegal A, Fornace K, Gallon C, Galer S. 2012. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnology and Oceanography: Methods, 10: 653~665.

    • Brauns M, Schwab R, Gassmann G, Wieland G, Pernicka E. 2013. Provenance of Iron Age iron in southern Germany: A new approach. Journal of Archaeological Science, 40(2): 841~849.

    • Brügmann G, Berger D, Pernicka E. 2017. Determination of the tin stable isotopic composition in tin-bearing metals and minerals by MC-ICP-MS. Geostandards and Geoanalytical Research, 41(3): 437~448.

    • Brügmann G, Brauns M, Maas R. 2019. Silver isotope analysis of gold nuggets: An appraisal of instrumental isotope fractionation effects and potential for high-resolution tracing of placer gold. Chemical Geology, 516: 59~67.

    • Budd P, Haggerty R, Pollard A M, Scaife B, Thomas R G. 1996. Rethinking the quest for provenance. Antiquity, 70(267): 168~174.

    • Chen J H, Wasserburg G J. 1983. Theisotopic composition of silver and lead in two iron meteorites: Cape york and grant. Geochimica et Cosmochimica Acta, 47(10): 1725~1737.

    • Coutaud M, Meheut M, Glatzel P, Pokrovski G S, Viers J, Rols J, Pokrovsky O S. 2017. Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm. Geochimica et Cosmochimica Acta, 220: 1~18.

    • Creech J B, Moynier F, Badullovich N. 2017. Tin stable isotope analysis of geological materials by double-spike MC-ICPMS. Chemical Geology, 457: 61~67.

    • Creech J B, Moynier F. 2019. Tin and zinc stable isotope characterisation of chondrites and implications for early Solar System evolution. Chemical Geology, 511: 81~90.

    • De Laeter J R, Jeffery P M. 1965. The isotopic composition of terrestrial and meteoritic tin. Journal of Geophysical Research, 70(12): 2895~2903.

    • de Madinabeitia S G, Ibarguchi J G, Zalduegui J S. 2021. IBERLID: A lead isotope database and tool for metal provenance and ore deposits research. Ore Geology Reviews, 137: 104279.

    • Deng Xiaohua, Mathur R, Li Yao, Mao Qigui, Wu Yanshuang, Yang Liya, Chen Xi, Xu Jun. 2019. Copper and zinc isotope variation of the VMS mineralization in the Kalatag district, eastern Tianshan, NW China. Journal of Geochemical Exploration, 196: 8~19.

    • Desaulty A M, Telouk P, Albalat E, Albarède F. 2011. Isotopic Ag-Cu-Pb record of silver circulation through 16th-18th century Spain. Proceedings of the National Academy of Sciences, 108(22): 9002~9007.

    • Desaulty A M, Albarède F. 2013. Copper, lead, and silver isotopes solve a major economic conundrum of Tudor and early Stuart Europe. Geology, 41(2): 135~138.

    • Dong Ge, Wei Haizhen, Zhu Yuanfeng, Liu Xi, Guo Qi, Pu Wei, Lin Tibo, Wang Junlin. 2022. A preliminary study on silver isotopic composition in polymetallic ore deposits in eastern China. Journal of Earth Science, 33(1): 100~108.

    • Duan Jilin. 2018. Cu and Zn isotopic features of typical magma-related deposit systems in Tibet and their geological significances. Doctoral dissertation of China University of Geoscience (Beijing) (in Chinese with English abstract).

    • Duan Jilin, Tang Juxing, Li Yubin, Liu Songao, Wang Qin, Yang Chao, Wang Yiyun. 2016. Copper isotopic signature of the Tiegelongnan high-sulfidation copper deposit, Tibet: Implications for its origin and mineral exploration. Mineralium Deposita, 51: 591~602.

    • Eshel T, Tirosh O, Yahalom-Mack N, Gilboa A, Erel Y. 2022. Silverisotopes in silver suggest Phoenician Innovation in metal production. Applied Sciences, 12(2): 741.

    • Friedman A M, Conway M, Kastner M, Milsted J, Metta D, Fields P R, Olsen E. 1966. Copper artifacts: Correlation with some types of copper ores. Science, 152: 1504~1506.

    • Fujii T, Albarede F. 2018. 109Ag-107Ag fractionation in fluids with applications to ore deposits, archeometry and cosmochemistry. Geochimica et Cosmochimica Acta, 234: 37~49.

    • Gale N H. 1997. The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry, 39(1): 71~82.

    • Gale N H, Stos-Gale Z A. 1982. Bronze Age copper sources in the Mediterranean: A new approach. Science, 216(4541): 11~19.

    • Gale N H, Woodhead A P, Stos-Gale Z A, Walder A, Bowen I. 1999. Natural variations detected in the isotopic composition of copper, possible applications to archaeology and geochemistry. International Journal of Mass Spectrometry, 184(1): 1~9.

    • Gale N H, Stos-Gale Z H. 2000. Lead isotope analysis applied to provenance studies. In: Modern Analytical Methods in Art and Archaeology. New York: John Wiley and Sons Publication.

    • Glascock M D, Neff H. 2003. Neutron activation analysis and provenance research in archaeology. Measurement Science & Technology, 14(9): 1516~1526.

    • Graham S, Pearson N, Jackson S, Griffin W, O'reilly S Y. 2004. Tracing Cu and Fe from source to porphyry: In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chemical Geology, 207(3-4): 147~169.

    • Guo Qi, Wei Haizhen, Jiang Shaoyong, Simon H, Lin Yibo, Wang Yijing, Li Yinchuan. 2017. Matrix effects originating from coexisting minerals and accurate determination of stable silver isotopes in silver deposits. Analytical Chemistry, 89(24): 13634~13641.

    • Haustein M, Gillis C, Pernicka E. 2010. Tin isotopy—a new method for solving old questions. Archaeometry, 52(5): 816~832.

    • Hoefs J. 2021. Stable Isotope Geochemistry(9th Edition). Cham: Springer International Publishing AG.

    • Hsu Y K, Sabatini B J. 2019. A geochemical characterization of lead ores in China: An isotope database for provenancing archaeological materials. PLoS One, 14(4): e0215973.

    • Hu Wenfeng, Zhang Yekai, Liu Jinhua, Guo Liang, Zhou Lian. 2019. The isotopic compositions of copper and molybdenum from porphyry Cu-Mo deposit in the Gangdese, Tibet, and their significance. Earth Science, 44(6): 1923~1934 (in Chinese with English abstract).

    • Ikehata K, Notsu K, Hirata T. 2011. Copper isotope characteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits, Japan, determined using a femtosecond LA-MC-ICP-MS. Economic Geology, 106(2): 307~316.

    • Ikehata K, Hirata T. 2012. Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, Northern Japan. Economic Geology, 107: 1489~1497.

    • Ikehata K, Hirata T. 2013. Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite. Analytical Sciences, 29: 1213~1217.

    • Ixer R A. 1999. Role of ore geology and ores in the archaeological provenancing of metals. In: Young S M M, ed. Metals in Antiquity, BAR International Series 792. Oxford: Archaeo Press.

    • Jansen M, Hauptmann A, Klein S, Seitz H M. 2017. The potential of stable Cu isotopes for the identification of Bronze Age ore mineral sources from Cyprus and Faynan: Results from Uluburun and Khirbat Hamra Ifdan. Archaeological and Anthropological Sciences, 10(6): 1485~1502.

    • Jansen M, Hauptmann A, Klein J. 2018. Copper and lead isotope characterization of late bronze age copper ingots in the eastern mediterranean: Results from gelidonya, gournia, enkomi and mathiati. In: Giumlia-Mair A, Lo Schiavo F, eds. Bronze Age Metallurgy on Mediterranean Islands, Monographies Instrumentum 56. Drémil-Lafage: Éditions Mergiol, 552~578.

    • Jin Zhengyao. 2008. Lead isotope Archaeology in China. Hefei: University of Science and Technology of China Press (in Chinese).

    • Jin Zhengyao, Liu Ruiliang, Rawson J, Pollard A M. 2017. Revisiting lead isotope data in Shang and Western Zhou bronzes. Antiquity, 91(360): 1574~1587.

    • Killick D J, Stephens J A, Fenn T R. 2020. Geological constraints on the use of lead isotopes for provenance in archaeometallurgy. Archaeometry, 62: 86~105.

    • Klein S, Lahaye Y, Brey G P, Von Kaenel H M. 2004. The early Roman imperial aes coinage II: Tracing the copper sources by analysis of lead and copper isotopes—copper coins of Augustus and Tiberius. Archaeometry, 46(3): 469~480.

    • Klein S, Brey G P, Durali-Müller S, Lahaye Y. 2010. Characterisation of the raw metal sources used for the production of copper and copper-based objects with copper isotopes. Archaeological and Anthropological Sciences, 2(1): 45~56.

    • Klein S, Rose T. 2020. Evaluatingcopper isotope fractionation in the metallurgical operational chain: An experimental approach. Archaeometry, 62: 134~155.

    • Larson P B, Maher K, Ramos F C, Chang Z, Gaspar M, Meinert L D. 2003. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chemical Geology, 201(3-4): 337~350.

    • Lazarov M, Horn I. 2015. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochim Acta Part B-Atomic Spectr: 111: 64~73.

    • Li Weiqiang, Jackson S E, Pearson N J, Alard O, Chappell B W. 2009. The Cu isotope signature of granites from the Lachlan Fold Belt, SE Australia. Chemical Geology, 258: 38~49.

    • Li Weiqiang, Jackson S E, Pearson N J, Graham S. 2010. Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia. Geochimica et Cosmochimica Acta, 74: 4078~4096.

    • Li Zhenqing, Yang Zhiming, Zhu Xiangkun, Hou Zengqian, Li Shizhen, Li Zhihong, Wang Yue. 2009. Cu isotope composition of Qulong porphyry Cu deposit, Tibet. Acta Geologica Sinica, 83(12): 1985~1996 (in Chinese with English abstract).

    • Liu Ruiliang, Pollard A M, Rawson J, Tang Xiaojia, Bray P, Zhang Changping. 2019. Panlongcheng, Zhengzhou and the movement of metal in early bronze age china. Journal of World Prehistory, 32(4): 393~428.

    • Liu Shengao, Huang Jian, Liu Jingao, Wörner G, Yang Wei, Tang Yanjie, Chen Yi, Tang Limei, Zheng Jianping, Li Shuguang. 2015. Copper isotopic composition of the silicate Earth. Earth and Planetary Science Letters, 427: 95~103.

    • Luck J M, Ben Othman D, Barrat J A, Albarède F. 2003. Coupled 63Cu and 16O excesses in chondrites. Geochimica et Cosmochimica Acta, 67: 143~151.

    • Luck J M, Ben Othman D, Albarède F. 2005. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et Cosmochimica Acta, 69: 5351~5263.

    • Luo Yan, Dabek-Zlotorzynska E, Celo V, Muir D C G, Yang Lu. 2010. Accurate and precise determination of silver isotope fractionation in environmental samples by multicollector-ICPMS. Analytical Chemistry, 82(9): 3922~3928.

    • Maher K C, Larson P B. 2007. Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Perú. Economic Geology, 102: 225~237.

    • Maher K C, Jackson S, Mountain B. 2011. Experimental evaluation of the fluid-mineral fractionation of Cu isotopes at 250℃and 300℃. Chemical Geology, 286: 229~239.

    • Malitch K N, Latypov R M, Badanina I Y, Sluzhenikin S F. 2014. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril'sk Province (Russia): Evidence from copper and sulfur isotopes. Lithos, 204: 172~187.

    • Mason A H. 2020. Provenance oftin in the Late Bronze Age balkans: Preparation of cassiterite for Sn isotope analysis and the probabilistic and spatial analysis of Sn isotopes. Doctoral dissertation of the City University of New York.

    • Mason A H, Powell W G, Bankoff H A, Mathur R, Bulatović A, Filipović V, Ruiz J. 2016. Tin isotope characterization of bronze artifacts of the central Balkans. Journal of Archaeological Science, 69: 110~117.

    • Mason A, Powell W, Bankoff H A, Mathur R, Price M, Bulatović A, Filipović V. 2020. Provenance of tin in the Late Bronze Age balkans based on probabilistic and spatial analysis of Sn isotopes. Journal of Archaeological Science, 122: 105181.

    • Mason T F, Weiss D J, Chapman J B, Wilkinson J J, Tessalina S G, Spiro B, Horstwood M S A, Spratt J, Coles B J. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221(3-4): 170~187.

    • Mathur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga F, Maksaev V, Vervoort J, Hart G. 2009a. Exploration potential of Cu isotope fractionation in porphyry copper deposits. Journal of Geochemical Exploration, 102(1): 1~6.

    • Mathur R, Titley S, Hart G, Wilson M, Davignon M, Zlatos C. 2009b. The history of the united states cent revealed through copper isotope fractionation. Journal of Archaeological Science, 36(2): 430~433.

    • Mathur R, Dendas M, Titley S, Phillips A. 2010. Patterns in the copper isotopic composition of minerals in porphyry copper deposits in the Southwestern United States of America. Economic Geology, 105: 1457~1467.

    • Mathur R, Ruiz J, Casselman M J, Megaw P, van Egmond R. 2012. Use of Cu isotopes to distinguishprimary and secondary Cu mineralization in the Cañariaco Norte porphyry copper deposit, Northern Peru. Mineralium Deposita, 47(7): 755~762.

    • Mathur R, Wilson M, Parra M L. 2014. Challenges of using copper isotope ratios to trace the origin of native copper artifacts: An example from the Keweenaw Peninsula. Annals of Carnegie Museum, 82(3): 241~245.

    • Mathur R, Arribas A, Megaw P, Wilson M, Stroup S, Meyer-Arrivillaga D, Arribas I. 2018. Fractionation of silver isotopes in native silver explained by redox reactions. Geochimica et Cosmochimica Acta, 224: 313~326.

    • McNaughton N J, Rosman K J R. 1991. Tin isotope fractionation in terrestrial cassiterites. Geochimica et Cosmochimica Acta, 55(2): 499~504.

    • Milot J, Malod-Dognin C, Blichert-Toft J, Télouk P, Albarède F. 2021. Sampling and combined Pb and Ag isotopic analysis of ancient silver coins and ores. Chemical Geology, 564: 120028.

    • Milot J, Blichert-Toft J, Sanz M A, Malod-Dognin C, Télouk P, Albarède F. 2022. Silver isotope and volatile trace element systematics in galena samples from the Iberian Peninsula and the quest for silver sources of Roman coinage. Geology, 50(4): 422~426.

    • Moeller K, Schoenberg R, Pedersen R B, Weiss D, Dong S. 2012. Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostandards and Geoanalytical Research, 36(2): 177~199.

    • Moynier F, Blichert-Toft J, Telouk P, Luck J M, Albarède F. 2007. Comparative stable isotopegeochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 71: 4365~4379.

    • Pearce M. 2016. Archaeology and archaeometallurgy: Some unresolved areas in the interpretation of analytical data. Star: Science & Technology of Archaeological Research, 2(1): 46~53.

    • Pokrovsky O S, Viers J, Emnova E E, Kompantseva E I, Freydier R. 2008. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr) oxides: Possible structural control. Geochimica et Cosmochimica Acta, 72: 1742~1757.

    • Pollard A M, Bray P, Hommel P, Hsu Y K, Liu R, Rawson J. 2017. Bronze age metal circulation in China. Antiquity, 91(357): 674~687.

    • Powell L J, Murphy T J, Gramlich J W. 1982. The absolute isotopic abundance and atomic weight of a reference sample of silver. Journal of Research of the National Bureau of Standards, 87(1): 9.

    • Powell W, Mathur R, Bankoff H A, Mason A, Bulatović A, Filipović V, Godfrey L. 2017. Digging deeper: Insights into metallurgical transitions in European prehistory through copper isotopes. Journal of Archaeological Science, 88: 37~46.

    • Powell W, Mathur R, Bankoff A H, John J, Chvojka O, Tisucká M, Bulatović A, Filipović V. 2018. Copper isotopes as a means of determining regional metallurgical practices in European prehistory: A reply to Jansen. Journal of Archaeological Science, 93: 216~221.

    • Powell W, Mathur R, John J, Price M, Bankoff H A, Tisucká M, Godfrey L. 2019. Unearthing Europe's Bronze Age mining heritage with tin isotopes: A case study from Central Europe. European Geologist, 48: 58~62.

    • Powell W, Frachetti M, Pulak C, Bankoff H A, Barjamovic G, Johnson M, Mathur R, Pigott V C, Price M, Yener K A. 2022. Tin from Uluburun shipwreck shows small-scale commodity exchange fueled continental tin supply across Late Bronze Age Eurasia. Science Advances, 8(48): eabq3766.

    • Qian Peng, Lu Jianjun, Liu Fengxiang. 2006. Isotopic tracing of ore-forming source materials in the porphyry copper deposit of Dexing Jiangxi Province. Global Geology, 25(2): 135~140 (in Chinese with English abstract).

    • Rapp G, Henrickson E, Miller M, Aschenbrenner S. 1980. Trace-element fingerprinting as a guide to the geographic sources of native copper. JOM, 32: 35~45.

    • Rapp G R, Allert J, Vitali V, Henrickson E, Jing Z. 2000. Determining geologic sources of artifact copper: Source characterization using trace element patterns. Lanham: University Press of America.

    • Ripley E M, Dong S, Li C, Wasylenki L E. 2015. Cu isotope variations between conduit and sheet-style Ni-Cu-PGE sulfide mineralization in the Midcontinent Rift System, North America. Chemical Geology, 414: 59~68.

    • Rosman K J R, Loss R D, Laeter J R D. 1984. The isotopic composition of tin. International Journal of Mass Spectrometry & Ion Processes, 56(3): 281~291.

    • Saunders J A, Mathur R, Kamenov G D, Shimizu T, Brueseke M E. 2016. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes. Mineralium Deposita, 51: 1~11.

    • Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy and Geochemistry, 55(1): 65~111.

    • Schönbächler M, Carlson R W, Horan M F, Mock T D, Hauri E H. 2007. High precision Ag isotope measurements in geologic materials by multiple-collector ICPMS: An evaluation of dry versus wet plasma. International Journal of Mass Spectrometry, 261(2-3): 183~191.

    • Schulze M, Ziegerick M, Horn I, Weyer S, Vogt C. 2017. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 130: 26~34.

    • She Jiaxin, Wang Tianhua, Liang Hengdi, Muhtar M N, Li Weiqiang, Liu Xiandong. 2020. Sn isotope fractionation during volatilization of Sn (IV) chloride: Laboratory experiments and quantum mechanical calculations. Geochimica et Cosmochimica Acta, 269: 184~202.

    • Shields W R, Goldich S S, Garner E L, Murphy T J. 1965. Natural variations in the abundance ratio and the atomic weight of copper. Journal of Geophysical Research, 70(2): 479~491.

    • Stephens J A, Ducea M N, Killick D J, Ruiz J. 2021. Use of non-traditional heavy stable isotopes in archaeological research. Journal of Archaeological Science, 127: 105334.

    • Tang Dongmei, Qin Kezhang, Su Benxun, Mao Yajing, Evans N J, Niu Yanjie, Kang Zhen. 2020. Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: Insights into the origin of magmatic Ni-Cu sulfide deposits. Geochimica et Cosmochimica Acta, 275: 209~228.

    • Theis K J, Schönbächler M, Benedix G K, Rehkämper M, Andreasen R, Davies C. 2013. Palladium-silver chronology of IAB iron meteorites. Earth and Planetary Science Letters, 361: 402~411.

    • Tomczyk C. 2022. A database of lead isotopic signatures of copper and lead ores for Europe and the Near East. Journal of Archaeological Science, 146: 105657.

    • Vance D, Archer C, Bermin J, Perkins J, Statham P J, Lohan M C, Ellwood M J, Mills R A. 2008. The copper isotope geochemistry of rivers and the oceans. Earth and Planetary Science Letters, 274(1-2): 204~213.

    • Vaxevanopoulos M, Davis G, Milot J, Blichert-Toft J, Malod-Dognin C, Albarède F. 2022. Narrowing provenance for ancient Greek silver coins using Ag isotopes and Sb contents of potential ores. Journal of Archaeological Science, 145: 105645.

    • Voisey C R, Maas R, Tomkins A G, Brauns M, Brügmann G. 2019. Extreme silver isotope variation in orogenic gold systems implies multistaged metal remobilization during ore genesis. Economic Geology, 114(2): 233~242.

    • Walker E C, Cuttitta F, Senftle F E. 1958. Some natural variations in the relative abundance of copper isotopes. Geochimica et Cosmochimica Acta, 15(3): 183~194.

    • Wang Da, Mathur R, Powell W, Godfrey L, Zheng Youye. 2019. Experimental evidence for fractionation of tin chlorides by redox and vapor mechanisms. Geochimica et Cosmochimica Acta, 250: 209~218.

    • Wang Da, Mathur R, Zheng Youye, Wu Hongjie, Lv Yiwen, Zhang Gangyang, Huan Ren, Yu Miao, Li Yujie. 2022. Constraints on ore-forming fluid evolution and guidance for ore exploration in the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: Insights from silver isotope fractionation of galena. Mineralium Deposita, 57(5): 701~724.

    • Wang Junlin, Wei Haizhen, Williams-Jones A E, Dong Ge, Zhu Yuanfeng, Jiang Shaoyong, Ma Jing, Hohl S V, Liu Xi, Li Yinchuan, Lu Jianjun. 2022. Silver isotope fractionation in ore-forming hydrothermal systems. Geochimica et Cosmochimica Acta, 322: 24~42.

    • Wang Peng, Dong Guochen, Santosh M, Liu Kairan, Li Xuefeng. 2017. Copper isotopes trace the evolution of skarn ores: A case study from the Hongshan-Hongniu Cu deposit, Southwest China. Ore Geology Reviews, 88: 822~831.

    • Wang Tianhua, She Jiaxin, Yin Kun, Wang Kai, Zhang Yingjie, Lu Xiancai, Liu Xiandong, Li Weiqiang. 2021. Sn(Ⅱ) chloride speciation and equilibrium Sn isotope fractionation under hydrothermal conditions: A first principles study. Geochimica et Cosmochimica Acta, 300: 25~43.

    • Wang Xueying, Fitoussi C, Bourdon B, Amet Q. 2017. A new method of Sn purification and isotopic determination with a double-spike technique for geological and cosmochemical samples. Journal of Analytical Atomic Spectrometry, 32(5): 1009~1019.

    • Wang Xueying, Amet Q, Fitoussi C, Bourdon B. 2018. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth. Geochimica et Cosmochimica Acta, 228: 320~335.

    • Wang Yue, Zhu Xiangkun, Mao Jingwen, Cheng Yanbo, Li Zhihong. 2014. Preliminarystudy on Cu isotopic geochemistry behavior of Dongguashan porphyry-skarn deposit, Tongling district. Acta Geologica Sinica, 88(12): 2413~2422 (in Chinese with English abstract).

    • Wang Zaicong, Park J W, Wang Xia, Zou Zongqi, Kim J, Zhang Pingyang, Li Ming. 2019. Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi volcano, Tonga rear arc. Geochimica et Cosmochimica Acta, 250: 18~33.

    • Wang Zezhou, Liu Shengao, Li Dandan, Lv Yiwen, Wu Song, Zhao Yun. 2015. A review of progress in copper stable isotope geochemistry. Earth Science Frontiers, 22(5): 72~83 (in Chinese with English abstract).

    • Weinstein C, Moynier F, Wang K, Paniello R, Foriel J, Catalano J, Pichat S. 2011. Isotopic fractionation of Cu in plants. Chemical Geology, 286: 266~271.

    • Woodhead A P, Gale N H, Stos-Gale Z A. 1999. An investigation into the fractionation of copper isotopes and its possible application to archaeometallurgy. In: Young S M M, ed. Metals in Antiquity. BAR International Series 792. Oxford: Archaeopress, 110~122.

    • Woodland S J, Rehkämper M, Halliday A N, Lee D C, Hattendorf B, Günther D. 2005. Accurate measurement of silver isotopic compositions in geological materials including low Pd/Ag meteorites. Geochimica et Cosmochimica Acta, 69(8): 2153~2163.

    • Wu Liyan, Hu Ruizhong, Li Xiaofeng, Liu Shengao, Tang Yanwen, Tang Yongyong. 2017. Copper isotopic compositions of the Zijinshan high-sulfidation epithermal Cu-Au deposit, South China: Implications for deposit origin. Ore Geology Reviews, 83: 191~199.

    • Wu Song, Zheng Youye, Wang Da, Chang Huifang, Tan Meng. 2017. Variation of copper isotopes in chalcopyrite from Dabu porphyry Cu-Mo deposit in Tibet and implications for mineral exploration. Ore Geology Reviews, 90: 14~24.

    • Yamazaki E, Yokoyama T, Ishihara S, Tang H. 2013. Tin isotope analysis of cassiterites from Southeastern and Eastern Asia. Geochemical Journal, 47(1): 21~35.

    • Yamazaki E, Nakai S, Sahoo Y, Yokoyama T, Mifune H, Saito T, Chen J, Takagi N, Hokanishi N, Yasuda A. 2014. Feasibility studies of Sn isotope composition for provenancing ancient bronzes. Journal of Archaeological Science, 52: 458~467.

    • Yao Junming, Mathur R, Powell W, Lehmann B, Tornos F, Wilson M, Ruiz J. 2018. Sn-isotope fractionation as a record of hydrothermal redox reactions. American Mineralogist, 103(10): 1591~1598.

    • Zhao Yun, Xue Chunji, Liu Shengao, Symons D T, Zhao Xiaobo, Yang Yongqiang, Ke Junjin. 2017. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China. Lithos, 286: 206~215.

    • Zhao Yun, Xue Chunji, Liu Shengao, Mathur R, Zhao Xiaobo, Yang Yongqiang, Dai Junfeng, Man Ronghao, Liu Ximeng. 2019. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system. Geochimica et Cosmochimica Acta, 249: 42~58.

    • Zhao Yun, Liu Shengao, Xue Chunji, Li Menglun. 2022. Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit. American Mineralogist. Journal of Earth and Planetary Materials, 107(4): 673~683.

    • Zhou Zhenhua, Mao Jingwen, Zhao Jiaqi, Gao Xu, Weyer S, Horn I, Holtz F, Sossi P A, Wang Dachuan. 2022. Tin isotopes as geochemical tracers of ore-forming processes with Sn mineralization. American Mineralogist, 107(11): 2111~2127.

    • Zhu Xiangkun, O'nions R K, Guo Y, Belshaw N S, Rickard D. 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chemical Geology, 163(1-4): 139~149.

    • 段吉琳. 2018. 西藏典型岩浆-热液成矿系统铜锌同位素地球化学特征及其地质意义. 中国地质大学(北京)博士学位论文.

    • 胡文峰, 张烨恺, 刘金华, 郭亮, 周炼. 2019. 西藏冈底斯斑岩型铜钼矿床的Cu, Mo同位素组成及其意义. 地球科学, 44(6): 1923~1934.

    • 金正耀. 2008. 中国铅同位素考古. 合肥: 中国科学技术大学出版社.

    • 李振清, 杨志明, 朱祥坤, 侯增谦, 李世珍, 李志红, 王跃. 2009. 西藏驱龙斑岩铜矿铜同位素研究. 地质学报, 83(12): 1985~1996.

    • 钱鹏, 陆建军, 刘风香. 2006. 江西德兴斑岩铜矿成矿物质来源同位素示踪. 世界地质, 25(2): 135~140.

    • 王跃, 朱祥坤, 毛景文, 程彦博, 李志红. 2014. 铜陵矿集区冬瓜山矿床斑岩-矽卡岩型矿床成矿作用过程中的 Cu 同位素地球化学行为初步研究. 地质学报, 88(12): 2413~2422.

    • 王泽洲, 刘盛遨, 李丹丹, 吕逸文, 吴松, 赵云. 2015. 铜同位素地球化学及研究新进展. 地学前缘, 22(5): 72~83.

  • 参考文献

    • Albarède F, Blichert-Toft J, Rivoal M, Telouk P. 2016. A glimpse into the Roman finances of the Second Punic War through silver isotopes. Geochemical Perspectives Letters, 2(2): 127~137.

    • Anderson C J, Mathur R, Rakovan J, Tremsin A S. 2019. Natural solid-state ion conduction induces metal isotope fractionation. Geology, 47(7): 617~621.

    • Arribas A, Mathur R, Megaw P, Arribas I. 2020. The isotopic composition of silver in ore minerals. Geochemistry, Geophysics, Geosystems, 21(8): e2020GC009097.

    • Artioli G, Angelini I, Nimis P, Villa I M. 2016. A lead-isotope database of copper ores from the Southeastern Alps: A tool for the investigation of prehistoric copper metallurgy. Journal of Archaeological Science, 75: 27~39.

    • Asael D, Matthews A, Bar-Matthews M, Halicz L. 2007. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chemical Geology, 243(3-4): 238~254.

    • Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L. 2009. Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits. Chemical Geology, 262(3-4): 147~158.

    • Asael D, Matthews A, Bar-Matthews M, Harlavan Y, Segal I. 2012. Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes. Chemical Geology, 310: 23~35.

    • Badullovich N, Moynier F, Creech J, Teng F Z, Sossi P A. 2017. Tin isotopic fractionation during igneous differentiation and Earth's mantle composition. Geochemical Perspectices Letters, 5: 24~28.

    • Balistrieri L, Borrok D M, Wanty R B, Ridley W I. 2008. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta, 72: 311~328.

    • Baron S, Tǎmaş C G, Le Carlier C. 2014. How mineralogy and geochemistry can improve the significance of Pb isotopes in metal provenance studies: the significance of Pb isotopes in metal provenance studies. Archaeometry, 56(4): 665~680.

    • Baron S, Tǎma C G, Rivoal M, Cauuet B, Télouk P, Albarède F. 2019. Geochemistry of gold ores mined during Celtic times from the North-Western French Massif Central. Scientific Reports, 9(1): 1~15.

    • Barrat J A, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G. 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochimica et Cosmochimica Acta, 83: 79~92.

    • Berger D, Figueiredo E, Brügmann G, Pernicka E. 2018. Tin isotope fractionation during experimental cassiterite smelting and its implication for tracing the tin sources of prehistoric metal artefacts. Journal of Archaeological Science, 92: 73~86.

    • Berger D, Brügmann G, Pernicka E. 2019a. On smelting cassiterite in geological and archaeological samples: Preparation and implications for provenance studies on metal artefacts with tin isotopes. Archaeological and Anthropological Sciences, 11(1): 293~319.

    • Berger D, Soles J S, Giumlia-Mair A R, Brügmann G, Galili E, Lockhoff N, Pernicka E. 2019b. Isotope systematics and chemical composition of tin ingots from Mochlos (Crete) and other Late Bronze Age sites in the eastern Mediterranean Sea: An ultimate key to tin provenance? PloS One, 14(6): e0218326.

    • Berger D, Brauns M, Brügmann G, Pernicka E, Lockhoff N. 2021. Revealing ancient gold parting with silver and copper isotopes: Implications from cementation experiments and for the analysis of gold artefacts. Archaeological and Anthropological Sciences, 13(9): 143.

    • Bigalke M, Weyer S, Wilcke W. 2010. Stable copper isotopes: A novel tool to trace copper behavior in hydromorphic soils. Soil Science Society of America Journal, 74(1): 60~73.

    • Bower N W, Hendin D B, Lundstrom C C, Epstein M S, Keller A T, Wagner A R, White Z R. 2013. “Biblical” bronze coins: New insights into their timing and attribution using copper and lead isotopes. Archaeological and Anthropological Sciences, 5(4): 287~298.

    • Bower N W, Lundstrom C C, Hendin D B. 2019. MC-ICP-MS analyses of tin isotopes in Roman-era bronze coins reveal temporal and spatial variation. Archaeometry, 61(4): 891~905.

    • Boyle E, John S, Abouchami W, Adkins J, Echegoyen-Sanz Y, Ellwood M, Flegal A, Fornace K, Gallon C, Galer S. 2012. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnology and Oceanography: Methods, 10: 653~665.

    • Brauns M, Schwab R, Gassmann G, Wieland G, Pernicka E. 2013. Provenance of Iron Age iron in southern Germany: A new approach. Journal of Archaeological Science, 40(2): 841~849.

    • Brügmann G, Berger D, Pernicka E. 2017. Determination of the tin stable isotopic composition in tin-bearing metals and minerals by MC-ICP-MS. Geostandards and Geoanalytical Research, 41(3): 437~448.

    • Brügmann G, Brauns M, Maas R. 2019. Silver isotope analysis of gold nuggets: An appraisal of instrumental isotope fractionation effects and potential for high-resolution tracing of placer gold. Chemical Geology, 516: 59~67.

    • Budd P, Haggerty R, Pollard A M, Scaife B, Thomas R G. 1996. Rethinking the quest for provenance. Antiquity, 70(267): 168~174.

    • Chen J H, Wasserburg G J. 1983. Theisotopic composition of silver and lead in two iron meteorites: Cape york and grant. Geochimica et Cosmochimica Acta, 47(10): 1725~1737.

    • Coutaud M, Meheut M, Glatzel P, Pokrovski G S, Viers J, Rols J, Pokrovsky O S. 2017. Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm. Geochimica et Cosmochimica Acta, 220: 1~18.

    • Creech J B, Moynier F, Badullovich N. 2017. Tin stable isotope analysis of geological materials by double-spike MC-ICPMS. Chemical Geology, 457: 61~67.

    • Creech J B, Moynier F. 2019. Tin and zinc stable isotope characterisation of chondrites and implications for early Solar System evolution. Chemical Geology, 511: 81~90.

    • De Laeter J R, Jeffery P M. 1965. The isotopic composition of terrestrial and meteoritic tin. Journal of Geophysical Research, 70(12): 2895~2903.

    • de Madinabeitia S G, Ibarguchi J G, Zalduegui J S. 2021. IBERLID: A lead isotope database and tool for metal provenance and ore deposits research. Ore Geology Reviews, 137: 104279.

    • Deng Xiaohua, Mathur R, Li Yao, Mao Qigui, Wu Yanshuang, Yang Liya, Chen Xi, Xu Jun. 2019. Copper and zinc isotope variation of the VMS mineralization in the Kalatag district, eastern Tianshan, NW China. Journal of Geochemical Exploration, 196: 8~19.

    • Desaulty A M, Telouk P, Albalat E, Albarède F. 2011. Isotopic Ag-Cu-Pb record of silver circulation through 16th-18th century Spain. Proceedings of the National Academy of Sciences, 108(22): 9002~9007.

    • Desaulty A M, Albarède F. 2013. Copper, lead, and silver isotopes solve a major economic conundrum of Tudor and early Stuart Europe. Geology, 41(2): 135~138.

    • Dong Ge, Wei Haizhen, Zhu Yuanfeng, Liu Xi, Guo Qi, Pu Wei, Lin Tibo, Wang Junlin. 2022. A preliminary study on silver isotopic composition in polymetallic ore deposits in eastern China. Journal of Earth Science, 33(1): 100~108.

    • Duan Jilin. 2018. Cu and Zn isotopic features of typical magma-related deposit systems in Tibet and their geological significances. Doctoral dissertation of China University of Geoscience (Beijing) (in Chinese with English abstract).

    • Duan Jilin, Tang Juxing, Li Yubin, Liu Songao, Wang Qin, Yang Chao, Wang Yiyun. 2016. Copper isotopic signature of the Tiegelongnan high-sulfidation copper deposit, Tibet: Implications for its origin and mineral exploration. Mineralium Deposita, 51: 591~602.

    • Eshel T, Tirosh O, Yahalom-Mack N, Gilboa A, Erel Y. 2022. Silverisotopes in silver suggest Phoenician Innovation in metal production. Applied Sciences, 12(2): 741.

    • Friedman A M, Conway M, Kastner M, Milsted J, Metta D, Fields P R, Olsen E. 1966. Copper artifacts: Correlation with some types of copper ores. Science, 152: 1504~1506.

    • Fujii T, Albarede F. 2018. 109Ag-107Ag fractionation in fluids with applications to ore deposits, archeometry and cosmochemistry. Geochimica et Cosmochimica Acta, 234: 37~49.

    • Gale N H. 1997. The isotopic composition of tin in some ancient metals and the recycling problem in metal provenancing. Archaeometry, 39(1): 71~82.

    • Gale N H, Stos-Gale Z A. 1982. Bronze Age copper sources in the Mediterranean: A new approach. Science, 216(4541): 11~19.

    • Gale N H, Woodhead A P, Stos-Gale Z A, Walder A, Bowen I. 1999. Natural variations detected in the isotopic composition of copper, possible applications to archaeology and geochemistry. International Journal of Mass Spectrometry, 184(1): 1~9.

    • Gale N H, Stos-Gale Z H. 2000. Lead isotope analysis applied to provenance studies. In: Modern Analytical Methods in Art and Archaeology. New York: John Wiley and Sons Publication.

    • Glascock M D, Neff H. 2003. Neutron activation analysis and provenance research in archaeology. Measurement Science & Technology, 14(9): 1516~1526.

    • Graham S, Pearson N, Jackson S, Griffin W, O'reilly S Y. 2004. Tracing Cu and Fe from source to porphyry: In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chemical Geology, 207(3-4): 147~169.

    • Guo Qi, Wei Haizhen, Jiang Shaoyong, Simon H, Lin Yibo, Wang Yijing, Li Yinchuan. 2017. Matrix effects originating from coexisting minerals and accurate determination of stable silver isotopes in silver deposits. Analytical Chemistry, 89(24): 13634~13641.

    • Haustein M, Gillis C, Pernicka E. 2010. Tin isotopy—a new method for solving old questions. Archaeometry, 52(5): 816~832.

    • Hoefs J. 2021. Stable Isotope Geochemistry(9th Edition). Cham: Springer International Publishing AG.

    • Hsu Y K, Sabatini B J. 2019. A geochemical characterization of lead ores in China: An isotope database for provenancing archaeological materials. PLoS One, 14(4): e0215973.

    • Hu Wenfeng, Zhang Yekai, Liu Jinhua, Guo Liang, Zhou Lian. 2019. The isotopic compositions of copper and molybdenum from porphyry Cu-Mo deposit in the Gangdese, Tibet, and their significance. Earth Science, 44(6): 1923~1934 (in Chinese with English abstract).

    • Ikehata K, Notsu K, Hirata T. 2011. Copper isotope characteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits, Japan, determined using a femtosecond LA-MC-ICP-MS. Economic Geology, 106(2): 307~316.

    • Ikehata K, Hirata T. 2012. Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, Northern Japan. Economic Geology, 107: 1489~1497.

    • Ikehata K, Hirata T. 2013. Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite. Analytical Sciences, 29: 1213~1217.

    • Ixer R A. 1999. Role of ore geology and ores in the archaeological provenancing of metals. In: Young S M M, ed. Metals in Antiquity, BAR International Series 792. Oxford: Archaeo Press.

    • Jansen M, Hauptmann A, Klein S, Seitz H M. 2017. The potential of stable Cu isotopes for the identification of Bronze Age ore mineral sources from Cyprus and Faynan: Results from Uluburun and Khirbat Hamra Ifdan. Archaeological and Anthropological Sciences, 10(6): 1485~1502.

    • Jansen M, Hauptmann A, Klein J. 2018. Copper and lead isotope characterization of late bronze age copper ingots in the eastern mediterranean: Results from gelidonya, gournia, enkomi and mathiati. In: Giumlia-Mair A, Lo Schiavo F, eds. Bronze Age Metallurgy on Mediterranean Islands, Monographies Instrumentum 56. Drémil-Lafage: Éditions Mergiol, 552~578.

    • Jin Zhengyao. 2008. Lead isotope Archaeology in China. Hefei: University of Science and Technology of China Press (in Chinese).

    • Jin Zhengyao, Liu Ruiliang, Rawson J, Pollard A M. 2017. Revisiting lead isotope data in Shang and Western Zhou bronzes. Antiquity, 91(360): 1574~1587.

    • Killick D J, Stephens J A, Fenn T R. 2020. Geological constraints on the use of lead isotopes for provenance in archaeometallurgy. Archaeometry, 62: 86~105.

    • Klein S, Lahaye Y, Brey G P, Von Kaenel H M. 2004. The early Roman imperial aes coinage II: Tracing the copper sources by analysis of lead and copper isotopes—copper coins of Augustus and Tiberius. Archaeometry, 46(3): 469~480.

    • Klein S, Brey G P, Durali-Müller S, Lahaye Y. 2010. Characterisation of the raw metal sources used for the production of copper and copper-based objects with copper isotopes. Archaeological and Anthropological Sciences, 2(1): 45~56.

    • Klein S, Rose T. 2020. Evaluatingcopper isotope fractionation in the metallurgical operational chain: An experimental approach. Archaeometry, 62: 134~155.

    • Larson P B, Maher K, Ramos F C, Chang Z, Gaspar M, Meinert L D. 2003. Copper isotope ratios in magmatic and hydrothermal ore-forming environments. Chemical Geology, 201(3-4): 337~350.

    • Lazarov M, Horn I. 2015. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochim Acta Part B-Atomic Spectr: 111: 64~73.

    • Li Weiqiang, Jackson S E, Pearson N J, Alard O, Chappell B W. 2009. The Cu isotope signature of granites from the Lachlan Fold Belt, SE Australia. Chemical Geology, 258: 38~49.

    • Li Weiqiang, Jackson S E, Pearson N J, Graham S. 2010. Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia. Geochimica et Cosmochimica Acta, 74: 4078~4096.

    • Li Zhenqing, Yang Zhiming, Zhu Xiangkun, Hou Zengqian, Li Shizhen, Li Zhihong, Wang Yue. 2009. Cu isotope composition of Qulong porphyry Cu deposit, Tibet. Acta Geologica Sinica, 83(12): 1985~1996 (in Chinese with English abstract).

    • Liu Ruiliang, Pollard A M, Rawson J, Tang Xiaojia, Bray P, Zhang Changping. 2019. Panlongcheng, Zhengzhou and the movement of metal in early bronze age china. Journal of World Prehistory, 32(4): 393~428.

    • Liu Shengao, Huang Jian, Liu Jingao, Wörner G, Yang Wei, Tang Yanjie, Chen Yi, Tang Limei, Zheng Jianping, Li Shuguang. 2015. Copper isotopic composition of the silicate Earth. Earth and Planetary Science Letters, 427: 95~103.

    • Luck J M, Ben Othman D, Barrat J A, Albarède F. 2003. Coupled 63Cu and 16O excesses in chondrites. Geochimica et Cosmochimica Acta, 67: 143~151.

    • Luck J M, Ben Othman D, Albarède F. 2005. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et Cosmochimica Acta, 69: 5351~5263.

    • Luo Yan, Dabek-Zlotorzynska E, Celo V, Muir D C G, Yang Lu. 2010. Accurate and precise determination of silver isotope fractionation in environmental samples by multicollector-ICPMS. Analytical Chemistry, 82(9): 3922~3928.

    • Maher K C, Larson P B. 2007. Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Perú. Economic Geology, 102: 225~237.

    • Maher K C, Jackson S, Mountain B. 2011. Experimental evaluation of the fluid-mineral fractionation of Cu isotopes at 250℃and 300℃. Chemical Geology, 286: 229~239.

    • Malitch K N, Latypov R M, Badanina I Y, Sluzhenikin S F. 2014. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril'sk Province (Russia): Evidence from copper and sulfur isotopes. Lithos, 204: 172~187.

    • Mason A H. 2020. Provenance oftin in the Late Bronze Age balkans: Preparation of cassiterite for Sn isotope analysis and the probabilistic and spatial analysis of Sn isotopes. Doctoral dissertation of the City University of New York.

    • Mason A H, Powell W G, Bankoff H A, Mathur R, Bulatović A, Filipović V, Ruiz J. 2016. Tin isotope characterization of bronze artifacts of the central Balkans. Journal of Archaeological Science, 69: 110~117.

    • Mason A, Powell W, Bankoff H A, Mathur R, Price M, Bulatović A, Filipović V. 2020. Provenance of tin in the Late Bronze Age balkans based on probabilistic and spatial analysis of Sn isotopes. Journal of Archaeological Science, 122: 105181.

    • Mason T F, Weiss D J, Chapman J B, Wilkinson J J, Tessalina S G, Spiro B, Horstwood M S A, Spratt J, Coles B J. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221(3-4): 170~187.

    • Mathur R, Titley S, Barra F, Brantley S, Wilson M, Phillips A, Munizaga F, Maksaev V, Vervoort J, Hart G. 2009a. Exploration potential of Cu isotope fractionation in porphyry copper deposits. Journal of Geochemical Exploration, 102(1): 1~6.

    • Mathur R, Titley S, Hart G, Wilson M, Davignon M, Zlatos C. 2009b. The history of the united states cent revealed through copper isotope fractionation. Journal of Archaeological Science, 36(2): 430~433.

    • Mathur R, Dendas M, Titley S, Phillips A. 2010. Patterns in the copper isotopic composition of minerals in porphyry copper deposits in the Southwestern United States of America. Economic Geology, 105: 1457~1467.

    • Mathur R, Ruiz J, Casselman M J, Megaw P, van Egmond R. 2012. Use of Cu isotopes to distinguishprimary and secondary Cu mineralization in the Cañariaco Norte porphyry copper deposit, Northern Peru. Mineralium Deposita, 47(7): 755~762.

    • Mathur R, Wilson M, Parra M L. 2014. Challenges of using copper isotope ratios to trace the origin of native copper artifacts: An example from the Keweenaw Peninsula. Annals of Carnegie Museum, 82(3): 241~245.

    • Mathur R, Arribas A, Megaw P, Wilson M, Stroup S, Meyer-Arrivillaga D, Arribas I. 2018. Fractionation of silver isotopes in native silver explained by redox reactions. Geochimica et Cosmochimica Acta, 224: 313~326.

    • McNaughton N J, Rosman K J R. 1991. Tin isotope fractionation in terrestrial cassiterites. Geochimica et Cosmochimica Acta, 55(2): 499~504.

    • Milot J, Malod-Dognin C, Blichert-Toft J, Télouk P, Albarède F. 2021. Sampling and combined Pb and Ag isotopic analysis of ancient silver coins and ores. Chemical Geology, 564: 120028.

    • Milot J, Blichert-Toft J, Sanz M A, Malod-Dognin C, Télouk P, Albarède F. 2022. Silver isotope and volatile trace element systematics in galena samples from the Iberian Peninsula and the quest for silver sources of Roman coinage. Geology, 50(4): 422~426.

    • Moeller K, Schoenberg R, Pedersen R B, Weiss D, Dong S. 2012. Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostandards and Geoanalytical Research, 36(2): 177~199.

    • Moynier F, Blichert-Toft J, Telouk P, Luck J M, Albarède F. 2007. Comparative stable isotopegeochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 71: 4365~4379.

    • Pearce M. 2016. Archaeology and archaeometallurgy: Some unresolved areas in the interpretation of analytical data. Star: Science & Technology of Archaeological Research, 2(1): 46~53.

    • Pokrovsky O S, Viers J, Emnova E E, Kompantseva E I, Freydier R. 2008. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr) oxides: Possible structural control. Geochimica et Cosmochimica Acta, 72: 1742~1757.

    • Pollard A M, Bray P, Hommel P, Hsu Y K, Liu R, Rawson J. 2017. Bronze age metal circulation in China. Antiquity, 91(357): 674~687.

    • Powell L J, Murphy T J, Gramlich J W. 1982. The absolute isotopic abundance and atomic weight of a reference sample of silver. Journal of Research of the National Bureau of Standards, 87(1): 9.

    • Powell W, Mathur R, Bankoff H A, Mason A, Bulatović A, Filipović V, Godfrey L. 2017. Digging deeper: Insights into metallurgical transitions in European prehistory through copper isotopes. Journal of Archaeological Science, 88: 37~46.

    • Powell W, Mathur R, Bankoff A H, John J, Chvojka O, Tisucká M, Bulatović A, Filipović V. 2018. Copper isotopes as a means of determining regional metallurgical practices in European prehistory: A reply to Jansen. Journal of Archaeological Science, 93: 216~221.

    • Powell W, Mathur R, John J, Price M, Bankoff H A, Tisucká M, Godfrey L. 2019. Unearthing Europe's Bronze Age mining heritage with tin isotopes: A case study from Central Europe. European Geologist, 48: 58~62.

    • Powell W, Frachetti M, Pulak C, Bankoff H A, Barjamovic G, Johnson M, Mathur R, Pigott V C, Price M, Yener K A. 2022. Tin from Uluburun shipwreck shows small-scale commodity exchange fueled continental tin supply across Late Bronze Age Eurasia. Science Advances, 8(48): eabq3766.

    • Qian Peng, Lu Jianjun, Liu Fengxiang. 2006. Isotopic tracing of ore-forming source materials in the porphyry copper deposit of Dexing Jiangxi Province. Global Geology, 25(2): 135~140 (in Chinese with English abstract).

    • Rapp G, Henrickson E, Miller M, Aschenbrenner S. 1980. Trace-element fingerprinting as a guide to the geographic sources of native copper. JOM, 32: 35~45.

    • Rapp G R, Allert J, Vitali V, Henrickson E, Jing Z. 2000. Determining geologic sources of artifact copper: Source characterization using trace element patterns. Lanham: University Press of America.

    • Ripley E M, Dong S, Li C, Wasylenki L E. 2015. Cu isotope variations between conduit and sheet-style Ni-Cu-PGE sulfide mineralization in the Midcontinent Rift System, North America. Chemical Geology, 414: 59~68.

    • Rosman K J R, Loss R D, Laeter J R D. 1984. The isotopic composition of tin. International Journal of Mass Spectrometry & Ion Processes, 56(3): 281~291.

    • Saunders J A, Mathur R, Kamenov G D, Shimizu T, Brueseke M E. 2016. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes. Mineralium Deposita, 51: 1~11.

    • Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy and Geochemistry, 55(1): 65~111.

    • Schönbächler M, Carlson R W, Horan M F, Mock T D, Hauri E H. 2007. High precision Ag isotope measurements in geologic materials by multiple-collector ICPMS: An evaluation of dry versus wet plasma. International Journal of Mass Spectrometry, 261(2-3): 183~191.

    • Schulze M, Ziegerick M, Horn I, Weyer S, Vogt C. 2017. Determination of tin isotope ratios in cassiterite by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 130: 26~34.

    • She Jiaxin, Wang Tianhua, Liang Hengdi, Muhtar M N, Li Weiqiang, Liu Xiandong. 2020. Sn isotope fractionation during volatilization of Sn (IV) chloride: Laboratory experiments and quantum mechanical calculations. Geochimica et Cosmochimica Acta, 269: 184~202.

    • Shields W R, Goldich S S, Garner E L, Murphy T J. 1965. Natural variations in the abundance ratio and the atomic weight of copper. Journal of Geophysical Research, 70(2): 479~491.

    • Stephens J A, Ducea M N, Killick D J, Ruiz J. 2021. Use of non-traditional heavy stable isotopes in archaeological research. Journal of Archaeological Science, 127: 105334.

    • Tang Dongmei, Qin Kezhang, Su Benxun, Mao Yajing, Evans N J, Niu Yanjie, Kang Zhen. 2020. Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: Insights into the origin of magmatic Ni-Cu sulfide deposits. Geochimica et Cosmochimica Acta, 275: 209~228.

    • Theis K J, Schönbächler M, Benedix G K, Rehkämper M, Andreasen R, Davies C. 2013. Palladium-silver chronology of IAB iron meteorites. Earth and Planetary Science Letters, 361: 402~411.

    • Tomczyk C. 2022. A database of lead isotopic signatures of copper and lead ores for Europe and the Near East. Journal of Archaeological Science, 146: 105657.

    • Vance D, Archer C, Bermin J, Perkins J, Statham P J, Lohan M C, Ellwood M J, Mills R A. 2008. The copper isotope geochemistry of rivers and the oceans. Earth and Planetary Science Letters, 274(1-2): 204~213.

    • Vaxevanopoulos M, Davis G, Milot J, Blichert-Toft J, Malod-Dognin C, Albarède F. 2022. Narrowing provenance for ancient Greek silver coins using Ag isotopes and Sb contents of potential ores. Journal of Archaeological Science, 145: 105645.

    • Voisey C R, Maas R, Tomkins A G, Brauns M, Brügmann G. 2019. Extreme silver isotope variation in orogenic gold systems implies multistaged metal remobilization during ore genesis. Economic Geology, 114(2): 233~242.

    • Walker E C, Cuttitta F, Senftle F E. 1958. Some natural variations in the relative abundance of copper isotopes. Geochimica et Cosmochimica Acta, 15(3): 183~194.

    • Wang Da, Mathur R, Powell W, Godfrey L, Zheng Youye. 2019. Experimental evidence for fractionation of tin chlorides by redox and vapor mechanisms. Geochimica et Cosmochimica Acta, 250: 209~218.

    • Wang Da, Mathur R, Zheng Youye, Wu Hongjie, Lv Yiwen, Zhang Gangyang, Huan Ren, Yu Miao, Li Yujie. 2022. Constraints on ore-forming fluid evolution and guidance for ore exploration in the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet: Insights from silver isotope fractionation of galena. Mineralium Deposita, 57(5): 701~724.

    • Wang Junlin, Wei Haizhen, Williams-Jones A E, Dong Ge, Zhu Yuanfeng, Jiang Shaoyong, Ma Jing, Hohl S V, Liu Xi, Li Yinchuan, Lu Jianjun. 2022. Silver isotope fractionation in ore-forming hydrothermal systems. Geochimica et Cosmochimica Acta, 322: 24~42.

    • Wang Peng, Dong Guochen, Santosh M, Liu Kairan, Li Xuefeng. 2017. Copper isotopes trace the evolution of skarn ores: A case study from the Hongshan-Hongniu Cu deposit, Southwest China. Ore Geology Reviews, 88: 822~831.

    • Wang Tianhua, She Jiaxin, Yin Kun, Wang Kai, Zhang Yingjie, Lu Xiancai, Liu Xiandong, Li Weiqiang. 2021. Sn(Ⅱ) chloride speciation and equilibrium Sn isotope fractionation under hydrothermal conditions: A first principles study. Geochimica et Cosmochimica Acta, 300: 25~43.

    • Wang Xueying, Fitoussi C, Bourdon B, Amet Q. 2017. A new method of Sn purification and isotopic determination with a double-spike technique for geological and cosmochemical samples. Journal of Analytical Atomic Spectrometry, 32(5): 1009~1019.

    • Wang Xueying, Amet Q, Fitoussi C, Bourdon B. 2018. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth. Geochimica et Cosmochimica Acta, 228: 320~335.

    • Wang Yue, Zhu Xiangkun, Mao Jingwen, Cheng Yanbo, Li Zhihong. 2014. Preliminarystudy on Cu isotopic geochemistry behavior of Dongguashan porphyry-skarn deposit, Tongling district. Acta Geologica Sinica, 88(12): 2413~2422 (in Chinese with English abstract).

    • Wang Zaicong, Park J W, Wang Xia, Zou Zongqi, Kim J, Zhang Pingyang, Li Ming. 2019. Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi volcano, Tonga rear arc. Geochimica et Cosmochimica Acta, 250: 18~33.

    • Wang Zezhou, Liu Shengao, Li Dandan, Lv Yiwen, Wu Song, Zhao Yun. 2015. A review of progress in copper stable isotope geochemistry. Earth Science Frontiers, 22(5): 72~83 (in Chinese with English abstract).

    • Weinstein C, Moynier F, Wang K, Paniello R, Foriel J, Catalano J, Pichat S. 2011. Isotopic fractionation of Cu in plants. Chemical Geology, 286: 266~271.

    • Woodhead A P, Gale N H, Stos-Gale Z A. 1999. An investigation into the fractionation of copper isotopes and its possible application to archaeometallurgy. In: Young S M M, ed. Metals in Antiquity. BAR International Series 792. Oxford: Archaeopress, 110~122.

    • Woodland S J, Rehkämper M, Halliday A N, Lee D C, Hattendorf B, Günther D. 2005. Accurate measurement of silver isotopic compositions in geological materials including low Pd/Ag meteorites. Geochimica et Cosmochimica Acta, 69(8): 2153~2163.

    • Wu Liyan, Hu Ruizhong, Li Xiaofeng, Liu Shengao, Tang Yanwen, Tang Yongyong. 2017. Copper isotopic compositions of the Zijinshan high-sulfidation epithermal Cu-Au deposit, South China: Implications for deposit origin. Ore Geology Reviews, 83: 191~199.

    • Wu Song, Zheng Youye, Wang Da, Chang Huifang, Tan Meng. 2017. Variation of copper isotopes in chalcopyrite from Dabu porphyry Cu-Mo deposit in Tibet and implications for mineral exploration. Ore Geology Reviews, 90: 14~24.

    • Yamazaki E, Yokoyama T, Ishihara S, Tang H. 2013. Tin isotope analysis of cassiterites from Southeastern and Eastern Asia. Geochemical Journal, 47(1): 21~35.

    • Yamazaki E, Nakai S, Sahoo Y, Yokoyama T, Mifune H, Saito T, Chen J, Takagi N, Hokanishi N, Yasuda A. 2014. Feasibility studies of Sn isotope composition for provenancing ancient bronzes. Journal of Archaeological Science, 52: 458~467.

    • Yao Junming, Mathur R, Powell W, Lehmann B, Tornos F, Wilson M, Ruiz J. 2018. Sn-isotope fractionation as a record of hydrothermal redox reactions. American Mineralogist, 103(10): 1591~1598.

    • Zhao Yun, Xue Chunji, Liu Shengao, Symons D T, Zhao Xiaobo, Yang Yongqiang, Ke Junjin. 2017. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China. Lithos, 286: 206~215.

    • Zhao Yun, Xue Chunji, Liu Shengao, Mathur R, Zhao Xiaobo, Yang Yongqiang, Dai Junfeng, Man Ronghao, Liu Ximeng. 2019. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system. Geochimica et Cosmochimica Acta, 249: 42~58.

    • Zhao Yun, Liu Shengao, Xue Chunji, Li Menglun. 2022. Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit. American Mineralogist. Journal of Earth and Planetary Materials, 107(4): 673~683.

    • Zhou Zhenhua, Mao Jingwen, Zhao Jiaqi, Gao Xu, Weyer S, Horn I, Holtz F, Sossi P A, Wang Dachuan. 2022. Tin isotopes as geochemical tracers of ore-forming processes with Sn mineralization. American Mineralogist, 107(11): 2111~2127.

    • Zhu Xiangkun, O'nions R K, Guo Y, Belshaw N S, Rickard D. 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chemical Geology, 163(1-4): 139~149.

    • 段吉琳. 2018. 西藏典型岩浆-热液成矿系统铜锌同位素地球化学特征及其地质意义. 中国地质大学(北京)博士学位论文.

    • 胡文峰, 张烨恺, 刘金华, 郭亮, 周炼. 2019. 西藏冈底斯斑岩型铜钼矿床的Cu, Mo同位素组成及其意义. 地球科学, 44(6): 1923~1934.

    • 金正耀. 2008. 中国铅同位素考古. 合肥: 中国科学技术大学出版社.

    • 李振清, 杨志明, 朱祥坤, 侯增谦, 李世珍, 李志红, 王跃. 2009. 西藏驱龙斑岩铜矿铜同位素研究. 地质学报, 83(12): 1985~1996.

    • 钱鹏, 陆建军, 刘风香. 2006. 江西德兴斑岩铜矿成矿物质来源同位素示踪. 世界地质, 25(2): 135~140.

    • 王跃, 朱祥坤, 毛景文, 程彦博, 李志红. 2014. 铜陵矿集区冬瓜山矿床斑岩-矽卡岩型矿床成矿作用过程中的 Cu 同位素地球化学行为初步研究. 地质学报, 88(12): 2413~2422.

    • 王泽洲, 刘盛遨, 李丹丹, 吕逸文, 吴松, 赵云. 2015. 铜同位素地球化学及研究新进展. 地学前缘, 22(5): 72~83.