榴辉岩部分熔融热力学及微量元素地球化学模拟:以柴达木盆地北缘锡铁山地体为例
doi: 10.19762/j.cnki.dizhixuebao.2023182
蒋晓聪1 , 李传志1 , 于胜尧1,2 , 彭银彪1 , 蒋兴洲1 , 高翔宇1 , 王林涛1
1. 中国海洋大学海洋地球科学学院, 海洋高等研究院, 海底科学与探测技术教育部重点实验室, 山东青岛, 266100
2. 青岛海洋科学与技术国家实验室,海洋地质过程与环境功能实验室, 山东青岛, 266037
基金项目: 本文为青岛海洋科学与技术试点国家实验室山东省专项经费(编号2022QNLM05032-3) ; 国家自然科学基金项目(编号42121005, 42372247) ; 山东省自然科学基金杰出青年基金项目(编号ZR2020JQ16) ; 泰山学者项目(编号ts20190918,tstp20221112)联合资助的成果
Thermodynamic and trace elements modelling of partial melting of eclogite: A case study of Xitieshan terrane, northern Qaidam basin, China
JIANG Xiaocong1 , LI Chuanzhi1 , YU Shengyao1,2 , PENG Yinbiao1 , JIANG Xingzhou1 , GAO Xiangyu1 , WANG Lintao1
1. MOE Key Lab of Submarine Geosciences and Prospecting Techniques, Institute for Advanced Ocean Study, College of Marine Geosciences, Ocean University of China, Qingdao, Shandong 266100 , China
2. Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266037 , China
摘要
地壳深熔作用是高级变质岩石中普遍存在的现象,也是造山带演化的重要地质过程之一。榴辉岩作为研究大陆俯冲、超高压变质以及壳幔相互作用的主要岩石类型,其部分熔融与地壳生长、板片折返过程以及俯冲隧道中元素的迁移与分配等具有紧密联系。柴北缘构造带锡铁山地体退变榴辉岩中普遍保留了代表深熔作用的原位和源区钠质浅色体,为研究超高压榴辉岩的深熔作用提供了有利条件。本文对锡铁山地体榴辉岩中的浅色体进行锆石U-Pb年代学研究,获得浅色体的结晶年龄为425.3±5.9 Ma (MSWD=0.74)。通过对锡铁山地体榴辉岩的深熔过程开展岩石热力学及微量元素地球化学模拟,结合区域上榴辉岩退变P-T轨迹获得了赋存于榴辉岩中的钠质浅色体平衡结晶的温压条件为794~797℃,1.227~1.071 GPa。锡铁山地体榴辉岩初始部分熔融发生在退变过程中的榴辉岩相阶段(~780℃,~1.954 GPa),熔融机制为在近升温降压过程中,以绿辉石主导,少量多硅白云母及黝帘石参与的脱水熔融。整个部分熔融过程中榴辉岩可产生约8%~9%体积熔体,满足熔体迁移的最低要求,表明锡铁山地体榴辉岩可能对于该区内的同折返花岗岩的源区有少量贡献。
Abstract
Anatexis is a commonly observed phenomenon in high-grade metamorphic rocks and plays a crucial role in the tectonic evolution of the orogenic belt. Eclogite, as the primary rock type, is extensively studied for its significance in continental subduction, ultra-high pressure (UHP) metamorphism, and crust-mantle interaction. Partial melting of eclogite is closely linked to crustal growth, slab exhumation, and the transport and distribution of elements within continental subduction channels. In the North Qaidam UHP metamorphic belt, the Xitieshan eclogite preserves in-situ and in-source leucosomes, which serve as indicators of anatexis. These leucosomes provide favorable conditions for understanding the effect of the anatexis on UHP eclogite. This paper focuses on the zircon U-Pb chronology analysis of the leucosomes within the Xitieshan eclogite. Through LA-ICP-MS U-Pb dating, a weighted mean 206Pb/238U age of 425.3±5.9 Ma (MSWD=0.74) was obtained, representing the formation age of leucosomes. To further understand the anatexis of eclogite in the Xiteshan terrane, thermodynamic and trace element modelling techniques were employed. Combining these models with the retrograde P-T paths of eclogite in the area, the equilibrium crystallization of Na-rich leucosomes in eclogite was constrained to temperature and pressure conditions of 794~797 ℃ and 1.227~1.071 GPa, respectively. The initial partial melting of the eclogite occurred during the eclogite phase (~780 ℃ and ~1.954 GPa). As the temperature increased and the pressure decreased, the partial melt formed in the UHP eclogite through the breakdown of omphacite, with minor involvement of phengite and zoisite. Throughout partial melting, eclogite generated 8~9 vol% melt, sufficient to initiate melt migration. This suggests that the eclogite likely had a limited contribution to the source area of the syn-exhumation granite in the Xitieshan terrane.
大陆碰撞造山带深俯冲陆壳的部分熔融,以及随后的熔体抽取和岩浆上升,会显著影响造山带的动力学演化、壳幔相互作用和陆壳地球化学分异。大陆下地壳包含大量镁铁质岩石(Rudnick,2014),当其参与陆壳深俯冲碰撞造山时,可能在榴辉岩相条件下发生部分熔融(Lang and Gilotti,2007; Labrousse et al.,2011; 陈伊翔和郑永飞,2013; Cao Wentao et al.,20192020),因此,研究大型造山带高压(HP)—超高压(UHP)地体的部分熔融对理解造山带岩浆作用及深俯冲陆壳地球化学分异过程至关重要。大陆板片在俯冲和折返过程中通常经历了进变质、峰期变质和退变质等复杂的变质演化阶段,厘定其部分熔融发生的时间和温压条件对于揭示超高压岩石的深熔作用与深俯冲岩片折返之间的耦合关系具有重要意义(于胜尧等,2019)。
榴辉岩是碰撞造山带内高压—超高压变质过程的关键研究对象,相较于洋壳俯冲,大陆俯冲带水活度更低,使得陆壳型榴辉岩不易在俯冲过程中发生部分熔融(郑永飞等,2015; Zheng Yongfei et al.,2015)。实验岩石学和地球化学模拟指示深俯冲榴辉岩在变质峰期脱水,导致近峰期的榴辉岩处于干的体系,在随后退变质的升温降压过程中,岩石内部的含水矿物(如云母、角闪石、帘石等),以及名义无水矿物(石榴子石、绿辉石以及金红石等)会发生分解或者羟基出熔,引起角闪岩相退变,并进一步引起高压(HP)—超高压(UHP)榴辉岩的部分熔融,从而形成与折返过程相关的岩浆作用(Skjerlie and Patiño,2002; Liu Qiang et al.,2011)。
柴北缘构造带是近十年所厘定的一条主要由榴辉岩、石榴橄榄岩及相关片麻岩组成的大陆碰撞造山带。Yu Shengyao et al.(2019)通过构造关系、岩石学、年代学、地球化学及Sr-Nd同位素数据将柴北缘构造带早古生代深熔作用划分为三个阶段:第一阶段以都兰地体中保存的~470 Ma花岗质浅色体为代表,可能为大洋俯冲时大陆弧环境下长英质片麻岩部分熔融;第二阶段446~428 Ma富钠浅色体与英云闪长岩源自大陆碰撞加厚下地壳高压麻粒岩相条件下辉长岩的部分熔融,在都兰、锡铁山及绿梁山地体中均有发育;第三阶段432~420 Ma富钾长石与富斜长石的浅色体主要保留在锡铁山及绿梁山地体,来自超高压榴辉岩和片麻岩在折返过程中的部分熔融。
锡铁山地体退变榴辉岩中广泛发育的浅色体,为研究超高压榴辉岩的深熔作用提供了有利条件,前人已经从岩石学、年代学和地球化学等方面对锡铁山地体中的榴辉岩及其中的浅色体开展了大量研究(Zhang Jianxin et al.,20052008; Zhang Cong et al.,20092011; Chen Danling et al.,2012; 陈丹玲等,2013; Yu Shengyao et al.,20152019)。当前锡铁山地体榴辉岩的部分熔融机制主要存在以下观点:Chen Danling et al.(2012)认为锡铁山地体榴辉岩的部分熔融是由绿辉石或黝帘石的脱水熔融导致的;Yu Shengyao et al.(2015,2019)认为锡铁山的榴辉岩的部分熔融是由大量的黝帘石及少量多硅白云母的脱水分解触发的;Zhang Long et al.(2015)则认为锡铁山地体榴辉岩的部分熔融是由片麻岩脱水产生的流体进入诱发的饱水熔融。鉴于锡铁山地体榴辉岩的部分熔融机制仍存在上述争议,本文拟基于前人的工作,通过已有的岩石学和地球化学研究结果,开展岩石热力学及微量地球化学元素模拟,探讨锡铁山地体榴辉岩折返阶段的深熔机制及其与同折返花岗岩的成因联系,为深入理解深俯冲陆壳折返过程及壳幔相互作用提供重要参考。
1 区域地质背景
柴北缘构造带地处中国西北部青藏高原东北缘,是早古生代柴达木洋壳与柴达木陆壳深俯冲至祁连地块之下形成的一条典型的阿尔卑斯型超高压变质带(Yin An and Harrison,2000; Xu Zhiqin et al.,2006; Xiao Wenjiao et al.,2009; Song Shuguang et al.,2013; Zhang Jianxin et al.,2017; Yu Shengyao et al.,2021)。该构造带东西延伸约400 km,根据岩石组合、变质演化历史等特征的差异,可将其划分为四个次级变质单元,自东向西依次是:都兰榴辉岩-片麻岩单元;锡铁山榴辉岩-片麻岩单元;绿梁山石榴橄榄岩-片麻岩单元和鱼卡榴辉岩-片麻岩单元(图1a; Zhang Jianxin et al.,2008)。
锡铁山地体位于柴北缘构造带中段,区内主要分布有古元古界达肯大阪群花岗质片麻岩及少量含量含矽线石(蓝晶石)、石榴子石的副片麻岩,西部与奥陶系滩间山群火山岩不整合接触,中部被花岗岩体侵入(图1b)。锡铁山地体榴辉岩呈数米到几十米的布丁状、似层状和透镜状分布在两种片麻岩中(图2a),透镜体长轴方向与围岩片麻理方向基本一致。Zhang Jianxin et al.(2005)利用石榴子石-单斜辉石温度计和绿辉石中硬玉含量压力计估算榴辉岩的峰期温压条件为T=770~830℃,P >1.4 GPa,并获得榴辉岩退变过程中遭受高温麻粒岩相叠加的温压条件为T=750~865℃,P=1.0~1.4 GPa。张聪等(2009)根据矿物组合的不同识别出锡铁山共有多硅白云母榴辉岩及角闪石榴辉岩两种榴辉岩类型,其中多硅白云母榴辉岩仅在黄羊沟榴辉岩透镜体的核部有保留,并利用石榴子石-绿辉石-多硅白云母温压计获得榴辉岩峰期温压条件为T=750~790℃,P=2.71~3.17 GPa,而后再经历等温降压及降温降压两阶段的退变过程。Hu Rongguo et al.(2016)利用温压计从石榴角闪岩及角闪岩中分别获得了榴辉岩退变过程中T=630~670℃,P=0.81~0.91 GPa的高角闪岩相及T=530~630℃,P=0.5~0.72 GPa的低角闪岩相叠加的温压条件。
2 岩石学特征
区域内榴辉岩经历了强烈的退变质及深熔作用,新鲜榴辉岩已十分少见,仅存在于体积较大的透镜体榴辉岩核部,边部多已退变为石榴角闪岩或斜长角闪岩(图2b)(Zhang Jianxin et al.,20052008; 张聪等,2009; Chen Danling et al.,2012)。退变榴辉岩内部保存有不同演化尺度的熔体,从石榴子石颗粒间的毫米级原位浅色体(图2c)到呈现层状或脉状分布的源区浅色体(图2d),这些浅色体与花岗片麻岩并不直接接触,与典型的榴辉岩原地深熔作用的野外特征基本一致。
榴辉岩呈黄绿色,具粗粒斑状变晶结构,主要由40%~45%的绿辉石、40%~45%的石榴子石、5%~10%的石英以及少量金红石及角闪石组成(图2e)。退变榴辉岩呈黑色,具中—粗粒斑状变晶结构,主要由30%~35%的石榴子石、30%~35%的绿辉石、10%~15%的角闪石、5%~10%的石英、~5%的斜长石及少量金红石组成(图2f)。相较于榴辉岩,退变榴辉岩以发育大量的后生合晶及冠状边为特征,其中石榴子石具半自形粒状结构,边部具有明显的港湾状结构,边部发育角闪石+斜长石的冠状体,基质中绿辉石多退变为透辉石+角闪石+斜长石的后生合晶。
1柴北缘超高压变质带地质简图(a)及锡铁山地体地质简图(b)(据Hu Rongguo et al.,2016修改)
Fig.1Simplified geological map of North Qaidam UHP belt (a) and geological sketch of the Xietieshan terrane (b) (after Hu Rongguo et al., 2016)
浅色体主要由60%~65%的粗粒斜长石,30%~35%的石英,少量黑云母(<5%)以及少量的锆石、金红石和榍石等副矿物组成(图2g~i)。斜长石晶内间隙发育有尖锐的斜长石颗粒(图2h),代表后者结晶于先前的熔体,斜长石颗粒间或破裂面处发育的由石英和斜长石组成的长英质显微脉体代表了早期熔体通道(图2g、i),表明显微尺度的熔体迁移可能在毫米级(Sawyer,2008)。
3 锆石U-Pb定年分析方法
使用标准的重液和磁性技术分离样品中的锆石颗粒,在双目显微镜下手工挑选,并安装在环氧树脂中。然后对环氧树脂锆石靶进行抛光,以暴露锆石颗粒中心。在选择原位分析点之前,使用阴极发光(CL)成像分析锆石的形态、内部结构以及选定测试分析点位,测试前期对锆石进行了透射光、反射光和阴极发光照相。
锆石U-Pb定年测试在中国海洋大学海底科学与探测技术教育部重点实验室的海底年代成分平台完成,所用仪器为PerkinElmer NexlON2000型ICP-MS和与之配套的NWR193 HE激光剥蚀系统。激光剥蚀所采用的束斑直径为32 μm,以He气为载气,频率为8 Hz,能量密度为5 J/cm2。LA-ICP-MS激光剥蚀采用单点剥蚀的方式,样品测试分析前先用标准锆石91500进行仪器校准,使各项参数达到最优状态。开始测试时锆石91500为外标,测试分析过程中在每完成5个样品的测试后重复测定两个标样91500进行校正,同时测试一个监控标样锆石Plesovice来观察仪器的运行状态,Plesovice产生了337±2 Ma的加权平均206Pb/238U年龄,这符合建议标准的337.13±0.37 Ma的206Pb/238U年龄。数据处理采用中国地质大学Liu Yongsheng et al.(2010)开发的ICPMSDataCal程序进行处理。年龄计算、谐和图绘制采用Excel宏程序Isoplot3.0完成(Ludwig,2003)。
2锡铁山地体榴辉岩和浅色体的野外及镜下照片
Fig.2Field views and photomicrographs of eclogite and leucosome in the Xitieshan terrane
(a、b)—榴辉岩、退变榴辉岩及花岗片麻岩野外照片;(c、d)—退变榴辉岩中浅色体的野外照片;(e)—榴辉岩镜下照片;(f)—退变榴辉岩镜下照片;(g~i)—浅色体镜下照片; Grt—石榴子石; Omp—绿辉石; Amp—角闪石; Bt—黑云母; Pl—斜长石; Qz—石英; Rt—金红石; Sym—后生合晶
(a, b) —field views of eclogite, retrograde eclogite and granitic gneiss; (c, d) —field views of leucosome in the retrograde eclogite; (e) —photomicrograph of eclogite; (f) —photomicrograph of retrograde eclogite; (g~i) —photomicrographs of leucosome; Grt—garnet; Omp—omphacite; Amp—amphibole; Bt—biotite; Pl—plagioclase; Qz—quartz; Rt—rutile; Sym—symplectite
4 年代学和地球化学特征
本文对锡铁山地体榴辉岩中的浅色体样品21XT8-TW1进行锆石U-Pb定年研究,其采样位置为N37°22′38.61″,E95°32′6.06″。阴极发光图像(图3a)显示浅色体内部有两类锆石,自形程度均较好,第一类锆石形态呈短柱状,长度为100~150 μm,长宽比约2∶1,锆石具有明显的核-边双层结构,核部呈均一状且发光较强,属于典型的变质成因锆石,边部发光较弱且有弱的振荡环带特征,代表其可能为形成于熔体结晶过程的变质成因锆石。第二类锆石呈长柱状,长度为200~250 μm,长宽比约2.5∶1~4∶1,整体发光较弱,具有不明显的核-幔-边结构,核部发光弱,具有明显溶蚀结构,为典型的变质成因锆石;幔部发光较强,具有弱分带-无分带,为变质成因;边部同样有弱的振荡环带特征,可能是深熔作用期间形成的变质锆石。选取13个锆石边部测点,样品的LA-ICP-MS锆石U-Pb测年结果见表1,锆石207Pb/ 235U-206 Pb/ 238U关系图解如图3b所示。13个测点中有12个测点Th/U小于0.1,变化于0.0003~0.0257之间,属于典型的变质/深熔成因锆石。13个测点均显示出相似的206Pb/238U年龄,变化于405±13~441±8 Ma,其加权平均值为425.3±5.9 Ma(MSWD=0.74)。
锡铁山地体榴辉岩部分熔融产生的浅色体具有高SiO2(61.55%~74.48%),Al2O3(14.82%~20.60%),CaO(2.93%~5.23%),Na2O(4.37%~6.97%)和低MgO,FeO,K2O和TiO2的奥长花岗岩-英云闪长岩特征(图4)(Chen Danling et al.,2012; Liu Xiaochi et al.,2014; Yu Shengyao et al.,2015; Zhang Long et al.,2015)。按照稀土含量可将榴辉岩部分熔融产生的浅色体划分为两种类型,其中类型Ⅰ具有低稀土含量和明显的Eu和Sr正异常,代表熔体分凝过程中斜长石堆晶;类型Ⅱ具有更高的稀土含量和不明显的Eu正异常(图5a; Chen Danling et al.,2012; 于胜尧等,2019)。两种类型的浅色体均富集LILEs而亏损HFSEs(图5b),显示出富集LREEs和亏损HREEs的稀土配分模式(图5a),具备高Sr/Y比值,具备埃达克岩特征(图6)。
3锡铁山地体榴辉岩深熔年龄图
Fig.3Anatecic age diagram of eclogite in the Xitieshan terrane
(a)—浅色体锆石阴极发光图像;(b)—浅色体锆石U-Pb谐和图及206Pb/238U加权平均年龄图;(c)—榴辉岩及退变榴辉岩中浅色体206Pb/238U年龄统计柱状图
(a) —CL images of zircon grains from leucosome; (b) —U-Pb concordia diagram and 206Pb/238U age diagram of zircon grains from leucosome; (c) —206Pb/238U age histogram of zircon grains from the leucosome within eclogite and retrograde eclogite
4锡铁山地体榴辉岩中浅色体An-Ab-Or图解
Fig.4Plots of An-Ab-Or for leucosomes within eclogite in the Xitieshan terrane
5 岩石热力学和微量元素地球化学模拟
相平衡模拟使用Perple_X程序(版本7.0; Connolly,2009),数据库选择Holland et al.(2011)的升级版。体系选择MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O2(MnNCKFMASHTO),所涉及的矿物及熔体相的活度-成分关系模型选自 Perple_X文件(solution_model.dat),包括:石榴子石[Gt(W)]、斜方辉石[Opx(W)]、黑云母[Bi(W)]、白云母[Mica(W)]、熔体[melt(W)](White et al.,2014);单斜辉[Omph(GHP)](Green et al.,2007);尖晶石[Sp(WPC)](White et al.,2002);角闪石[cAmph(G)](Green et al.,2016);钛铁矿[Ilm(WPH)](White et al.,2000);长石[Pl(Il,HP)](Holland and Powell,2003)。硬柱石、石英、柯石英、黝帘石、榍石及水设为纯相。
5锡铁山地体榴辉岩中浅色体球粒陨石标准化稀土配分模式图(a)及原始地幔标准化蛛网图(b)
Fig.5Chondrite-normalized REE diagram (a) and primitive mantle-normalized spidergram (b) for leucosome within eclogite in the Xitieshan terrane
1锡铁山地体榴辉岩中浅色体LA-ICP-MS锆石U-Pb同位素分析结果
Table1LA-ICP-MS zircon U-Pb dating results of leucosome within eclogite in the Xitieshan terrane
2锡铁山地体榴辉岩全岩成分(%)(据 Chen Danling et al.,2012
Table2Bulk composition (%) of eclogite in the Xitieshan terrane (after Chen Danling et al., 2012)
锡铁山地体榴辉岩全岩成分采用Chen Danling et al.(2012)的锡铁山双矿物榴辉岩样品平均值(表2)。P/T-X视剖面图可以很好地模拟压力或温度条件和全岩成分之间的关系(Groppo et al.,2015; Huang et al.,2018; Tian et al.,2020),根据P/T-X(H2O)图解(图7a),体系水含量采用1.7%,使岩石在与固相线在P=2.0 GPa交点处达到最低水饱和状态。通常未被改造的基性—中性火成岩拥有低的氧化状态(Schilling et al.,1983; Mallmann and O'Neill,2009),依据P/T-X(Fe2+/Fetotal)图解(图7b)计算得有效全岩成分中Fe3+/Fetotal为0.1。计算的P-T视剖图见图8,在P-T视剖图中,我们以1℃和0.01 GPa为间隔,计算了600~1000℃和0.5~3.2 GPa温压范围内不同P-T条件下的部分熔融程度(图9)。
6锡铁山地体榴辉岩中浅色体Sr/Y-Y图解
Fig.6Plots of Sr/Y vs. Y for leucosomes within eclogite in the Xitieshan terrane
黑球:沿A—B背景范围外熔体结晶前的温压点;绿球:沿A—B背景范围内熔体结晶的温压点;蓝球:沿A—B背景范围外顺延的温压点
Black balls: temperature pressure points of melt before crystallization outside line A—B background range; green balls: temperature pressure points of melt crystallization along line A—B background range; blue balls: temperature and pressure points extending along the line A—B background range
7锡铁山地体榴辉岩P/T-X(H2O)视剖图(a)及P/T-X(Fe2+/Fetotal)视剖图(b)(紫线: 固相线; 矿物缩写引自Whitney and Evans,2010
Fig.7P/T-X (H2O) pseudosection (a) and P/T-X (Fe2+/Fetotal) pseudosection (b) of the average bulk-rock composition of eclogie from the Xitieshan terrane (purple line: solid phase line; mineral abbreviations cited from Whitney and Evans, 2010)
在不考虑开放体系损失的条件下,基于不同P-T条件下的残留平衡矿物组合和熔体比重以及中酸性熔体中的矿物微量元素分配系数,可以通过批式部分熔融模型来计算特定P-T条件下熔体中微量元素平衡浓度。计算方程如下:
Cmelt /Csource =1/[D+F× (1-D) ]
式中,CsourceCmelt分别代表源岩(榴辉岩)和所得熔体的微量元素浓度;D为岩石分配系数;F代表部分熔融程度(即熔体质量分数)。
锆石、独居石、磷灰石等副矿物在部分熔融过程中可以在控制熔体中的某些微量元素(如Zr、Hf、Th、U、P及REE等)浓度方面发挥重要作用,一般为了简化模拟条件,相平衡模拟不会将这些矿物的溶解纳入到考虑范围内,在本文中只考虑可以通过相平衡模拟正演预测的主要矿物及副矿物(如石榴子石、单斜辉石、斜长石、角闪石、白云母、金红石、钛铁矿、黝帘石、尖晶石等)。
浅色体代表经历过演化的熔体(Sawyer et al.,2011),因其体积较小,形成后很难从源区分离(Zheng Yongfei and Hermann,2014),因此我们以源区浅色体的成分代表熔体成分。为了使模拟更为准确,我们选择类型Ⅱ的浅色体成分代表熔体成分用于与模拟结果比对,浅色体样品数据选自Chen Danling et al.(2012)Yu Shengyao et al.(2015)。本文我们只考虑Sr、Y及部分稀土元素(Nd、Sm、Eu、Gd、Dy、Ho、Er、Yb和Lu),这是因为实际的浅色体样品的限制(如分离结晶、熔体抽取等)以及这些元素主要集中于石榴子石、单斜辉石、角闪石、钛铁矿、斜长石及金红石中。大部分批式熔融模拟中所用的矿物分配系数来自https://earthref.org/GERM/KDD/,对于目前没有分配系数数据的矿物,其在体系内含量较少抑或是这些矿物中的微量元素基本是不相容的,因此将这些矿物的分配系数均设置为0.0001(表3)。
在原始地幔标准化蛛网图上,直到模拟出的熔体微量成分与实际的赋存于榴辉岩中的钠质浅色体样品一致,即可较为精确地限定形成这些钠质浅色体所需的P-T条件(图9)。可以发现微量模拟给出的实际浅色体样品形成的P-T条件仍然是一个比较宽泛范围(700~925℃,1.0~1.4 GPa),为了进一步缩小范围,我们引入锡铁山地体榴辉岩的退变P-T轨迹(Zhang Jianxin et al.,2005)并以直线A—B(A:756℃,3.2 GPa;B:808℃,0.5 GPa)近似控制锡铁山地体榴辉岩退变阶段的升温降压过程,以1℃和0.052 GPa为梯度模拟了从A到B过程中熔体微量元素的变化(表4图10)以及残留矿物组成和熔体相比例变化(表5图11),得到锡铁山钠质浅色体熔体完全平衡结晶时的P-T条件为794~797℃,1.227~1.071 GPa。
8锡铁山地体榴辉岩MnNCKFMASHTO体系P-T视剖图(橙色线: 区域榴辉岩退变P-T轨迹,据Zhang Jianxin et al.,2005; 紫色线: 固相线; 白色虚线: 单斜辉石中绿辉石等值线)
Fig.8P-T pseudosection for eclogite within Xitieshan terrane calculated in the system MnNCKFMASHTO (orange line: retrograde P-T path of eclogite, after Zhang Jianxin et al, 2005; purple line: solid phase line; white dotted line: the omphacite isolines in clinopyxene)
3微量元素地球化学模拟用到的矿物-熔体分配系数(数据来自https://earthref.org/GERM/KDD/)
Table3Mineral-melt partition coefficients used in trace element modeling (data sourced from https://earthref.org/GERM/KDD/)
6 讨论
6.1 锡铁山地体榴辉岩深熔作用岩石岩相学证据
野外岩石观察表明,锡铁山地体榴辉岩普遍经历了低程度部分熔融,内部保留的浅色体不超过榴辉岩体积分数的10%。这些浅色体与退变榴辉岩同步变形,表明变形和深熔作用同时发生的,熔融形成的熔体增强了变形,而变形有助于熔体在低应力区的迁移汇聚(Yu Shengyao et al.,2015),图2c中熔体形成的小规模细脉以围绕石榴子石产出,更大规模的熔体迁移甚至可以包绕榴辉岩内部碎裂的团块(图2d)。由于较低的部分熔融程度及岩石黏滞力,使得熔体只能进行小尺度的迁移,未见大规模熔体汇聚的现象,浅色体末端多尖灭于榴辉岩岩体,因而保留在榴辉岩内部的浅色体属于原位-源区浅色体。这些岩石学证据表明,锡铁山退变榴辉岩经历了低程度熔融到内部熔体堆积等一系列深熔作用过程。
9锡铁山地体榴辉岩熔融程度等值线图(紫色线:熔体体积等值线;灰色区域:微量元素地球化学模拟反演的温压范围)
Fig.9Diagram of melting degree of eclogite in the Xitieshan terrane (purple line: isolines of melt volume; gray area: temperature and pressure range of trace element geochemical simulation inversion)
10锡铁山地体榴辉岩退变阶段沿A—B线熔体微量元素地球化学模拟结果原始地幔标准化蛛网图
Fig.10Primitive mantle-normorlized spidergrams for trace element distribution in model melt alone line A—B during the retrograde stage of eclogite in the Xitieshan terrane
显微镜下晶粒结构的观察可以进一步推断岩石是否受到深熔作用的影响(Holness et al.,2011)。在斜长石颗粒间,发育斜长石+石英组成的细脉,可能为熔体迁移通道,在斜长石颗粒外细脉堆积形成斑块,可能代表熔体填充先前的孔隙空间(图2g、h);细长尖锐的斜长石颗粒沿另一斜长石的裂隙贯入,代表先前熔体的结晶。这些微观矿物结构是深熔作用典型的镜下矿物学证据,代表了熔体生长和迁移过程(Chen Yixiang et al.,2013a2013b)。以上岩石学宏观和岩相学微观观察讨论,为锡铁山地体榴辉岩原位-源区部分熔融提供了有力证据。
4锡铁山地体榴辉岩退变阶段沿直线A—B熔体微量元素(×10-6)地球化学模拟结果(榴辉岩微量元素数据来源于Chen et al.,2012)
Table4Trace elements (×10-6) composition of model melt alone line A—B during the retrograde stage of eclogite in the Xitieshan terrane (trace element data for eclogite are from Chen et al., 2012)
6.2 锡铁山地体榴辉岩深熔作用时代
锡铁山地体榴辉岩中的浅色体锆石边部具有低的Th/U(<0.1)以及弱振荡环带,类似于大别-苏鲁、中阿尔卑斯及喜马拉雅造山带混合岩中产出的深熔锆石(例如,Rubatto et al.,2009; Liu Fulai et al.,20102012; Imayama et al.,2012)。浅色体深熔锆石206Pb/238U年龄在405±13~441±8 Ma之间,加权平均值为425.3±5.9 Ma,与前人在富斜长石浅色体锆石中获得的深熔锆石结晶年龄的数值(428±2 Ma; Chen et al.,2012)在误差范围内完全一致。深熔锆石主体年龄滞后于区内超高压榴辉岩相退变年龄(460~440 Ma; Yu Shengyao et al.,2015)但略早于角闪岩相退变年龄(425~419 Ma; Hu Rongguo et al.,2016)。
本文统计了锡铁山地体榴辉岩部分熔融产生的浅色体中的104颗深熔锆石的206Pb/238U年龄数据(图3c)(数据来源于Chen Danling et al.,2012; Liu Xiaochi et al.,2014; Yu Shengyao et al.,2015; Zhang Long et al.,2015),深熔锆石年龄峰值429.8 Ma明显晚于榴辉岩相变质年龄峰值442 Ma(Zhao Zhixin et al.,2017),表明锡铁山地体榴辉岩的部分熔融主要发生在折返过程中的榴辉岩相—麻粒岩相阶段,主要熔融时间为438~420 Ma,与区域上的第二期(446~428 Ma)和第三期(432~420 Ma)深熔时间对应(Yu Shengyao et al.,2019)。
6.3 锡铁山地体榴辉岩部分熔融机制
锡铁山地体榴辉岩中的钠质浅色体形成时代略晚于寄主岩石的峰期变质时代(450~445 Ma),早于角闪岩相退变时代(~410 Ma)(Zhang Jianxin et al.,2005; Chen Danling et al.,2012; Yu Shengyao et al.,20152019),与区内寄主榴辉岩麻粒岩相退变质时代以及侵入到超高压地体中的埃达克质花岗岩体形成时代(430~428 Ma)一致(孟繁聪等,20052008; Zhang Jianxin et al.,2008),说明浅色体形成于高压麻粒岩相阶段。锡铁山地区的钠质浅色体均为英云闪长质(Chen Danling et al.,20122013; Yu Shengyao et al.,2019),对基性榴辉岩的部分熔融实验(Skjerlie and Patiño,2002)表明,形成英云闪长质的熔体的压力条件需要满足1.0~1.5 GPa,与我们通过微量地球化学元素模拟反演的压力条件(1.071~1.227 GPa)一致。但钠质浅色体形成于高压麻粒岩相阶段也只能说明熔体在这一阶段结晶,并不能代表榴辉岩初始部分熔融的具体温压条件。在榴辉岩的P-T视剖图中(图8),沿P-T轨迹观察到榴辉岩开始发生部分熔融的温压条件为~780℃,~1.954 GPa,即榴辉岩的初始部分熔融发生在榴辉岩相条件下,这与Yu Shengyao et al.(2015)通过多硅白云母及黝帘石稳定曲线限定的榴辉岩初始部分熔融压力条件一致(1.7~2.1 GPa)。
5锡铁山地体榴辉岩退变阶段沿直线A—B残留相及熔体相含量(%)
Table5Residual phase and melt phase contents (%) along line A—B during the retrograde stage of eclogite in the Xitieshan terrane
11锡铁山地体榴辉岩退变阶段沿直线A—B矿物残留相与熔体相含量堆积图
Fig.11Accumulation diagram of residual phase and melt phase along line A—B during the retrograde stage of eclogite in the Xitieshan terrane
大量实验岩石学证明,控制部分熔融的关键因素为原岩成分、温度、压力及流体(Massonne and Fockenberg,2015)。传统上认为,超高压榴辉岩以多硅白云母和黝帘石等含水矿物的分解而产生少量部分熔融(Lang and Gilotti,2007; Zheng Yongfei et al.,2011; 陈伊翔和郑永飞,2013; Cao Wentao et al.,2020),最近Feng Peng et al.(2021)报道了超高压榴辉岩中名义上无水矿物绿辉石分解主导的部分熔融。在变基性岩中,多硅白云母的脱水熔融会产生富钾的熔体(Schmidt et al.,2004; Hermann et al.,2006),而锡铁山地体榴辉岩中的浅色体具有高硅富钙、铝和钠而贫钾的地球化学特征(Chen Danling et al.,20122013; Yu Shengyao et al.,20152019),因此排除了锡铁山地体榴辉岩的深熔作用是以多硅白云母分解为主的可能性。锡铁山地体榴辉岩中的浅色体具有富Sr、Pb和LREE,贫Y和Yb亏损HREE和明显的Eu正异常的微量元素特征(Chen Danling et al.,20122013; Yu Shengyao et al.,20152019),与黝帘石分解实验产生的熔体相似(Skjerlie and Patiño,2002),说明黝帘石的脱水分解是锡铁山地体榴辉岩部分熔融的重要机制,此外浅色体较高的钠含量表明在部分熔融过程中绿辉石也具有较高的贡献。
通过计算的沿直线A—B残留矿物相和熔体相含量变化图(图11),我们可以进一步了解锡铁山地体榴辉岩的部分熔融机制,在~780℃/~1.954 GPa时,随着温度上升及压力降低,熔体的增加伴随着单斜辉石的大量消耗及多硅白云母和黝帘石的少量消耗。在图8对应的温压处,榴辉岩P-T轨迹穿过密集分布的绿辉石等值线,表明绿辉石在此阶段大量分解。因此,锡铁山地体榴辉岩折返阶段初始熔融的温压条件为~780℃/~1.954 GPa,熔融机制类似于苏鲁-大别超高压构造带上的桃杭、将军山及威海榴辉岩由绿辉石主导,少量多硅白云母及黝帘石参与的脱水熔融(如:1.006Omp + 0.03Phn + 0.008Zo + 0.1Qz → 0.694Omp + 0.148melt)(Wang Lu et al.,2014; Feng Peng et al.,2021)。
在沿直线A—B继续演化到熔体结晶的温压条件过程中,由于角闪石的大量形成及绿辉石的消耗完全,体系的自由水含量降低使得熔体含量在持续减少。此外,我们模拟了沿直线A—B演化过程中熔体Sr/Y-Y的变化情况(图6),几乎所有实测样品都分布在模拟演化点附近,实测样品不同的Sr/Y比值则代表了演化过程中不同压力条件下的熔体结晶,这说明超高压榴辉岩在折返过程中的熔体结晶也是一个连续的过程。
值得注意的是,本次模拟并不能排除由外部流体进入而触发榴辉岩部分熔融的情况,在锡铁山退变榴辉岩露头中存在一些代表流体活动的石英脉(Zhang Long et al.,2015),在区域上的绿梁山地体中存在由外部熔流体活动触发榴辉岩部分熔融的报道(Cao Yuting et al.,2017; Chen Xin et al.,2022)。Zhang Cong et al.(2013)通过对锡铁山地体榴辉岩开展全岩地球化学以及原位LA-ICP-MS矿物微量元素分析表明,榴辉岩在折返过程中存在两个阶段的流体行为,在峰期以及榴辉岩相叠加阶段,流体受榴辉岩内部自身控制,在角闪岩相叠加阶段存在外部流体的加入。这个结果确保了我们假设的锡铁山地体榴辉岩在榴辉岩相及高压麻粒岩相体系封闭这一必要条件,但同时由于角闪岩相条件下外部流体的加入使我们并不能确定锡铁山地体榴辉岩能否在该条件下发生部分熔融,因此今后还需对这类脉体开展详细工作。
6.4 锡铁山地体榴辉岩部分熔融对于同折返花岗岩的贡献
深熔作用常发生在超高压地体的折返阶段(Song Shuguang et al.,2014; Chen Yixiang et al.,2017),与超高压地体折返过程相关的岩浆岩为我们研究大陆俯冲带地球化学分异及壳幔相互作用提供了重要的对象(Zhao Zhixin et al.,2017)。在柴北缘超高压变质带,大洋板片的断离被认为是在420~390 Ma时驱动大陆板片折返至地壳深熔的主要动力学机制(Song Shuguang et al.,2014; Zhang Guibin et al.,2014; Hu Rongguo et al.,2016),这一过程中伴随了大规模的大陆板片与大洋板片的部分熔融。Wang Lu et al.(2014)在都兰野马滩和沙柳河地区识别了约403~397 Ma的强过铝质花岗岩和392~391 Ma的准铝质英云闪长岩并认为其是俯冲大陆地壳折返过程中的上、下地壳在折返过程中形成的;Sun Guochao et al.(2020)在都兰北带识别出了416~393 Ma的花岗岩,并认为是由大陆板片折返过程中的榴辉岩和正片麻岩共同熔融产生;杨士杰等(2016)在绿梁山复式岩体中划分出400~390 Ma的具有A型花岗岩特征的正长花岗岩、具有I型花岗岩特征的二长花岗岩和具有埃达克地球化学特征的黑云母花岗岩,均为折返板片部分熔融的产物。
锡铁山地体记录了大规模的同碰撞花岗质岩浆作用,主要的岩石类型包括以岩体或岩堤形式出露的奥长花岗岩和云母花岗岩,以岩体和保存在混合岩中脉体形式出露的富钾花岗岩(Yang Shixing et al.,2020)。孟繁聪等(2005)对锡铁山岩体南端花岗岩样品进行了定年工作,利用单颗粒锆石 TIMS 法确定其侵位年龄为约428±1 Ma;Yang Shixing et al.(2020)对锡铁山岩体北端云母花岗岩样品进行定年工作并获得了431±2.4 Ma的侵位年龄,与榴辉岩中浅色体的结晶年龄重叠。前人的研究表明这些同碰撞花岗岩来自深俯冲片麻岩及榴辉岩的部分熔融,地球化学结果显示这些同碰撞花岗岩的主微量元素特征明显区别于榴辉岩中的钠质浅色体,且云母花岗岩及富钾花岗岩Sr-Nd同位素组成与榴辉岩中的浅色体具有明显差异(Yu Shengyao et al.,2019; Yang Shixing et al.,2020),暗示超高压榴辉岩的部分熔融对区内的同碰撞花岗岩的源区贡献极低或没有贡献。
虽然目前在锡铁山地区并没有找到与榴辉岩Sr-Nd同位素组成相近的花岗岩,但我们通过计算得到锡铁山钠质浅色体熔体达到完全平衡结晶的条件(794~797℃,1.227~1.071 GPa)时,榴辉岩共产生约8%~9%体积的熔体(图11),这与都兰陆壳型榴辉岩的部分熔融程度(<10%)相近(Zhang Guibin et al.,2015),略高于7%熔体迁移阈值(Rosenberg and Handy,2005),表明锡铁山地体榴辉岩可能对于该区内的同折返花岗岩的源区有少量贡献。
7 结论
我们通过对锡铁山地体榴辉岩深熔过程开展岩石热力学及微量元素地球化学模拟研究,获得以下几个方面的认识:
(1)锡铁山地体榴辉岩初始部分熔融的温压条件为~780℃,~1.954 GPa,熔体完全平衡结晶的温压条件为794~797℃,1.227~1.071 GPa。
(2)锡铁山地体榴辉岩的熔融机制为:在榴辉岩相条件下,以绿辉石为主,少量多硅白云母及黝帘石参与脱水分解的减压熔融。
(3)模拟结果显示锡铁山地体榴辉岩可产生约8%~9%体积的熔体,对区内同折返花岗岩的源区贡献有限。
1柴北缘超高压变质带地质简图(a)及锡铁山地体地质简图(b)(据Hu Rongguo et al.,2016修改)
Fig.1Simplified geological map of North Qaidam UHP belt (a) and geological sketch of the Xietieshan terrane (b) (after Hu Rongguo et al., 2016)
2锡铁山地体榴辉岩和浅色体的野外及镜下照片
Fig.2Field views and photomicrographs of eclogite and leucosome in the Xitieshan terrane
3锡铁山地体榴辉岩深熔年龄图
Fig.3Anatecic age diagram of eclogite in the Xitieshan terrane
4锡铁山地体榴辉岩中浅色体An-Ab-Or图解
Fig.4Plots of An-Ab-Or for leucosomes within eclogite in the Xitieshan terrane
5锡铁山地体榴辉岩中浅色体球粒陨石标准化稀土配分模式图(a)及原始地幔标准化蛛网图(b)
Fig.5Chondrite-normalized REE diagram (a) and primitive mantle-normalized spidergram (b) for leucosome within eclogite in the Xitieshan terrane
6锡铁山地体榴辉岩中浅色体Sr/Y-Y图解
Fig.6Plots of Sr/Y vs. Y for leucosomes within eclogite in the Xitieshan terrane
7锡铁山地体榴辉岩P/T-X(H2O)视剖图(a)及P/T-X(Fe2+/Fetotal)视剖图(b)(紫线: 固相线; 矿物缩写引自Whitney and Evans,2010
Fig.7P/T-X (H2O) pseudosection (a) and P/T-X (Fe2+/Fetotal) pseudosection (b) of the average bulk-rock composition of eclogie from the Xitieshan terrane (purple line: solid phase line; mineral abbreviations cited from Whitney and Evans, 2010)
8锡铁山地体榴辉岩MnNCKFMASHTO体系P-T视剖图(橙色线: 区域榴辉岩退变P-T轨迹,据Zhang Jianxin et al.,2005; 紫色线: 固相线; 白色虚线: 单斜辉石中绿辉石等值线)
Fig.8P-T pseudosection for eclogite within Xitieshan terrane calculated in the system MnNCKFMASHTO (orange line: retrograde P-T path of eclogite, after Zhang Jianxin et al, 2005; purple line: solid phase line; white dotted line: the omphacite isolines in clinopyxene)
9锡铁山地体榴辉岩熔融程度等值线图(紫色线:熔体体积等值线;灰色区域:微量元素地球化学模拟反演的温压范围)
Fig.9Diagram of melting degree of eclogite in the Xitieshan terrane (purple line: isolines of melt volume; gray area: temperature and pressure range of trace element geochemical simulation inversion)
10锡铁山地体榴辉岩退变阶段沿A—B线熔体微量元素地球化学模拟结果原始地幔标准化蛛网图
Fig.10Primitive mantle-normorlized spidergrams for trace element distribution in model melt alone line A—B during the retrograde stage of eclogite in the Xitieshan terrane
11锡铁山地体榴辉岩退变阶段沿直线A—B矿物残留相与熔体相含量堆积图
Fig.11Accumulation diagram of residual phase and melt phase along line A—B during the retrograde stage of eclogite in the Xitieshan terrane
1锡铁山地体榴辉岩中浅色体LA-ICP-MS锆石U-Pb同位素分析结果
Table1LA-ICP-MS zircon U-Pb dating results of leucosome within eclogite in the Xitieshan terrane
2锡铁山地体榴辉岩全岩成分(%)(据 Chen Danling et al.,2012
Table2Bulk composition (%) of eclogite in the Xitieshan terrane (after Chen Danling et al., 2012)
3微量元素地球化学模拟用到的矿物-熔体分配系数(数据来自https://earthref.org/GERM/KDD/)
Table3Mineral-melt partition coefficients used in trace element modeling (data sourced from https://earthref.org/GERM/KDD/)
4锡铁山地体榴辉岩退变阶段沿直线A—B熔体微量元素(×10-6)地球化学模拟结果(榴辉岩微量元素数据来源于Chen et al.,2012)
Table4Trace elements (×10-6) composition of model melt alone line A—B during the retrograde stage of eclogite in the Xitieshan terrane (trace element data for eclogite are from Chen et al., 2012)
5锡铁山地体榴辉岩退变阶段沿直线A—B残留相及熔体相含量(%)
Table5Residual phase and melt phase contents (%) along line A—B during the retrograde stage of eclogite in the Xitieshan terrane
Cao Wentao, Gilotti J A, Massonne H J, Ferrando S, Foster Jr. C T. 2019. Partial melting due to breakdown of an epidote-group mineral during exhumation of ultrahigh-pressure eclogite: An example from the North-East Greenland Caledonides. Journal of Metamorphic Geology, 37(1): 15~39.
Cao Wentao, Gilotti J A, Massonne H J. 2020. Partial melting of zoisite eclogite from the Sanddal area, North-East Greenland Caledonides. European Journal of Mineralogy, 32(4): 405~425.
Cao Yuting, Liu Liang, Chen Danling, Wang Chao, Yang Wenqiang, Kang Lei, Zhu Xiaohui. 2017. Partial melting during exhumation of Paleozoic retrograde eclogite in North Qaidam, western China. Journal of Asian Earth Sciences, 148: 223~240.
Chen Danling, Liu Liang, Sun Yong, Zhu Xiaohui, Liu Xiaoming, Guo Cailian. 2012. Felsic veins within UHP eclogite at Xitieshan in North Qaidam, NW China: Partial melting during exhumation. Lithos, 136: 187~200.
Chen Danling, Cao Yuting, Liu Liang. 2013. Partial melting of UHP terranes in the western segment of the North Qaidam during exhumation: Constraints from studies of leucocratic veins within eclogite/retrograde eclogite. Chinese Science Bulletin, 58(22): 2209~2214 (in Chinese with English abstract).
Chen Xin, Schertl H P, Cambeses A, Hart E, Lin C, Xu Rongke, Zheng Youye. 2022. Cyclicity of multistage anatexis of deeply subducted continental crust during the North Qaidam orogeny: Tracing the source, timescale, and evolution of pulsed melts. American Journal of Science, 322(2): 225~279.
Chen Yixiang, Zheng Yongfei. 2013. Petrological evidence for crustal anatexis during continental collision in the Sulu orogen. Chinese Science Bulletin, 58(22): 2198~2202 (in Chinese with English abstract).
Chen Yixiang, Zheng Yongfei, Hu Zhaochu. 2013a. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen. Lithos, 156: 69~96.
Chen Yixiang, Zheng Yongfei, Hu Zhaochu. 2013b. Petrological and zircon evidence for anatexis of UHP quartzite during continental collision in the Sulu orogen. Journal of Metamorphic Geology, 31(4): 389~413.
Chen Yixiang, Zhou Kun, Gao Xiaoying. 2017. Partial melting of ultrahigh-pressure metamorphic rocks during continental collision: Evidence, time, mechanism, and effect. Journal of Asian Earth Sciences, 145: 177~191.
Connolly J A D. 2009. The geodynamic equation of state: What and how. Geochemistry, Geophysics, Geosystems, 10(10): Q10014.
Feng Peng, Wang Lu, Brown M, Johnson T E, Kylander-Clark A, Piccoli P M. 2021. Partial melting of ultrahigh-pressure eclogite by omphacite-breakdown facilitates exhumation of deeply-subducted crust. Earth and Planetary Science Letters, 554: 116664.
Green E C R, White R W, Diener J F A, Powell R, Holland T J B, Palin R M. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9): 845~869.
Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92(3-4): 399~417.
Holland T, Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145: 492~501.
Holland T J B, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333~383.
Holness M B, Cesare B, Sawyer E W. 2011. Melted rocks under the microscope: Microstructures and their interpretation. Elements, 7(4): 247~252.
Hu Rongguo, Wijbrans J R, Brouwer F M, Wang Min, Zhao Linghao, Qiu Huanning. 2016. 40Ar/39Ar thermochronological constraints on the retrogression and exhumation of ultra-high pressure (UHP) metamorphic rocks from Xitieshan terrane, North Qaidam, China. Gondwana Research, 36: 157~175.
Huang Guangyu, Brown M, Guo Jinghui, Piccoli P, Zhang Dingding. 2018. Challenges in constraining the P-T conditions of mafic granulites: An example from the northern Trans-North China Orogen. Journal of Metamorphic Geology, 36(6): 739~768.
Imayama T, Takeshita T, Yi K, Cho DL, Kitajima K, Tsutsumi Y, Kayama M, Nishido H, Okumura T, Yagi K, Itaya T, Sano Y. 2012. Two-stage partial melting and contrasting cooling history within the Higher Himalayan Crystalline Sequence in the far-eastern Nepal Himalaya. Lithos, 134~135: 1~22.
Labrousse L, Prouteau G, Ganzhorn A C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39(12): 1171~1174.
Lang H M, Gilotti J A. 2007. Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides. Journal of Metamorphic Geology, 25(2): 129~147.
Liu Fulai, Robinson P T, Gerdes A, Xue Huaimin, Liu Pinghua, Liou J G. 2010. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos, 117(1~4): 247~268.
Liu Fulai, Robinson P T, Liu Pinghua. 2012. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. Journal of Metamorphic Geology, 30(8): 887~906.
Liu Qiang, Wu Yao, Zhang Junfeng. 2011. Experimental investigation on low-degree dehydration partial melting of biotite gneiss and phengite-bearing eclogite at 2 GPa. Journal of Earth Science, 22(6): 677~687.
Liu Xiaochi, Wu Yuanbao, Gao Shan, Wang Hao, Zheng Jianping, Hu Zhaochu, Zhou Lian, Yang Saihong. 2014. Record of multiple stage channelized fluid and melt activities in deeply subducted slab from zircon U-Pb age and Hf-O isotope compositions. Geochimica et Cosmochimica Acta, 144: 1~24.
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1~2): 537~571.
Ludwig K R. 2003. User's Manual for Isoplot/3, a Geochronological Toolkit for Microsoft Excel, vol. 14. Berkeley: Berkeley Geochronology Center.
Mallmann G, O'Neill H S C. 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9): 1765~1794.
Massonne H J, Fockenberg T. 2015. Melting of eclogite at ultrahigh-pressure (UHP) conditions: An experimental study. Paper presented at the International Eclogite Conference, Domincan Republic.
Meng Fancong, Zhang Jianxin, Yang Jingsui. 2005. Tectono-thermal event of post-HP/UHP metamorphism in the Xitieshan area of the North Qaidam Mountains, western China: Isotopic and geochemical evidence of granite and gneiss. Acta Petrologica Sinica, 21(1): 45~56 (in Chinese with English abstract).
Meng Fancong, Zhang Jianxin. 2008. Contemporaneous of Early Palacozoic granite and high temperature metamorphism, North Qaidam Mountains, western China. Acta Petrologica Sinica, 24(7): 1585~1594 (in Chinese with English abstract).
Rosenberg C L, Handy M R. 2005. Experimental deformation of partially melted granite revisited: Implications for the continental crust. Journal of metamorphic Geology, 23(1): 19~28.
Rubatto D, Hermann J, Berger A, Engi M. 2009. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contributions to Mineralogy and Petrology, 158: 703~722.
Rudnick R L. 2014. Composition of the continental crust. Treatise on Geochemistry, 1~51.
Sawyer E W. 2008. Atlas of Migmatites. Ottawa: Natural Resources Canada Research Press.
Sawyer E W, Cesare B, Brown M. 2011. When the continental crust melts. Elements, 7(4): 229~234.
Schilling J G, Zajac M, Evans R, Johnston T, White W, Devine J D, Kingsley R. 1983. Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N. American Journal of Science, 283(6): 510~586.
Schmidt M W, Vielzeuf D, Auzanneau E. 2004. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth and Planetary Science Letters, 228(1-2): 65~84.
Skjerlie K P, Patiño A D E. 2002. The Fluid-absent Partial Melting of a zoisite-bearing quartz eclogite from 1. 0 to 3. 2 GPa: Implications for melting in thickened continental crust and for Subduction-zone processes. Journal of Petrology, 43(2): 291~314.
Song Shugang, Niu Yaoling, Su Li, Xia Xiaohong. 2013. Tectonics of the north Qilian orogen, NW China. Gondwana Research, 23(4): 1378~1401.
Song Shugang, Niu Yaoling, Su Li, Wei Chunjing, Zhang Lifei. 2014. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochimica et Cosmochimica Acta, 130: 42~62.
Sun Guochao, Gao Peng, Zhao Zifu, Zheng Yongfei. 2020. Syn-exhumation melting of the subducted continental crust: Geochemical evidence from early Paleozoic granitoids in North Qaidam, northern Tibet. Lithos, 374: 105707.
Tian Zuolin, Brown M, Zhang Zeming, Piccoli P, Dong Xin. 2020. Contrasting CW and CCW tectono-metamorphic belts in the eastern Himalayan syntaxis: Quantification of P-T-t paths and tectonic interpretation. Gondwana Research, 79: 1~26.
Wang Lu, Kusky T M, Polat A, Wang Songjie, Jiang Xingfu, Zong Keqing, Wang Junpeng, Deng Hao, Fu Jianmin. 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nature Communications, 5(1): 5604.
White R W, Powell R, Holland T J B, Worley B A. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497~511.
White R W, Powell R, Clarke G L. 2002. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 20(1): 41~55.
White R W, Powell R, Holland T J B, Green E C R. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261~286.
Whitney D L, Evans B W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185~187.
Xiao Wenjiao, Windley B F, Yong Yong, Yan Zhen, Yuan Chao, Liu Chuanzhou, Li Jilaing. 2009. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3-4): 323~333.
Xu Zhiqin, Yang Jingsui, Wu Cailai, Li Haibing, Zhang Jianxin, Qi Xuexiang, Song Shuguang, Qiu Haijun. 2006. Timing and mechanism of formation and exhumation of the Northern Qaidam ultrahigh-pressure metamorphic belt. Journal of Asian Earth Sciences, 28(2-3): 160~173.
Yang Shijie. 2016. The genesis and formation mechanism of Lvliangshan composite granite body and enclosed gneiss and garnet amphibolite lenses. Master's thesis of Northwestern University (in Chinese with English abstract).
Yang Shixiang, Su Li, Song Shuguang, Allen M B, Feng Di, Wang Mengjue, Wang Chao, Zhang Hongyu. 2020. Melting of subducted continental crust during collision and exhumation: Insights from granitic rocks from the North Qaidam UHP metamorphic belt, NW China. Lithos, 378: 105794.
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
Yu Shengyao, Zhang Jianxin, Sun Deyou, Li Yunshaui, Gong Jianghua. 2015. Anatexis of ultrahigh-pressure eclogite during exhumation in the North Qaidam ultrahigh-pressure terrane: Constraints from petrology, zircon U-Pb dating, and geochemistry. Geological Society of America Bulletin, 127(9-10): 1290~1312.
Yu Shengyao, Li Sanzhong, Zhang Jianxin, Peng Yinbiao, Somerville I, Liu Yongjiang, Wang Zhengyi, Li Zhuofan, Yao Yong, Li Yan. 2019. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China. Earth-Science Reviews, 191: 190~211.
Yu Shengyao, Zhang Jianxin, Li Sanzhong, Peng Yinbiao, Li Yunshuai, Lv Pei, Yao Yong, Li Zhuofan. 2019. Petrological study on anatexis during exhumation of North Qaidam UHP terrane. Acta Petrologica Sinica, 35(10): 3130~3140 (in Chinese with English abstract).
Yu Shengyao, Peng Yinbiao, Zhang Jianxin, Li Sanzhong, Santosh M, Li Yunshuai, Liu Yongjiang, Gao Xiangyu, Ji Wentao, Lv Pei, Li Chuanzhi, Jiang Xinzhou, Qi Lili, Xie Weiming, Xu liangjia. 2021. Tectono-thermal evolution of the Qilian orogenic system: Tracing the subduction, accretion and closure of the Proto-Tethys Ocean. Earth-Science Reviews, 215: 103547.
Zhang Cong, Zhang Lefei, Zhang Guibin, Song Shuguang. 2009. Petrology and calculation of retrograde PT path of eclogites from Xitieshan, North Qaidam, China. Acta Petrologica Sinica, 25(9): 2247~2259 (in Chinese with English abstract).
Zhang Cong, Zhang Lifei, Van Roermund H, Song Shuguang, Zhang Guibin. 2011. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China. Journal of Asian Earth Sciences, 42(4): 752~767.
Zhang Cong, Zhang Lifei, Bader T, Song Shuguang, Lou Yuxing. 2013. Geochemistry and trace element behaviors of eclogite during its exhumation in the Xitieshan terrane, North Qaidam UHP belt, NW China. Journal of Asian Earth Sciences, 63: 81~97.
Zhang Guibin, Zhang Lifei, Christy A G, Song Shuguang, Li Qiuli. 2014. Differential exhumation and cooling history of North Qaidam UHP metamorphic rocks, NW China: Constraints from zircon and rutile thermometry and U-Pb geochronology. Lithos, 205: 15~27.
Zhang Guibin, Niu Yaoling, Song Shugaung, Zhang Lifei, Tian Zuolin, Christy A G, Han Lei. 2015. Trace element behavior and P-T-t evolution during partial melting of exhumed eclogite in the North Qaidam UHPM belt (NW China): Implications for adakite genesis. Lithos, 226: 65~80.
Zhang Jianxin, Yang Jingsui, Mattinson C G, Xu Zhiqin, Meng Fancong, Shi Rendeng. 2005. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints. Lithos, 84(1-2): 51~76.
Zhang Jianxin, Mattinson C G, Meng Fancong, Wan Yusheng, Tung K. 2008. Polyphase tectonothermal history recorded in granulitized gneisses from the north Qaidam HP/UHP metamorphic terrane, western China: Evidence from zircon U-Pb geochronology. Geological Society of America Bulletin, 120(5-6): 732~749.
Zhang Jianxin, Yu Shengyao, Mattinson C G. 2017. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana Research, 41: 267~289.
Zhang Long, Chen Renxu, Zheng Yongfei, Hu Zhaochu. 2015. Partial melting of deeply subducted continental crust during exhumation: insights from felsic veins and host UHP metamorphic rocks in North Qaidam, northern Tibet. Journal of Metamorphic Geology, 33(7): 671~694.
Zhao Zhixin, Wei Junhao, Fu Lebing, Liang Shengnan, Zhao Shaoqing. 2017. The Early Paleozoic Xitieshan syn-collisional granite in the North Qaidam ultrahigh-pressure metamorphic belt, NW China: Petrogenesis and implications for continental crust growth. Lithos, 278: 140~152.
Zhao Zifu, Zheng Yongfei, Chen Yixiang, Sun Guochao. 2017. Partial melting of subducted continental crust: Geochemical evidence from synexhumation granite in the Sulu orogen. Geological Society of America Bulletin, 129(11-12): 1692~1707.
Zheng Yongfei, Xia Qiongxia, Chen Renxu, Chen Renxu, Gao Xiaoying. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews, 107(3-4): 342~374.
Zheng Yongfei, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth, Planets and Space, 66(1): 1~16.
Zheng Yongfei, Chen Yixiang, Dai Liqun, Zhao Zifu. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Science China: Earth Sciences, 58: 1045~1069 (in Chinese with English abstract).
陈丹玲, 曹玉亭, 刘良. 2013. 柴北缘西段超高压地体折返过程中的部分熔融: 榴辉岩及其退变产物中的浅色脉体研究. 科学通报, 58(22): 2209~2214.
陈伊翔, 郑永飞. 2013. 大陆碰撞过程中地壳深熔的岩石学证据: 以苏鲁造山带超高压变质岩为例. 科学通报, 58(22): 2198~2202.
孟繁聪, 张建新, 杨经绥. 2005. 柴北缘锡铁山早古生代 HP/UHP 变质作用后的构造热事件——花岗岩和片麻岩的同位素与岩石地球化学证据. 岩石学报, 21(1): 45~56.
孟繁聪, 张建新. 2008. 柴北缘绿梁山早古生代花岗岩浆作用与高温变质作用的同时性. 岩石学报, 24(7): 1585~1594.
杨士杰. 2016. 柴北缘绿梁山复式花岗岩体及其中片麻岩、榴闪岩包裹体的成因与形成机制. 西北大学硕士学位论文.
于胜尧, 张建新, 李三忠, 彭银彪, 李云帅, 吕沛, 姚勇, 李卓凡. 2019. 柴北缘超高压地体折返过程中地壳深熔的岩石学研究. 岩石学报, 35(10): 3130~3140.
张聪, 张立飞, 张贵宾, 宋述光. 2009. 柴北缘锡铁山一带榴辉岩的岩石学特征及其退变 PT 轨迹. 岩石学报, 25(9): 2247~2259.
郑永飞, 陈伊翔, 戴立群, 赵子福. 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45(6): 711~735.