en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

但浩文,男,1999年生。硕士,研究方向为古生物及地层学。E-mail:542590378@qq.com。

通讯作者:

保广普,男,1970年生。高级工程师,长期从事区域地质调查和古生物化石调查研究。E-mail:2433321421@qq.com。

参考文献
Allwood A C, Walter M R, Burch I W, Kamber B S. 2007. 3. 43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambrian Research, 158: 198~227.
参考文献
Altermann W, Kazmierczak J, Oren A, Wright D T. 2006. Cyanobacterial calcification and its rock-building potential during 3. 5 billion years of Earth history. Geobiology, 4: 147~166.
参考文献
Awramik S M. 1976. Gunflint stromatolites: Microfossil distribution in relation to stromatolite morphology. Developments in Sedimentology, 20: 311~320.
参考文献
Awramik S M, Riding R. 1988. Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceedings of the National Academy of Sciences, 85: 1327~1329.
参考文献
Awramik S M, Sprinkle J. 1999. Proterozoic stromatolites: The first marine evolutionary biota. Historical Biology, 13: 241~253.
参考文献
Black M. 1933. The algal sediments of Andros Island, Bahamas. Biological Sciences, 222: 165~192.
参考文献
Buick R, Groves D I, Dunlop J S R, Lowe D R. 1995. Abiological origin of described stromatolites older than 3. 2 Ga: Comment and reply. Geology. 23(2): 191~192.
参考文献
Cao Ruiji, Liang Yuzuo 1974. On the classification and correlation of the Sinian System in China, based on a study of algae and stromatolites. In: Mu Enzhi, ed. Collection of Nanjing Institute of Geology and Palaeontology, Beijing: Science Press, 5: 1~26 (in Chinese with English abstract).
参考文献
Cao Ruiji, Yuan Xunlai, Xiao Shuhai 2001. On morphogenesis of conophyton stromatolites: Analysis of a Conophyton-like specimen from Neoproterozoic Jiudingshan Formation in Nanjing. Jiangsu Province, China. Acta Palaeontologica Sinica, 40: 318~329 (in Chinese with English abstract).
参考文献
Cao Ruiji, Yuan Xunlai. 2006. Stromatolite. Hefei: University of Science and Technology of China Press (in Chinese with English abstract).
参考文献
Cao Ruiji, Yuan Xunlai. 2009. Advances of stromatolites study in China. Acta Palaeontologica Sinica, 48: 314~321 (in Chinese with English abstract).
参考文献
Chafetz H S, Buczynski C. 1992. Bacterially induced lithification of microbial mats. Palaios, 7: 277~293.
参考文献
Dong Biqian 1993. Discovery and age-significance of spongy fossils of Kesuer Formation in the southern margin of eastern Middle-Qilian Mountain. Management and Strategy of Qinghai Land and Resource, 1: 31~34 (in Chinese with English abstract).
参考文献
Dupraz C, Reid R P, Braissant O, Decho A W, Norman R S, Visscher P T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141~162.
参考文献
Kao C S, Hsiung Y H, Kao P. 1934. Preliminary notes on Sinian stratigraphy of North China. Bulletin of the Geological Society of China, 13(1): 243~288.
参考文献
Golubic S, Focke J W. 1978. Phormidium hendersonii howe: Identity and significance of a modern stromatolite building microorganism. Journal of Sedimentary Petrology, 48(3): 751~764.
参考文献
Guo Jinjing, Li Huaikun. 1999. Angular unconformity between the Huashishan Group and Huangzhong Group in the eastern Mid-Qilian massif: Identification and implications. Progress in Precambrian Research, 2: 47~52 (in Chinese with English abstract).
参考文献
Hoffman P. 1974. Shallow and deepwater stromatolites in lower Proterozoic platform-to-basin facies change, Great Slave Lake, Canada. AAPG Bulletin, 58(5): 856~867.
参考文献
Hofmann H J, Grey K, Hickman A H, Thorpe R I. 1999. Origin of 3. 45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin, 111(8): 1256~1262.
参考文献
Holland H D. 2006. The oxygenation of the atmosphere and oceans. Biological Sciences, 361(1470): 903~915.
参考文献
Komar V A. 1964. Columnar stromatolites from the north of the Siberian platform. Biosratigr, 6: 69~70.
参考文献
Komar V A. 1966. Upper Precambrian Stromatolites in the North of Siberian Platform and Their Stratigraphic Significance. Moscow: Trudy Geologicheskogo Instituta, Akademii Nauk SSSR.
参考文献
Korolyuk I K 1960. Stromatolites of the Lower Cambrian and Proterozoic of the Irkutsk Amphitheatre. Moscow: Akad Nauk SSSR.
参考文献
Krylov I N. 1960. The development of columnar, branching stromatolites during Rifean time in the Southern Urals. Doklady Akademii Nauk S. S. S. R. 132: 895~898.
参考文献
Krylov I N. 1963. Columnar Branching Stromatolites From Rifean Adjournment of Southern Urals Mountains and Their Importance for Stratigraphic Upper Precambrian. Moscow: Akademii Nauk SSSR.
参考文献
Lee J H, Riding R. 2021. The ‘classic stromatolite’ Cryptozoön is a keratose sponge-microbial consortium. Geobiology, 19: 189~198.
参考文献
Li Qinzhong, Yang Yingzhang, Jia Jinchang. 1985. The study of Late Precambrian strata in the southern margin of the North China Platform (part of Shaanxi Province). Xi'an: Xi'an Jiaotong University Press (in Chinese with English abstract).
参考文献
Li Quan, Leng Jian. 1991. The upper Precambrian in the Shennongjia region. Tianjin: Tianjin Science and Technology Press (in Chinese with English abstract).
参考文献
Maslov V P. 1937. On the nature of the stromatolite Conophyton. Problemy Paleont, 4: 325~328.
参考文献
Mei Mingxiang, Meng Qinfen. 2016. Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites. Journal of Palaeogeography, 18: 127~146 (in Chinese with English abstract).
参考文献
Monty C L V. 1967. Distribution and structure of recent stromatolitic algal mats, eastern Andros Island, Bahamas. Annales de la Société Géologique de Belgique, 90: B55~B100.
参考文献
Monty C L V, Hardie L A. 1976. Chapter 8. 6 The geological significance of the freshwater blue-green algal calcareous marsh. Developments in Sedimentology, 20: 447~477.
参考文献
Pang Ke, Tang Qing, Wan bin, Li Guangjin, Chen Lei, Yuan Xunlai, Zhou Chuanming. 2021. Integrated Meso-Neoproterozoic stratigraphy in the Jiao-Liao-Xu-Huai area of North China Craton: A review. Journal of Stratigraphy, 45(4): 467~492(in Chinese with English abstract).
参考文献
Petryshyn V A, Junkins E N, Stamps B W, et al. 2021. Builders, tenants, and squatters: The origins of genetic material in modern stromatolites. Geobiology, 19(3): 261~277.
参考文献
Pia J. 1927. Thallophyta. Molecular Genetics and Genomics, 49(1): 339~344.
参考文献
Qian Maiping. 2008. Neoproterozoic Biota in the Southeastern Margin of the North China Paleocontinent. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Qinghai Bureau of Geology and Mineral Resources. 1991. Regional geology No. 24, special geological report of ministry of geology and mineral resources, People's Republic of China: Regional geology of Qinghai Province. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Raaben M E. 1969. Columnar stromatolites and Late Precambrian stratigraphy. American Journal of Science, 267: 1~18.
参考文献
Raaben M E, Sinha A K. 1989. Classification of stromatolites. Himalayan Geology 13: 215~227.
参考文献
Raaben M E, Sinha A K, Sharma M. 2001. Precambrian Stromatolites of India and Russia. India: Birbal Sahni Institute of Palaeobotany Lucknow.
参考文献
Reid R P, James N P, Macintyre I G, Dupraz C P, Burne R V. 2003. Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies, 49: 299~324.
参考文献
Schopf J W, Kudryavtsev A B, Czaja A D, Tripathi A B. 2007. Evidence of Archean life: Stromatolites and microfossils. Precambrian Research, 158: 141~155.
参考文献
Semikhator K A. 1998. The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures. Palaios, 13: 408~422.
参考文献
Semikhatov M A. 1960. The vertical distribution of stromatolites in the Late Precambrian of the Turukhan of the region. Doklady Akademii Nauk SSSR, 135: 1480~1483.
参考文献
Semikhatov M A. 1962. Riphean and Lower Cambrian of the Enisey Ridge. Moscow: Akad Nauk SSSR.
参考文献
Semikhatov M A. 1978. Aphebian Assemblage of Stromatolites: General Characteristics and Comparision with the Riphean Ones. Moscow: Nauka.
参考文献
Semikhatov M A, Raaben M E. 1996. Dynamics of the global diversity of Proterozoic stromatolites, article II: Africa, Australia, North America, and general synthesis. Stratigraphy and Geological Correlation, 4(1): 24~50.
参考文献
Semikhatov M A, Raaben M E. 2000. Proterozoic Stromatolite Taxonomy and Biostratigraphy. In: Riding R E, Awramik S M, eds. Microbial Sediments. Berlin: Springer-Verlag.
参考文献
Tianjin Institute of Geology and Mineral Resources, State Geology Administration. 1979. Study on Sinion Suberathem Stromatolites in Jixian. Tianjin: Geological Publishing House (in Chinese with English abstract).
参考文献
Tosti F, Riding R. 2017. Current molded, storm damaged, sinuous columnar stromatolites: Mesoproterozoic of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 465: 93~102.
参考文献
Visscher P T, Reid R P, Bebout B M. 2000. Microscale observations of sulfate reduction; correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28: 919~922.
参考文献
Yan Xianqin. 2015. The morphological characteristic code of Neoproterozoic stromatolites in China. Acta Palaeontologica Sinica, 54(4): 444~452 (in Chinese with English abstract).
参考文献
Yin Leiming, Yuan Xunlai. 2003. Sinian Biostratigraphy of China. In: Zhang Wentang, Chen Peiji, Palmer A R, eds. Biostratigraphy of China. Beijing: Science Press, 31~54.
参考文献
Zhang Luyi. 1982. Paleontological Atlas of Northwest China: Shaanxi-Gansu-Ningxia Part 1. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Zhu Shixing, Cao Ruiji, Zhao Wenjie, Liang Yuzuo. 1978. An outline of the studies on stromatolites from the stratotype section of Sinian Suberathem in Chihsien County, North China. Acta Geologica Sinica, 3: 209~257 (in Chinese with English abstract).
参考文献
曹瑞骥, 梁玉左. 1974. 从藻化石和叠层石论中国震旦系划分和对比. 见: 穆恩之, 主编. 中国科学院南京地质古生物研究所集刊, 北京: 科学出版社, 5: 1~26.
参考文献
曹瑞骥, 袁训来, 肖书海. 2001. 论锥叠层石群(Conophyton)的形态发生——对苏北新元古代九顶山组一个似锥叠层石的剖析. 古生物学报, 40: 318~329.
参考文献
曹瑞骥, 袁训来. 2006. 叠层石. 合肥: 中国科学技术大学出版社.
参考文献
曹瑞骥, 袁训来. 2009. 中国叠层石研究进展. 古生物学报, 48: 314~321.
参考文献
董必谦. 1993. 中祁连山东段南缘克素尔组海绵类化石的发现与时代讨论. 青海国土经略, 1: 1~34.
参考文献
郭进京, 李怀坤. 1999. 中祁连东段花石山群与湟中群之间不整合关系讨论. 前寒武纪研究进展, 2: 47~52.
参考文献
国家地质总局天津地质矿产研究所. 1979. 蓟县震旦亚界叠层石的研究. 天津: 地质出版社.
参考文献
李钦仲, 杨应章, 贾金昌. 1985. 华北地台南缘(陕西部分)晚前寒武纪地层研究. 西安: 西安交通大学出版社.
参考文献
李铨, 冷坚. 1991. 神农架上前寒武系. 天津: 天津科学技术出版社.
参考文献
梅冥相, 孟庆芬. 2016. 现代叠层石的多样化构成: 认识古代叠层石形成的关键和窗口. 古地理学报, 18: 127~146.
参考文献
庞科, 唐卿, 万斌, 李光金, 陈雷, 袁训来, 周传明. 2021. 华北地台胶辽徐淮地区中—新元古代地层研究进展. 地层学杂志, 45(4): 467~492.
参考文献
钱迈平. 2008. 华北古陆东南缘新元古代生物群. 北京: 地质出版社.
参考文献
青海省地质矿产局. 1991. 中华人民共和国地质矿产部地质专报一, 区域地质第24号, 青海省区域地质志. 北京: 地质出版社.
参考文献
严贤勤. 2015. 我国新元古代叠层石的性状编码. 古生物学报, 54(4): 444~452.
参考文献
张录易. 1982, 西北地区古生物图册: 陕甘宁分册(一). 北京: 地质出版社.
参考文献
朱士兴, 曹瑞骥, 赵文杰, 梁玉左. 1978. 中国震旦亚界蓟县层型剖面迭层石的研究概要. 地质学报, 3: 209~257.
目录contents

    摘要

    叠层石被广泛认为是地球上的一些最古老的生命痕迹,是研究地球早期生命的重要窗口。作为前寒武纪地层中的唯一常见化石,可以作为地层对比的标志,特别是中、新元古代盆地间的地层对比。青海省中祁连地层分区东岔沟村花石山群克素尔组以白云质碳酸盐岩组合为主,赋存大量叠层石。依据曹瑞骥和袁训来总结的分类方法,在研究区识别出9种不同的叠层石属,分别为:BaicaliaChihsienellaAnabariaTielingellaConicodomeniaTungussiaColonnellaStratiferaCryptozoon。研究区叠层石组合与中元古界上部蓟县系铁岭组叠层石组合具有明显的可比性,与国内其他地区的中元古代晚期—新元古代早期叠层石组合也有很强的相似性,据此推测花石山群克素尔组的年代大致为中元古代晚期。青海叠层石的报道将为我国和世界范围内中、新元古代叠层石的分布提供新产地的数据,常见叠层石属、种的垂直分布延限也有新的化石证据,对提升地层对比的精度具有重要意义。

    Abstract

    Stromatolites, often considered among the oldest traces of life on Earth, provide valuable paleontological insights for chronostratigraphic correlation. They are particularly useful for stratigraphic correlation in Mesoproterozoic basins. The Kesuer Formation, part of the Huashishan Group in Dongchagou Village, Huangzhong District, Xining City, Qinghai Province, primarily consists of dolomitic carbonate assemblages with a large quantity of stromatolites. According to the classification method summarized by Cao Ruiji and Yuan Xunlai, nine distinct stromatolite genera have been identified in this area: Baicalia, Chihsienella, Anabaria, Tielingella, Conicodomenia, Tungussia, Colonnella, Stratifera and Cryptozoon. This stromatolite assemblage closely resembles the Late Mesoproterozoic Tieling Formation stromatolite assemblage in the Jixian System, and shares similarities with Late Mesoproterozoic to Early Neoproterozoic strata stromatolite assemblage in China. As a result, the age of the Kesuer Formation in the Huashishan Group can be determined as Late Mesoproterozoic. The report of Qinghai stromatolites broadens the known distribution of Mesoproterozoic stromatolites in China and globally, updating the vertical distribution of common stromatolite genera and species. These findings hold significant implications for stratigraphic correlation.

  • 叠层石是以蓝藻为主的微生物在生长和新陈代谢活动过程中,黏附和沉淀矿物质或捕获矿物的颗粒而形成的一种生物沉积构造(Awramik et al.,1976)。它具有较为稳定的几何学形态,在其断面上通常显示规则的纹层构造。在地球历史最初85%的记录中,地球海洋里的碳酸盐岩是以叠层石为主的(Semikhator,1998)。这表明在地球形成之初至很长一段地质历史中,地球上最广泛发育的是叠层石——微生物席生态系统(Hofmann et al.,1999Altermann et al.,2006Allwood et al.,2007Schopf et al.,2007)。叠层石中不仅保留了许多微生物演化的证据,同时也包含沉积、古生态以及地球物理等方面的信息。

  • 近年来,学者们开始关注和追踪现代叠层石的多样化构成,以及它们所代表的沉积作用和微生物新陈代谢活动的复杂信息,这些研究对深入了解叠层石的生物学属性具有重要意义(梅冥相和孟庆芬,2016)。随着高通量基因组技术的出现和发展,在一定的环境背景下对小亚基(SSU)rRNA基因和/或宏基因组进行分析,DNA重建能够代表在叠层石增生或成岩过程中存在的群落(Petryshyn et al.,2021)。叠层石形成的典型模式是由于微生物活动(Black,1933;Awramik and Riding,1988)和(或)代谢捕获胶结沉积物颗粒促进矿物沉淀促使叠层石成岩(Chafetz and Buczynski,1992Dupraz et al.,2009Visscher et al.,2000)。生物因素在决定叠层石组合特征及其变化趋势方面可能起着主导的作用,这种认识如果成立,那么,叠层石在地层对比上的意义在理论上是毋庸置疑的。

  • 中元古代—新元古代早期被称为“沉闷的十亿年”(Buick et al.,1995Holland,2006),以近乎停滞的生物演化和地球表生系统变化为特征。这一时期,叠层石广泛发育,叠层石不仅在宏观形态上可以提供沉积环境信息,其成分和内部微观结构也能提供多重尺度的信息。因此,利用叠层石作为窗口,可以探讨“沉闷的十亿年”期间生物演化和环境改变的内在联系。经前人广泛研究,我国近20个省、自治区、直辖市的中新元古代地层中均有叠层石发育(曹瑞骥和袁训来,2006)。其中,青海省中、新元古代叠层石仅在地质志中有所提及(青海省地质矿产局,1991),但尚未有学者进行系统深入的研究和报道。青海省西宁市东岔沟村花石山群克素尔组中广泛发育叠层石,记录地质时期为中元古代晚期,该组的叠层石丰度高,类型丰富且颜色鲜艳,是系统研究元古宙叠层石分类、分带的理想剖面。本文选择东岔沟剖面为研究对象,对东岔沟叠层石进行详细的形态学分析和系统描述,基于分类学研究,识别出研究区叠层石组合,并与中国常见地区的叠层石组合进行精确对比,确定花石山群克素尔组的年代(曹瑞骥和袁训来,2006)。青海湟中区叠层石的首次报道进一步丰富我国和世界范围内中、新元古代叠层石分布记录,补充常见叠层石属、种的垂直分布,并有利于提升同期区域间地层对比的精度。

  • 1 区域地质背景

  • 青海省蓟县系—青白口系,相对古元古界变质较浅,为绿片岩相中—浅变质地层。除个别地区外,大部分为陆内盆地沉积形成的由碎屑岩—碳酸盐岩组成的稳定型地层,为最早的盖层沉积(青海省地质矿产局,1991)。蓟县系—青白口系主要集中在秦祁昆地层大区(Ⅰ),青南地层大区极少见(Ⅱ)。秦祁昆地层大区根据地层发育程度的不同,由北到南划分为祁连地层区(Ⅰ1)、东昆北-柴达木地层区(Ⅰ2)和东昆南地层区(Ⅰ3);青南地层大区仅有青白口系出露。

  • 祁连地层区(Ⅰ1)蓟县系—青白口系均为被动陆缘浅海陆棚相碎屑岩-碳酸盐岩组合。因该地层区东段和西段地层序列有所不同,分为东段湟中地层分区(Ⅰ 11)和西段托来南山地层分区(Ⅰ2 1)。前者包括蓟县系湟中群、蓟县系—待建系花石山群,缺失青白口系;后者地层较全,包括蓟县系—待建系托来南山群和青白口系龚岔群(图1)。

  • 东岔沟行政区划隶属于青海省西宁市湟中区共和镇东岔沟村,位于湟中地层分区(Ⅰ11)。叠层石出露于花石山群克素尔组中。花石山群是青海省综合地质大队区域地质测量队1964年进行1∶20万西宁市幅区域地质调查时,在湟中县花石山创建的(青海省地质矿产局,1991),主要是指平行不整合于蓟县系湟中群青石坡组之上的一套白云质碳酸盐岩地层(郭进京和李怀坤,1999)。花石山群集中分布在刚察县赞宝化久山、马老得山、拉脊山北坡一带,在大通县老爷山、互助县南门峡等地亦有零星分布。建群者根据其接触关系和所含化石,将其与燕山地区蓟县剖面对比,但也有部分化石组合时代可能延至青白口纪,所以将花石山群划为蓟县系—待建系(1600~1000 Ma)。然而,董必谦(1993)曾在花石山群克素尔组中采获海绵、三叶虫、腹足、海百合茎等化石,认为克素尔组为显生宙沉积,不过,因为材料不清晰,尚存在较大争议。克素尔组与其他地质体多为断层接触,在研究区呈北西向带状分布,发育大型背斜、向斜构造(图2)。

  • 图1 青海省地层分区

  • Fig.1 Stratigraphic division of Qinghai Province

  • Ⅰ—秦祁昆地层大区;Ⅰ1—祁连地层区;Ⅰ11—湟中地层分区;Ⅰ21—托来南山地层分区;Ⅰ2—东昆北-柴达木地层区;Ⅰ12—柴北缘地层分区;Ⅰ22—东昆北地层分区;Ⅱ—青南地层大区

  • Ⅰ—Qinling-Qilian-Kunlun stratigraphic region; Ⅰ1—Qilian stratigraphic region; Ⅰ11—Huangzhong stratigraphic region; Ⅰ21—Tuolainanshan stratigraphic region; Ⅰ2—north of East Kunlun-Qaidam stratigraphic region; Ⅰ12—northern margin of Qaidam stratigraphic region; Ⅰ22—north of East Kunlun stratigraphic region; Ⅱ—southern Qinghai stratigraphic region

  • 2 地层特征

  • 花石山群以中部一层较稳定的细碎屑岩、硅质岩为界,分为下部克素尔组和上部北门峡组。研究区克素尔组为一套灰—灰白色巨厚层状硅质白云岩及灰色白云质灰岩,紫红色白云质灰岩、白云岩、灰色—灰黑色白云质灰岩等。岩石为中层—巨厚层,岩层厚度较为稳定,产状总体向西南倾斜,在210°∠40°~240°∠70°之间。灰岩中多种沉积构造发育,以水平层理、平行层理为主,同时发育有波状层理、斜层理、波痕、冲刷面、同生角砾、鲕粒沉积等构造,表明其沉积环境多为浅水、有机质发育。叠层石在灰岩和白云岩中均有分布,且形态各异(图3)。

  • 3 叠层石系统学

  • 以叠层石作为地层划分和对比的标志,或解释沉积环境,必须对其进行科学的分类。自从Pia(1927)正式将叠层石分为5个形态属以来,不少学者开始探索叠层石属以上的各级分类系统(Raaben,1969)。在现今的叠层石分类系统中,尽管属和种的划分仍无严格的标准,属(群)和种(形)的分类单元已经被广泛接受和采用。而属以上的分类单元,如科、目、纲等,尚未建立统一标准。曹瑞骥和袁训来(2006)依据我国的化石材料,在Raaben(2001)等前人的基础上,提出了一个“属”以上的分类系统,即完全按照对叠层石形态学特征,忽略建造叠层石的微生物的系统发育及亲缘关系。本文基于此分类方法,对克素尔组叠层石进行宏观形态描述与分类,共鉴定出9个不同的叠层石属,均为宏体叠层石。其中,在柱叠层石纲,分叉柱叠层石目识别出共2科6属,分别为铁岭叠层石属、蓟县叠层石属、锥穹叠层石属、通古斯叠层石属、贝加尔叠层石属和阿纳巴尔叠层石属;在柱叠层石纲,不分叉叠层石目识别出锥叠层石科圆柱叠层石属:在层叠层石纲和球叠层石纲分别鉴定出层叠层石属和卷心菜叠层石属。此外,还有部分形态不规则的叠层石,属、种未定(图4,图5)。

  • 图2 青海省湟中区东岔沟地质简图

  • Fig.2 Geologic map of Dongchagou Village, Huangzhong District, Qinghai Province

  • 图3 青海省湟中区东岔沟地层柱状图及叠层石分布

  • Fig.3 Stratigraphic column chart and stromatolites distribution in Dongchagou Village, Huangzhong District, Qinghai Province

  • 图4 青海省湟中区东岔沟分叉柱叠层石

  • Fig.4 Ramificolumllati from Dongchagou Village, Huangzhong District, Qinghai Province

  • (a)—阿纳巴尔叠层石属;(b)—铁岭叠层石属;(c)—蓟县叠层石属;(d~e)—锥穹叠层石属,虚线标出锥形与穹形两类层理;(f)—通古斯叠层石属,蓝色箭头所指具壁;(g)—贝加尔叠层石属,蓝色箭头所指不具壁

  • (a) —Anabaria; (b) —Tielingella; (c) —Chihsienella; (d~e) —Conicodomenia, the dotted lines indicate conical and domed bedding; (f) —Tungussia, the blue arrow points to the wall; (g) —Baicalia, the blue arrow indicates no wall

  • 图5 青海省湟中区东岔沟不分叉柱叠层石及其他叠层石

  • Fig.5 Unramificolumllati and other stromatolites from Dongchagou Village, Huangzhong District, Qinghai Province

  • (a)—圆柱叠层石属整体形态;(b)—圆柱叠层石属规整层理,(c)—圆柱叠层石属另一处叠层石横断面,呈椭球形;(d)—层叠层石属;(e)—卷心菜叠层石属;(f)—不规则叠层石,未定种属

  • (a) —Colonnella, overall morphology; (b) —Colonnella, regular bedding; (c) —Colonnella, the cross section of another Colonnella; (d) —Stratifera; (e) —Cryptozoon; (f) —irregular stromatolites, unclassified

  • 柱叠层石纲  Class Columellati Cao and Yuan,2006

  • 分叉柱叠层石目  Order Ramificolumllati Cao and Yuan,2006

  • 蓟县叠层石科  Family Chihsienellaaceae Cao and Yuan,2006

  • 铁岭叠层石属  Genus Tielingella Liang and Cao(Tsao),1974

  • (图4b)

  • 1974 Tielingella Liang and Cao,曹瑞骥、梁玉左,p.13、14,图版Ⅵ,图3、4;

  • 1979 Tielingella Liang and Cao,国家地质总局天津地质矿产研究所,p.69~70,图版26,图1~4。

  • 模式种 铁岭铁岭叠层石Tielingellatielingensis Liang and Cao(Tsao)

  • 属征 叠层体由巨大的短粗次圆柱体组成,垂直层面生长。一些柱体分叉,通常为简单平行和微加宽平行式,偶见微散开式分叉。一些柱体不分叉,呈短次圆柱状或下窄向上微增宽的陀螺状。柱体侧部较平整或起伏不平,不具壁,也见不到明显的檐。层理细而密集,很平坦,呈微凸或平缓穹形。微构造主要为条带状或凝块状,亦见线状。

  • 描述 叠层体为白色,围岩深褐色。宽大于10 cm,高度一般大于20 cm。纵断面观察,柱体分叉或不分叉。分叉时母柱体微增宽,分为2~3个窄的子柱体。不分叉时,柱体呈下窄上微增宽的陀螺体。柱体表面不平整,不具壁,没有明显的帽檐和环檐。层理微上凸,常呈平缓穹形。

  • 比较与讨论 本属分叉方式与Kussiella属较为相似,但本属不具明显的环檐,层理相当平坦,明显区别于后者。当柱体不分叉时,本属在柱体形态上与Colonnella属存在一定的相似性,区别在于后者柱体形态更为规则、整齐,层理的继承性和对称性更佳。该属以柱体向上微增宽的陀螺状形态与Chihsienella属区分。与模式种相比,研究区叠层石直径和高度均偏小。

  • 产地及层位 天津蓟县城北老虎顶;中元古界蓟县系铁岭组上部;青海湟中区烟贵峡;中元古界上部花石山群克素尔组。

  • 蓟县叠层石属  Genus Chihsienella Liang and Cao,1974

  • (图4c)

  • 19 34 Collenia Kao et al.,高振西等,p.248,图版Ⅲ;

  • 1974 Chihsienella(Kao et al.),Liang and Cao,曹瑞骥、梁玉左,p.14~15,图版Ⅵ,图1、2;

  • 1979 Chihsienella(Kao et al.),国家地质总局天津地质矿产研究所,p.55,图版10,图1~4;

  • 19 85 Chihsienella(Kao et al.),李钦仲等,p.28,图版9,图4、5。

  • 模式种 蓟县蓟县叠层石Chihsienellachihsienensis Liang and Cao

  • 属征 叠层体由形态较规整的次圆柱或扁圆柱体组成。柱体常以简单平行分叉方式,从较粗的母柱体中分出2~3个相互平行的较窄的子柱体,有时两个相邻的子柱体在生长过程中又可融合成一个规则的宽柱体。个别柱体具有微散开式分叉。柱体表面平整或具低起伏的瘤,不具帽檐、环檐和连层,无壁或局部具有壁,常具鞘。一般来说,在粗大的母柱体中,层理密集而平坦,继承性和对称性佳;而在细长的子柱体中,层理平坦,中等上凸或强烈上凸,相对较厚,继承性和对称性一般。其微构造通常呈带状或线状,并常与小的不规则凝块相共生。

  • 描述 叠层体为黄褐色,由规整的次圆柱体构成。柱体平行排列,垂直地层层理方向分布,具简单平行式分叉。同一个柱体直径较稳定,生长过程中宽度不变。不同的柱体,直径不等,以3~5 cm宽的柱体居多,少数柱体宽达8 cm。柱体高30~50 cm。柱体侧部多半较平整,有时具低起伏的瘤状突起。无帽檐、环檐和连层,具鞘。柱间的间距较窄,一般为2~5 cm。层理为平缓弧形,密集,规则,清晰。层理厚度稳定,继承性和对称性佳。

  • 比较与讨论 该属柱体形态规整,与Gymnosolen属相似,但以柱体更宽明显区别于后者。与Tielingella相比柱体宽度更均匀,且呈平行分布。该属基本层更为平坦,而Colonnella基本层更接近穹状。天津蓟县铁岭组模式种柱体高30~80 cm,个别高度可达1 m,研究区该属柱体高度偏低。

  • 产地及层位 天津蓟县城北骆驼岭;中元古界蓟县系铁岭组上部;青海湟中区烟贵峡;中元古界上部花石山群克素尔组。

  • 叠层石属  Genus Conicodomenia Liang et al.,1979

  • (图4d、e)

  • 1979 Conicodomenia Liang et al.,国家地质总局天津地质矿产研究所,p.77~79,图版37,图1~4,插图32。

  • 模式种 细长锥穹叠层石Conicodomenialongotenuia Liang et al.

  • 属征 叠层石由较长的次圆柱体组成。柱体具简单平行至加粗平行式分叉。1个母柱体通常分为2个、少数分为3个子柱体。有时相邻子柱体间具连层。本属最重要的特征是柱体由锥形和穹形两类层理组成,在生长过程中这两类层理交替发育。层理密集。柱体侧表面较为平整,但无壁,与围岩界限清楚。

  • 描述 叠层体由较长的直或微弯曲的次圆柱体组成。柱体具简单平行至微加粗平行式分叉,相互平行排列,直径一般为2 cm,少数大于2 cm,高十余厘米不等。柱间间距较大。柱体由锥形和穹形两种层理组成,层理清晰,继承性和对称性佳。锥形层理的锥顶角在70°~80°之间,轴部微加厚。柱体侧表面平整或微起伏不平,无壁,见不到明显的檐。

  • 比较与讨论 本属柱体由锥形和穹形两类层理相互交替组成的特点,可明显区别于其他叠层石属。本属与Chihsienella常同时出现。上述两属在叠层体总面貌上也非常相似,唯一的区别是Chihsienella属的柱体中见不到锥形层理,可以据此特征将二者区分开来。

  • 产地及层位 天津蓟县城北夏庄子西沟;铁岭子及骆驼岭一带;中元古界蓟县系铁岭组顶部;青海湟中区烟贵峡;中元古界上部花石山群克素尔组。

  • 通古斯叠层石科  Family TungussiaaceaeRaaben,1969

  • 通古斯叠层石属  Genus TungussiaSemikhatov,1962

  • (图4f)

  • 19 60 Collenia Semikhatov, p.1481;

  • 19 62 Tungussia Semikhatov, p.205。

  • 模式种  Tungussia nodosa Semikhatov

  • 属征 叠层体由分叉的柱体组成,柱体大小变化无常。分叉方式多样,以剧烈散开式分叉为主。见不到平行或呈灌木状分布的柱体,以近水平与垂直向上生长的柱体为特征,而垂直生长柱体通常呈陀螺状或块茎状。有时几个柱体可以从一个柱体的同一点分出。柱体横断面圆形或不规则叶状,直径不固定,从几厘米至10~15 cm,柱高3~15 cm。柱体侧表面光滑或具小的檐。柱体边缘无遮盖或具不协调的壁。偶见连层。

  • 描述 叠层体由块茎状柱体和短次圆柱体组成,多见强烈散开式分叉和轮生式分叉。柱体直径在10 cm左右,颜色呈灰白色和鲜艳紫红色。层理以半球穹形和陡峭穹形为主,厚度较稳定,层理的继承性和对称性尚可。柱体侧表面较光滑,具壁。

  • 比较与讨论  Tungussia属和Baicalia属均为块茎状柱体,但前者以其多样性的分叉和具大量低角度倾斜的柱体区别于后者。该属还以柱体大小的多变性和连层稀少,区别于Parmites属。Tungussia属在总体形态上与Linella属和Poludia属有一定相似性,但Linella属缺少几个柱体从同一点分出的特征,而Poludia属通常具有扭曲的或蘑菇形的柱体。研究区该属柱体直径与模式种直径与高度相似,但比国内其他通古斯属叠层石(相似种)直径更大。

  • 产地及层位 西伯利亚吐鲁汗(Turukhan)地区;里菲系什克洪通古斯(Sukhotungussin)组;青海湟中区烟贵峡;中元古界上部花石山群克素尔组。

  • 贝加尔叠层石属  Genus Baicalia Krylov,l962

  • (图4g)

  • 1937 Collenia Maslov, p.287, plate4, figs.2,3;p.333, plate2, fig.1, text-fig.1;

  • 19 60 Collenia Maslov, Krylov, p.896, text-fig.1;

  • 1960 Collenia Maslov, Semikhatov, p.1480~1481, plate4, text-figs.1a~b, 4a;

  • 1963 Baicalia (Maslov) , Krylov, p.64~70, plate Ⅶ~Ⅺ, text-figs.18~20;

  • 19 74 Baicalia(Maslov),曹瑞骥、梁玉左,p.108,图版Ⅶ,图1;

  • 19 85 Baicalia(Maslov),李钦仲、杨应章、贾金昌,p.112、113,图版9,图1;

  • 20 08 Baicalia(Maslov),钱迈平,p.93,图版ⅩⅩⅨ,图4。

  • 模式种 贝加尔贝加尔叠层石Baicaliabaicalica Maslov(ColleniabaicalicaMaslov)

  • 属征 叠层体由块茎状柱体组成,柱体表面具大的瘤。母柱体分为2个(有时几个)子柱体,子柱体基部具收缩的特点。在柱体表面,层理局部彼此叠复,有时悬至柱体外,形成不等大的帽檐。柱体直径变化甚大,从1~50 cm不等。

  • 描述 叠层体为白色,围岩为灰色。叠层体由典型的块茎状柱体组成,柱体具收缩和膨胀的特点。柱体直径变化较大,从2~10 cm不等。柱体具散开式分叉,分叉呈钝角。柱体微弯曲,垂直或倾斜地层层理走向生长。层理呈平缓穹形,不具壁。

  • 比较与讨论  TungussiaBaicalia均为块茎状柱体,但前者以其多样性的分叉和具大量低角度倾斜的柱体区别于后者。同时,Tungussia属局部具壁。

  • 产地及层位 俄罗斯西伯利亚贝加尔湖一带;尤化图系(Uluntui)(相当于中里菲系);辽宁金县大李家屯;新元古界南华系十三里台;青海湟中区烟贵峡;中元古界上部花石山群克素尔组。

  • 阿纳巴尔叠层石属  Genus Anabaria Komar,l964

  • (图5a)

  • 19 74 Anabaria Liang and Cao,曹瑞骥、梁玉左,p. l3,图版V,图1;

  • 1979 Anabaria Liang and Cao,国家地质总局天津地质矿产研究所,p.54,图版6,图1,图版7,图3、4。

  • 模式种  Anabaria radialis Komar

  • 属征 叠层体由积极分叉的柱体组成,柱体放射状排列,通常2~4个子柱体从母柱体的一个分岔点上分出,故叠层体总形态呈灌木丛状。少数柱体呈圆柱形,多数柱体向上或向下微增宽。柱体横断面圆形。柱体侧表面较光滑,具壁或无壁。层理中等穹形或半球穹形。

  • 描述 叠层体为灰白色,围岩为灰色。叠层体呈灌木丛状,由不规则的次圆柱体和扁圆柱体组成。柱体直径变化较大,从2~8 cm不等。层理平缓穹形至半球穹形。侧表面光滑,不具檐,连层少见,局部具壁。

  • 比较与讨论 无平行分布的柱体是本属与GymnosolenMinjaria属的重要区分点;灌木丛状的叠层体形态是本属与BaicaliaTungussia属的显著不同点。

  • 产地及层位 俄罗斯西伯利亚北部;尤斯迈出丝塔克系(Yousmastakh)最下部(相当于中里菲系);天津蓟县城北骆驼岭及夏庄子西沟;中元古界蓟县系铁岭组上部;青海湟中区烟贵峡;中元古界上部花石山群克素尔组。

  • 分叉柱叠层石目  Order unRamificolumllati Cao and Yuan,2006

  • 叠层石科  Family ConophytonaceaeRaaben,1969

  • 圆柱叠层石属  Genus Colonnella Komar,1964

  • (图5a、b、c)

  • 19 64 Colonnella Komar,p.69~70, plate Ⅲ, figs.1~3;

  • 1979 Colonnella Komar,朱士兴、曹瑞骥、赵文杰、梁玉左,p.79,图版Ⅳ,图1,图版Ⅹ,图5;

  • 19 82 Colonnella Komar,张录易,p.358,图版93,图4;

  • 19 91 Colonnella Komar,李铨、冷坚,p.129,图版24,图4。

  • 模式种 树桩圆柱叠层石Colonnellacormosa Komar

  • 属征 叠层体为不分叉的圆柱体,具半球状凸起的层理,凸度稳定。层理很规整,不论在柱体中心或边缘,既不变薄,也不增厚。柱体直。多半垂直地层层面生长彼此平行分布,横断面圆形或椭圆形。柱体边缘无遮盖,时具少量檐和连层。柱体直径5~10 cm,高100~200 cm。

  • 描述 叠层体为不分叉的规则圆柱体,灰黄色或紫红色。柱体相互平行,垂直地层层面生长,宽6~8 cm,高大于70~80 cm。柱体侧表面比较平坦,未见显著的檐和瘤。层理薄而密集,其厚度为0.2~0.5 mm。在柱体中心或边缘部分,层理厚度无明显变化。层理呈平缓穹形或半球穹形,继承性和对称性均佳。

  • 比较与讨论 本属在柱体形态上与不分叉的Tielingella属存在一定的相似性,区别在于该属柱体形态更为规则、整齐,层理的继承性和对称性更佳。与Chihsienella相比,该属基本层更接近穹状。

  • 产地及层位 原苏联阿钠已尔(Anabar)地块东坡;中里菲系尤斯巴塔(Yusmastak)组下亚组;辽宁大石桥南楼圣水寺古元古界辽河群大石桥组;青海湟中区烟贵峡;中元古界上部花石山群克素尔组。

  • 层叠层石纲  Class Stratiformati Cao and Yuan,2006

  • 层叠层石科  Family StratiferaaceaeRaaben and Sinha,1989

  • 层叠层石属  Genus StratiferaKorolyuk,1956

  • (图5d)

  • 模式种  Stratifera rara Korolyuk

  • 属征 叠层体为层状体,纵断面显示隆起和凹陷单调交替。层理呈波状起伏,在叠置上具高度继承性。

  • 描述 叠层体为中至大型,整体为灰黑色。层理长度可达几米至十几米,甚至更长。单层厚度为毫米级,单层的连续性好、对称性差。

  • 比较与讨论 由于叠层体形态简单,所以叠层石纲未建目,只建一个科,且种的划分较难。Korolyuk(1960)建议依据隆起和凹陷的形态学特征作为分种依据,而Semikhatov(1978)主张依据微构造划分。

  • 产地及层位 西伯利亚东部;下寒武统;黑龙江省泰康县杜402井;白垩系青山口组; 青海湟源县静房湾;中元古界上部花石山群克素尔组。

  • 球叠层石纲  Class Sphaerati Cao and Yuan,2006

  • 卷心菜叠层石新科  Family Cryptozoonaceae Cao and Yuan,2006

  • 卷心菜叠层石属  Genus Cryptozoon Hall,1883

  • (图5e)

  • 19 79 Cryptozoon Liang,国家地质总局天津地质矿产研究所,p.84,图版43,图1~5。

  • 模式种  Cryptozoonproliform Hall

  • 属征 叠层体球形或椭球形,直径达数十厘米,通常由数个紧密排列的柱体或层柱体组成。柱体或层柱体常呈陀螺状,不等大,其外部被一些共同层包围。叠层体或单个分布,或呈片出现。

  • 描述 叠层体为灰黑色,由数个柱状或陀螺状柱体组成。单体呈扁平椭球体,直径在20~30 cm之间。柱体表面不平坦,具帽檐。柱体不分叉,柱间具连层。这些柱体上部边缘通常被一些共同层包裹。

  • 比较与讨论 该属叠层体形态特殊,所以未建目,只建一个科。以扁圆体到球茎状的形态与其他叠层石区分。Lee and Riding(2021)认为此种叠层石可能是角状海绵和微生物碳酸盐岩的层间联合体,其特点是具有良好的分层、陡边和侧向扩张。

  • 产地 美国纽约萨拉托加泉附近;上寒武统;天津蓟县下营团山子村附近,古元古界长城系团山子组;青海湟源县堂堂;中元古界上部花石山群克素尔组。

  • 4 青海叠层石对比与讨论

  • 4.1 柱叠层石分类方法总结

  • 根据上述分类方法,综合分析叠层石形态、叠层石层理横向展布状态,可将花石山群克素尔组叠层石分为柱叠层石纲、层叠层石纲和球叠层石纲。根据叠层石是否分叉,在纲之下可将叠层石分为分叉柱叠层石目和不分叉叠层石目。科级以上分类明确且形象,便于区分。科级划分是根据两个或两个以上主要特征和几个辅助特征联合,其中分叉柱叠层石目共分为6科49属,不分叉柱叠层石目共1科6属,且科级命名主要由英译而来,比如裸枝叠层石科、蓟县叠层石科,这些科名并不能直接与叠层石形态分类进行结合。面对如此多种类的柱叠层石,除了经验丰富的叠层石学家,很难在野外考察中迅速定出叠层石属种。严贤勤(2015)曾提出对我国新元古代叠层石进行性状编码的概念,即通过一组阿拉伯数字反应叠层石形态和结构的性状,共包括柱体形态、大小、高度、分叉方式等十组性状。但此类方法中很多性状编码无法明确厘定,常具有模糊的界限。

  • 为了加强柱叠层石的科级分类,笔者在此总结了分叉柱叠层石6个科的分类方法(图6),步骤如下:

  • (1)根据叠层石特征性分叉区分出宋集叠层石科,印卓尔叠层石科。

  • (2)根据柱体规则度区分出通古斯叠层石科。

  • (3)根据分叉频繁度与柱体直径区分出裸枝叠层石科。

  • (4)根据侧表面平整度区分出蓟县叠层石科与喀什叠层石科。

  • 据此方法大致分出柱叠层石科以后,再根据各个属种的描述一一对比,定出叠层石的具体属种。该方法能够简化柱叠层石纲的科级分类步骤,也能对柱叠层石进行明显区分。

  • 4.2 青海叠层石与模式种对比

  • 青海东岔沟克素尔组叠层石丰度高、类型丰富且色泽鲜艳。根据曹瑞骥提出的分类方法进行分类,基本能与国内外已知叠层石属种相对应,但柱体直径与高度略有差异。

  • 研究区克素尔组底部灰黄色厚层亮晶灰岩发育Tielingella,该属叠层石为短粗次圆柱体,柱体规则且边缘平整,以其下窄上宽的陀螺状而明显区别于其他属种。蓟县铁岭组模式种高度为1~2 m,克素尔组柱体较小,为20~50 cm;中部紫红—灰红色亮晶灰岩下层发育Colonnella,该属不分叉,柱体规则、直立,且层理为凸度稳定的半球状。原苏联中里菲系模式种高度为1~2 m,克素尔组柱体高度仅为70~80 cm;紫红—灰红色亮晶灰岩上层发育Tungussia,该属形态不规则,分叉较多,且通常几个柱体从一个柱体的同一点分出。柱体直径与西伯利亚里菲系模式种相似,为10~15 cm;中上部浅灰褐色厚层白云岩化灰岩中发育ChihsienellaBaicalia。前者柱体为规则次圆柱体,直立平行,蓟县铁岭组模式种柱体高30~80 cm,个别可达1 m,克素尔组高度仅为30~50 cm。后者柱体为不规则块茎状,西伯利亚中里菲系模式种柱体直径变化较大,为1~50 cm,克素尔组柱体直径为2~10 cm,整体直径较小;上部浅灰色白云岩发育ConicodomeniaCryptozoon,特征明显,与模式种形态大小均较为接近;顶部黑色灰岩中发育Anabaria,该属与西伯利亚中里菲系模式种形态大小相似,但柱体排列较为平行,缺少灌木状特征。Stratifera分布于研究区附近克素尔组中,形态简单,种的划分较难。

  • 图6 柱叠层石科级分类

  • Fig.6 Family classification of columnar stromatolites

  • 整体而言,青海省东岔沟克素尔组所发现的9个不同叠层石属形态清晰,均具有与模式种相似的特征,但大多叠层石相比于模式种的柱体直径和高度有所偏小。由于叠层石属征往往有较大的柱体直径和高度范围,且不同种也具有不同的高度和直径,所以柱体直径和高度在属的划分只能作为辅助分类依据,柱体形态与规则度、分叉方式、分叉频繁度等特征更为重要。

  • 5 叠层石与地层对比

  • 5.1 叠层石生物地层学意义

  • 叠层石不同于一般实体化石,是蓝菌类微生物与沉积作用共同形成的生物沉积构造(Awramik et al.,1976),所以在探讨叠层石生物地层学意义的同时,必须探明其形态发生和形态分异的原因。促使叠层石形态变化的因素是多方面的,其中环境因素,比如水流(Hoffman,1974;Tosti and Riding,2017)、沉积物供给(Reid et al.,2003)、水深(Awramik and Sprinkle,1999)、光照(Monty,1967;Monty and Hardie,1976;Golubic and Focke,1978)等对叠层石的形态变化确有显著的影响,但它们很难改变整个叠层石组合面貌的基本特征及其规律的变化趋势。

  • 随着建造叠层石的微生物不断演化,在叠层石一些可见特征中就有所表现,如微构造、纹层以及叠层石柱体形态、分叉方式和边缘纹饰等综合特征(曹瑞骥和袁训来,2006),而这些特征往往也是叠层石分类的重要依据。Awramik(1976)对加拿大Suprtior湖北岸古元古代Gunflint组4个不同形态的叠层石进行研究,发现不同形态的叠层石含有各自特有的微生物组合。曹瑞骥(2001)对我国苏北新元古界九顶山组一个似锥叠层石分析得出,前寒武纪广泛发育的Conophyton叠层石的形态特征和后期发育可能取决于最初的微生物席造型和后期微生物席的生长连续性。Semikhatov and Raaben(1996)根据叠层石属、种变化的动力学推断,某一地质年代特有的叠层石属、种及其组合的存在是由于早期全球环境的统一变化和局部微生物群落变化造成的。因此,叠层石组合具有一定的生物地层学意义,能够进行地层对比。

  • 虽然目前叠层石个体还不能用来确定元古宙年代地层学单元的界限(Semikhatov and Raaben,2000),但很多学者认为,元古宙,特别是中、新元古代的叠层石组合,适合于盆地间的地层对比。国内外与此相关的实例有很多,我国辽南与苏皖北部虽相距较远,在新元古代沉积特征和沉积厚度上也存在明显差异,但前一地区南华系产出的叠层石与后一地区淮北群叠层石存在明显的共性(Yin and Yuan,2003)。

  • 5.2 青海叠层石与我国中元古代叠层石组合对比

  • 为将叠层石更准确地运用于地层对比,元古宙叠层石属种可归纳为关键属种、重要属种、普通属种、偶见属种、惰性属种五类(曹瑞骥和袁训来,2006),其中关键属种鉴定特征清楚,具一定丰度,演化速率快。重要属种鉴定特征清楚,丰度大或频繁重复出现,演化速率较快。在中国,通常将两个或两个以上的关键或重要属、种集中出现或重复出现作为叠层石组合划分和对比的重要依据,并将中国的元古宙叠层石按照年代由古至今划分为8个叠层石组合(国家地质总局天津地质矿产研究所,1979)。其中中元古代沉积在我国分布颇广,以天津蓟县城北长城系高于庄组和蓟县系剖面为代表,叠层石数量丰富,类型繁多,长城系高于庄组、蓟县系杨庄组和雾迷山组及铁岭组的叠层石大致分别反映了我国中元古代早期、中期和晚期的叠层石面貌,也代表了4种叠层石组合。

  • 东岔沟克素尔组叠层石组合为BaicaliaChihsienellaAnabariaTielingellaConicodomeniaTungussiaColonnellaStratiferaCryptozoon。其中BaicaliaChihsienellaAnabariaTielingellaCryptozoon均在铁岭组叠层石组合中出现,Tielingella也仅在此组合中出现。蓟县系铁岭组为我国第6个叠层石组合,常见属、种为BaicaliaChihsienellaAnabariaTielingellaPseudotielingellaConicodomeniaConophyton以及Luotuolingensis等。铁岭组上限年龄约为1400 Ma(庞科等,2021),可能代表中元古代晚期的叠层石面貌,故将克素尔组地层年代定为中元古代蓟县纪晚期。表1将两地与国内其他叠层石出露的中元古代晚期地层进行对比,叠层石组合均具有明显可比性。所以将克素尔组定为中元古代晚期是可信的。

  • 通过对比发现,Colonnella在多数地区出现,出现率仅次于Baicalia,同时Colonnella具有较为明显的基本层特征,所以也可将其补充作为中国元古宙第6个组合(铁岭组合)的常见属、种。

  • 表1 中国中元古代晚期—新元古代早期含叠层石地层对比

  • Table1 Late Mesoproterozoic to early Neoproterozoic stromatolite-bearing strata comparison in China

  • 注:a~g代表天津蓟县铁岭组常见叠层石:BaicaliaChihsienellaAnabariaTielingellaPseudotielingellaConicodomeniaConophytonluotuolingensis;h、i代表青海湟中地区所见叠层石TungussiaColonnella

  • 5.3 叠层石重要属、种垂直分布

  • 虽然相比于叠层石组合,单个叠层石属、种无法进行地层对比(Semikhatov and Raaben,2000)。但一些叠层石属、种特别是柱叠层石,形态演化速率较快,具有较为稳定的短暂年限,通过寻找这些叠层石形态学特征缓慢变化的规律,能大致确定地层年代(曹瑞骥和袁训来,2006)。不过也有相当多的属、种形态演化速率较慢,在各个地质年代均有发育。根据多年来国内外实际资料的积累,曹瑞骥和袁训来(2006)对一些演化速率相对较快、又较为常见的叠层石属、种的垂直分布进行统计,得到常见属、种地层分布表。此表能够提高叠层石地层对比效率,便于利用常见叠层石组合确定地层年代。

  • 随着更多叠层石被报道,此表上一些常见叠层石的年代也亟待扩充。青海克素尔组所发现的9种叠层石中,共有AnabariaBaicaliaTungussiaChihsienellaColonnella五种常见属、种,由于Tielingella特征明显且具有较为稳定的短暂时限,故也将其扩充至表中(表2)。根据研究区地层分布,叠层石沉积地层由老至新的顺序为TielingellaColonnellaTungussiaChihsienellaBaicaliaAnabaria,故Tielingella分布于Colonnella结束之前。其余叠层石与表中分布基本一致,但Tungussia应在蓟县纪晚期已经出现,不再作为新元古界辽南系的地层依据。除此之外,Anabaria的出现可能指示克素尔组由中元古代晚期向新元古代早期的过渡。

  • 表2 前寒武纪叠层石常见属、种的地层分布

  • Table2 Stratigraphic distribution of common genera and species of Precambrian stromatolites

  • 注:本表节选修改自曹瑞骥和袁训来(2006),虚线为原文识别的叠层石延限,++为本文识别的叠层石延限。

  • 6 结论

  • (1)青海省湟中地层分区东岔沟村花石山群克素尔组,以白云质碳酸盐岩组合为主,本文采用形态分类法,在研究区识别出9种不同的叠层石属,包括:BaicaliaChihsienellaAnabariaTielingellaConicodomeniaTungussiaColonnellaStratiferaCryptozoon。该叠层石组合与天津蓟县的蓟县系铁岭组叠层石组合具有明显的可比性,因此,推测研究剖面的克素尔组大致为中元古代晚期。

  • (2)叠层石属Colonnella在我国的蓟县系铁岭组中广泛分布,该属分布范围广,可作为中国元古宙第6个组合(铁岭组合)的常见属。

  • (3)研究区部分常见叠层石属(如:TungussiaTielingella)在地层分布的时代得到了更新。Tielingella可作为常见属指示中元古代蓟县纪晚期,Tungussia可大致指示蓟县纪晚期也有所分布,Anabaria的出现可能指示中元古代晚期—新元古代早期。

  • 参考文献

    • Allwood A C, Walter M R, Burch I W, Kamber B S. 2007. 3. 43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambrian Research, 158: 198~227.

    • Altermann W, Kazmierczak J, Oren A, Wright D T. 2006. Cyanobacterial calcification and its rock-building potential during 3. 5 billion years of Earth history. Geobiology, 4: 147~166.

    • Awramik S M. 1976. Gunflint stromatolites: Microfossil distribution in relation to stromatolite morphology. Developments in Sedimentology, 20: 311~320.

    • Awramik S M, Riding R. 1988. Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceedings of the National Academy of Sciences, 85: 1327~1329.

    • Awramik S M, Sprinkle J. 1999. Proterozoic stromatolites: The first marine evolutionary biota. Historical Biology, 13: 241~253.

    • Black M. 1933. The algal sediments of Andros Island, Bahamas. Biological Sciences, 222: 165~192.

    • Buick R, Groves D I, Dunlop J S R, Lowe D R. 1995. Abiological origin of described stromatolites older than 3. 2 Ga: Comment and reply. Geology. 23(2): 191~192.

    • Cao Ruiji, Liang Yuzuo 1974. On the classification and correlation of the Sinian System in China, based on a study of algae and stromatolites. In: Mu Enzhi, ed. Collection of Nanjing Institute of Geology and Palaeontology, Beijing: Science Press, 5: 1~26 (in Chinese with English abstract).

    • Cao Ruiji, Yuan Xunlai, Xiao Shuhai 2001. On morphogenesis of conophyton stromatolites: Analysis of a Conophyton-like specimen from Neoproterozoic Jiudingshan Formation in Nanjing. Jiangsu Province, China. Acta Palaeontologica Sinica, 40: 318~329 (in Chinese with English abstract).

    • Cao Ruiji, Yuan Xunlai. 2006. Stromatolite. Hefei: University of Science and Technology of China Press (in Chinese with English abstract).

    • Cao Ruiji, Yuan Xunlai. 2009. Advances of stromatolites study in China. Acta Palaeontologica Sinica, 48: 314~321 (in Chinese with English abstract).

    • Chafetz H S, Buczynski C. 1992. Bacterially induced lithification of microbial mats. Palaios, 7: 277~293.

    • Dong Biqian 1993. Discovery and age-significance of spongy fossils of Kesuer Formation in the southern margin of eastern Middle-Qilian Mountain. Management and Strategy of Qinghai Land and Resource, 1: 31~34 (in Chinese with English abstract).

    • Dupraz C, Reid R P, Braissant O, Decho A W, Norman R S, Visscher P T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141~162.

    • Kao C S, Hsiung Y H, Kao P. 1934. Preliminary notes on Sinian stratigraphy of North China. Bulletin of the Geological Society of China, 13(1): 243~288.

    • Golubic S, Focke J W. 1978. Phormidium hendersonii howe: Identity and significance of a modern stromatolite building microorganism. Journal of Sedimentary Petrology, 48(3): 751~764.

    • Guo Jinjing, Li Huaikun. 1999. Angular unconformity between the Huashishan Group and Huangzhong Group in the eastern Mid-Qilian massif: Identification and implications. Progress in Precambrian Research, 2: 47~52 (in Chinese with English abstract).

    • Hoffman P. 1974. Shallow and deepwater stromatolites in lower Proterozoic platform-to-basin facies change, Great Slave Lake, Canada. AAPG Bulletin, 58(5): 856~867.

    • Hofmann H J, Grey K, Hickman A H, Thorpe R I. 1999. Origin of 3. 45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin, 111(8): 1256~1262.

    • Holland H D. 2006. The oxygenation of the atmosphere and oceans. Biological Sciences, 361(1470): 903~915.

    • Komar V A. 1964. Columnar stromatolites from the north of the Siberian platform. Biosratigr, 6: 69~70.

    • Komar V A. 1966. Upper Precambrian Stromatolites in the North of Siberian Platform and Their Stratigraphic Significance. Moscow: Trudy Geologicheskogo Instituta, Akademii Nauk SSSR.

    • Korolyuk I K 1960. Stromatolites of the Lower Cambrian and Proterozoic of the Irkutsk Amphitheatre. Moscow: Akad Nauk SSSR.

    • Krylov I N. 1960. The development of columnar, branching stromatolites during Rifean time in the Southern Urals. Doklady Akademii Nauk S. S. S. R. 132: 895~898.

    • Krylov I N. 1963. Columnar Branching Stromatolites From Rifean Adjournment of Southern Urals Mountains and Their Importance for Stratigraphic Upper Precambrian. Moscow: Akademii Nauk SSSR.

    • Lee J H, Riding R. 2021. The ‘classic stromatolite’ Cryptozoön is a keratose sponge-microbial consortium. Geobiology, 19: 189~198.

    • Li Qinzhong, Yang Yingzhang, Jia Jinchang. 1985. The study of Late Precambrian strata in the southern margin of the North China Platform (part of Shaanxi Province). Xi'an: Xi'an Jiaotong University Press (in Chinese with English abstract).

    • Li Quan, Leng Jian. 1991. The upper Precambrian in the Shennongjia region. Tianjin: Tianjin Science and Technology Press (in Chinese with English abstract).

    • Maslov V P. 1937. On the nature of the stromatolite Conophyton. Problemy Paleont, 4: 325~328.

    • Mei Mingxiang, Meng Qinfen. 2016. Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites. Journal of Palaeogeography, 18: 127~146 (in Chinese with English abstract).

    • Monty C L V. 1967. Distribution and structure of recent stromatolitic algal mats, eastern Andros Island, Bahamas. Annales de la Société Géologique de Belgique, 90: B55~B100.

    • Monty C L V, Hardie L A. 1976. Chapter 8. 6 The geological significance of the freshwater blue-green algal calcareous marsh. Developments in Sedimentology, 20: 447~477.

    • Pang Ke, Tang Qing, Wan bin, Li Guangjin, Chen Lei, Yuan Xunlai, Zhou Chuanming. 2021. Integrated Meso-Neoproterozoic stratigraphy in the Jiao-Liao-Xu-Huai area of North China Craton: A review. Journal of Stratigraphy, 45(4): 467~492(in Chinese with English abstract).

    • Petryshyn V A, Junkins E N, Stamps B W, et al. 2021. Builders, tenants, and squatters: The origins of genetic material in modern stromatolites. Geobiology, 19(3): 261~277.

    • Pia J. 1927. Thallophyta. Molecular Genetics and Genomics, 49(1): 339~344.

    • Qian Maiping. 2008. Neoproterozoic Biota in the Southeastern Margin of the North China Paleocontinent. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Qinghai Bureau of Geology and Mineral Resources. 1991. Regional geology No. 24, special geological report of ministry of geology and mineral resources, People's Republic of China: Regional geology of Qinghai Province. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Raaben M E. 1969. Columnar stromatolites and Late Precambrian stratigraphy. American Journal of Science, 267: 1~18.

    • Raaben M E, Sinha A K. 1989. Classification of stromatolites. Himalayan Geology 13: 215~227.

    • Raaben M E, Sinha A K, Sharma M. 2001. Precambrian Stromatolites of India and Russia. India: Birbal Sahni Institute of Palaeobotany Lucknow.

    • Reid R P, James N P, Macintyre I G, Dupraz C P, Burne R V. 2003. Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies, 49: 299~324.

    • Schopf J W, Kudryavtsev A B, Czaja A D, Tripathi A B. 2007. Evidence of Archean life: Stromatolites and microfossils. Precambrian Research, 158: 141~155.

    • Semikhator K A. 1998. The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures. Palaios, 13: 408~422.

    • Semikhatov M A. 1960. The vertical distribution of stromatolites in the Late Precambrian of the Turukhan of the region. Doklady Akademii Nauk SSSR, 135: 1480~1483.

    • Semikhatov M A. 1962. Riphean and Lower Cambrian of the Enisey Ridge. Moscow: Akad Nauk SSSR.

    • Semikhatov M A. 1978. Aphebian Assemblage of Stromatolites: General Characteristics and Comparision with the Riphean Ones. Moscow: Nauka.

    • Semikhatov M A, Raaben M E. 1996. Dynamics of the global diversity of Proterozoic stromatolites, article II: Africa, Australia, North America, and general synthesis. Stratigraphy and Geological Correlation, 4(1): 24~50.

    • Semikhatov M A, Raaben M E. 2000. Proterozoic Stromatolite Taxonomy and Biostratigraphy. In: Riding R E, Awramik S M, eds. Microbial Sediments. Berlin: Springer-Verlag.

    • Tianjin Institute of Geology and Mineral Resources, State Geology Administration. 1979. Study on Sinion Suberathem Stromatolites in Jixian. Tianjin: Geological Publishing House (in Chinese with English abstract).

    • Tosti F, Riding R. 2017. Current molded, storm damaged, sinuous columnar stromatolites: Mesoproterozoic of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 465: 93~102.

    • Visscher P T, Reid R P, Bebout B M. 2000. Microscale observations of sulfate reduction; correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28: 919~922.

    • Yan Xianqin. 2015. The morphological characteristic code of Neoproterozoic stromatolites in China. Acta Palaeontologica Sinica, 54(4): 444~452 (in Chinese with English abstract).

    • Yin Leiming, Yuan Xunlai. 2003. Sinian Biostratigraphy of China. In: Zhang Wentang, Chen Peiji, Palmer A R, eds. Biostratigraphy of China. Beijing: Science Press, 31~54.

    • Zhang Luyi. 1982. Paleontological Atlas of Northwest China: Shaanxi-Gansu-Ningxia Part 1. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Zhu Shixing, Cao Ruiji, Zhao Wenjie, Liang Yuzuo. 1978. An outline of the studies on stromatolites from the stratotype section of Sinian Suberathem in Chihsien County, North China. Acta Geologica Sinica, 3: 209~257 (in Chinese with English abstract).

    • 曹瑞骥, 梁玉左. 1974. 从藻化石和叠层石论中国震旦系划分和对比. 见: 穆恩之, 主编. 中国科学院南京地质古生物研究所集刊, 北京: 科学出版社, 5: 1~26.

    • 曹瑞骥, 袁训来, 肖书海. 2001. 论锥叠层石群(Conophyton)的形态发生——对苏北新元古代九顶山组一个似锥叠层石的剖析. 古生物学报, 40: 318~329.

    • 曹瑞骥, 袁训来. 2006. 叠层石. 合肥: 中国科学技术大学出版社.

    • 曹瑞骥, 袁训来. 2009. 中国叠层石研究进展. 古生物学报, 48: 314~321.

    • 董必谦. 1993. 中祁连山东段南缘克素尔组海绵类化石的发现与时代讨论. 青海国土经略, 1: 1~34.

    • 郭进京, 李怀坤. 1999. 中祁连东段花石山群与湟中群之间不整合关系讨论. 前寒武纪研究进展, 2: 47~52.

    • 国家地质总局天津地质矿产研究所. 1979. 蓟县震旦亚界叠层石的研究. 天津: 地质出版社.

    • 李钦仲, 杨应章, 贾金昌. 1985. 华北地台南缘(陕西部分)晚前寒武纪地层研究. 西安: 西安交通大学出版社.

    • 李铨, 冷坚. 1991. 神农架上前寒武系. 天津: 天津科学技术出版社.

    • 梅冥相, 孟庆芬. 2016. 现代叠层石的多样化构成: 认识古代叠层石形成的关键和窗口. 古地理学报, 18: 127~146.

    • 庞科, 唐卿, 万斌, 李光金, 陈雷, 袁训来, 周传明. 2021. 华北地台胶辽徐淮地区中—新元古代地层研究进展. 地层学杂志, 45(4): 467~492.

    • 钱迈平. 2008. 华北古陆东南缘新元古代生物群. 北京: 地质出版社.

    • 青海省地质矿产局. 1991. 中华人民共和国地质矿产部地质专报一, 区域地质第24号, 青海省区域地质志. 北京: 地质出版社.

    • 严贤勤. 2015. 我国新元古代叠层石的性状编码. 古生物学报, 54(4): 444~452.

    • 张录易. 1982, 西北地区古生物图册: 陕甘宁分册(一). 北京: 地质出版社.

    • 朱士兴, 曹瑞骥, 赵文杰, 梁玉左. 1978. 中国震旦亚界蓟县层型剖面迭层石的研究概要. 地质学报, 3: 209~257.

  • 参考文献

    • Allwood A C, Walter M R, Burch I W, Kamber B S. 2007. 3. 43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem-scale insights to early life on Earth. Precambrian Research, 158: 198~227.

    • Altermann W, Kazmierczak J, Oren A, Wright D T. 2006. Cyanobacterial calcification and its rock-building potential during 3. 5 billion years of Earth history. Geobiology, 4: 147~166.

    • Awramik S M. 1976. Gunflint stromatolites: Microfossil distribution in relation to stromatolite morphology. Developments in Sedimentology, 20: 311~320.

    • Awramik S M, Riding R. 1988. Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceedings of the National Academy of Sciences, 85: 1327~1329.

    • Awramik S M, Sprinkle J. 1999. Proterozoic stromatolites: The first marine evolutionary biota. Historical Biology, 13: 241~253.

    • Black M. 1933. The algal sediments of Andros Island, Bahamas. Biological Sciences, 222: 165~192.

    • Buick R, Groves D I, Dunlop J S R, Lowe D R. 1995. Abiological origin of described stromatolites older than 3. 2 Ga: Comment and reply. Geology. 23(2): 191~192.

    • Cao Ruiji, Liang Yuzuo 1974. On the classification and correlation of the Sinian System in China, based on a study of algae and stromatolites. In: Mu Enzhi, ed. Collection of Nanjing Institute of Geology and Palaeontology, Beijing: Science Press, 5: 1~26 (in Chinese with English abstract).

    • Cao Ruiji, Yuan Xunlai, Xiao Shuhai 2001. On morphogenesis of conophyton stromatolites: Analysis of a Conophyton-like specimen from Neoproterozoic Jiudingshan Formation in Nanjing. Jiangsu Province, China. Acta Palaeontologica Sinica, 40: 318~329 (in Chinese with English abstract).

    • Cao Ruiji, Yuan Xunlai. 2006. Stromatolite. Hefei: University of Science and Technology of China Press (in Chinese with English abstract).

    • Cao Ruiji, Yuan Xunlai. 2009. Advances of stromatolites study in China. Acta Palaeontologica Sinica, 48: 314~321 (in Chinese with English abstract).

    • Chafetz H S, Buczynski C. 1992. Bacterially induced lithification of microbial mats. Palaios, 7: 277~293.

    • Dong Biqian 1993. Discovery and age-significance of spongy fossils of Kesuer Formation in the southern margin of eastern Middle-Qilian Mountain. Management and Strategy of Qinghai Land and Resource, 1: 31~34 (in Chinese with English abstract).

    • Dupraz C, Reid R P, Braissant O, Decho A W, Norman R S, Visscher P T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141~162.

    • Kao C S, Hsiung Y H, Kao P. 1934. Preliminary notes on Sinian stratigraphy of North China. Bulletin of the Geological Society of China, 13(1): 243~288.

    • Golubic S, Focke J W. 1978. Phormidium hendersonii howe: Identity and significance of a modern stromatolite building microorganism. Journal of Sedimentary Petrology, 48(3): 751~764.

    • Guo Jinjing, Li Huaikun. 1999. Angular unconformity between the Huashishan Group and Huangzhong Group in the eastern Mid-Qilian massif: Identification and implications. Progress in Precambrian Research, 2: 47~52 (in Chinese with English abstract).

    • Hoffman P. 1974. Shallow and deepwater stromatolites in lower Proterozoic platform-to-basin facies change, Great Slave Lake, Canada. AAPG Bulletin, 58(5): 856~867.

    • Hofmann H J, Grey K, Hickman A H, Thorpe R I. 1999. Origin of 3. 45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin, 111(8): 1256~1262.

    • Holland H D. 2006. The oxygenation of the atmosphere and oceans. Biological Sciences, 361(1470): 903~915.

    • Komar V A. 1964. Columnar stromatolites from the north of the Siberian platform. Biosratigr, 6: 69~70.

    • Komar V A. 1966. Upper Precambrian Stromatolites in the North of Siberian Platform and Their Stratigraphic Significance. Moscow: Trudy Geologicheskogo Instituta, Akademii Nauk SSSR.

    • Korolyuk I K 1960. Stromatolites of the Lower Cambrian and Proterozoic of the Irkutsk Amphitheatre. Moscow: Akad Nauk SSSR.

    • Krylov I N. 1960. The development of columnar, branching stromatolites during Rifean time in the Southern Urals. Doklady Akademii Nauk S. S. S. R. 132: 895~898.

    • Krylov I N. 1963. Columnar Branching Stromatolites From Rifean Adjournment of Southern Urals Mountains and Their Importance for Stratigraphic Upper Precambrian. Moscow: Akademii Nauk SSSR.

    • Lee J H, Riding R. 2021. The ‘classic stromatolite’ Cryptozoön is a keratose sponge-microbial consortium. Geobiology, 19: 189~198.

    • Li Qinzhong, Yang Yingzhang, Jia Jinchang. 1985. The study of Late Precambrian strata in the southern margin of the North China Platform (part of Shaanxi Province). Xi'an: Xi'an Jiaotong University Press (in Chinese with English abstract).

    • Li Quan, Leng Jian. 1991. The upper Precambrian in the Shennongjia region. Tianjin: Tianjin Science and Technology Press (in Chinese with English abstract).

    • Maslov V P. 1937. On the nature of the stromatolite Conophyton. Problemy Paleont, 4: 325~328.

    • Mei Mingxiang, Meng Qinfen. 2016. Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites. Journal of Palaeogeography, 18: 127~146 (in Chinese with English abstract).

    • Monty C L V. 1967. Distribution and structure of recent stromatolitic algal mats, eastern Andros Island, Bahamas. Annales de la Société Géologique de Belgique, 90: B55~B100.

    • Monty C L V, Hardie L A. 1976. Chapter 8. 6 The geological significance of the freshwater blue-green algal calcareous marsh. Developments in Sedimentology, 20: 447~477.

    • Pang Ke, Tang Qing, Wan bin, Li Guangjin, Chen Lei, Yuan Xunlai, Zhou Chuanming. 2021. Integrated Meso-Neoproterozoic stratigraphy in the Jiao-Liao-Xu-Huai area of North China Craton: A review. Journal of Stratigraphy, 45(4): 467~492(in Chinese with English abstract).

    • Petryshyn V A, Junkins E N, Stamps B W, et al. 2021. Builders, tenants, and squatters: The origins of genetic material in modern stromatolites. Geobiology, 19(3): 261~277.

    • Pia J. 1927. Thallophyta. Molecular Genetics and Genomics, 49(1): 339~344.

    • Qian Maiping. 2008. Neoproterozoic Biota in the Southeastern Margin of the North China Paleocontinent. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Qinghai Bureau of Geology and Mineral Resources. 1991. Regional geology No. 24, special geological report of ministry of geology and mineral resources, People's Republic of China: Regional geology of Qinghai Province. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Raaben M E. 1969. Columnar stromatolites and Late Precambrian stratigraphy. American Journal of Science, 267: 1~18.

    • Raaben M E, Sinha A K. 1989. Classification of stromatolites. Himalayan Geology 13: 215~227.

    • Raaben M E, Sinha A K, Sharma M. 2001. Precambrian Stromatolites of India and Russia. India: Birbal Sahni Institute of Palaeobotany Lucknow.

    • Reid R P, James N P, Macintyre I G, Dupraz C P, Burne R V. 2003. Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies, 49: 299~324.

    • Schopf J W, Kudryavtsev A B, Czaja A D, Tripathi A B. 2007. Evidence of Archean life: Stromatolites and microfossils. Precambrian Research, 158: 141~155.

    • Semikhator K A. 1998. The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures. Palaios, 13: 408~422.

    • Semikhatov M A. 1960. The vertical distribution of stromatolites in the Late Precambrian of the Turukhan of the region. Doklady Akademii Nauk SSSR, 135: 1480~1483.

    • Semikhatov M A. 1962. Riphean and Lower Cambrian of the Enisey Ridge. Moscow: Akad Nauk SSSR.

    • Semikhatov M A. 1978. Aphebian Assemblage of Stromatolites: General Characteristics and Comparision with the Riphean Ones. Moscow: Nauka.

    • Semikhatov M A, Raaben M E. 1996. Dynamics of the global diversity of Proterozoic stromatolites, article II: Africa, Australia, North America, and general synthesis. Stratigraphy and Geological Correlation, 4(1): 24~50.

    • Semikhatov M A, Raaben M E. 2000. Proterozoic Stromatolite Taxonomy and Biostratigraphy. In: Riding R E, Awramik S M, eds. Microbial Sediments. Berlin: Springer-Verlag.

    • Tianjin Institute of Geology and Mineral Resources, State Geology Administration. 1979. Study on Sinion Suberathem Stromatolites in Jixian. Tianjin: Geological Publishing House (in Chinese with English abstract).

    • Tosti F, Riding R. 2017. Current molded, storm damaged, sinuous columnar stromatolites: Mesoproterozoic of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 465: 93~102.

    • Visscher P T, Reid R P, Bebout B M. 2000. Microscale observations of sulfate reduction; correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28: 919~922.

    • Yan Xianqin. 2015. The morphological characteristic code of Neoproterozoic stromatolites in China. Acta Palaeontologica Sinica, 54(4): 444~452 (in Chinese with English abstract).

    • Yin Leiming, Yuan Xunlai. 2003. Sinian Biostratigraphy of China. In: Zhang Wentang, Chen Peiji, Palmer A R, eds. Biostratigraphy of China. Beijing: Science Press, 31~54.

    • Zhang Luyi. 1982. Paleontological Atlas of Northwest China: Shaanxi-Gansu-Ningxia Part 1. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Zhu Shixing, Cao Ruiji, Zhao Wenjie, Liang Yuzuo. 1978. An outline of the studies on stromatolites from the stratotype section of Sinian Suberathem in Chihsien County, North China. Acta Geologica Sinica, 3: 209~257 (in Chinese with English abstract).

    • 曹瑞骥, 梁玉左. 1974. 从藻化石和叠层石论中国震旦系划分和对比. 见: 穆恩之, 主编. 中国科学院南京地质古生物研究所集刊, 北京: 科学出版社, 5: 1~26.

    • 曹瑞骥, 袁训来, 肖书海. 2001. 论锥叠层石群(Conophyton)的形态发生——对苏北新元古代九顶山组一个似锥叠层石的剖析. 古生物学报, 40: 318~329.

    • 曹瑞骥, 袁训来. 2006. 叠层石. 合肥: 中国科学技术大学出版社.

    • 曹瑞骥, 袁训来. 2009. 中国叠层石研究进展. 古生物学报, 48: 314~321.

    • 董必谦. 1993. 中祁连山东段南缘克素尔组海绵类化石的发现与时代讨论. 青海国土经略, 1: 1~34.

    • 郭进京, 李怀坤. 1999. 中祁连东段花石山群与湟中群之间不整合关系讨论. 前寒武纪研究进展, 2: 47~52.

    • 国家地质总局天津地质矿产研究所. 1979. 蓟县震旦亚界叠层石的研究. 天津: 地质出版社.

    • 李钦仲, 杨应章, 贾金昌. 1985. 华北地台南缘(陕西部分)晚前寒武纪地层研究. 西安: 西安交通大学出版社.

    • 李铨, 冷坚. 1991. 神农架上前寒武系. 天津: 天津科学技术出版社.

    • 梅冥相, 孟庆芬. 2016. 现代叠层石的多样化构成: 认识古代叠层石形成的关键和窗口. 古地理学报, 18: 127~146.

    • 庞科, 唐卿, 万斌, 李光金, 陈雷, 袁训来, 周传明. 2021. 华北地台胶辽徐淮地区中—新元古代地层研究进展. 地层学杂志, 45(4): 467~492.

    • 钱迈平. 2008. 华北古陆东南缘新元古代生物群. 北京: 地质出版社.

    • 青海省地质矿产局. 1991. 中华人民共和国地质矿产部地质专报一, 区域地质第24号, 青海省区域地质志. 北京: 地质出版社.

    • 严贤勤. 2015. 我国新元古代叠层石的性状编码. 古生物学报, 54(4): 444~452.

    • 张录易. 1982, 西北地区古生物图册: 陕甘宁分册(一). 北京: 地质出版社.

    • 朱士兴, 曹瑞骥, 赵文杰, 梁玉左. 1978. 中国震旦亚界蓟县层型剖面迭层石的研究概要. 地质学报, 3: 209~257.