en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

鲁智云,男,1993年生。助理研究员,主要从事类天然条件下金刚石等地幔矿物的高温高压实验研究。E-mail:zylu22@zju.edu.cn。

参考文献
Akaishi M, Shaji Kumar M D, Kanda H, Yamaoka S. 2001. Reactions between carbon and a reduced C-O-H fluid under diamond-stable HPHT condition. Diamond and Related Materials, 10: 2125~2130.
参考文献
Bataleva Y V, Pal'yanov Y N, Sokol A G, Borzdov Y M, Palyanova G A. 2012. Conditions for the origin of oxidized carbonate-silicate melts: Implications for mantle metasomatism and diamond formation. Lithos, 128-131: 113~125.
参考文献
Blank V, Popov M, Pivovarov G, Lvova N, Terentev S. 1999. Mechanical properties of different types of diamond. Diamond and Related Materials, 8: 1531~1535.
参考文献
Borzdov Y M, Sokol A G, Pal'yanov Y N, Kalinin A A, Sobolev N V. 1999. Studies of diamond crystallization in alkaline silicate, carbonate and carbonate-silicate melts. Doklady Akademii Nauk, 366: 530~533.
参考文献
Bulanova G P. 1995. The formation of diamond. Journal of Geochemical Exploration, 53: 1~23.
参考文献
Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy & Petrology, 160: 489~510.
参考文献
Burns R C, Cvetkovic V, Dodge C N, Evans D J F, Rooney M L T, Spear P M, Welbourn C M. 1990. Growth-sector dependence of optical features in large synthetic diamonds. Journal of Crystal Growth, 104: 257~279.
参考文献
Butler J E, Woodin R L. 1994. Thin film diamond growth mechanisms. In: Lettington A H, Steeds J W, eds. Thin Film Diamond. Dordrecht: Springer Netherlands, 15~30.
参考文献
Butler J E, Windischmann H. 1998. Developments in CVD-diamond synthesis during the past decade. MRS Bulletin, 23: 22~27.
参考文献
Cartigny P, Harris J W, Javoy M. 1998. Eclogitic diamond formation at Jwaneng: No room for a recycled component. Science, 280: 1421~1424.
参考文献
DeVries R C. 1997. Diamonds from warm water. Nature, 385: 485.
参考文献
D'Haenens-Johansson U, Butler J, Katrusha A. 2022. Synthesis of diamonds and their identification. Reviews in Mineralogy and Geochemistry, 88: 689~753.
参考文献
Dobrzhinetskaya L. 2007. Diamond synthesis from graphite in the presence of water and SiO2: Implications for diamond formation in quartzites from Kazakhstan. International Geology Review, 49: 389~400.
参考文献
Edwards D F, Philipp H R. 1985. Cubic carbon (diamond). Handbook of Optical Constants of Solids. California: Academic Press, 665~673.
参考文献
Evans T, Sauter D H. 1961. Etching of diamond surfaces with gases. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 6: 429~440.
参考文献
Fagan A J, Luth R W. 2011. Growth of diamond in hydrous silicate melts. Contributions to Mineralogy and Petrology, 161: 229~236.
参考文献
Fang Chao, Jia Xiaopeng, Yan Bingmin, Chen Ning, Li Yadong, Chen Liangchao, Guo Longsuo, Ma Hongan. 2015. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 64: 228101.
参考文献
Fedortchouk Y. 2019. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth-Science Reviews, 193: 45~65.
参考文献
Fedortchouk Y, Canil D, Semenets E. 2007. Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. American Mineralogist, 92: 1200~1212.
参考文献
Fedortchouk Y, Canil D. 2009. Diamond oxidation at atmospheric pressure: Development of surface features and the effect of oxygen fugacity. European Journal of Mineralogy, 21: 623~635.
参考文献
Fedortchouk Y, Matveev S, Carlson J A. 2010. H2O and CO2 in kimberlitic fluid as recorded by diamonds and olivines in several Ekati diamond mine kimberlites, Northwest Territories, Canada. Earth & Planetary Science Letters, 289: 549~559.
参考文献
Fedortchouk Y, Zhang Zhihai. 2011a. Diamond resorption: Link to metasomatic events in the mantle or record of magmatic fluid in kimberlitic magma? The Canadian Mineralogist, 49: 707~719.
参考文献
Fedortchouk Y, Manghnani M H, Hushur A, Shiryaev A, Nestola F. 2011b. An atomic force microscopy study of diamond dissolution features: The effect of H2O and CO2 in the fluid on diamond morphology. American Mineralogist, 96: 1768~1775.
参考文献
Fedortchouk Y, Chinn I L, Kopylova M G. 2017. Three styles of diamond resorption in a single kimberlite: Effects of volcanic degassing and assimilation. Geology, 45: 871~874.
参考文献
Fedortchouk Y, Liebske C, McCammon C. 2019. Diamond destruction and growth during mantle metasomatism: An experimental study of diamond resorption features. Earth and Planetary Science Letters, 506: 493~506.
参考文献
Fedortchouk Y, Chinn I, Perritt S, Zhang Z, Stern R, Li Z. 2022. Diamond-destructive mantle metasomatism: Evidence from the internal and external textures of diamonds and their nitrogen defects. Lithos, 414: 106616.
参考文献
Gogotsi Y, Welz S, Ersoy D A, McNallan M J. 2001. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature, 411: 283~287.
参考文献
Green B L, Collins A T, Breeding C M. 2022. Diamond spectroscopy, defect centers, color, and treatments. Reviews in Mineralogy and Geochemistry, 88: 637~688.
参考文献
Guignard J, Prakasam M, Largeteau A. 2022. A review of binderless polycrystalline diamonds: Focus on the high-pressure-high-temperature sintering process. Materials, 15: 2198.
参考文献
Guo Bin, Wang Ping, Ma Huaxin, Wu Wenyu, Gu Yu, Wang Xiaoyu, Zhang Ruijun. 2020. Fe-catalytic synthesis of nanodiamond during the chlorination of vanadium carbide at ambient pressure: Influence of the Fe-introduction mode. Nanotechnology, 31: 135605.
参考文献
Guo Xinkai, Hu Qiang, Ma Hongan, Liu Xiaobing, Zhang Zhuangfei, Huang Guofeng, Xu Huiwen, Jia Xiaopeng. 2010. Research on the technology of industrial diamond synthesized by the indirect heating. Superhard Material Engineering, 22: 9~12 (in Chinese with English abstract).
参考文献
Harris J, Smit K, Fedortchouk Y, Moore M. 2022. Morphology of monocrystalline diamond and its inclusions. Reviews in Mineralogy and Geochemistry, 88: 119~166.
参考文献
Harte B. 2010. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74: 189~215.
参考文献
Hong S M, Akaishi M, Yamaoka S. 1999. Nucleation of diamond in the system of carbon and water under very high pressure and temperature. Journal of Crystal Growth, 200: 326~328.
参考文献
Hu Meihua, Bi Ning, Li Shangsheng, Su Taichao, Li Xiaolei, Hu Qiang, Jia Xiaopeng, Ma Hongan. 2013. Synthesis of gem diamond crystals by multiseed method using China-type cubic high-pressure apparatus. Acta Physica Sinica, 62: 188103 (in Chinese with English abstract).
参考文献
Jia Xiaopeng. 2008. Synthesis technology and latest research progress of gem-grade diamond large single crystal. Advanced Materials Industry, 8: 55~57 (in Chinese).
参考文献
Jia Xiaopeng. 2020. Study on the synthesis of “natural” diamond at high temperature and high pressure. Journal of Atomic and Molecular Physics, 37: 909~915 (in Chinese with English abstract).
参考文献
Kaminsky F, Zakharchenko O, Davies R, Griffin W, Khachatryan-Blinova G, Shiryaev A. 2001. Superdeep diamonds from theJuina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140: 734~753.
参考文献
Kanda H. 2005. Crystal growth of diamond. In: Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials. John Wiley & Sons, Ltd, 407~432.
参考文献
Kanda H, Akaishi M, Yamaoka S. 1990. Morphology of synthetic diamonds grown from Na2CO3 solvent-catalyst. Journal of Crystal Growth, 106: 471~475.
参考文献
Kanda H, Watanabe K. 2004. HPHT synthetic diamonds grown from phosphorus: Growth morphology and cathodoluminescence spectra. Physica Status Solidi (a), 201: 2414~2418.
参考文献
Khokhryakov A F, Pal'yanov Y N. 2007. The evolution of diamond morphology in the process of dissolution: Experimental data. American Mineralogist, 92: 909~917.
参考文献
Khokhryakov A F, Pal'yanov Y N. 2010. Influence of the fluid composition on diamond dissolution forms in carbonate melts. American Mineralogist, 95: 1508~1514.
参考文献
Khokhryakov A F, Sokol A G, Borzdov Y M, Pal'yanov Y N. 2015. Morphology of diamond crystals grown in magnesium-based systems at high temperatures and high pressures. Journal of Crystal Growth, 426: 276~282.
参考文献
Khokhryakov A F, Kruk A N, Sokol A G. 2021. The effect of oxygen fugacity on diamond resorption in ascending kimberlite melt. Lithos, 394-395: 106166.
参考文献
Kocherahinski Y A, Kulik O G. 1996. Equilibrium phase diagrams and manufacture of synthetic diamonds. Powder Metallurgy and Metal Ceramics, 35: 470~483.
参考文献
Kozai Y, Arima M. 2005. Experimental study on diamond dissolution in kimberlitic andlamproitic melts at 1300~1420℃ and 1 GPa with controlled oxygen partial pressure. American Mineralogist, 90: 1759~1766.
参考文献
Li Shangsheng, Chen Xiaozhou, Li Xiaolei, Jia Xiaopeng, Zang Chuanyi, Ma Hongan, Tian Yu, Zhang Yafei, Xiao Hongyu, Huang Guofeng. 2008. HPHT synthesis for large single crystals of Ⅱb type high-quality gem grade diamond. Superhard Material Engineering, 20: 1~3+17 (in Chinese with English abstract).
参考文献
Li Shengrong, Xu Hong, Shen Junfeng. 2008. Crystallography and Mineralogy. Beijing: Geological Publishing House (in Chinese).
参考文献
Li Yadong, Qian Yitai, Liao Hongwei, Ding Yi, Yang Li, Xu Cunyi, Li Fangqing, Zhou Guien. 1998. A reduction-pyrolysis-catalysis synthesis of diamond. Science, 281: 246~247.
参考文献
Lian Dongyang, Yang Jingsui, Wiedenbeck M, Dilek Y, Rocholl A, Wu Weiwei. 2018. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti-Karsanti chromitite, Turkey. Contributions to Mineralogy and Petrology, 173: 72.
参考文献
Liu Fei, Yang Jingsui, Lian Dongyang, Xiong Fahui, Wu Weiwei. 2020. Diamonds and other unusual minerals in global ophiolites. Acta Geologica Sinica, 94: 2588~2605 (in Chinese with English abstract).
参考文献
Liu Fei, Lian Dongyang, Wu Weiwei, Yang Jingsui. 2021. Diamond and other exotic mineral-bearing ophiolites on the globe: A key to understand the discovery of new minerals and formation of ophiolitic podiform chromitite. Crystals, 11: 1362.
参考文献
Liu Xiaobing, Jia Xiaopeng, Fang Chao, Ma Hongan. 2016. Diamond crystallization and growth in N-H enriched environment under HPHT conditions. CrystEngComm, 18: 8506~8515.
参考文献
Lu Zhiyun, Zhao Hongyu, Wang Yongkui, Fang Shuai, Cai Zhenghao, Wang Zhiwen, Ma Hong'an, Chen Liangchao, Jia Hongsheng, Jia Xiaopeng. 2021. Diamond growth and characteristics in the metal-silicate-H2O-C system at HPHT conditions. Lithos, 404-405: 106470.
参考文献
Lu Zhiyun, Wang Zhiwen, Wang Shengxue, Zhao Hongyu, Cai Zhenghao, Wang Yongkui, Ma Hong'an, Chen Liangchao, Jia Xiaopeng. 2022. Orientational dependences of diamonds grown in the NiMnCo-silicate-H2O-C system under HPHT conditions and implications to natural diamonds. ACS Earth and Space Chemistry, 6: 987~998.
参考文献
Luth R W, Pal'yanov Y N, Bureau H. 2022. Experimental petrology applied to natural diamond growth. Reviews in Mineralogy and Geochemistry, 88: 755~808.
参考文献
Lv Qing, Liu Fei, Chu Zhiyuan, Ge Yuejin, Liu Xiao, Jiao Yongxin. 2022. The mineralogical characteristics and comparison of diamonds from the three kimberlite belts in Mengyin, Shandong Province. Acta Geologica Sinica, 94: 1225~1238 (in Chinese with English abstract).
参考文献
Lysakovskyi V V, Ivakhnenko S O, Kovalenko T V, Kvasnytsya V M, Burchenia A V. 2022. Morphology of diamond single crystals grown in the Fe-Co-Ti(Zr)-C system. Journal of Crystal Growth, 578: 126422.
参考文献
Machado W G, Moore M, Yacoot A. 1998. Twinning in natural diamond. II. Interpenetrant Cubes. Journal of Applied Crystallography, 31: 777~782.
参考文献
Mitchell R, Giardini A. 1977. Some mineral inclusions from African and Brazilian diamonds; their nature and significance. American Mineralogist, 62: 756~762.
参考文献
Nakamoto Y, Sakata M, Sumiya H, Shimizu K, Irifune T, Matsuoka T, Ohishi Y. 2011. Note: High-pressure generation using nano-polycrystalline diamonds as anvil materials. Review of Scientific Instruments, 82: 066104.
参考文献
Pal'yanov Y N, Khokhryakov A F, Borzdov Y M, Sokol A G. 1995. Diamond morphology in growth and dissolution processes. International Kimberlite Conference: Extended Abstracts, 6: 415~417.
参考文献
Pal'yanov Y N, Sokol A G, Borzdov Y M, Sobolev N V. 1998. Experimental study of diamond crystallization in carbonate-carbon systems in connection with diamond genesis in magmatic and metamorphic rocks. Geologiya i Geofizika, 39: 1780~1792.
参考文献
Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F, Shatsky A F, Sobolev N V. 1999. The diamond growth from Li2CO3, Na2CO3, K2CO3 and Cs2CO3 solvent-catalysts at P=7 GPa and T=1700~1750℃. Diamond and Related Materials, 8: 1118~1124.
参考文献
Pal'yanov Y N, Sokol A G, Khokhryakov A, Palyanova G, Borzdov Y M, Sobolev N V. 2000. Diamond and graphite crystallization in C-O-H fluid at P-T parameters of the natural diamond formation. Doklady Earth Sciences, 375: 1395~1398.
参考文献
Pal'yanov Y N, Sokol A G, Borzdov M, Khokhryakov A F. 2002. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: An experimental study. Lithos, 60: 145~159.
参考文献
Pal'yanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sobolev N V. 2006. Sulfide melts-graphite interaction at HPHT conditions: Implications for diamond genesis. Earth and Planetary Science Letters, 250: 269~280.
参考文献
Pal'yanov Y N, Kupriyanov I, Borzdov Y, Sokol A, Khokhryakov A. 2009. Diamond crystallization from a sulfur-carbon system at HPHT conditions. Crystal Growth & Design, 9: 2922~2926.
参考文献
Pal'yanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sokol A G. 2010. Effect of nitrogen impurity on diamond crystal growth processes. Crystal Growth & Design, 10: 3169~3175.
参考文献
Pal'yanov Y N, Borzdov Y M, Kupriyanov I N, Khokhryakov A F. 2012. Effect of H2O on diamond crystal growth in metal-carbon systems. Crystal Growth & Design, 12: 5571~5578.
参考文献
Pal'yanov Y N, Bataleva Y V, Sokol A G, Borzdov Y M, Kupriyanov I N, Reutsky V N, Sobolev N V. 2013a. Mantle-slab interaction and redox mechanism of diamond formation. Proceedings of the National Academy of Sciences, 110: 20408~20413.
参考文献
Pal'yanov Y N, Khokhryakov A F, Borzdov Y M, Kupriyanov I N. 2013b. Diamond growth and morphology under the influence of impurity adsorption. Crystal Growth & Design, 13: 5411~5419.
参考文献
Pal'yanov Y N, Kupriyanov I N, Khokhryakov A F, Ralchenko V G. 2015. Crystal Growth of Diamond. In: Rudolph P, ed. Handbook of Crystal Growth (Second Edition). Boston: Elsevier, 671~713.
参考文献
Pal'yanov Y N, Kupriyanov I N, Khokhryakov A F, Borzdov Y M. 2017. High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm, 19: 4459~4475.
参考文献
Pal'yanov Y N, Khokhryakov A, Kupriyanov I. 2021. Crystallomorphological and crystallochemical indicators of diamond formation conditions. Crystallography Reports, 66: 142~155.
参考文献
Sato K, Akaishi M, Yamaoka S. 1999. Spontaneous nucleation of diamond in the system MgCO3-CaCO3-C at 7. 7 GPa. Diamond and Related Materials, 8: 1900~1905.
参考文献
Sato K, Katsura T. 2001. Sulfur: A new solvent-catalyst for diamond synthesis under high-pressure and high-temperature conditions. Journal of Crystal Growth, 223: 189~194.
参考文献
Satoh S, Nakashima T, Tsuji K, Yazu S. 1990. Further study of the difference in nitrogen aggregation among (111) and (100) growth sectors of synthetic diamonds. High Pressure Research, 5: 926~928.
参考文献
Schiffmann K, Jiang X. 1994. Investigation of heteroepitaxial diamond films by atomic force and scanning tunneling microscopy. Applied Physics A, 59: 17~22.
参考文献
Shaji Kumar M D, Akaishi M, Yamaoka S. 2000. Formation of diamond from supercritical H2O-CO2 fluid at high pressure and high temperature. Journal of Crystal Growth, 213: 203~206.
参考文献
Sharp W. 1966. Pyrrhotite: A common inclusion in South African diamonds. Nature, 211: 402~403.
参考文献
Shatsky A F, Borzdov Y M, Sokol A G, Pal'yanov Y N. 2002. Phase formation and diamond crystallization in carbon-bearing ultrapotassic carbonate-silicate systems. Russian Geology and Geophysics, 43: 940~950.
参考文献
Shirey S B, Smit K V, Pearson D G, Thomson A. 2019. Diamonds and the Mantle Geodynamics of Carbon: Deep Mantle Carbon Evolution from the Diamond Record. Deep Carbon: Past to Present Cambridge University Press, 89~128.
参考文献
Shushkanova A V, Litvin Y A. 2008. Diamond formation in sulfide pyrrhotite-carbon melts: Experiments at 6. 0~7. 1 GPa and application to natural conditions. Geochemistry International, 46: 37~47.
参考文献
Simakov S K. 2010. Metastable nanosized diamond formation from a C-H-O fluid system. Journal of Materials Research, 25: 2336~2340.
参考文献
Simakov S K, Dubinchuk V T, Novikov M P, Drozdova I A. 2008. Formation of diamond and diamond-type phases from the carbon-bearing fluid at P-T parameters corresponding to processes in the Earth's crust. Doklady Earth Sciences, 421: 835~837.
参考文献
Smit K V, Shirey S B. 2020. Diamondsare not forever! diamond dissolution. Gems & Gemology, 56: 148~155.
参考文献
Sobolev N V, Logvinova A M, Tomilenko A A, Wirth R, Bul'bak T A, Luk'yanova L I, Fedorova E N, Reutsky V N, Efimova E S. 2019. Mineral and fluid inclusions in diamonds from the Urals placers, Russia: Evidence for solid molecular N2 and hydrocarbons in fluid inclusions. Geochimica et Cosmochimica Acta, 266: 197~219.
参考文献
Sokol A, Palyanov Y, Pal'yanova G, Khokhryakov A, Borzdov Y M. 2001a. Diamond and graphite crystallization from C-O-H fluids under high pressure and high temperature conditions. Diamond and Related Materials, 10: 2131~2136.
参考文献
Sokol A G, Borzdov Y M, Pal'yanov Y N, Khokhryakov A F, Sobolev N V. 2001b. An experimental demonstration of diamond formation in the dolomite-carbon and dolomite-fluid-carbon systems. European Journal of Mineralogy, 13: 893~900.
参考文献
Sokol A G, Pal'yanov Y N. 2008. Diamond formation in the system MgO-SiO2-H2O-C at 7. 5 GPa and 1600℃. Contributions to Mineralogy & Petrology, 155: 33~43.
参考文献
Sokol A G, Palyanova G A, Palyanov Y N, Tomilenko A A, Melenevsky V N. 2009. Fluid regime and diamond formation in the reduced mantle: Experimental constraints. Geochimica et Cosmochimica Acta, 73: 5820~5834.
参考文献
Sokol A G, Pal'yanov Y N, Kupriyanov I N, Litasov K D, Polovinka M P. 2010. Effect of oxygen fugacity on the H2O storage capacity of forsterite in the carbon-saturated systems. Geochimica et Cosmochimica Acta, 74: 4793~4806.
参考文献
Sokol A G, Khokhryakov A F, Pal'yanov Y N. 2015. Composition of primary kimberlite magma: Constraints from melting and diamond dissolution experiments. Contributions to Mineralogy & Petrology, 170: 26.
参考文献
Stagno V, Cerantola V, Aulbach S, Lobanov S S, McCammon C A, Merlini M. 2019. Carbon-Bearing Phases Throughout Earth's Interior, Deep Carbon: Past to Present. Cambridge: Cambridge University Press, 66~88.
参考文献
Stalder R, Ulmer P, Thompson A, Günther D. 2001. High pressure fluids in the system MgO-SiO2-H2O under upper mantle conditions. Contributions to Mineralogy & Petrology, 140: 607~618.
参考文献
Strong H M, Chrenko R M. 1971. Diamond growth rates and physical properties of laboratory-made diamond. The Journal of Physical Chemistry, 75: 1838~1843.
参考文献
Sumiya H, Toda N, Satoh S. 2002. Growth rate of high-quality large diamond crystals. Journal of Crystal Growth, 237-239: 1281~1285.
参考文献
Sun Liling, Wu Qi, Wang Wenkui. 2001. Bulk diamond formation from graphite in the presence of C-O-H fluid under high pressure. High Pressure Research, 21: 159~173.
参考文献
Sun Shishuai, Jia Xiaopeng, Yan Bingmin, Wang Fangbiao, Chen Ning, Li Yadong, Ma Hong'an. 2014. Synthesis and characterization of hydrogen-doped diamond under high pressure and high temperature. CrystEngComm, 16: 2290~2297.
参考文献
Tokuda N. 2015. Homoepitaxial diamond growth by plasma-enhanced chemical vapor deposition. In: Yang N, ed. Novel Aspects of Diamond. Switzerland: Springer, 1~29.
参考文献
Wang Wuyi, Moses T. 2016. Large colorless HPHT synthetic gem diamonds from China. Gems & Gemology, 52: 101~102.
参考文献
Wei Qiuping, Ma Li, Ye Jun, Yu Zhiming. 2015. Growth mechanism of icosahedral and other five-fold symmetric diamond crystals. Transactions of Nonferrous Metals Society of China, 25: 1587~1598.
参考文献
Welz S, Gogotsi Y, Mcnallan M J. 2003. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. Journal of Applied Physics, 93: 4207~4214.
参考文献
Xu Xiangzhen, Cartigny P, Yang Jingsui, Dilek Y, Xiong Fahui. 2017. Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar Urals. Lithosphere, 9: 156~169.
参考文献
Yamaoka S, Kanda H, Setaka N. 1980. Etching of diamond octahedrons at high temperatures and pressure with controlled oxygen partial pressure. Journal of Materials Science, 15: 332~336.
参考文献
Yamaoka S, Akaishi M, Kanda H, Osawa T. 1992. Crystal growth of diamond in the system of carbon and water under very high pressure and temperature. Journal of Crystal Growth, 125: 375~377.
参考文献
Yan X B, Xu T, Yang S R, Liu H W, Xue Q J. 2004. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. Journal of Physics D: Applied Physics, 37: 2416.
参考文献
Yang Jingsui, Meng Fancong, Xu Xiangzhen, Robinson P T, Dilek Y, Makeyev A B, Wirth R, Wiedenbeck M, Cliff J. 2015. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Research, 27: 459~485.
参考文献
Yang Jingsui, Wu Weiwei, Lian Dongyang, Rui Huichao. 2021. Peridotites, chromitites and diamonds in ophiolites. Nature Reviews Earth & Environment, 2: 198~212.
参考文献
Yao Kaili, Dai Bing, Qiao Pengfei, TanXiaojun, Shu Guoyang, Yang Lei, Liu Kang, Han Jiecai, Zhu Jiaqi. 2019. Research progress of nano-diamond materials. Journal of Synthetic Crystals, 48: 1977~1989 (in Chinese with English abstract).
参考文献
Zang Chuanyi, Jia Xiaopeng, Ren Guozhong, Wang Xiancheng. 2003. Morphology control-fast-growing method of gem-grade diamond under HPHT. Diamond and Abrasives Engineering, 138: 12~15 (in Chinese with English abstract).
参考文献
Zedgenizov D A, Kalinina V V, Reutsky V N, Yuryeva O P, Rakhmanova M I. 2016. Regular cuboid diamonds from placers on the northeastern Siberian platform. Lithos, 265: 125~137.
参考文献
Zhang Chaofan, Liu Fei, Lv Qing, Wang Yun, Yang Jingsui. 2022. Morphological features and spectral comparisons of diamonds from Three Kimberlite Belts in Mengyin, China. Minerals, 12: 1185.
参考文献
Zhang Zhihai, Fedortchouk Y, Hanley J J. 2015. Evolution of diamond resorption in a silicic aqueous fluid at 1~3GPa: Application to kimberlite emplacement and mantle metasomatism. Lithos, 227: 179~193.
参考文献
Zhao Xingzhong, Roy R, Cherian K A, Badzian A. 1997. Hydrothermal growth of diamond in metal-C-H2O systems. Nature, 385: 513~515.
参考文献
Zheng Youjin, Ma Hongan, Zhou Lin, Jia Xiaopeng. 2007. Synthesis of type II a industrial diamond under HPHT. Superhard Material Engineering, 19: 20~22 (in Chinese with English abstract).
参考文献
Zhou Lin, Li Yantao, Ma Hongan, Zheng Youjin, Jia Xiaopeng. 2008. Synthesis of golden industrial diamonds by HPHT. Superhard Material Engineering, 20: 15~18 (in Chinese with English abstract).
参考文献
Zhou Shengguo, Zang Chuanyi, Ma Hongan, Li Shangsheng, Liu Jian, Zhang Hemin, Jia Xiaopeng. 2008. Synthesis of high-quality coarse grain diamond single crystals with millimeter grade under HPHT. Superhard Material Engineering, 20: 9~11 (in Chinese with English abstract).
参考文献
Zhou Shengguo, Zang Chuanyi, Ma Hongan, Hu Qiang, Li Xiaolei, Li Shangsheng, Zhang Hemin, Jia Xiaopeng. 2009. HPHT synthesis of different shape coarse-grain diamond single crystals. Chinese Physics Letters, 26: 048102.
参考文献
郭新凯, 胡强, 马红安, 刘晓兵, 张壮飞, 黄国峰, 徐会文, 贾晓鹏. 2010. 间接加热合成工业金刚石工艺的研究. 超硬材料工程, 22: 9~12.
参考文献
胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安. 2013. 国产六面顶压机多晶种法合成宝石级金刚石单晶. 物理学报, 62: 188103.
参考文献
贾晓鹏. 2008. 宝石级金刚石大单晶的合成技术与最新研究进展. 新材料产业, 8: 55~57.
参考文献
贾晓鹏. 2020. 类天然金刚石的高温高压合成研究. 原子与分子物理学报, 37: 909~915.
参考文献
李尚升, 臧传义, 马红安, 田宇, 张亚飞, 肖宏宇, 黄国锋, 马利秋, 李勇, 陈孝洲, 李小雷, 贾晓鹏. 2008. 优质Ⅱb型宝石级金刚石大单晶的高温高压合成. 超硬材料工程, 20: 1~3+17.
参考文献
李胜荣, 许虹, 申俊峰. 2008. 结晶学与矿物学. 北京: 地质出版社.
参考文献
刘飞, 杨经绥, 连东洋, 熊发挥, 吴魏伟. 2020. 蛇绿岩中金刚石和异常矿物的全球记录. 地质学报, 94: 2588~2605.
参考文献
吕青, 刘飞, 褚志远, 葛跃进, 刘潇, 焦永鑫. 2022. 山东蒙阴三个金伯利岩带金刚石的矿物学特征与对比. 地质学报, 96: 1225~1238.
参考文献
姚凯丽, 代兵, 乔鹏飞, 谭小俊, 舒国阳, 杨磊, 刘康, 韩杰才, 朱嘉琦. 2019. 纳米金刚石材料的研究进展. 人工晶体学报, 48: 1977~1989.
参考文献
臧传义, 贾晓鹏, 任国仲, 望贤成. 2003. 快速生长优质宝石级金刚石大单晶. 金刚石与磨料磨具工程, 138: 12~15.
参考文献
郑友进, 马红安, 周林, 贾晓鹏. 2007. Ⅱa型工业金刚石的高温高压合成. 超硬材料工程, 19: 20~22.
参考文献
周林, 李彦涛, 马红安, 郑友进, 贾晓鹏. 2008. 优质金黄色工业金刚石的高温高压合成. 超硬材料工程, 20: 15~18.
参考文献
周升国, 臧传义, 马红安, 李尚升, 刘健, 张和民, 贾晓鹏. 2008. 优质毫米级粗颗粒金刚石单晶的高温高压合成. 超硬材料工程, 20: 9~11.
目录contents

    摘要

    作为深部地球研究的“信使”,不同类型天然金刚石的形成温度、压力及环境介质条件一直是地球科学中的重要内容。天然金刚石原石呈现出多种多样的晶型和表面形貌特征是其结晶过程、介质环境和运移过程的最直接记录。伴随着金刚石高温高压合成技术的发展以及合成金刚石的规模化工业生产应用,前人对合成金刚石的晶型及表面形貌特征进行了大量的描述并详细探讨了温度、压力及组分差异对晶体形态的影响。本文对不同条件下的合成金刚石与不同类型天然金刚石的晶型特征、表面形貌特征进行了详细的对比分析,旨在将高温高压实验中明确的生长条件及晶体生长规律应用于天然金刚石形成条件的研究中,并进一步为金刚石晶体形态反映出的地质环境特征、地幔流体/熔体组成和动力学条件的研究提供约束。

    Abstract

    As a “messenger” from the deep Earth, the geoscience community has long been intrigued by the formation temperature, pressure, and crystallization medium of natural diamonds. The various morphology and surface characteristics of these diamonds serve as invaluable records, shedding light on their crystallization, medium, and migration processes. With recent advancements in high-temperature and high-pressure (HPHT) techniques, as well as the industrial production of synthetic diamonds, we now have the means to extensively investigate the morphology of synthetic diamonds and their relationship with temperature, pressure, and composition. In this paper, we present a comprehensive comparative morphological review of synthetic diamonds grown under various conditions, as well as different types of natural diamonds. Our goal is to enhance our understanding of the P-T parameters and mantle fluid composition associated with the crystallization of natural diamonds. By conducting this review, we aim to provide valuable insights into the recovery of chemical composition in carbon-bearing fluids/melts within the deep Earth, especially under complex geological backgrounds. Additionally, we seek to gain a deeper understanding of the formation environment of natural diamonds and the subsequent corrosion reaction processes.

  • 金刚石晶体是碳原子以sp3杂化形成的单质矿物,其晶体结构内部的C—C单键按照键长~0.154 nm,键角~109°28′互相连接组成立体网状结构(Yan et al.,2004Wei Qiuping et al.,2015)。金刚石的晶胞为面心立方结构,晶胞参数a=b=c=56.7 pm,α=β=γ=90°,其微观晶体结构符合Oh点群3L44L36L29PC的对称型特征(李胜荣等,2008),因而其宏观晶体通常表现为等轴晶系相关的八面体、菱形十二面体、立方体、四六面体等单形特征(图1)。

  • 金刚石的晶体结构拥有目前所有已知物质中单位体积内最多的原子,这些碳原子之间彼此以键长短、键能高的非极性共价单键互相连接,所有的价电子均参与了共价键的形成。相比于石墨,金刚石的三维结构能够将外力均匀分散到晶体的不同方向,这些因素的综合影响使得金刚石在目前已发现的天然材料中展现出最高的硬度、极高的热导率和化学稳定性(D'Haenens-Johansson et al.,2022)。

  • 由于金刚石微观结构中[111]、[100]和[110]方向的原子排列形式、面网密度和距离差异性,宏观的金刚石晶体会表现出不同晶面及方向的物理化学性质的差异性。例如,金刚石的高硬度(5700~10400 kg/mm2)特性已经被广泛应用于非金属材料、有色金属材料的工业切削、研磨和加工过程中,但不同的晶面和方向显示出显著不同的切削性能,其中立方体面的对角线方向硬度最高,其次是八面体面的所有方向、立方体面与轴平行的方向,最软的为横穿十二面体方向(图1)(Blank et al.,1999)。除此之外,平行于(111)晶面的方向最易产生解理而裂开,这也会降低金刚石切削刀具的使用寿命,目前工业生产中通常使用聚晶金刚石(PCD)刀具来抵消金刚石在不同方向的硬度差异性和解理,从而达到稳定可靠的切削效果。

  • 伴随着金刚石的从不同介质的结晶过程以及后期的流体改造,金刚石晶体的表面会发育一系列复杂的生长纹理及溶蚀形貌。金刚石的表面形貌会受到形成过程中的流体/熔体种类、环境介质和后期的输运过程的广泛影响,单独对比不同类型天然金刚石的形貌特征很难给出其形成反映出的具体条件和环境特征(Zedgenizov et al.,2016; Harris et al.,2022)。幸运的是,天然金刚石的许多表面特征已经可以在确定条件的高温高压实验中得以重现,前人先后对溶剂/催化剂类型、流体/熔体成分和温度对合成金刚石晶型及表面特征的影响进行了大量的数据积累,这些条件为其在地球内部形成的条件提供了约束(Khokhryakov et al.,2021)。本文旨在通过对实验岩石学合成金刚石的晶型及表面形貌特征进行总结,同时对比不同类型天然金刚石的形态特征,为重建复杂地质背景下深部地球含碳流体/熔体的化学组成、天然金刚石的形成环境以及后期的溶蚀反应过程提供未来进一步的工作方向。

  • 图1 金刚石晶胞、常见晶型及不同方向的差异硬度(金刚石沿A、B、C、D方向的硬度逐渐降低)

  • Fig.1 The unit cell, common morphology, and variations in hardness along different directions of natural diamonds (the hardness of diamond decreases gradually along the A, B, C and D directions)

  • 1 不同途径合成金刚石的典型形态特征

  • 根据合成过程中金刚石在热力学上是否稳定,可以将各种形式的碳转化为金刚石的方法分为高温高压(HPHT)和亚稳态生长两大类(Kanda,2005)。在金刚石稳定的高压环境中,合成技术可分为直接转化法和催化合成两类。直接转化法包含了瞬时高温高压的爆轰法和稳定的极端高温高压条件下直接合成金刚石两种。不同途径合成的金刚石通常表现出图2所示的不同的晶体形态特征。

  • 1.1 爆轰法

  • 爆轰法合成金刚石是指利用炸药爆炸产生的瞬间动态极端高温高压条件将石墨直接转化为金刚石的方法(图2)。爆轰法被广泛用于工业合成晶粒尺寸小于100 nm的超细金刚石微粉(姚凯丽等,2019)。爆轰法合成金刚石具有设备简单,产量高的优势,但是获取的纳米金刚石大部分为团聚状态,其作为功能材料的应用需要经过分散和提纯步骤。

  • 图2 不同压力-温度(P-T)条件下碳的相图和代表性金刚石晶型特征

  • Fig.2 The phase diagram of carbon and representative morphology of diamonds grown under different pressure-temperature (P-T) conditions

  • 不同的区域代表了合成金刚石的不同途径:1—爆轰法合成的团聚态的纳米金刚石;2—极端高温高压直接转化法合成的聚晶金刚石集合体;3—非金属催化合成八面体、立方八面体等多种晶型的金刚石;4—金属溶剂的催化合成的典型立方八面体金刚石;5—亚稳态条件下通过化学气相沉积生长的中心块状单晶-外层多晶金刚石集合体

  • Different regions shows various pathways for diamond growth: 1—aggregated nano-diamonds synthesized by explosive detonation; 2—polycrystalline diamond aggregates grown by direct conversion method at extreme high-temperature and high-pressure conditions; 3—various diamond crystal morphologies, such as octahedrons and cubic octahedrons, synthesized with non-metal catalysis; 4—cubic octahedron diamonds synthesized with metal solvent catalysis; 5—single diamond crystal block with outer polycrystalline diamond aggregate grown by chemical vapor deposition under metastable conditions

  • 1.2 极端高温高压直接合成

  • 最近在静态超高压技术方面的突破性进展为在极端P-T条件下(>15 GPa,2000℃)用石墨直接合成金刚石提供了条件。在极端的P-T条件下,石墨向金刚石的转化非常迅速,因此合成的金刚石呈厘米级大尺寸的聚晶集合体,且具有纯净度高的优势(Guignard et al.,2022)。由于极端条件下的大腔体合成技术成本高昂,目前该方法仅用于超高压实验用压砧等特殊用途金刚石的生产。

  • 1.3 亚稳态条件下金刚石的合成

  • 在石墨稳定的低压环境中,实验室可使用化学气相沉积(CVD)技术在~0.01 MPa,1000℃的条件下来批量合成高质量的金刚石单晶或者大面积的金刚石薄膜材料(Butler et al.,1994; Schiffmann et al.,1994; Tokuda,2015)。宝石级的CVD合成金刚石通常是以{100}作为初始晶面按照层状沉积生长的板状、块状单晶或多晶集合体(Butler et al.,19941998)。

  • 除了化学气相沉积的途径之外,近些年在亚稳态条件下利用金属还原-热解催化和卤化反应生长纳米-微米级尺寸的金刚石也受到了大量的关注(Guo Bin et al.,2020)。Zhao Xingzhong et al.(1997)首先在140 MPa,~800℃条件下使用金属Ni作为催化,在金刚石晶种的表面发现了光谱学可检测的纳米-微米级金刚石层的生长(DeVries,1997; Zhao Xingzhong et al.,1997)。Li Yadong et al.(1998)通过金属还原-热解-催化途径,使用金属Na和CCl4在700℃和NiMnCo合金催化的条件下经过48 h反应合成了微米级的金刚石多晶集合体。在存在氢气的常压和200~1000℃的温度下,SiC和氯气反应可以按照SiC+2Cl2=SiCl4+4C的卤化反应模式稳定形成晶粒尺寸为5~10 nm的立方或六方金刚石(Gogotsi et al.,2001; Welz et al.,2003)。后期基于大量金属碳化物的卤化反应的实验,验证了纳米级的金刚石在常压、高温的条件下可以被稳定合成,但更大尺寸的金刚石单晶(>100 μm)目前无法通过常压下的金属碳化物卤化反应合成(Simakov et al.,2008; Simakov,2010)。尺寸大于100 μm的金刚石单晶只能在极端条件如等离子体或者高温高压条件下稳定生长。

  • 1.4 高温高压催化剂合成

  • 催化合成是在高温高压条件下使用金属或非金属触媒作为溶剂/催化剂生长不同粒度大小金刚石单晶的技术,与超高压直接合成相比,催化合成可以大幅降低金刚石生长的P-T条件至~5.5 GPa,1300℃附近(郭新凯等,2010; 贾晓鹏,2020)。当使用金属触媒时,高温高压条件下的催化合成还可以具体分为薄膜生长(FG)和温度梯度法(TGG)。薄膜生长法合成金刚石的驱动力为高温高压条件下石墨与金刚石之间的化学势的差值,通常用于毫米级的金刚石磨料、钻头材料的大规模工业生产(郑友进等,2007; 周升国等,2008; 周林等,2008),作为磨料刀具使用的工业合成金刚石通常呈立方八面体或截角八面体晶型,可伴随有较小的{113}和{110}系列晶面的发育。

  • 温度梯度法合成金刚石的生长驱动力是碳源和晶种所处位置的温度梯度引起的溶解度差,通常被应用于宝石级大颗粒高净度金刚石的合成过程(臧传义等,2003; 李尚升等,2008; 贾晓鹏,2008; 胡美华等,2013)。使用温度梯度法在金属-碳体系中合成的珠宝用金刚石原石以{100}立方体晶型为主,常呈{100}和{111}聚形的立方八面体晶型,可伴随有{113}和{110}系列晶面的发育(Zhou Shengguo et al.,2009; Wang Wuyi et al.,2016)。

  • 使用非金属触媒如C-O-H超临界流体、碳酸盐、硅酸盐-碳酸盐、熔融硫化物合成金刚石的高温高压实验通常应用于模拟地球内部上地幔-过渡带-下地幔环境中金刚石生长机理及地幔碳循环的研究中,目前非金属触媒并未应用于规模化的金刚石工业生产过程。使用非金属触媒合成的金刚石形态与其触媒种类、温度、压力等条件密切相关,本文2.4节将着重讨论非金属触媒对合成金刚石外部形态的具体影响。

  • 2 合成金刚石晶型的影响因素

  • 2.1 压力、温度对合成金刚石形态的影响

  • 在金刚石的实验室合成过程中,金刚石籽晶的取向决定了原子尺度的初始生长层的晶体学取向,而后续原子层的生长方向受到生长环境的压力、温度参数以及化学组成的共同影响(Strong et al.,1971; Burns et al.,1990)。当使用膜生长法在高温高压的金属-碳体系内生长金刚石时,压力的提高可以显著提高金刚石的成核率(D'Haenens-Johansson et al.,2022)。当P-T条件显著提升至15 GPa,2000℃以上时,甚至可以不依赖金属溶剂而快速直接合成高纯度厘米尺寸的纳米聚晶金刚石聚集体(Nakamoto et al.,2011)。而对于温度梯度法,压力的提升影响相对较小,可以观察到的影响包括拓宽晶体生长的温度区间,以及对熔融溶剂/催化剂中碳的溶解度有一定的影响,因此产生的波动也会提高晶体的生长速度(D'Haenens-Johansson et al.,2022)。

  • 如图3所示,在~5.5 GPa,1300~1500℃的金属FeNi-C体系中,随着合成温度的升高,金刚石表现出从{100}立方体向{100}+{111}截角立方体、{111}+{100}立方八面体、{111}八面体过渡的晶型演化特征(Satoh et al.,1990; Sumiya et al.,2002; Sun Shishuai et al.,2014)。但在实际的高温高压金属FeNi-C体系中,低温区更倾向于形成骸晶,而高温区合成的{111}晶体内部通常含有大量的金属包裹体。因此,高质量的合成金刚石原石通常为立方八面体晶型(Zhou Shengguo et al.,2009; Sun Shishuai et al.,2014; Fang Chao et al.,2015)。

  • 图3 FeNi-C体系不同P-T条件下合成的金刚石晶型变化特征

  • Fig.3 The morphology of diamond crystals grown with different P-T conditions in the FeNi-C system

  • 2.2 过饱和度对合成金刚石晶型的影响

  • 在弱过饱和度和低生长速率下,金刚石形态主要由{110}、{111}、{100}和{hkk}构成。随着过饱和度和生长速率的增加,晶面仅由立方体和八面体单形面构成,其比例取决于温度。随着过饱和度和生长速率的继续增加,金刚石晶体的外观形态会按照针状晶体→块状平面晶体,骨架晶体→枝晶→多晶→多晶聚集体的顺序演化(Pal'yanov et al.,19952021; Shushkanova et al.,2008)。

  • 2.3 金属触媒组分对合成金刚石晶型的影响

  • 除了压力和温度条件外,高温高压条件下所使用的金属触媒也会对金刚石的晶型产生影响(图4)。例如,纯Ni熔体更适合用来生长立方体{100}和八面体{111}单晶及其聚形立方八面体,而纯Ni熔体中添加Fe和Co则会促进十二面体{110}和四角三八面体{113}晶面的发育(Strong et al.,1971; Kocherahinski et al.,1996)。从纯Mg-C体系中生长的金刚石大多呈规则的立方体晶型,进一步向Mg-C体系中添加Ge和Si会导致金刚石{111}面发育程度的显著增强,Mg-Si-C体系中生长的金刚石{111}会进一步超过{100}成为优势晶型(Pal'yanov et al.,2017)。FeNi-C体系中添加金属Al合成的金刚石以{111}八面体为主,随P-T条件的改变,可见{100}、{110}、{311}等次级晶面(Liu Xiaobing et al.,2016)。随P-T条件的逐渐升高,FeCo-C体系中添加金属Ti合成的金刚石晶型表现为立方八面体→{113}显著发育的立方八面体→八面体的规律(Lysakovskyi et al.,2022)。在高温高压的金属-碳体系中,目前并没有找到{110}菱形十二面体、{113}四角三八面体单形优势发育的特定P-T条件(D'Haenens-Johansson et al.,2022)。

  • 2.4 非金属触媒组分对合成金刚石晶型的影响

  • 除了含金属触媒的高温高压体系外,前人还对高温高压下的C-O-H体系、碳酸盐-碳、碳酸盐-硅酸盐、硫酸盐-碳、氧化物-碳等一系列的非金属体系进行了大量金刚石合成的实验探索(Pal'yanov et al.,1999; Shaji Kumar et al.,2000; Luth et al.,2022)。目前实验室研究最广泛的是从C-O-H体系中金刚石成核及生长过程,其合成的P-T条件5~11 GPa,950~2200℃可以完全覆盖地幔岩石圈-软流圈的压力-温度范围,在5.2~7.5 GPa和1150~1800℃以及 DCO缓冲液或更低的氧逸度条件下,金刚石可以从广泛的C-O-H超临界流体组成如富CO2、CO2-H2O、H2O和CH4的流体中成核并生长(Hong et al.,1999; Pal'yanov et al.,2000; Shaji Kumar et al.,2000; Akaishi et al.,2001; Sokol et al.,2001a; Sun Liling et al.,2001),其中金刚石在富H2O流体中的成核率和生长速度明显增强,而在富H2流体中受到抑制(Sokol et al.,2009)。从C-O-H体系自发成核的金刚石均呈{111}八面体晶型,这与含金属体系合成的金刚石晶型特征显著不同(Yamaoka et al.,1992; Akaishi et al.,2001)。

  • 高温高压实验表明,金刚石成核及生长并未发现在上地幔P-T下的硅酸盐熔体-碳体系中,即使P-T条件升高至7.0~8.5 GPa,1500~1750℃(Borzdov et al.,1999; Dobrzhinetskaya,2007)。当在硅酸盐-碳体系中引入C-O-H体系的流体时,金刚石的成核和结晶过程的P-T条件可以大幅降低至~6 GPa,1300℃,且硅酸盐-C-O-H体系中结晶形成的金刚石晶型均以{111}八面体为主(Sokol et al.,20082010; Fagan et al.,2011),这表明金刚石的结晶高度依赖于地幔中的超临界流体。

  • 金刚石可以通过含碳酸盐的碳酸盐-碳、硅酸盐-碳酸盐、碳酸盐-SiC等体系中结晶形成。但碳酸盐介质需要在压力高于6 GPa并超过1400~1600℃的熔融温度部分熔融才能作为可行的生长介质(Pal'yanov et al.,1999),因而Na2CO3,K2CO3,CaCO3,MgCO3和FeCO3等低熔点碱土金属碳酸盐最有可能作为部分天然岩石圈上地幔金刚石的形成介质(Pal'yanov et al.,199819992002)。如图5所示,在略高于岩石圈上地幔的7 GPa,1700~1750℃的条件下,Cs2CO3-C体系中合成的金刚石多见{211},{322}等高指数晶型(Pal'yanov et al.,2021),在同样的P-T条件下,当碳酸盐-碳体系中的碳酸盐组分由Li2CO3变化为催化活性逐渐降低的Na2CO3、K2CO3、Cs2CO3时,金刚石晶型逐渐从带有高指数晶面的立方八面体演化为立方八面体、截角八面体、八面体(Pal'yanov et al.,19981999)。7.7 GPa,1700℃的 Ca-Mg碳酸盐熔体中结晶形成的金刚石呈八面体晶型,但其P-T 条件显著高于典型岩石圈上地幔环境(Sato et al.,1999)。

  • 图4 高温高压条件下不同组分的含金属体系中合成的金刚石晶型

  • Fig.4 The morphology of diamond crystals synthesized in metal-containing systems under HPHT conditions

  • (a)—FeNi-C体系中合成的{111}+{100}立方八面体金刚石;(b)—FeCoNi-C体系中合成的带有(113)小晶面的立方八面体金刚石;(c)—Mg-C体系中合成的立方体金刚石;(d)—MgSi-C体系中合成的立方八面体金刚石;(e)—FeNiAl-C体系中合成的带有较小(100),(110),(113)晶面,以(111)八面体为主的金刚石;(f)—FeCoTi-C体系中合成的(113)显著发育的立方八面体金刚石(Pal'yanov et al.,20152017; Liu Xiaobing et al.,2016; Lysakovskyi et al.,2022

  • (a) —cubic octahedron diamond synthesized in the FeNi-C system; (b) —cubic octahedron diamond with minor (113) facets synthesized in the FeCoNi-C system; (c) —cubic diamond synthesized in the Mg-C system; (d) —cubic octahedron diamond synthesized in the MgSi-C system; (e) —octahedron diamond with minor (100) , (110) , (113) facets synthesized in the FeNiAl-C system; (f) —cubic octahedron diamond with (113) facets synthesized in the FeCoTi-C system (Pal'yanov et al., 2015, 2017; Liu Xiaobing et al., 2016; Lysakovskyi et al., 2022)

  • 表1 不同体系合成金刚石的晶型特征

  • Table1 The morphology of diamond crystals grown in various systems

  • 在Ca-Mg碳酸盐中添加少量SiC和金属Fe可以降低金刚石的生长条件至6.5 GPa,1350℃或7.0 GPa,1300℃,但生长的金刚石仍然呈显著的八面体晶型(Pal'yanov et al.,2013a)。碳酸盐体系中引入部分硅酸盐也可以降低碳酸盐的熔融温度,使得金刚石可以通过交代反应在6.3 GPa,1350~1650℃的条件下生长,但碳酸盐-碳体系中添加的硅酸盐似乎并未影响到金刚石的晶型特征。因此,碳酸盐-硅酸盐体系中生长的金刚石的晶型特征可能主要与碳酸盐的活性相关(Borzdov et al.,1999; Shatsky et al.,2002; Bataleva et al.,2012)。在白云石熔体中添加H2O和CO2等流体组分可以进一步降低金刚石生长所需的P-T条件至5.7 GPa,1420℃附近,受Ca-Mg碳酸盐和C-O-H流体共同影响的金刚石表现为显著的{111}八面体晶型(Sokol et al.,2001b)。

  • 岩石圈上地幔金刚石中常见的硫化物包裹体如磁黄铁矿暗示了硫化物熔体可能作为金刚石成核和生长潜在介质(Sharp,1966; Mitchell et al.,1977)。虽然由于硫化物中碳的低溶解度使得其作为碳溶解和输运的作用有限,但在后期6.3 GPa,1750℃的简化的硫-碳体系中验证了碳饱和的硫化物熔体可以形核并结晶生长立方八面体金刚石(Pal'yanov et al.,2009)。在8.0~8.5 GPa和1600~1800℃的条件下,随着合成温度的升高,硫-碳体系中合成的金刚石也会表现出与金属-碳体系中类似的截角立方体→立方八面体→截角八面体的晶型变化特征,但其变化不如金属-碳体系的金刚石变化明显(Sato et al.,2001)。在磁黄铁矿和镍黄铁矿为组分的金属硫化物熔体中,金刚石仅结晶为八面体,且在6.3~7.5 GPa 和1450~2200℃的范围内并没有表现出与温度的相关性(Pal'yanov et al.,2006)。

  • 图5 高温高压条件下不同组分的非金属体系中合成的金刚石晶型

  • Fig.5 Diamond crystals synthesized in non-metallic systems under HPHT conditions

  • (a)—H2O-C体系中生长的八面体金刚石;(b)—H2O-CO2-C体系中生长的八面体金刚石;(c)—Li2CO3-C体系中合成的带有(113)等高指数晶面的立方八面体金刚石;(d)—Na2CO3-C体系中合成的立方八面体金刚石;(e)—K2CO3-C体系中合成的截角八面体金刚石;(f)—K2CO3-Mg2SiO4-C体系中合成的立方八面体金刚石(Pal'yanov et al.,1999; Shatsky et al.,2002

  • (a) —cubic octahedron diamond grown in the H2O-C system; (b) —cubic octahedron diamond grown in the H2O-CO2-C system; (c) —cubic octahedron diamond with (113) high-index facets synthesized in the Li2CO3-C system; (d) —cubic diamond synthesized in the Na2CO3-C system; (e) —truncated octahedron diamond synthesized in the K2CO3-C system; (f) —cubic octahedron diamond synthesized in the K2CO3-Mg2SiO4-C system (Pal'yanov et al., 1999; Shatsky et al., 2002)

  • 2.5 金属-非金属混合体系中合成金刚石的晶型

  • 随着 Fe-Ni 溶剂中氮浓度的增加,金刚石晶体生长速率降低,晶体形貌按{100}、{113}、{110}等单形发育逐渐受到抑制的{111}>{100}、{113}、{110}→{111}>{100}、{113}→{111}>>{100}顺序演化。随着熔体中氮浓度的进一步增加,单晶生长阶段之后是块状多晶的形成,最终演化为微孪晶的聚集体(图6)。这些晶型的演化可能与金刚石晶体结构中氮的增加导致的微观位错、双晶等缺陷的增多密切相关(Pal'yanov et al.,2010)。

  • 在金属-碳体系中添加适量的水则有助于金刚石{110}菱形十二面体相关晶面的发育(Pal'yanov et al.,2012; Lu Zhiyun et al.,2021),在Mg-C体系中引入部分氧杂质也被发现促进了带有条纹的{113}四角三八面体单形的生长(Khokhryakov et al.,2015)。但由于不具备独立的增长扇区,这些菱形十二面体和四角三八面体单形并不是由真正的{110}和{hkk}单形发育形成的。这些假象的{110}和{113}单形的发育被认为是以氧为代表的杂质的引入对金刚石生长产生的“杂质吸收效应”造成的,即氧的引入会同时阻挡金刚石{100}的延伸和抑制{111}生长层末端的发育,从而形成假象的菱形十二面体和四角三八面体单形(Pal'yanov et al.,2013b)。整体上,金属-非金属混合体系中合成金刚石的晶型受到了金属和非金属组分的共同影响。

  • 3 合成金刚石表面特征的影响因素

  • 与晶型特征类似,金刚石的表面特征会受到结晶介质类型的广泛影响。除此之外,天然金刚石在地幔赋存阶段和金伯利岩或钾镁煌斑岩岩浆的携带输运过程中发生的溶蚀作用也是多种类型金刚石表面特征的主要成因(Fedortchouk et al.,2011a20192022)。

  • 图6 FeNi-C体系添加逐渐增多的含氮化合物生长的金刚石晶体

  • Fig.6 Diamond crystals grown with various content of nitrogen added in the FeNi-C system

  • (a)—金刚石单晶;(b)、(c)—带有生长缺陷的块状晶体;(d)、(e)—块状晶体和孪晶的集合体;(f)—金刚石集合体中的夹杂物(Pal'yanov et al.,2010

  • (a) —single crystal block; (b) , (c) —blocky crystals with growth defects; (d) , (e) —aggregates of blocky crystals and twinned crystals; (f) —inclusions in the diamond aggregates (Pal'yanov et al., 2010)

  • 3.1 生长介质对金刚石表面特征的影响

  • 在熔融Na2CO3介质中生长的金刚石的(111)表面可见螺旋状生长层(Kanda et al.,1990),在金属-硅酸盐-水-碳体系中生长的金刚石的(100)表面也观察到了螺旋状生长图案(Lu Zhiyun et al.,2022),这些螺旋状生长层可以归结为金刚石生长过程中的杂质吸收效应(Pal'yanov et al.,2013b)。使用熔融的磷介质作为溶剂生长金刚石时,以<111>和<100>为初始取向生长的金刚石表面分别可见显著的[321]方向生长台阶和微小的(310)晶面,体系中的不溶于磷熔体的氧化磷微粒会填充发育中的{310}空隙,从而形成带有大量孔洞的表面形貌特征(Kanda et al.,2004)。在P-T条件大致不变的前提下,金属-碳系统中添加含逐渐增多的氮化物会导致合成金刚石的表面出现大量的金属夹杂物凹坑,进一步会形成(111)表面上的三角形区块微观蚀刻特征以及大量的孪晶集合体表面特征(Pal'yanov et al.,2010)。这些三角形的区块可能是由金属夹杂物或者晶格位错集中分布的缺陷处的溶蚀所形成。

  • 3.2 溶蚀作用对金刚石表面特征的影响

  • 从封闭的地幔捕虏体中开采出的金刚石均为晶面平整,棱角锋利的特征。如果不考虑地幔流体或输运过程的溶蚀作用,金刚石将倾向以完美的八面体或立方体的晶型产出。流体或者熔体的溶蚀作用可以使金刚石从八面体转变为带有弯曲棱线的十二面体或四六面体等其他外观形态,甚至形成没有明显形状的“不规则”金刚石(Smit et al.,2020)。通过在1.0~7.5 GPa、1150~1750℃的P-T范围内,在天然金伯利岩、钾镁煌斑岩、碳酸盐和硅酸盐熔体中添加不同比例的H2O和CO2时对金刚石的溶蚀实验中,金刚石可以从初级的八面体晶型转变为十二面体,最终形成晶面浑圆的{hk0}四六面体次级晶型(图7)(Kozai et al.,2005; Fedortchouk et al.,20102011b)。这两种次级形状都没有真正的晶面,实际上是弯曲的溶蚀表面,只有相似的晶体学方向的晶面。而对于三角薄片双晶,最终的溶蚀产物是圆垫状的薄片双晶(Harris et al.,2022)。伴随着溶蚀过程中金刚石外观晶体形态的演化,金刚石的表面也会出现一系列的微观溶蚀特征(图8)。盾形、锯齿状纹层、正或负向的三角形凹坑、六边形凹坑均是由{111}晶体溶蚀形成的,其中正向和负向的三角形凹坑分别反映了高含量的H2O和CO2的溶蚀过程,低压条件、高氧逸度也会促进正向的三角形凹坑的发育,这些溶蚀特征代表了金伯利岩岩浆挥发物在晚期的溶蚀作用(Evans et al.,1961; Yamaoka et al.,1980; Zhang Zhihai et al.,2015)。进一步,当岩浆中存在碳酸盐熔体和高比例的CO2(>90%)共同溶蚀时,金刚石的(111)晶面倾向形成较大的六边形凹坑(Fedortchouk,2019)。对于初始晶型为{100}立方体,流体的溶蚀作用会导致立方体边缘的圆角化,(100)晶面上会呈现四边形溶蚀凹坑,这种溶蚀特征类似于(111)晶面的三角形,其取向依赖于温度和氧逸度,通常这些四边形凹坑边缘与立方体边缘成45°(Fedortchouk et al.,2009)。在1 GPa和1250~1350℃条件下C-O-H流体对金刚石的溶蚀实验中,金刚石的(110)晶面上出现了大量的生长丘,这些生长丘围绕着金刚石晶体的三次和四次对称轴的方向分布(Kozai et al.,2005; Fedortchouk et al.,2007)。这些生长丘大量出现在火山碎屑岩相金伯利岩中的微粒金刚石的表面,这表明它们是在富含挥发分的金伯利岩岩浆携带金刚石输运的过程中发育的(Fedortchouk et al.,2017)。

  • 图7 高温高压条件下不同晶型金刚石因溶蚀作用发生的系列形貌变化(据Kozai et al.,2005; Khokhryakov et al.,2007

  • Fig.7 Morphological evolution of diamond crystals when they undergo an increasingly strong etching effect under HPHT conditions with different initial habit (after Kozai et al., 2005; Khokhryakov et al., 2007)

  • 4 合成金刚石形态特征对天然金刚石的认识

  • 天然金刚石单晶通常可见{111}八面体、{110}菱形十二面体、{100}立方体、{113}四角三八面体、{hk0}四六面体等晶型。通过对天然金刚石内部的包裹体物相的大量高温高压实验可知,天然金刚石可稳定存在于深度约120~750 km的地幔环境中,在不同的地质背景下产出的天然金刚石的晶型特征表现出较大的差异性,这可能与其背后反映出的金刚石形成环境的差异性密切相关。

  • 岩石圈上地幔(150~220 km)被广泛认为是天然金刚石的主要来源(Bulanova,1995; Stalder et al.,2001; Shirey et al.,2019; Stagno et al.,2019)。该深度起源的地幔橄榄岩(P型)和榴辉岩(E型)两类金刚石最常见八面体和菱形十二面体单形,或者表面溶蚀的四六面体晶体,立方体单形金刚石则较少(Edwards et al.,1985; Cartigny et al.,1998; Machado et al.,1998),在西伯利亚金伯利岩中产出的立方体单形金刚石平均占比仅1%~2%(Zedgenizov et al.,2016),对我国山东蒙阴阴常马庄、西峪和坡里三个金伯利岩带中产出的10万余粒金刚石的晶型统计结果中,立方体单形金刚石占比也不超过2%(吕青等,2022; Zhang Chaofan et al.,2022)。根据岩石圈上地幔金刚石立方八面体或立方体晶型的稀缺性,以及金刚石内部包裹体中金属单质的匮乏,可以推测岩石圈上地幔环境中的金刚石的形成机制可能与高温高压条件下非金属体系金刚石的生长机制类似,其中八面体晶型可能来源于岩石圈上地幔环境中C-O-H体系的直接结晶,或者起因于碳酸盐-C-O-H体系、碳酸盐-硅酸盐交代反应、硫化物体系,可以通过金刚石内部的包裹体共同解释其形成环境条件。

  • 图8 高温高压合成金刚石的表面特征及后期溶蚀特征

  • Fig.8 The surface characteristics of diamonds synthesized under HPHT conditions in different systems

  • (a)—FeNi-C体系中生长的金刚石(111)表面的树枝状纹理;(b)—金属-硅酸盐-H2O-C体系中生长的骸晶金刚石(100)表面的螺旋状生长层;(c)—接近金刚石-石墨平衡线结晶形成的(111)表面的扁平三角形状纹理;(d)~(f)—碳酸盐熔体中金刚石(111)表面分别受到富CO2、富H2O和CO2-H2O混合流体溶蚀形成的正向、负向的三角形凹坑和六边形凹坑;(g)—金属-硅酸盐-H2O-C体系中生长的金刚石(100)表面发育的与晶面呈∠45°的格子状生长纹理;(h)—金属-硅酸盐-H2O-C体系中生长的金刚石(111)表面的与{110}相关的三角锥;(i)—(110)表面因不同生长层堆叠产生的生长丘(Khokhryakov et al.,2010; Sokol et al.,2015; Lu Zhiyun et al.,20212022; Harris et al.,2022

  • (a) —dendritic texture on the (111) surface of diamonds grown in a FeNi-C system; (b) —spiral growth layers on the (100) surface of skeletal diamond synthesized in a metal-silicate-H2O-C system; (c) —flat triangular patterns on the (111) surface reflect diamond crystallize at P-T condition close to the diamond-graphite equilibrium line; (d) ~ (f) —positive and negative triangle or hexagonal pits on the (111) surface reflect diamonds have been etched by CO2, H2O, and CO2-H2O mixed fluids, respectively; (g) —the checkerboard-like growth pattern on the (100) surface of diamond grow in a metal-silicate-H2O-C system with a ∠45° angle to the crystal face; (h) —{110}-related triangular pyramids on the (111) surface of diamond synthesized in a metal-silicate-H2O-C system; (i) —growth hillocks on the (110) surface caused by the stacking of different growth layers (Khokhryakov et al., 2010; Sokol et al., 2015; Lu Zhiyun et al., 2021, 2022; Harris et al., 2022)

  • 对于岩石圈上地幔环境中产出的大量菱形十二面体和四六面体单形金刚石,目前形成P-T条件仍然存在争议。Khokhryakov et al.(2007,2010)给出的金刚石溶蚀P-T条件(~5.7 GPa,1400℃)略微高于典型克拉通岩石圈地幔中金刚石的平均形成条件,而Fedortchouk et al.(2007)在~1 GPa,1150~1500℃的条件下发现,金刚石可以在数小时内发生显著的溶蚀。因此我们倾向于认为天然菱形十二面体金刚石的溶蚀形成过程发生在地幔中,而四六面体单形的形成发生在金伯利岩岩浆携带金刚石向地表的输运过程中。

  • 在高温高压实验中,金刚石无法从7.0~8.5 GPa,1500~1750℃的熔融硅酸盐-碳体系以及6 GPa,<1400℃的未熔融碳酸盐-碳体系中生长,而这些P-T条件显著高于典型克拉通底部5~6 GPa,1100~1300℃的压力和温度。因此,天然岩石圈上地幔起源的橄榄岩型金刚石不太可能在纯的硅酸盐或未熔融的碳酸盐介质中成核及生长。而典型上地幔克拉通深度~5.5 GPa,1100~1300℃的P-T条件与C-O-H等超临界流体中金刚石的生长条件吻合,且C-O-H流体中结晶形成的金刚石均呈与天然岩石圈上地幔成因金刚石一致的{111}八面体晶型,因此,地幔环境中的C-O-H流体可能在岩石圈上地幔P型金刚石的形成过程中扮演了重要的角色。

  • 典型岩石圈上地幔P-T条件下,虽然碳酸盐并不能直接作为金刚石形核和生长的介质,但碳酸盐与其周围硅酸盐或流体的交代反应可以大幅降低碳酸盐的熔点,且从硅酸盐-白云石/方解石体系中结晶形成的金刚石也为{111}八面体晶型,因此,天然岩石圈上地幔中的碳酸盐-硅酸盐-流体体系也有可能是金刚石结晶的理想介质。

  • 被认为起源于更深的软流圈下部-过渡带-下地幔的超深成因金刚石多呈菱形十二面体、不规则形状,仅~5%的超深金刚石呈八面体晶型或不同单形的混合晶型(Kaminsky et al.,2001; Bulanova et al.,2010; Harte,2010; Sobolev et al.,2019),结合在金属-硅酸盐-水-碳体系中合成的金刚石的晶型特征以及地幔过渡带环境中可以稳定存在的金属单质和水(Pal'yanov et al.,2012; Lu Zhiyun et al.,2021),可以推测超深金刚石中广泛发育的菱形十二面体可能受到了超深地幔环境中的金属和水的共同影响。而在全球地幔橄榄岩和铬铁矿中广泛发现的的蛇绿岩型金刚石主要为立方八面体晶型(Xu Xiangzhen et al.,2017; Yang Jingsui et al.,2021),且其晶体内部含有大量的超高压-还原性金属合金矿物包裹体(Yang Jingsui et al.,2015; Lian Dongyang et al.,2018; 刘飞等,2020; Liu Fei et al.,2021),因此蛇绿岩型金刚石的晶型特征可能受到了金属熔体的显著影响。

  • 5 研究展望

  • 随着人工合成金刚石技术的不断进步以及人们对金刚石生长认识的不断加深,在已知压力、温度条件的不同金属、碳酸盐、硅酸盐、硫化物、C-O-H流体等组分中金刚石的生长及后期晶体形态特征分析,为研究不同形态及表面特征的天然金刚石的成因提供了大量的实验依据,但不同组分体系合成的金刚石的外观形态的深层成因还需要结合结晶学及理论计算等手段进行详细的讨论。除此之外,近些年发现的大量的非克拉通金刚石,如西藏罗布莎、俄罗斯极地乌拉尔等地区蛇绿岩地幔橄榄岩及铬铁矿中发现的微粒金刚石,以及在古巴蛇纹石化的橄榄岩中纳米-微米级金刚石,以及在巴西、南非等地发现的超深金刚石,这些金刚石目前并没有相关的高温高压合成实验进行模拟,后期基于这些特殊类型金刚石的包裹体组分及伴生矿物特征推断金刚石的生长,有助于限定这些特殊金刚石的形成条件,并对进一步认识地球内部的碳循环过程。

  • 参考文献

    • Akaishi M, Shaji Kumar M D, Kanda H, Yamaoka S. 2001. Reactions between carbon and a reduced C-O-H fluid under diamond-stable HPHT condition. Diamond and Related Materials, 10: 2125~2130.

    • Bataleva Y V, Pal'yanov Y N, Sokol A G, Borzdov Y M, Palyanova G A. 2012. Conditions for the origin of oxidized carbonate-silicate melts: Implications for mantle metasomatism and diamond formation. Lithos, 128-131: 113~125.

    • Blank V, Popov M, Pivovarov G, Lvova N, Terentev S. 1999. Mechanical properties of different types of diamond. Diamond and Related Materials, 8: 1531~1535.

    • Borzdov Y M, Sokol A G, Pal'yanov Y N, Kalinin A A, Sobolev N V. 1999. Studies of diamond crystallization in alkaline silicate, carbonate and carbonate-silicate melts. Doklady Akademii Nauk, 366: 530~533.

    • Bulanova G P. 1995. The formation of diamond. Journal of Geochemical Exploration, 53: 1~23.

    • Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy & Petrology, 160: 489~510.

    • Burns R C, Cvetkovic V, Dodge C N, Evans D J F, Rooney M L T, Spear P M, Welbourn C M. 1990. Growth-sector dependence of optical features in large synthetic diamonds. Journal of Crystal Growth, 104: 257~279.

    • Butler J E, Woodin R L. 1994. Thin film diamond growth mechanisms. In: Lettington A H, Steeds J W, eds. Thin Film Diamond. Dordrecht: Springer Netherlands, 15~30.

    • Butler J E, Windischmann H. 1998. Developments in CVD-diamond synthesis during the past decade. MRS Bulletin, 23: 22~27.

    • Cartigny P, Harris J W, Javoy M. 1998. Eclogitic diamond formation at Jwaneng: No room for a recycled component. Science, 280: 1421~1424.

    • DeVries R C. 1997. Diamonds from warm water. Nature, 385: 485.

    • D'Haenens-Johansson U, Butler J, Katrusha A. 2022. Synthesis of diamonds and their identification. Reviews in Mineralogy and Geochemistry, 88: 689~753.

    • Dobrzhinetskaya L. 2007. Diamond synthesis from graphite in the presence of water and SiO2: Implications for diamond formation in quartzites from Kazakhstan. International Geology Review, 49: 389~400.

    • Edwards D F, Philipp H R. 1985. Cubic carbon (diamond). Handbook of Optical Constants of Solids. California: Academic Press, 665~673.

    • Evans T, Sauter D H. 1961. Etching of diamond surfaces with gases. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 6: 429~440.

    • Fagan A J, Luth R W. 2011. Growth of diamond in hydrous silicate melts. Contributions to Mineralogy and Petrology, 161: 229~236.

    • Fang Chao, Jia Xiaopeng, Yan Bingmin, Chen Ning, Li Yadong, Chen Liangchao, Guo Longsuo, Ma Hongan. 2015. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 64: 228101.

    • Fedortchouk Y. 2019. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth-Science Reviews, 193: 45~65.

    • Fedortchouk Y, Canil D, Semenets E. 2007. Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. American Mineralogist, 92: 1200~1212.

    • Fedortchouk Y, Canil D. 2009. Diamond oxidation at atmospheric pressure: Development of surface features and the effect of oxygen fugacity. European Journal of Mineralogy, 21: 623~635.

    • Fedortchouk Y, Matveev S, Carlson J A. 2010. H2O and CO2 in kimberlitic fluid as recorded by diamonds and olivines in several Ekati diamond mine kimberlites, Northwest Territories, Canada. Earth & Planetary Science Letters, 289: 549~559.

    • Fedortchouk Y, Zhang Zhihai. 2011a. Diamond resorption: Link to metasomatic events in the mantle or record of magmatic fluid in kimberlitic magma? The Canadian Mineralogist, 49: 707~719.

    • Fedortchouk Y, Manghnani M H, Hushur A, Shiryaev A, Nestola F. 2011b. An atomic force microscopy study of diamond dissolution features: The effect of H2O and CO2 in the fluid on diamond morphology. American Mineralogist, 96: 1768~1775.

    • Fedortchouk Y, Chinn I L, Kopylova M G. 2017. Three styles of diamond resorption in a single kimberlite: Effects of volcanic degassing and assimilation. Geology, 45: 871~874.

    • Fedortchouk Y, Liebske C, McCammon C. 2019. Diamond destruction and growth during mantle metasomatism: An experimental study of diamond resorption features. Earth and Planetary Science Letters, 506: 493~506.

    • Fedortchouk Y, Chinn I, Perritt S, Zhang Z, Stern R, Li Z. 2022. Diamond-destructive mantle metasomatism: Evidence from the internal and external textures of diamonds and their nitrogen defects. Lithos, 414: 106616.

    • Gogotsi Y, Welz S, Ersoy D A, McNallan M J. 2001. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature, 411: 283~287.

    • Green B L, Collins A T, Breeding C M. 2022. Diamond spectroscopy, defect centers, color, and treatments. Reviews in Mineralogy and Geochemistry, 88: 637~688.

    • Guignard J, Prakasam M, Largeteau A. 2022. A review of binderless polycrystalline diamonds: Focus on the high-pressure-high-temperature sintering process. Materials, 15: 2198.

    • Guo Bin, Wang Ping, Ma Huaxin, Wu Wenyu, Gu Yu, Wang Xiaoyu, Zhang Ruijun. 2020. Fe-catalytic synthesis of nanodiamond during the chlorination of vanadium carbide at ambient pressure: Influence of the Fe-introduction mode. Nanotechnology, 31: 135605.

    • Guo Xinkai, Hu Qiang, Ma Hongan, Liu Xiaobing, Zhang Zhuangfei, Huang Guofeng, Xu Huiwen, Jia Xiaopeng. 2010. Research on the technology of industrial diamond synthesized by the indirect heating. Superhard Material Engineering, 22: 9~12 (in Chinese with English abstract).

    • Harris J, Smit K, Fedortchouk Y, Moore M. 2022. Morphology of monocrystalline diamond and its inclusions. Reviews in Mineralogy and Geochemistry, 88: 119~166.

    • Harte B. 2010. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74: 189~215.

    • Hong S M, Akaishi M, Yamaoka S. 1999. Nucleation of diamond in the system of carbon and water under very high pressure and temperature. Journal of Crystal Growth, 200: 326~328.

    • Hu Meihua, Bi Ning, Li Shangsheng, Su Taichao, Li Xiaolei, Hu Qiang, Jia Xiaopeng, Ma Hongan. 2013. Synthesis of gem diamond crystals by multiseed method using China-type cubic high-pressure apparatus. Acta Physica Sinica, 62: 188103 (in Chinese with English abstract).

    • Jia Xiaopeng. 2008. Synthesis technology and latest research progress of gem-grade diamond large single crystal. Advanced Materials Industry, 8: 55~57 (in Chinese).

    • Jia Xiaopeng. 2020. Study on the synthesis of “natural” diamond at high temperature and high pressure. Journal of Atomic and Molecular Physics, 37: 909~915 (in Chinese with English abstract).

    • Kaminsky F, Zakharchenko O, Davies R, Griffin W, Khachatryan-Blinova G, Shiryaev A. 2001. Superdeep diamonds from theJuina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140: 734~753.

    • Kanda H. 2005. Crystal growth of diamond. In: Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials. John Wiley & Sons, Ltd, 407~432.

    • Kanda H, Akaishi M, Yamaoka S. 1990. Morphology of synthetic diamonds grown from Na2CO3 solvent-catalyst. Journal of Crystal Growth, 106: 471~475.

    • Kanda H, Watanabe K. 2004. HPHT synthetic diamonds grown from phosphorus: Growth morphology and cathodoluminescence spectra. Physica Status Solidi (a), 201: 2414~2418.

    • Khokhryakov A F, Pal'yanov Y N. 2007. The evolution of diamond morphology in the process of dissolution: Experimental data. American Mineralogist, 92: 909~917.

    • Khokhryakov A F, Pal'yanov Y N. 2010. Influence of the fluid composition on diamond dissolution forms in carbonate melts. American Mineralogist, 95: 1508~1514.

    • Khokhryakov A F, Sokol A G, Borzdov Y M, Pal'yanov Y N. 2015. Morphology of diamond crystals grown in magnesium-based systems at high temperatures and high pressures. Journal of Crystal Growth, 426: 276~282.

    • Khokhryakov A F, Kruk A N, Sokol A G. 2021. The effect of oxygen fugacity on diamond resorption in ascending kimberlite melt. Lithos, 394-395: 106166.

    • Kocherahinski Y A, Kulik O G. 1996. Equilibrium phase diagrams and manufacture of synthetic diamonds. Powder Metallurgy and Metal Ceramics, 35: 470~483.

    • Kozai Y, Arima M. 2005. Experimental study on diamond dissolution in kimberlitic andlamproitic melts at 1300~1420℃ and 1 GPa with controlled oxygen partial pressure. American Mineralogist, 90: 1759~1766.

    • Li Shangsheng, Chen Xiaozhou, Li Xiaolei, Jia Xiaopeng, Zang Chuanyi, Ma Hongan, Tian Yu, Zhang Yafei, Xiao Hongyu, Huang Guofeng. 2008. HPHT synthesis for large single crystals of Ⅱb type high-quality gem grade diamond. Superhard Material Engineering, 20: 1~3+17 (in Chinese with English abstract).

    • Li Shengrong, Xu Hong, Shen Junfeng. 2008. Crystallography and Mineralogy. Beijing: Geological Publishing House (in Chinese).

    • Li Yadong, Qian Yitai, Liao Hongwei, Ding Yi, Yang Li, Xu Cunyi, Li Fangqing, Zhou Guien. 1998. A reduction-pyrolysis-catalysis synthesis of diamond. Science, 281: 246~247.

    • Lian Dongyang, Yang Jingsui, Wiedenbeck M, Dilek Y, Rocholl A, Wu Weiwei. 2018. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti-Karsanti chromitite, Turkey. Contributions to Mineralogy and Petrology, 173: 72.

    • Liu Fei, Yang Jingsui, Lian Dongyang, Xiong Fahui, Wu Weiwei. 2020. Diamonds and other unusual minerals in global ophiolites. Acta Geologica Sinica, 94: 2588~2605 (in Chinese with English abstract).

    • Liu Fei, Lian Dongyang, Wu Weiwei, Yang Jingsui. 2021. Diamond and other exotic mineral-bearing ophiolites on the globe: A key to understand the discovery of new minerals and formation of ophiolitic podiform chromitite. Crystals, 11: 1362.

    • Liu Xiaobing, Jia Xiaopeng, Fang Chao, Ma Hongan. 2016. Diamond crystallization and growth in N-H enriched environment under HPHT conditions. CrystEngComm, 18: 8506~8515.

    • Lu Zhiyun, Zhao Hongyu, Wang Yongkui, Fang Shuai, Cai Zhenghao, Wang Zhiwen, Ma Hong'an, Chen Liangchao, Jia Hongsheng, Jia Xiaopeng. 2021. Diamond growth and characteristics in the metal-silicate-H2O-C system at HPHT conditions. Lithos, 404-405: 106470.

    • Lu Zhiyun, Wang Zhiwen, Wang Shengxue, Zhao Hongyu, Cai Zhenghao, Wang Yongkui, Ma Hong'an, Chen Liangchao, Jia Xiaopeng. 2022. Orientational dependences of diamonds grown in the NiMnCo-silicate-H2O-C system under HPHT conditions and implications to natural diamonds. ACS Earth and Space Chemistry, 6: 987~998.

    • Luth R W, Pal'yanov Y N, Bureau H. 2022. Experimental petrology applied to natural diamond growth. Reviews in Mineralogy and Geochemistry, 88: 755~808.

    • Lv Qing, Liu Fei, Chu Zhiyuan, Ge Yuejin, Liu Xiao, Jiao Yongxin. 2022. The mineralogical characteristics and comparison of diamonds from the three kimberlite belts in Mengyin, Shandong Province. Acta Geologica Sinica, 94: 1225~1238 (in Chinese with English abstract).

    • Lysakovskyi V V, Ivakhnenko S O, Kovalenko T V, Kvasnytsya V M, Burchenia A V. 2022. Morphology of diamond single crystals grown in the Fe-Co-Ti(Zr)-C system. Journal of Crystal Growth, 578: 126422.

    • Machado W G, Moore M, Yacoot A. 1998. Twinning in natural diamond. II. Interpenetrant Cubes. Journal of Applied Crystallography, 31: 777~782.

    • Mitchell R, Giardini A. 1977. Some mineral inclusions from African and Brazilian diamonds; their nature and significance. American Mineralogist, 62: 756~762.

    • Nakamoto Y, Sakata M, Sumiya H, Shimizu K, Irifune T, Matsuoka T, Ohishi Y. 2011. Note: High-pressure generation using nano-polycrystalline diamonds as anvil materials. Review of Scientific Instruments, 82: 066104.

    • Pal'yanov Y N, Khokhryakov A F, Borzdov Y M, Sokol A G. 1995. Diamond morphology in growth and dissolution processes. International Kimberlite Conference: Extended Abstracts, 6: 415~417.

    • Pal'yanov Y N, Sokol A G, Borzdov Y M, Sobolev N V. 1998. Experimental study of diamond crystallization in carbonate-carbon systems in connection with diamond genesis in magmatic and metamorphic rocks. Geologiya i Geofizika, 39: 1780~1792.

    • Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F, Shatsky A F, Sobolev N V. 1999. The diamond growth from Li2CO3, Na2CO3, K2CO3 and Cs2CO3 solvent-catalysts at P=7 GPa and T=1700~1750℃. Diamond and Related Materials, 8: 1118~1124.

    • Pal'yanov Y N, Sokol A G, Khokhryakov A, Palyanova G, Borzdov Y M, Sobolev N V. 2000. Diamond and graphite crystallization in C-O-H fluid at P-T parameters of the natural diamond formation. Doklady Earth Sciences, 375: 1395~1398.

    • Pal'yanov Y N, Sokol A G, Borzdov M, Khokhryakov A F. 2002. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: An experimental study. Lithos, 60: 145~159.

    • Pal'yanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sobolev N V. 2006. Sulfide melts-graphite interaction at HPHT conditions: Implications for diamond genesis. Earth and Planetary Science Letters, 250: 269~280.

    • Pal'yanov Y N, Kupriyanov I, Borzdov Y, Sokol A, Khokhryakov A. 2009. Diamond crystallization from a sulfur-carbon system at HPHT conditions. Crystal Growth & Design, 9: 2922~2926.

    • Pal'yanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sokol A G. 2010. Effect of nitrogen impurity on diamond crystal growth processes. Crystal Growth & Design, 10: 3169~3175.

    • Pal'yanov Y N, Borzdov Y M, Kupriyanov I N, Khokhryakov A F. 2012. Effect of H2O on diamond crystal growth in metal-carbon systems. Crystal Growth & Design, 12: 5571~5578.

    • Pal'yanov Y N, Bataleva Y V, Sokol A G, Borzdov Y M, Kupriyanov I N, Reutsky V N, Sobolev N V. 2013a. Mantle-slab interaction and redox mechanism of diamond formation. Proceedings of the National Academy of Sciences, 110: 20408~20413.

    • Pal'yanov Y N, Khokhryakov A F, Borzdov Y M, Kupriyanov I N. 2013b. Diamond growth and morphology under the influence of impurity adsorption. Crystal Growth & Design, 13: 5411~5419.

    • Pal'yanov Y N, Kupriyanov I N, Khokhryakov A F, Ralchenko V G. 2015. Crystal Growth of Diamond. In: Rudolph P, ed. Handbook of Crystal Growth (Second Edition). Boston: Elsevier, 671~713.

    • Pal'yanov Y N, Kupriyanov I N, Khokhryakov A F, Borzdov Y M. 2017. High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm, 19: 4459~4475.

    • Pal'yanov Y N, Khokhryakov A, Kupriyanov I. 2021. Crystallomorphological and crystallochemical indicators of diamond formation conditions. Crystallography Reports, 66: 142~155.

    • Sato K, Akaishi M, Yamaoka S. 1999. Spontaneous nucleation of diamond in the system MgCO3-CaCO3-C at 7. 7 GPa. Diamond and Related Materials, 8: 1900~1905.

    • Sato K, Katsura T. 2001. Sulfur: A new solvent-catalyst for diamond synthesis under high-pressure and high-temperature conditions. Journal of Crystal Growth, 223: 189~194.

    • Satoh S, Nakashima T, Tsuji K, Yazu S. 1990. Further study of the difference in nitrogen aggregation among (111) and (100) growth sectors of synthetic diamonds. High Pressure Research, 5: 926~928.

    • Schiffmann K, Jiang X. 1994. Investigation of heteroepitaxial diamond films by atomic force and scanning tunneling microscopy. Applied Physics A, 59: 17~22.

    • Shaji Kumar M D, Akaishi M, Yamaoka S. 2000. Formation of diamond from supercritical H2O-CO2 fluid at high pressure and high temperature. Journal of Crystal Growth, 213: 203~206.

    • Sharp W. 1966. Pyrrhotite: A common inclusion in South African diamonds. Nature, 211: 402~403.

    • Shatsky A F, Borzdov Y M, Sokol A G, Pal'yanov Y N. 2002. Phase formation and diamond crystallization in carbon-bearing ultrapotassic carbonate-silicate systems. Russian Geology and Geophysics, 43: 940~950.

    • Shirey S B, Smit K V, Pearson D G, Thomson A. 2019. Diamonds and the Mantle Geodynamics of Carbon: Deep Mantle Carbon Evolution from the Diamond Record. Deep Carbon: Past to Present Cambridge University Press, 89~128.

    • Shushkanova A V, Litvin Y A. 2008. Diamond formation in sulfide pyrrhotite-carbon melts: Experiments at 6. 0~7. 1 GPa and application to natural conditions. Geochemistry International, 46: 37~47.

    • Simakov S K. 2010. Metastable nanosized diamond formation from a C-H-O fluid system. Journal of Materials Research, 25: 2336~2340.

    • Simakov S K, Dubinchuk V T, Novikov M P, Drozdova I A. 2008. Formation of diamond and diamond-type phases from the carbon-bearing fluid at P-T parameters corresponding to processes in the Earth's crust. Doklady Earth Sciences, 421: 835~837.

    • Smit K V, Shirey S B. 2020. Diamondsare not forever! diamond dissolution. Gems & Gemology, 56: 148~155.

    • Sobolev N V, Logvinova A M, Tomilenko A A, Wirth R, Bul'bak T A, Luk'yanova L I, Fedorova E N, Reutsky V N, Efimova E S. 2019. Mineral and fluid inclusions in diamonds from the Urals placers, Russia: Evidence for solid molecular N2 and hydrocarbons in fluid inclusions. Geochimica et Cosmochimica Acta, 266: 197~219.

    • Sokol A, Palyanov Y, Pal'yanova G, Khokhryakov A, Borzdov Y M. 2001a. Diamond and graphite crystallization from C-O-H fluids under high pressure and high temperature conditions. Diamond and Related Materials, 10: 2131~2136.

    • Sokol A G, Borzdov Y M, Pal'yanov Y N, Khokhryakov A F, Sobolev N V. 2001b. An experimental demonstration of diamond formation in the dolomite-carbon and dolomite-fluid-carbon systems. European Journal of Mineralogy, 13: 893~900.

    • Sokol A G, Pal'yanov Y N. 2008. Diamond formation in the system MgO-SiO2-H2O-C at 7. 5 GPa and 1600℃. Contributions to Mineralogy & Petrology, 155: 33~43.

    • Sokol A G, Palyanova G A, Palyanov Y N, Tomilenko A A, Melenevsky V N. 2009. Fluid regime and diamond formation in the reduced mantle: Experimental constraints. Geochimica et Cosmochimica Acta, 73: 5820~5834.

    • Sokol A G, Pal'yanov Y N, Kupriyanov I N, Litasov K D, Polovinka M P. 2010. Effect of oxygen fugacity on the H2O storage capacity of forsterite in the carbon-saturated systems. Geochimica et Cosmochimica Acta, 74: 4793~4806.

    • Sokol A G, Khokhryakov A F, Pal'yanov Y N. 2015. Composition of primary kimberlite magma: Constraints from melting and diamond dissolution experiments. Contributions to Mineralogy & Petrology, 170: 26.

    • Stagno V, Cerantola V, Aulbach S, Lobanov S S, McCammon C A, Merlini M. 2019. Carbon-Bearing Phases Throughout Earth's Interior, Deep Carbon: Past to Present. Cambridge: Cambridge University Press, 66~88.

    • Stalder R, Ulmer P, Thompson A, Günther D. 2001. High pressure fluids in the system MgO-SiO2-H2O under upper mantle conditions. Contributions to Mineralogy & Petrology, 140: 607~618.

    • Strong H M, Chrenko R M. 1971. Diamond growth rates and physical properties of laboratory-made diamond. The Journal of Physical Chemistry, 75: 1838~1843.

    • Sumiya H, Toda N, Satoh S. 2002. Growth rate of high-quality large diamond crystals. Journal of Crystal Growth, 237-239: 1281~1285.

    • Sun Liling, Wu Qi, Wang Wenkui. 2001. Bulk diamond formation from graphite in the presence of C-O-H fluid under high pressure. High Pressure Research, 21: 159~173.

    • Sun Shishuai, Jia Xiaopeng, Yan Bingmin, Wang Fangbiao, Chen Ning, Li Yadong, Ma Hong'an. 2014. Synthesis and characterization of hydrogen-doped diamond under high pressure and high temperature. CrystEngComm, 16: 2290~2297.

    • Tokuda N. 2015. Homoepitaxial diamond growth by plasma-enhanced chemical vapor deposition. In: Yang N, ed. Novel Aspects of Diamond. Switzerland: Springer, 1~29.

    • Wang Wuyi, Moses T. 2016. Large colorless HPHT synthetic gem diamonds from China. Gems & Gemology, 52: 101~102.

    • Wei Qiuping, Ma Li, Ye Jun, Yu Zhiming. 2015. Growth mechanism of icosahedral and other five-fold symmetric diamond crystals. Transactions of Nonferrous Metals Society of China, 25: 1587~1598.

    • Welz S, Gogotsi Y, Mcnallan M J. 2003. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. Journal of Applied Physics, 93: 4207~4214.

    • Xu Xiangzhen, Cartigny P, Yang Jingsui, Dilek Y, Xiong Fahui. 2017. Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar Urals. Lithosphere, 9: 156~169.

    • Yamaoka S, Kanda H, Setaka N. 1980. Etching of diamond octahedrons at high temperatures and pressure with controlled oxygen partial pressure. Journal of Materials Science, 15: 332~336.

    • Yamaoka S, Akaishi M, Kanda H, Osawa T. 1992. Crystal growth of diamond in the system of carbon and water under very high pressure and temperature. Journal of Crystal Growth, 125: 375~377.

    • Yan X B, Xu T, Yang S R, Liu H W, Xue Q J. 2004. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. Journal of Physics D: Applied Physics, 37: 2416.

    • Yang Jingsui, Meng Fancong, Xu Xiangzhen, Robinson P T, Dilek Y, Makeyev A B, Wirth R, Wiedenbeck M, Cliff J. 2015. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Research, 27: 459~485.

    • Yang Jingsui, Wu Weiwei, Lian Dongyang, Rui Huichao. 2021. Peridotites, chromitites and diamonds in ophiolites. Nature Reviews Earth & Environment, 2: 198~212.

    • Yao Kaili, Dai Bing, Qiao Pengfei, TanXiaojun, Shu Guoyang, Yang Lei, Liu Kang, Han Jiecai, Zhu Jiaqi. 2019. Research progress of nano-diamond materials. Journal of Synthetic Crystals, 48: 1977~1989 (in Chinese with English abstract).

    • Zang Chuanyi, Jia Xiaopeng, Ren Guozhong, Wang Xiancheng. 2003. Morphology control-fast-growing method of gem-grade diamond under HPHT. Diamond and Abrasives Engineering, 138: 12~15 (in Chinese with English abstract).

    • Zedgenizov D A, Kalinina V V, Reutsky V N, Yuryeva O P, Rakhmanova M I. 2016. Regular cuboid diamonds from placers on the northeastern Siberian platform. Lithos, 265: 125~137.

    • Zhang Chaofan, Liu Fei, Lv Qing, Wang Yun, Yang Jingsui. 2022. Morphological features and spectral comparisons of diamonds from Three Kimberlite Belts in Mengyin, China. Minerals, 12: 1185.

    • Zhang Zhihai, Fedortchouk Y, Hanley J J. 2015. Evolution of diamond resorption in a silicic aqueous fluid at 1~3GPa: Application to kimberlite emplacement and mantle metasomatism. Lithos, 227: 179~193.

    • Zhao Xingzhong, Roy R, Cherian K A, Badzian A. 1997. Hydrothermal growth of diamond in metal-C-H2O systems. Nature, 385: 513~515.

    • Zheng Youjin, Ma Hongan, Zhou Lin, Jia Xiaopeng. 2007. Synthesis of type II a industrial diamond under HPHT. Superhard Material Engineering, 19: 20~22 (in Chinese with English abstract).

    • Zhou Lin, Li Yantao, Ma Hongan, Zheng Youjin, Jia Xiaopeng. 2008. Synthesis of golden industrial diamonds by HPHT. Superhard Material Engineering, 20: 15~18 (in Chinese with English abstract).

    • Zhou Shengguo, Zang Chuanyi, Ma Hongan, Li Shangsheng, Liu Jian, Zhang Hemin, Jia Xiaopeng. 2008. Synthesis of high-quality coarse grain diamond single crystals with millimeter grade under HPHT. Superhard Material Engineering, 20: 9~11 (in Chinese with English abstract).

    • Zhou Shengguo, Zang Chuanyi, Ma Hongan, Hu Qiang, Li Xiaolei, Li Shangsheng, Zhang Hemin, Jia Xiaopeng. 2009. HPHT synthesis of different shape coarse-grain diamond single crystals. Chinese Physics Letters, 26: 048102.

    • 郭新凯, 胡强, 马红安, 刘晓兵, 张壮飞, 黄国峰, 徐会文, 贾晓鹏. 2010. 间接加热合成工业金刚石工艺的研究. 超硬材料工程, 22: 9~12.

    • 胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安. 2013. 国产六面顶压机多晶种法合成宝石级金刚石单晶. 物理学报, 62: 188103.

    • 贾晓鹏. 2008. 宝石级金刚石大单晶的合成技术与最新研究进展. 新材料产业, 8: 55~57.

    • 贾晓鹏. 2020. 类天然金刚石的高温高压合成研究. 原子与分子物理学报, 37: 909~915.

    • 李尚升, 臧传义, 马红安, 田宇, 张亚飞, 肖宏宇, 黄国锋, 马利秋, 李勇, 陈孝洲, 李小雷, 贾晓鹏. 2008. 优质Ⅱb型宝石级金刚石大单晶的高温高压合成. 超硬材料工程, 20: 1~3+17.

    • 李胜荣, 许虹, 申俊峰. 2008. 结晶学与矿物学. 北京: 地质出版社.

    • 刘飞, 杨经绥, 连东洋, 熊发挥, 吴魏伟. 2020. 蛇绿岩中金刚石和异常矿物的全球记录. 地质学报, 94: 2588~2605.

    • 吕青, 刘飞, 褚志远, 葛跃进, 刘潇, 焦永鑫. 2022. 山东蒙阴三个金伯利岩带金刚石的矿物学特征与对比. 地质学报, 96: 1225~1238.

    • 姚凯丽, 代兵, 乔鹏飞, 谭小俊, 舒国阳, 杨磊, 刘康, 韩杰才, 朱嘉琦. 2019. 纳米金刚石材料的研究进展. 人工晶体学报, 48: 1977~1989.

    • 臧传义, 贾晓鹏, 任国仲, 望贤成. 2003. 快速生长优质宝石级金刚石大单晶. 金刚石与磨料磨具工程, 138: 12~15.

    • 郑友进, 马红安, 周林, 贾晓鹏. 2007. Ⅱa型工业金刚石的高温高压合成. 超硬材料工程, 19: 20~22.

    • 周林, 李彦涛, 马红安, 郑友进, 贾晓鹏. 2008. 优质金黄色工业金刚石的高温高压合成. 超硬材料工程, 20: 15~18.

    • 周升国, 臧传义, 马红安, 李尚升, 刘健, 张和民, 贾晓鹏. 2008. 优质毫米级粗颗粒金刚石单晶的高温高压合成. 超硬材料工程, 20: 9~11.

  • 参考文献

    • Akaishi M, Shaji Kumar M D, Kanda H, Yamaoka S. 2001. Reactions between carbon and a reduced C-O-H fluid under diamond-stable HPHT condition. Diamond and Related Materials, 10: 2125~2130.

    • Bataleva Y V, Pal'yanov Y N, Sokol A G, Borzdov Y M, Palyanova G A. 2012. Conditions for the origin of oxidized carbonate-silicate melts: Implications for mantle metasomatism and diamond formation. Lithos, 128-131: 113~125.

    • Blank V, Popov M, Pivovarov G, Lvova N, Terentev S. 1999. Mechanical properties of different types of diamond. Diamond and Related Materials, 8: 1531~1535.

    • Borzdov Y M, Sokol A G, Pal'yanov Y N, Kalinin A A, Sobolev N V. 1999. Studies of diamond crystallization in alkaline silicate, carbonate and carbonate-silicate melts. Doklady Akademii Nauk, 366: 530~533.

    • Bulanova G P. 1995. The formation of diamond. Journal of Geochemical Exploration, 53: 1~23.

    • Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy & Petrology, 160: 489~510.

    • Burns R C, Cvetkovic V, Dodge C N, Evans D J F, Rooney M L T, Spear P M, Welbourn C M. 1990. Growth-sector dependence of optical features in large synthetic diamonds. Journal of Crystal Growth, 104: 257~279.

    • Butler J E, Woodin R L. 1994. Thin film diamond growth mechanisms. In: Lettington A H, Steeds J W, eds. Thin Film Diamond. Dordrecht: Springer Netherlands, 15~30.

    • Butler J E, Windischmann H. 1998. Developments in CVD-diamond synthesis during the past decade. MRS Bulletin, 23: 22~27.

    • Cartigny P, Harris J W, Javoy M. 1998. Eclogitic diamond formation at Jwaneng: No room for a recycled component. Science, 280: 1421~1424.

    • DeVries R C. 1997. Diamonds from warm water. Nature, 385: 485.

    • D'Haenens-Johansson U, Butler J, Katrusha A. 2022. Synthesis of diamonds and their identification. Reviews in Mineralogy and Geochemistry, 88: 689~753.

    • Dobrzhinetskaya L. 2007. Diamond synthesis from graphite in the presence of water and SiO2: Implications for diamond formation in quartzites from Kazakhstan. International Geology Review, 49: 389~400.

    • Edwards D F, Philipp H R. 1985. Cubic carbon (diamond). Handbook of Optical Constants of Solids. California: Academic Press, 665~673.

    • Evans T, Sauter D H. 1961. Etching of diamond surfaces with gases. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 6: 429~440.

    • Fagan A J, Luth R W. 2011. Growth of diamond in hydrous silicate melts. Contributions to Mineralogy and Petrology, 161: 229~236.

    • Fang Chao, Jia Xiaopeng, Yan Bingmin, Chen Ning, Li Yadong, Chen Liangchao, Guo Longsuo, Ma Hongan. 2015. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 64: 228101.

    • Fedortchouk Y. 2019. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth-Science Reviews, 193: 45~65.

    • Fedortchouk Y, Canil D, Semenets E. 2007. Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. American Mineralogist, 92: 1200~1212.

    • Fedortchouk Y, Canil D. 2009. Diamond oxidation at atmospheric pressure: Development of surface features and the effect of oxygen fugacity. European Journal of Mineralogy, 21: 623~635.

    • Fedortchouk Y, Matveev S, Carlson J A. 2010. H2O and CO2 in kimberlitic fluid as recorded by diamonds and olivines in several Ekati diamond mine kimberlites, Northwest Territories, Canada. Earth & Planetary Science Letters, 289: 549~559.

    • Fedortchouk Y, Zhang Zhihai. 2011a. Diamond resorption: Link to metasomatic events in the mantle or record of magmatic fluid in kimberlitic magma? The Canadian Mineralogist, 49: 707~719.

    • Fedortchouk Y, Manghnani M H, Hushur A, Shiryaev A, Nestola F. 2011b. An atomic force microscopy study of diamond dissolution features: The effect of H2O and CO2 in the fluid on diamond morphology. American Mineralogist, 96: 1768~1775.

    • Fedortchouk Y, Chinn I L, Kopylova M G. 2017. Three styles of diamond resorption in a single kimberlite: Effects of volcanic degassing and assimilation. Geology, 45: 871~874.

    • Fedortchouk Y, Liebske C, McCammon C. 2019. Diamond destruction and growth during mantle metasomatism: An experimental study of diamond resorption features. Earth and Planetary Science Letters, 506: 493~506.

    • Fedortchouk Y, Chinn I, Perritt S, Zhang Z, Stern R, Li Z. 2022. Diamond-destructive mantle metasomatism: Evidence from the internal and external textures of diamonds and their nitrogen defects. Lithos, 414: 106616.

    • Gogotsi Y, Welz S, Ersoy D A, McNallan M J. 2001. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature, 411: 283~287.

    • Green B L, Collins A T, Breeding C M. 2022. Diamond spectroscopy, defect centers, color, and treatments. Reviews in Mineralogy and Geochemistry, 88: 637~688.

    • Guignard J, Prakasam M, Largeteau A. 2022. A review of binderless polycrystalline diamonds: Focus on the high-pressure-high-temperature sintering process. Materials, 15: 2198.

    • Guo Bin, Wang Ping, Ma Huaxin, Wu Wenyu, Gu Yu, Wang Xiaoyu, Zhang Ruijun. 2020. Fe-catalytic synthesis of nanodiamond during the chlorination of vanadium carbide at ambient pressure: Influence of the Fe-introduction mode. Nanotechnology, 31: 135605.

    • Guo Xinkai, Hu Qiang, Ma Hongan, Liu Xiaobing, Zhang Zhuangfei, Huang Guofeng, Xu Huiwen, Jia Xiaopeng. 2010. Research on the technology of industrial diamond synthesized by the indirect heating. Superhard Material Engineering, 22: 9~12 (in Chinese with English abstract).

    • Harris J, Smit K, Fedortchouk Y, Moore M. 2022. Morphology of monocrystalline diamond and its inclusions. Reviews in Mineralogy and Geochemistry, 88: 119~166.

    • Harte B. 2010. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74: 189~215.

    • Hong S M, Akaishi M, Yamaoka S. 1999. Nucleation of diamond in the system of carbon and water under very high pressure and temperature. Journal of Crystal Growth, 200: 326~328.

    • Hu Meihua, Bi Ning, Li Shangsheng, Su Taichao, Li Xiaolei, Hu Qiang, Jia Xiaopeng, Ma Hongan. 2013. Synthesis of gem diamond crystals by multiseed method using China-type cubic high-pressure apparatus. Acta Physica Sinica, 62: 188103 (in Chinese with English abstract).

    • Jia Xiaopeng. 2008. Synthesis technology and latest research progress of gem-grade diamond large single crystal. Advanced Materials Industry, 8: 55~57 (in Chinese).

    • Jia Xiaopeng. 2020. Study on the synthesis of “natural” diamond at high temperature and high pressure. Journal of Atomic and Molecular Physics, 37: 909~915 (in Chinese with English abstract).

    • Kaminsky F, Zakharchenko O, Davies R, Griffin W, Khachatryan-Blinova G, Shiryaev A. 2001. Superdeep diamonds from theJuina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140: 734~753.

    • Kanda H. 2005. Crystal growth of diamond. In: Bulk Crystal Growth of Electronic, Optical & Optoelectronic Materials. John Wiley & Sons, Ltd, 407~432.

    • Kanda H, Akaishi M, Yamaoka S. 1990. Morphology of synthetic diamonds grown from Na2CO3 solvent-catalyst. Journal of Crystal Growth, 106: 471~475.

    • Kanda H, Watanabe K. 2004. HPHT synthetic diamonds grown from phosphorus: Growth morphology and cathodoluminescence spectra. Physica Status Solidi (a), 201: 2414~2418.

    • Khokhryakov A F, Pal'yanov Y N. 2007. The evolution of diamond morphology in the process of dissolution: Experimental data. American Mineralogist, 92: 909~917.

    • Khokhryakov A F, Pal'yanov Y N. 2010. Influence of the fluid composition on diamond dissolution forms in carbonate melts. American Mineralogist, 95: 1508~1514.

    • Khokhryakov A F, Sokol A G, Borzdov Y M, Pal'yanov Y N. 2015. Morphology of diamond crystals grown in magnesium-based systems at high temperatures and high pressures. Journal of Crystal Growth, 426: 276~282.

    • Khokhryakov A F, Kruk A N, Sokol A G. 2021. The effect of oxygen fugacity on diamond resorption in ascending kimberlite melt. Lithos, 394-395: 106166.

    • Kocherahinski Y A, Kulik O G. 1996. Equilibrium phase diagrams and manufacture of synthetic diamonds. Powder Metallurgy and Metal Ceramics, 35: 470~483.

    • Kozai Y, Arima M. 2005. Experimental study on diamond dissolution in kimberlitic andlamproitic melts at 1300~1420℃ and 1 GPa with controlled oxygen partial pressure. American Mineralogist, 90: 1759~1766.

    • Li Shangsheng, Chen Xiaozhou, Li Xiaolei, Jia Xiaopeng, Zang Chuanyi, Ma Hongan, Tian Yu, Zhang Yafei, Xiao Hongyu, Huang Guofeng. 2008. HPHT synthesis for large single crystals of Ⅱb type high-quality gem grade diamond. Superhard Material Engineering, 20: 1~3+17 (in Chinese with English abstract).

    • Li Shengrong, Xu Hong, Shen Junfeng. 2008. Crystallography and Mineralogy. Beijing: Geological Publishing House (in Chinese).

    • Li Yadong, Qian Yitai, Liao Hongwei, Ding Yi, Yang Li, Xu Cunyi, Li Fangqing, Zhou Guien. 1998. A reduction-pyrolysis-catalysis synthesis of diamond. Science, 281: 246~247.

    • Lian Dongyang, Yang Jingsui, Wiedenbeck M, Dilek Y, Rocholl A, Wu Weiwei. 2018. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti-Karsanti chromitite, Turkey. Contributions to Mineralogy and Petrology, 173: 72.

    • Liu Fei, Yang Jingsui, Lian Dongyang, Xiong Fahui, Wu Weiwei. 2020. Diamonds and other unusual minerals in global ophiolites. Acta Geologica Sinica, 94: 2588~2605 (in Chinese with English abstract).

    • Liu Fei, Lian Dongyang, Wu Weiwei, Yang Jingsui. 2021. Diamond and other exotic mineral-bearing ophiolites on the globe: A key to understand the discovery of new minerals and formation of ophiolitic podiform chromitite. Crystals, 11: 1362.

    • Liu Xiaobing, Jia Xiaopeng, Fang Chao, Ma Hongan. 2016. Diamond crystallization and growth in N-H enriched environment under HPHT conditions. CrystEngComm, 18: 8506~8515.

    • Lu Zhiyun, Zhao Hongyu, Wang Yongkui, Fang Shuai, Cai Zhenghao, Wang Zhiwen, Ma Hong'an, Chen Liangchao, Jia Hongsheng, Jia Xiaopeng. 2021. Diamond growth and characteristics in the metal-silicate-H2O-C system at HPHT conditions. Lithos, 404-405: 106470.

    • Lu Zhiyun, Wang Zhiwen, Wang Shengxue, Zhao Hongyu, Cai Zhenghao, Wang Yongkui, Ma Hong'an, Chen Liangchao, Jia Xiaopeng. 2022. Orientational dependences of diamonds grown in the NiMnCo-silicate-H2O-C system under HPHT conditions and implications to natural diamonds. ACS Earth and Space Chemistry, 6: 987~998.

    • Luth R W, Pal'yanov Y N, Bureau H. 2022. Experimental petrology applied to natural diamond growth. Reviews in Mineralogy and Geochemistry, 88: 755~808.

    • Lv Qing, Liu Fei, Chu Zhiyuan, Ge Yuejin, Liu Xiao, Jiao Yongxin. 2022. The mineralogical characteristics and comparison of diamonds from the three kimberlite belts in Mengyin, Shandong Province. Acta Geologica Sinica, 94: 1225~1238 (in Chinese with English abstract).

    • Lysakovskyi V V, Ivakhnenko S O, Kovalenko T V, Kvasnytsya V M, Burchenia A V. 2022. Morphology of diamond single crystals grown in the Fe-Co-Ti(Zr)-C system. Journal of Crystal Growth, 578: 126422.

    • Machado W G, Moore M, Yacoot A. 1998. Twinning in natural diamond. II. Interpenetrant Cubes. Journal of Applied Crystallography, 31: 777~782.

    • Mitchell R, Giardini A. 1977. Some mineral inclusions from African and Brazilian diamonds; their nature and significance. American Mineralogist, 62: 756~762.

    • Nakamoto Y, Sakata M, Sumiya H, Shimizu K, Irifune T, Matsuoka T, Ohishi Y. 2011. Note: High-pressure generation using nano-polycrystalline diamonds as anvil materials. Review of Scientific Instruments, 82: 066104.

    • Pal'yanov Y N, Khokhryakov A F, Borzdov Y M, Sokol A G. 1995. Diamond morphology in growth and dissolution processes. International Kimberlite Conference: Extended Abstracts, 6: 415~417.

    • Pal'yanov Y N, Sokol A G, Borzdov Y M, Sobolev N V. 1998. Experimental study of diamond crystallization in carbonate-carbon systems in connection with diamond genesis in magmatic and metamorphic rocks. Geologiya i Geofizika, 39: 1780~1792.

    • Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F, Shatsky A F, Sobolev N V. 1999. The diamond growth from Li2CO3, Na2CO3, K2CO3 and Cs2CO3 solvent-catalysts at P=7 GPa and T=1700~1750℃. Diamond and Related Materials, 8: 1118~1124.

    • Pal'yanov Y N, Sokol A G, Khokhryakov A, Palyanova G, Borzdov Y M, Sobolev N V. 2000. Diamond and graphite crystallization in C-O-H fluid at P-T parameters of the natural diamond formation. Doklady Earth Sciences, 375: 1395~1398.

    • Pal'yanov Y N, Sokol A G, Borzdov M, Khokhryakov A F. 2002. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: An experimental study. Lithos, 60: 145~159.

    • Pal'yanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sobolev N V. 2006. Sulfide melts-graphite interaction at HPHT conditions: Implications for diamond genesis. Earth and Planetary Science Letters, 250: 269~280.

    • Pal'yanov Y N, Kupriyanov I, Borzdov Y, Sokol A, Khokhryakov A. 2009. Diamond crystallization from a sulfur-carbon system at HPHT conditions. Crystal Growth & Design, 9: 2922~2926.

    • Pal'yanov Y N, Borzdov Y M, Khokhryakov A F, Kupriyanov I N, Sokol A G. 2010. Effect of nitrogen impurity on diamond crystal growth processes. Crystal Growth & Design, 10: 3169~3175.

    • Pal'yanov Y N, Borzdov Y M, Kupriyanov I N, Khokhryakov A F. 2012. Effect of H2O on diamond crystal growth in metal-carbon systems. Crystal Growth & Design, 12: 5571~5578.

    • Pal'yanov Y N, Bataleva Y V, Sokol A G, Borzdov Y M, Kupriyanov I N, Reutsky V N, Sobolev N V. 2013a. Mantle-slab interaction and redox mechanism of diamond formation. Proceedings of the National Academy of Sciences, 110: 20408~20413.

    • Pal'yanov Y N, Khokhryakov A F, Borzdov Y M, Kupriyanov I N. 2013b. Diamond growth and morphology under the influence of impurity adsorption. Crystal Growth & Design, 13: 5411~5419.

    • Pal'yanov Y N, Kupriyanov I N, Khokhryakov A F, Ralchenko V G. 2015. Crystal Growth of Diamond. In: Rudolph P, ed. Handbook of Crystal Growth (Second Edition). Boston: Elsevier, 671~713.

    • Pal'yanov Y N, Kupriyanov I N, Khokhryakov A F, Borzdov Y M. 2017. High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm, 19: 4459~4475.

    • Pal'yanov Y N, Khokhryakov A, Kupriyanov I. 2021. Crystallomorphological and crystallochemical indicators of diamond formation conditions. Crystallography Reports, 66: 142~155.

    • Sato K, Akaishi M, Yamaoka S. 1999. Spontaneous nucleation of diamond in the system MgCO3-CaCO3-C at 7. 7 GPa. Diamond and Related Materials, 8: 1900~1905.

    • Sato K, Katsura T. 2001. Sulfur: A new solvent-catalyst for diamond synthesis under high-pressure and high-temperature conditions. Journal of Crystal Growth, 223: 189~194.

    • Satoh S, Nakashima T, Tsuji K, Yazu S. 1990. Further study of the difference in nitrogen aggregation among (111) and (100) growth sectors of synthetic diamonds. High Pressure Research, 5: 926~928.

    • Schiffmann K, Jiang X. 1994. Investigation of heteroepitaxial diamond films by atomic force and scanning tunneling microscopy. Applied Physics A, 59: 17~22.

    • Shaji Kumar M D, Akaishi M, Yamaoka S. 2000. Formation of diamond from supercritical H2O-CO2 fluid at high pressure and high temperature. Journal of Crystal Growth, 213: 203~206.

    • Sharp W. 1966. Pyrrhotite: A common inclusion in South African diamonds. Nature, 211: 402~403.

    • Shatsky A F, Borzdov Y M, Sokol A G, Pal'yanov Y N. 2002. Phase formation and diamond crystallization in carbon-bearing ultrapotassic carbonate-silicate systems. Russian Geology and Geophysics, 43: 940~950.

    • Shirey S B, Smit K V, Pearson D G, Thomson A. 2019. Diamonds and the Mantle Geodynamics of Carbon: Deep Mantle Carbon Evolution from the Diamond Record. Deep Carbon: Past to Present Cambridge University Press, 89~128.

    • Shushkanova A V, Litvin Y A. 2008. Diamond formation in sulfide pyrrhotite-carbon melts: Experiments at 6. 0~7. 1 GPa and application to natural conditions. Geochemistry International, 46: 37~47.

    • Simakov S K. 2010. Metastable nanosized diamond formation from a C-H-O fluid system. Journal of Materials Research, 25: 2336~2340.

    • Simakov S K, Dubinchuk V T, Novikov M P, Drozdova I A. 2008. Formation of diamond and diamond-type phases from the carbon-bearing fluid at P-T parameters corresponding to processes in the Earth's crust. Doklady Earth Sciences, 421: 835~837.

    • Smit K V, Shirey S B. 2020. Diamondsare not forever! diamond dissolution. Gems & Gemology, 56: 148~155.

    • Sobolev N V, Logvinova A M, Tomilenko A A, Wirth R, Bul'bak T A, Luk'yanova L I, Fedorova E N, Reutsky V N, Efimova E S. 2019. Mineral and fluid inclusions in diamonds from the Urals placers, Russia: Evidence for solid molecular N2 and hydrocarbons in fluid inclusions. Geochimica et Cosmochimica Acta, 266: 197~219.

    • Sokol A, Palyanov Y, Pal'yanova G, Khokhryakov A, Borzdov Y M. 2001a. Diamond and graphite crystallization from C-O-H fluids under high pressure and high temperature conditions. Diamond and Related Materials, 10: 2131~2136.

    • Sokol A G, Borzdov Y M, Pal'yanov Y N, Khokhryakov A F, Sobolev N V. 2001b. An experimental demonstration of diamond formation in the dolomite-carbon and dolomite-fluid-carbon systems. European Journal of Mineralogy, 13: 893~900.

    • Sokol A G, Pal'yanov Y N. 2008. Diamond formation in the system MgO-SiO2-H2O-C at 7. 5 GPa and 1600℃. Contributions to Mineralogy & Petrology, 155: 33~43.

    • Sokol A G, Palyanova G A, Palyanov Y N, Tomilenko A A, Melenevsky V N. 2009. Fluid regime and diamond formation in the reduced mantle: Experimental constraints. Geochimica et Cosmochimica Acta, 73: 5820~5834.

    • Sokol A G, Pal'yanov Y N, Kupriyanov I N, Litasov K D, Polovinka M P. 2010. Effect of oxygen fugacity on the H2O storage capacity of forsterite in the carbon-saturated systems. Geochimica et Cosmochimica Acta, 74: 4793~4806.

    • Sokol A G, Khokhryakov A F, Pal'yanov Y N. 2015. Composition of primary kimberlite magma: Constraints from melting and diamond dissolution experiments. Contributions to Mineralogy & Petrology, 170: 26.

    • Stagno V, Cerantola V, Aulbach S, Lobanov S S, McCammon C A, Merlini M. 2019. Carbon-Bearing Phases Throughout Earth's Interior, Deep Carbon: Past to Present. Cambridge: Cambridge University Press, 66~88.

    • Stalder R, Ulmer P, Thompson A, Günther D. 2001. High pressure fluids in the system MgO-SiO2-H2O under upper mantle conditions. Contributions to Mineralogy & Petrology, 140: 607~618.

    • Strong H M, Chrenko R M. 1971. Diamond growth rates and physical properties of laboratory-made diamond. The Journal of Physical Chemistry, 75: 1838~1843.

    • Sumiya H, Toda N, Satoh S. 2002. Growth rate of high-quality large diamond crystals. Journal of Crystal Growth, 237-239: 1281~1285.

    • Sun Liling, Wu Qi, Wang Wenkui. 2001. Bulk diamond formation from graphite in the presence of C-O-H fluid under high pressure. High Pressure Research, 21: 159~173.

    • Sun Shishuai, Jia Xiaopeng, Yan Bingmin, Wang Fangbiao, Chen Ning, Li Yadong, Ma Hong'an. 2014. Synthesis and characterization of hydrogen-doped diamond under high pressure and high temperature. CrystEngComm, 16: 2290~2297.

    • Tokuda N. 2015. Homoepitaxial diamond growth by plasma-enhanced chemical vapor deposition. In: Yang N, ed. Novel Aspects of Diamond. Switzerland: Springer, 1~29.

    • Wang Wuyi, Moses T. 2016. Large colorless HPHT synthetic gem diamonds from China. Gems & Gemology, 52: 101~102.

    • Wei Qiuping, Ma Li, Ye Jun, Yu Zhiming. 2015. Growth mechanism of icosahedral and other five-fold symmetric diamond crystals. Transactions of Nonferrous Metals Society of China, 25: 1587~1598.

    • Welz S, Gogotsi Y, Mcnallan M J. 2003. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. Journal of Applied Physics, 93: 4207~4214.

    • Xu Xiangzhen, Cartigny P, Yang Jingsui, Dilek Y, Xiong Fahui. 2017. Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar Urals. Lithosphere, 9: 156~169.

    • Yamaoka S, Kanda H, Setaka N. 1980. Etching of diamond octahedrons at high temperatures and pressure with controlled oxygen partial pressure. Journal of Materials Science, 15: 332~336.

    • Yamaoka S, Akaishi M, Kanda H, Osawa T. 1992. Crystal growth of diamond in the system of carbon and water under very high pressure and temperature. Journal of Crystal Growth, 125: 375~377.

    • Yan X B, Xu T, Yang S R, Liu H W, Xue Q J. 2004. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. Journal of Physics D: Applied Physics, 37: 2416.

    • Yang Jingsui, Meng Fancong, Xu Xiangzhen, Robinson P T, Dilek Y, Makeyev A B, Wirth R, Wiedenbeck M, Cliff J. 2015. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Research, 27: 459~485.

    • Yang Jingsui, Wu Weiwei, Lian Dongyang, Rui Huichao. 2021. Peridotites, chromitites and diamonds in ophiolites. Nature Reviews Earth & Environment, 2: 198~212.

    • Yao Kaili, Dai Bing, Qiao Pengfei, TanXiaojun, Shu Guoyang, Yang Lei, Liu Kang, Han Jiecai, Zhu Jiaqi. 2019. Research progress of nano-diamond materials. Journal of Synthetic Crystals, 48: 1977~1989 (in Chinese with English abstract).

    • Zang Chuanyi, Jia Xiaopeng, Ren Guozhong, Wang Xiancheng. 2003. Morphology control-fast-growing method of gem-grade diamond under HPHT. Diamond and Abrasives Engineering, 138: 12~15 (in Chinese with English abstract).

    • Zedgenizov D A, Kalinina V V, Reutsky V N, Yuryeva O P, Rakhmanova M I. 2016. Regular cuboid diamonds from placers on the northeastern Siberian platform. Lithos, 265: 125~137.

    • Zhang Chaofan, Liu Fei, Lv Qing, Wang Yun, Yang Jingsui. 2022. Morphological features and spectral comparisons of diamonds from Three Kimberlite Belts in Mengyin, China. Minerals, 12: 1185.

    • Zhang Zhihai, Fedortchouk Y, Hanley J J. 2015. Evolution of diamond resorption in a silicic aqueous fluid at 1~3GPa: Application to kimberlite emplacement and mantle metasomatism. Lithos, 227: 179~193.

    • Zhao Xingzhong, Roy R, Cherian K A, Badzian A. 1997. Hydrothermal growth of diamond in metal-C-H2O systems. Nature, 385: 513~515.

    • Zheng Youjin, Ma Hongan, Zhou Lin, Jia Xiaopeng. 2007. Synthesis of type II a industrial diamond under HPHT. Superhard Material Engineering, 19: 20~22 (in Chinese with English abstract).

    • Zhou Lin, Li Yantao, Ma Hongan, Zheng Youjin, Jia Xiaopeng. 2008. Synthesis of golden industrial diamonds by HPHT. Superhard Material Engineering, 20: 15~18 (in Chinese with English abstract).

    • Zhou Shengguo, Zang Chuanyi, Ma Hongan, Li Shangsheng, Liu Jian, Zhang Hemin, Jia Xiaopeng. 2008. Synthesis of high-quality coarse grain diamond single crystals with millimeter grade under HPHT. Superhard Material Engineering, 20: 9~11 (in Chinese with English abstract).

    • Zhou Shengguo, Zang Chuanyi, Ma Hongan, Hu Qiang, Li Xiaolei, Li Shangsheng, Zhang Hemin, Jia Xiaopeng. 2009. HPHT synthesis of different shape coarse-grain diamond single crystals. Chinese Physics Letters, 26: 048102.

    • 郭新凯, 胡强, 马红安, 刘晓兵, 张壮飞, 黄国峰, 徐会文, 贾晓鹏. 2010. 间接加热合成工业金刚石工艺的研究. 超硬材料工程, 22: 9~12.

    • 胡美华, 毕宁, 李尚升, 宿太超, 李小雷, 胡强, 贾晓鹏, 马红安. 2013. 国产六面顶压机多晶种法合成宝石级金刚石单晶. 物理学报, 62: 188103.

    • 贾晓鹏. 2008. 宝石级金刚石大单晶的合成技术与最新研究进展. 新材料产业, 8: 55~57.

    • 贾晓鹏. 2020. 类天然金刚石的高温高压合成研究. 原子与分子物理学报, 37: 909~915.

    • 李尚升, 臧传义, 马红安, 田宇, 张亚飞, 肖宏宇, 黄国锋, 马利秋, 李勇, 陈孝洲, 李小雷, 贾晓鹏. 2008. 优质Ⅱb型宝石级金刚石大单晶的高温高压合成. 超硬材料工程, 20: 1~3+17.

    • 李胜荣, 许虹, 申俊峰. 2008. 结晶学与矿物学. 北京: 地质出版社.

    • 刘飞, 杨经绥, 连东洋, 熊发挥, 吴魏伟. 2020. 蛇绿岩中金刚石和异常矿物的全球记录. 地质学报, 94: 2588~2605.

    • 吕青, 刘飞, 褚志远, 葛跃进, 刘潇, 焦永鑫. 2022. 山东蒙阴三个金伯利岩带金刚石的矿物学特征与对比. 地质学报, 96: 1225~1238.

    • 姚凯丽, 代兵, 乔鹏飞, 谭小俊, 舒国阳, 杨磊, 刘康, 韩杰才, 朱嘉琦. 2019. 纳米金刚石材料的研究进展. 人工晶体学报, 48: 1977~1989.

    • 臧传义, 贾晓鹏, 任国仲, 望贤成. 2003. 快速生长优质宝石级金刚石大单晶. 金刚石与磨料磨具工程, 138: 12~15.

    • 郑友进, 马红安, 周林, 贾晓鹏. 2007. Ⅱa型工业金刚石的高温高压合成. 超硬材料工程, 19: 20~22.

    • 周林, 李彦涛, 马红安, 郑友进, 贾晓鹏. 2008. 优质金黄色工业金刚石的高温高压合成. 超硬材料工程, 20: 15~18.

    • 周升国, 臧传义, 马红安, 李尚升, 刘健, 张和民, 贾晓鹏. 2008. 优质毫米级粗颗粒金刚石单晶的高温高压合成. 超硬材料工程, 20: 9~11.