en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

苟树林,男,1996年生。硕士研究生,岩石学专业。E-mail:3420502822@qq.com。

通讯作者:

于津海,男,1962年生。教授,主要从事前寒武纪地质研究。E-mail:jhyu@nju.edu.cn。

参考文献
Barros R, Menuge J F. 2016. The Origin of spodumene pegmatites associated with the leinster granite in Southeast Ireland. Canadian Mineralogist, 54(4): 847~862.
参考文献
Bea F, Pereira M D, Stroh A. 1994. Mineral/leucosome trace element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemcal Geology, 117: 291~312.
参考文献
Dill H G. 2018. Geology and chemistry of Variscan-type pegmatite systems (SE Germany)—With special reference to structural and chemical pattern recognition of felsic mobile components in the crust. Ore Geology Reviews, 92: 205~239.
参考文献
Fei Guangchun, Menuge Julian F, Li Yunqiang, Yang Jiyi, Deng Yun, Chen Changsheng, Yang Yufan, Yang Zheng, Qin Liye, Zheng Luo, Tang Wenchun. 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze fold belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos, 364~365.
参考文献
Fei Guangchun, Menuge Julian F, Chen Changsheng, Yang Yulong, Deng Yun, Li Youguo, Zheng Luo. 2021. Evolution of pegmatite ore-forming fluid: The Lijiagou spodumene pegmatites in the Songpan-Garze fold belt, southwestern Sichuan Province, China. Ore Geology Reviews, 139: 104441.
参考文献
Feng Chengyou, Zhang Dequan, Xiang Xinkui, Li Daxin, Qu Hongying, Liu Jiannan, Xiao Ye. 2012. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication. Acta Petrologica Sinica, 28(12): 3858~3868 (in Chinese with English abstract).
参考文献
Helvaci C, Mordogan H, Colak M, Gundogan I. 2004. Presence and distribution of lithium in borate deposits and some recent lake waters of west-central Turkey. International Geology Review, 46(2): 177~190.
参考文献
Hu Fangyang, Wu Fuyuan, Chen Guohui, Yang Lei. 2022. The critical factors of lithium enrichment in the metasedimentary wall rocks of granitic pegmatite-type lithium deposit: Insights from the Ke'eryin area in the eastern Songpan-Ganzi belt. Acta Petrologica Sinica, 38(7): 2017~2051 (in Chinese with English abstract).
参考文献
Huang Di, Huang Xudong, Zhang Rongqing, Lu Jianjun, Wu Jinwei, Huang Yu. 2022. Comparative study of the Huashandong and Jiuling granites in northwestern Jiangxi and its metallogenic implications. Journal of Geology, 46(1): 22~33 (in Chinese with English abstract).
参考文献
Huh Y, Chan L H, Zhang L, Edmond J M. 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochimica et Cosmochimica Acta, 62(12): 2039~2051.
参考文献
Li Jie, Huang Xiaolong. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311~4322 (in Chinese with English abstract).
参考文献
Li Minye. 2014. The geochemisty and geochronology of Neoproterozoic-Devonian sedimentary rocks in Guangxi Province, South China. Master thesis of Nanjing University (in Chinese with English abstract).
参考文献
Li Peng, Zhang Liping, Li Jiankang, Huang Zhibiao, Zhou Fangchun, Jiang Pengfei. 2021. Metallogenic regularity of rare metal deposits in Mufushan area of Central China, and its application in ore prospecting. Mineral Deposits, 40(4): 819~841 (in Chinese with English abstract).
参考文献
Linnen R L, van Lichtervelde M, Cerny P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275~280.
参考文献
Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine. Geology in China, 44(2): 263~278(in Chinese with English abstract).
参考文献
Liu Yongsheng, Hu Zhaochun, Gao Shan, Gunther Detlef, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.
参考文献
London D. 2005. Granitic pegmatites: An assessment of current concepts and directions for the future. Lithos, 80(1~4): 281~303.
参考文献
Lu Jianjun, Zhang Rongqing, Huang Xudong, Zhang Qiang, Li Xiaoyu, Zhou Weifa, Huang Di, Huang Yu, Ma Dongsheng, Jiang Yaohui. 2022. Metallogenic characteristics of tungsten, tin, and rare metal deposits in the Jiangnan orogenic belt. South China Geology, 38(3): 359~381 (in Chinese with English abstract).
参考文献
Misra S, Froelich P N. 2012. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science, 335(6070): 818~823.
参考文献
Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715~717.
参考文献
Pistiner J S, Henderson G M. 2003. Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214(1~2): 327~339.
参考文献
Rudnick R L, Shan G. 2003. Composition of the continental crust. Treatise Geochem. , 3: 1~64.
参考文献
Seitz H M, Woodland A B. 2000. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes. Chemical Geology, 166(1~2): 47~64.
参考文献
Simons B, Andersen J C O, Shail R K, Jenner F E. 2017. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation. Lithos, 278: 491~512.
参考文献
Sun Junjun, Shu Liangshu, Santosh M, Wang Liangshu. 2018. Precambrian crustal evolution of the central Jiangnan orogen (South China): Evidence from detrital zircon U-Pb ages and Hf isotopic compositions of Neoproterozoic metasedimentary rocks. Precambrian Research, 318: 1~24.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
参考文献
Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publication.
参考文献
Tian Zuolin, Zhang Zeming, Dong Xin. 2020. Calculation of effective bulk composition and its application in metamorphic phase equilibria modeling. Acta Petrologica Sinica, 36(9): 2616~2630 (in Chinese with English abstract).
参考文献
Tischendorf G, Gottesmann B, Forster H J, Trumbull R B. 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(6): 809~834.
参考文献
Wang Denghong, Wang Chenghui, Sun Yan, Li Jiankang, Liu Shanbao, Rao Kuiyuan. 2017. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China. Geological Survey of China, 4(5): 1~8 (in Chinese with English abstract).
参考文献
Wang Denghong, Dai Hongzhang, Liu Shanbao, Wang Chenghui, Yu Yang, Dai Jingjing, Liu Lijun, Yang Yueqing, Ma Shengchao. 2020. Research and exploration progress on lithium deposits in China. China Geology, 3(1): 137~152.
参考文献
Wang Pengming. 2012. The geochemisty and geochronogy comprehensive study of Precambrian-strata in Hunan and Guangxi Province, Master thesis of Nanjing University (in Chinese with English abstract).
参考文献
Wang Ziqiang, Gao Linzhi, Ding Xiaozhong, Huang Zhizhong. 2012. Tectonic environment of the metamorphosed basement in the Jiangnan orogen and its evolutional features. Geological Review, 58(3): 401~413 (in Chinese with English abstract).
参考文献
Wang Xiaolei, Zhou Jincheng, Griffin W L, Zhao Guochun, Yu Jinhai, Qiu Jiansheng, Zhang Yanjie, Xing Guangfu. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 242: 154~171.
参考文献
White R W, Powell R, Johnson T E. 2014. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals. Journal of Metamorphic Geology, 32(8): 809~828.
参考文献
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granties: Recognition and research. Science China (Earth Sciences), 47(7): 745~765 (in Chinese with English abstract).
参考文献
Wu Fuyuan, Liu Xiaochi, Liu Zhichao, Wang Rucheng, Xie Lei, Wang Jiamin, Ji Weiqiang, Yang Lei, Liu Chen, Khanal G P, He Shaoxiong. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352~353: 105319.
参考文献
Wu Shitou, Volker K, Burkhard S C, Klaus S, Gerhard W. 2018. Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 42(4): 575~591.
参考文献
Xiang Hua, Connolly J A D. 2021. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. Journal of Metamorphic Geology, 40(2): 243~255.
参考文献
Xie Lei, Liu Ying, Wang Rucheng, Hu Huan, Che Xudong, Xiang Lu. 2019. Li-Nb-Ta mineralization in the Jurassic Yifeng granite-aplite intrusion within the Neoproterozoic Jiuling batholith, South China: A fluid-rich and quenching ore-forming process. Journal of Asian Earth Sciences, 185: 104047. 1~104047. 16.
参考文献
Xu Shengfa, Zhu Qiang, Hu Zhaoqi. 2017. Petrogeochemical features of Neoproterozoic Xikou Group complex in South Anhui and their structural implications. Geology of Anhui, 27(1): 1~6 (in Chinese with English abstract).
参考文献
Xu Xingwang, Zhai Mingguo, Hong Tao, Ma Yince, Guo Jinghui. 2023. Migration-circulation processes and enrichment-mineralization mechanism of lithium-beryllium elements in the continental crust. Acta Petrologica Sinica, 39(3): 639~658 (in Chinese with English abstract).
参考文献
Xue Yingyu, Liu Haiyang, Sun Weidong. 2021. The geochemical properties and enrichment mechanism of lithium. Geotectonica et Metallogenia, 45(6): 1202~1215 (in Chinese with English abstract).
参考文献
Yuan Xiaojing, Ma Zhe, Li Jianwu. 2019. Forecast and suggestions of lithium resources demand for new energy vehicles in China. China Mining Magazine, 28(8): 5 (in Chinese with English abstract).
参考文献
Yuan Yanwei, Fei Guangchun, Zheng Luo, Jiang Jianwen, Ma Zhiping, Jiang Xiaomei, Zhang Gui. 2022. U-Pbage and Lu-Hf isotope of detrital zircons, geochemical characteristics and geological significance for Zhuwo Formation meta-sedimentary rocks in Ke'eryin region, western Sichuan. Earth Science, 47(8): 2902~2924 (in Chinese with English abstract).
参考文献
Zhang Haixiang, Zhang Boyou. 2003. Rconstruction of protoliths of metamorphic rocks of the Xingzi Group and discrimination of their tectonic setting. Geology in China, 30(3): 254~260 (in Chinese with English abstract).
参考文献
Zhang Yong, Pan Jiayong, Ma Dongsheng. 2020. Lithium element enrichment and inspiration for prospecting for rare-metal mineralization in the Dahutang tungsten deposit: Constraints from mineralogy and geochemistry of hydrothermal alteration. Acta Geologica Sinica, 94(11): 3321~3342 (in Chinese with English abstract).
参考文献
Zhao Panlao, Chu Xu, Anthony W-J E, Mao Jinwen, Yuan Shunda. 2022. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology, 50(1): 121~125.
参考文献
Zhao Zheng, Chuan Yuchuan, Wang Denghong, Li Jiankang, Liu Shanbao, Chen Zhenyu, Guo Chunli, Wang Pingan. 2022. Transformation of Mesozoic dynamic systems and superposition of metallogenic series of W-Sn-Li-Be-Nb-Ta-REE mineral deposits in South China. Acta Petrologica Sinica, 38(2): 301~322 (in Chinese with English abstract).
参考文献
Zhou Xueyao, Yu Jinhai, O'Reilly S Y, Griffin W L, Sun Tao, Wang Xiaolei, MyDung Tran, DinhLuyen Nguyen. 2018. Component variation in the late Neoproterozoic to Cambrian sedimentary rocks of SW China-NE Vietnam, and its tectonic significance. Precambrian Research, 308: 92~110.
参考文献
Zhu Zeying, Wang Rucheng, Che Xudong, Zhu Jinchun, Wei Xinglin, Huang Xiaoe. 2015. Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb-Ta-Zr minerals. Ore Geology Reviews, 65: 749~760.
参考文献
丰成友, 张德全, 项新葵, 李大新, 瞿泓滢, 刘建楠, 肖晔. 2012. 赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意义. 岩石学报, 28(12): 3858~3868.
参考文献
胡方泱, 吴福元, 陈国辉, 杨雷. 2022. 花岗-伟晶岩型锂矿床围岩变质沉积岩中锂富集的关键因素: 以松潘-甘孜构造带东部可尔因地区为例. 岩石学报, 38(7): 2017~2051.
参考文献
黄迪, 黄旭栋, 章荣清, 陆建军, 吴劲薇, 黄玉. 2022. 赣西北花山洞与九岭花岗岩对比及其成矿指示意义. 地质学刊, 46(1): 22~33.
参考文献
李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制. 岩石学报, 29(12): 4311~4322.
参考文献
李敏业. 2014. 桂北基底变质岩的地球化学和年代学研究. 南京大学硕士学位论文.
参考文献
李鹏, 张立平, 李建康, 黄志飚, 周芳春, 姜鹏飞. 2021. 江南造山带中段幕阜山地区稀有金属成矿规律及其在找矿中的应用. 矿床地质, 40(4): 819~841.
参考文献
刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿主要类型、分布特点及勘查开发现状. 中国地质, 44(2): 263~278.
参考文献
陆建军, 章荣清, 黄旭栋, 张强, 李晓宇, 周维法, 黄迪, 黄玉, 马东升, 姜耀辉. 2022. 江南造山带钨锡稀有金属矿床成矿作用特征. 华南地质, 38(3): 359~381.
参考文献
田作林, 张泽明, 董昕. 2020. 有效全岩成分的计算方法及其在变质相平衡模拟中的应用. 岩石学报, 36(9): 2616~2630.
参考文献
王登红, 王成辉, 孙艳, 李建康, 刘善宝, 饶魁元. 2017. 我国锂铍钽矿床调查研究进展及相关问题简述. 中国地质调查, 4(5): 1~8.
参考文献
王鹏鸣. 2012. 湘桂地区基底变质岩的地球化学和年代学研究. 南京大学硕士学位论文.
参考文献
王自强, 高林志, 丁孝忠, 黄志忠. 2012. “江南造山带”变质基底形成的构造环境及演化特征. 地质论评, 58(3): 401~413.
参考文献
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745~765.
参考文献
徐生发, 朱强, 胡召齐. 2017. 皖南新元古代溪口岩群岩石地球化学特征及其构造意义. 安徽地质, 27(1): 1~6.
参考文献
徐兴旺, 翟明国, 洪涛, 马垠策, 郭敬辉. 2023. 大陆地壳锂铍迁移-循环过程与富集-成矿机制. 岩石学报, 39(3): 639~658.
参考文献
薛颖瑜, 刘海洋, 孙卫东. 2021. 锂的地球化学性质与富集机理. 大地构造与成矿学, 45(6): 1202~1215.
参考文献
袁小晶, 马哲, 李建武. 2019. 中国新能源汽车产业锂资源需求预测及建议. 中国矿业, 28(8): 5.
参考文献
袁彦伟, 费光春, 郑硌, 蒋建文, 马志平, 江笑梅, 张贵. 2022. 川西可尔因地区侏倭组变质沉积岩地球化学, 碎屑锆石U-Pb年龄和Lu-Hf同位素特征及其地质意义. 地球科学, 47(8): 2902~2924.
参考文献
张海祥, 张伯友. 2003. 赣北星子群变质岩的原岩恢复及其形成构造环境判别. 中国地质30(3): 254~260.
参考文献
张勇, 潘家永, 马东升. 2020. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示. 地质学报, 94(11): 3321~3342.
参考文献
赵正, 陈毓川, 王登红, 李建康, 刘善宝, 陈振宇, 郭春丽, 王平安. 2022. 华南中生代动力体制转换与钨锡锂铍铌钽稀土矿床成矿系列的叠加演化. 岩石学报, 38(2): 301~322.
目录contents

    摘要

    江南造山带是我国重要的稀有金属成矿带,已发现多处与锂相关的花岗伟晶岩型稀有金属矿床。锂等稀有金属元素在源区基底岩石中的富集是花岗伟晶岩型锂稀有金属矿床成矿的物质基础,但是江南造山带基底岩石中锂的分布及其富集机制仍不清楚。本文详细调查研究了江南造山带东段新元古代冷家溪群、双桥山群、溪口岩群和板溪群变质沉积岩和星子杂岩。这些基底变质岩的岩石类型包括变质砂岩、泥质板岩、千枚岩和云母片岩以及少量片麻岩。地球化学分析结果显示,冷家溪群、双桥山群和溪口岩群变质沉积岩具有相似的成分,变质砂岩和云母片岩-片麻岩整体上比泥质板岩和千枚岩具有较高的SiO2含量,较低的TiO2、Al2O3、K2O、MgO和TFe2O3含量。泥质板岩和千枚岩含有更高的稀有金属元素含量,其中锂含量达到61.8×10-6,而变质砂岩的锂丰度为44.9×10-6。板溪群具有最低的稀有金属元素含量(Li=30.8×10-6)。冷家溪群、双桥山群和溪口岩群浅变质沉积岩中的锂含量与化学风化指数(CIA)和MgO、TFe2O3含量具有较好的正相关性,而且与岩石中的黏土矿物含量,尤其是绿泥石含量,具有很好的正相关性。因此,沉积岩中锂的富集明显地受化学风化作用控制,即锂的富集机制是黏土矿物的吸附作用,尤其是蒙脱石和绿泥石。在中高级变质岩中,绝大多数的Li赋存于黑云母、白云母和十字石中。通过对冷家溪群变质沉积岩的部分熔融模拟显示,在部分熔融过程中,云母类矿物的分解和熔融是熔体中锂含量升高的直接原因;云母完全熔融消失,熔体中的锂浓度达到高峰;继续熔融将稀释熔体中的锂含量。影响熔体中锂浓度的主要因素是源岩中锂含量和部分熔融程度,而部分熔融程度取决于源岩成分、水含量和温压条件。压力增加有利于熔体对Li的抽取。在1.0 GPa和水含量0.75%条件下,熔融程度达到10.7%,熔体中锂最富集,达到源岩含量的9.3倍。因此,中压相系贫水条件下的部分熔融可能最有利于锂在熔体中的富集。

    Abstract

    The Jiangnan orogen is one of the important metallogenic belts of rare metals in China. Several granite-pegmatite type lithium rare metal deposits have been found in this belt. The enrichment of lithium and other rare metal elements in the basement rocks is the material basis for the mineralization of the granite-pegmatite type lithium rare metal deposit. However, the distribution and enrichment mechanism of lithium in the basement rocks of the Jiangnan orogen are still unclear. In this paper, the Neoproterozoic Lengjiaxi Group, the Shuangqiaoshan Group, the Xikou Group and the Banxi Group meta-sedimentary rocks and the Xingzi complex in the eastern section of Jiangnan orogen are investigated in detail. These basement rocks include metasandstone, argillite, phyllite, mica schist and less gneiss. Analytical results show that meta-sedimentary rocks of the Lengjiaxi, Shuangqiaoshan and Xikou groups have similar compositions, and metasandstones, mica schists and gneisses have higher SiO2 and lower TiO2, Al2O3, K2O, MgO and TFe2O3 than argillites and phyllites. The argillites and phyllites generally contain higher rare metal element contents, with mean lithium content up to 61.8×10-6, whereas the metasandstones have lower lithium abundances with a mean of 44.9×10-6. The Banxi Group has lower rare metal element content (Li=30.8×10-6). Lithium content of meta-sedimentary rocks of the Lengjiaxi, Shuangqiaoshan and Xikou groups exhibit a good positive correlation with the chemical index of alteration (CIA), MgO, TFe2O3, and with the clay minerals in the rocks, especially chlorite. Therefore, lithium concentrations of sedimentary rocks are obviously controlled by chemical weathering, that is, the mechanism of lithium enrichment is the adsorption of clay minerals, especially montmorillonite and chlorite. The majority of lithium concentrates are in biotite, muscovite and staurolite in middle- and high-grade metamorphic rocks. The modeling of partial melting of the meta-sedimentary rocks of the Lengjiaxi Group shows that the decomposition and melting of mica minerals are the most important cause of the increase of lithium content in the melt during partial melting. The lithium concentration of the melt reaches the peak when the mica is completely melted. Continued melting will dilute lithium content in the melt. Lithium concentration in the melt are affected greatly by lithium content in the source and the partial melting degree, which depends on major element compositions of the source rocks and P-T conditions. The modelling results also show that increasing pressure is conducive to lithium enrichment in the melt. Under the conditions of 1.0 GPa and 0.75% water content, the melting degree reaches 10.7%, and lithium content of the melt is highest, up to 9.3 times of lithium content of the source. Therefore, partial melting under medium pressure facies series and water-deficiency may be the most favorable for lithium enrichment in melt.

  • 锂(Li)是一种非常重要的稀有金属元素,在玻璃、陶瓷、润滑脂和冶金等领域有着广泛的应用。随着锂电池、新能源汽车等新兴产业的迅猛发展,锂已经成为一种新型且具有战略意义的能源金属。受到全球变暖的影响,特别是进入21世纪以后,新能源的研发得到了快速的发展,能源金属锂表现出日益重要的作用,在未来可预见的相当长的一段时间内其需求仍将保持持续增长。中国在《全国矿产资源规划(2016~2020年)》中将其确立为24种战略性矿产之一(袁小晶等,2019),并列入“十三五”国家战略规划中(刘丽君等,2017)。

  • 花岗伟晶岩型稀有金属矿床因其所含有的稀有金属元素的多样性和高品位而被大量开采,是最重要的稀有金属矿床类型之一,也是锂矿的最重要类型。通常认为这类花岗伟晶岩是由变质沉积岩熔融形成的强过铝质花岗质岩浆,经历高度分异演化,由晚期残留熔体-流体相固结形成(Barros and Menuge,2016; 吴福元等,2017; Dill,2018; Fei Guangchun et al.,2021; Wu Fuyuan et al.,2020; 袁彦伟等,2022)。花岗质岩浆系统中稀有金属元素含量的高低通常与源区丰度、部分熔融程度及熔体后续的分离结晶过程密切相关(Linnen et al.,2012)。大陆上部地壳是最富锂的层圈,锂平均含量为24×10-6Rudnick and Gao,2003),其中强风化的沉积岩中更加富集锂,如后太古宙澳大利亚页岩(PAAS)的锂含量可达到75×10-6Taylor and McLennan,1985)。这样的源区在熔融前的中高级变质岩中富含云母类矿物,它们的不一致熔融将对锂元素的聚集起到重要作用(London,2005)。

  • 江南造山带是我国新近发现的重要的稀有多金属成矿带,陆续发现了大湖塘-朱溪钨矿(早白垩世)、香炉山钨矿(白垩纪)、花洞山钨矿(新元古代)、松树岗铌钽锂矿(早白垩世)和雅山414铌钽锂矿(晚侏罗世)、仁里-传梓源铌钽锂矿(早白垩世)等大型—特大型矿床(李鹏等,2021; 陆建军等,2022),显示了该地区极大的稀有金属成矿潜力。前人研究认为,源区基底岩石中锂元素富集是该地区锂等稀有金属成矿的物质基础,而且与成矿作用相关的这些S型花岗岩起源于新元古代变质沉积岩(王登红等,2017; Lu Juanjun et al.,2022)。然而对于江南造山带这些新元古代基底变质沉积岩中锂元素的含量、分布和富集机制及其与锂等稀有金属成矿关系的研究极少。

  • 本次研究将以江南造山带东段的前寒武纪基底变质沉积岩作为主要研究对象,分析不同基底岩石中稀有金属元素的丰度和它们的变化,特别是以前较少被人关注的Li、Be、Rb、Cs等的分布与富集机制。通过全岩主微量元素含量分析,XRD粉末衍射矿物组合分析,以及中高级变质岩中各类矿物的主微量元素分析,本研究探讨了锂等稀有金属元素在基底岩石中的分布、赋存状态和富集机制。并利用GeoPS相平衡模拟软件,对变沉积岩在不同温度-压力-水含量条件下锂在矿物-熔体中的分配行为进行了研究,从而建立起稀有金属在岩石部分熔融过程中从源区分离到稀有金属富集成矿之间的联系,以期能为锂等稀有金属矿床的成因和找矿勘查提供启示。

  • 1 区域地质概况

  • 江南造山带位于华南扬子地块南缘,东起浙西北,经皖南、赣北、湘北—湘西,到桂北,很可能延伸到滇东南—越北(Zhou Xueyao et al.,2018)(图1)。这一地区主要由两套新元古代巨厚变质沉积岩和不同时代的岩浆岩侵入体组成。下部地层以四堡群、梵净山群、冷家溪群、双桥山群和溪口岩群等为代表,地层受后期构造影响具线性紧闭褶皱;上部以丹洲群、下江群和板溪群等为主,为开阔的宽缓褶皱,两套地层为不整合接触。两套地层都是较为典型的复理石或类复理石建造,由巨厚的浅变质碎屑岩、泥质岩、凝灰岩夹少量火山熔岩组成。江南造山带的稀有金属成矿作用遍布整个造山带,但不同区段的成矿类型存在差异(陆建军等,2022)。成矿作用都与区域内多期次岩浆活动有关,尤其是中生代花岗质岩浆活动(丰成友等,2012; 李鹏等,2021; 陆建军等,2022; 赵正等,2022)。本次研究的区域包括湖南省北部—东北部、江西省北部—东北部和安徽南部(图1),属于江南造山带东段(Wang Xiaolei et al.,2014)。区内出露的基底地层主要是冷家溪群、板溪群、双桥山群、溪口岩群和星子杂岩等。冷家溪群分布于湖南省境内,为一套灰绿色板岩-千枚岩和浅变质杂砂岩-粉砂岩组成的具复理石韵律特征的碎屑岩,局部含凝灰岩夹层。由下至上划分为易家桥组、潘家冲组、雷神庙组、黄浒洞组、小木坪组和大药姑组。其中黄浒洞组以中厚—块状杂砂岩为主,区别于以板岩占主体的雷神庙组与小木坪组。板溪群下部以厚层(含砾)砂岩为主,上部为灰—深灰色纹层状、条带状板岩,水平层理十分发育。

  • 双桥山群是江西省内与冷家溪群对应的地层,主要分布于赣北的九岭地区。由横涌组、计林组、安乐林组和修水组组成。下部横涌组为灰绿凝灰质细砂岩夹板岩,杂色板岩夹细砂岩。中部计林组,主体岩性为紫红色板岩、粉砂质板岩、变质细砂岩夹灰绿色杂砂岩、黑色板岩及少许变细碧角斑岩等。上部安乐林组为灰、深灰色凝灰质粉砂岩、泥质板岩、黑色碳质板岩,鲍马序列发育(王自强等,2012)。九岭新元古代花岗岩侵入双桥山群安乐林组和修水组中,岩体大致呈近东西—北东东向展布(图1),岩性主要为黑云母花岗闪长岩(Xie Lei et al.,2019)。星子杂岩是一套低级—中高级的变质岩组合,出露于庐山西南侧的星子地区。上部以混合花岗质片麻岩为主;中部以石榴子石云母片岩、云母石英片岩等为主,局部夹石英岩、大理岩; 下部为石英岩、千枚岩夹变质砂岩-粉砂岩,其原岩建造以砂泥质为主,夹硅质岩、少量基性火山岩和碳酸盐岩(王自强等,2012)。花岗质片麻岩的原岩很可能是新元古代花岗岩(Wang Xiaolei et al.,2014)。溪口岩群出露于安徽南部,由一套浅变质、强变形的巨厚沉积-火山岩系所组成(徐生发等,2017)。

  • 2 样品与实验分析方法

  • 本次研究对湖南、江西和安徽境内新元古代变质沉积岩系统性采集了100余件样品(图1),岩石种类包括泥质板岩、粉砂质板岩、变质粉砂岩、变质细粒杂砂岩、千枚岩、云母片岩和片麻岩。

  • 图1 江南造山带地质简图和采样点(据Sun Junjun et al.,2018修改)

  • Fig.1 Geological sketch map of the Jiangnan orogen and sampling locations (modified from Sun Junjun et al., 2018)

  • 变质砂岩-粉砂岩都以变余砂质-粉砂质结构为特征(图2a),见少量石英、长石碎屑颗粒,细碎屑填隙物丰富。受变形作用影响,填隙物多显示出定向排列,碎屑颗粒有弱变形特征。填隙物有弱的重结晶,形成少量绢云母、绿泥石等。泥质板岩和粉砂质板岩是江南造山带基底变质沉积岩中最常见的岩石类型(图2b~e)。板岩基本没有重结晶矿物,呈变余泥质结构,但岩石变形强烈,产生密集破劈理,形成板状构造。岩石主要由黏土矿物和粉砂级的长石和石英颗粒组成,可含少量的杂质(如碳质、钙质、铁质)。千枚岩呈显微鳞片变晶结构,千枚状构造(图2f)。主要矿物组合为石英(20%~50%)+绢云母和绿泥石(30%~60%)+长石(<5%)。不同原岩成分的千枚岩中各种矿物含量差别较大,有的样品中长英质占主体,有些样品以绢云母为主体(图2f)。

  • 在湘东北仁里Nb-Ta-Li矿附近出露一些云母片岩,由冷家溪群沉积岩经中低级变质形成。岩石呈粒状鳞片变晶结构,云母定向排列构成片状构造(图2g、h),部分样品中含有十字石、石榴子石或少量电气石等特征矿物(图2g)。电气石存在明显的环带结构,核部呈黄白色,常见石英包裹体,外部环带呈黄色。环带反映了矿物生长过程中形成环境和成分发生了变化。十字石斑晶含许多石英包裹体,呈筛状变晶结构。星子杂岩包括片岩和片麻岩,其中的花岗质片麻岩变质程度较高,具有中粒鳞片粒状变晶结构,片麻状构造(图2i);粒状长英质矿物为主(>90%),含少量黑云母和白云母(5%~10%),部分片麻岩样品中出现少量石榴子石。

  • 图2 江南造山带东段新元古代变质沉积岩岩相学特征

  • Fig.2 Photomicrographs of the Neoproterozoic meta-sedimentary rocks in the eastern Jiangnan orogen, South China

  • (a)—变质杂砂岩;(b)—细砂质板岩;(c)—粉砂质板岩;(d)—泥质板岩;(e)—粉砂质泥质板岩;(f)—粉砂质千枚岩;(g)—石榴子石电气石二云母片岩;(h)—石榴子石十字石二云母片岩;(i)—黑云母花岗质片麻岩;Q—石英;Pl—斜长石;Kfs—钾长石; Ser—绢云母;Chl—绿泥石;Bt—黑云母;Mus—白云母;Grt—石榴子石; St—十字石;Tur—电气石

  • (a) —metagreywacke; (b) —fine sandy slate; (c) —silty slate; (d) —argillite; (e) —silty argillite; (f) —silty phyllite; (g) —garnet staurolite two-mica schist; (h) —garnet tourmaline two-mica schist; (i) —biotite granitic gneiss; Q—quartz; Pl—plagioclase; Kfs—potassium feldspar; Ser—sericite; Chl—chlorite; Bt—biotite; Mus—muscovite; Grt—garnet; St—staurolite; Tur—tourmaline

  • 全岩主量元素由澳实分析检测(广州)有限公司用X射线荧光光谱仪分析完成。将0.66 g粉末样加入含硝酸锂的硼酸锂-硝酸锂熔融助熔剂,充分混合后,高温熔融。熔融物倒入铂金模子形成扁平玻璃片后,再用X射线荧光光谱仪分析。大多数主量元素的分析精度优于5%。另称取一份试样放入马弗炉中,于1000℃灼烧。冷却后称重。样品加热前后的重量差即是烧失量。全岩微量元素测定是在南京聚谱检测科技有限公司用ICP-MS分析完成。称取40 mg全岩粉末置于聚四氟乙烯溶样弹中,加入0.5 mL浓硝酸与1.0 mL浓氢氟酸,溶样弹经钢套密封后放入195℃烘箱加热3 d,确保彻底消解。将盛放消解液的溶样弹置于电热板上蒸至湿盐状,加入1 mL内标Rh,再加入5 mL 15%硝酸,重新密闭溶样弹,放入195℃烘箱过夜。将约6 mL消解液转移至离心管中,经天平称重。取一部分适当稀释(相对于固体重量,稀释因子2000倍),以溶液雾化形式送入Agilent 7700x ICP-MS测定微量元素含量。标准样品采用GSR-5和GSR-20进行分析测试,大多数元素的分析精度优于10%。

  • 全岩粉末X射线衍射分析(XRD)在南京大学内生金属矿床成矿机制研究国家重点实验室完成,采用的是日本理学DMAXRAPIDII型转靶微区X射线衍射仪。选用Mo靶,在电压为50 kV和电流为90 mA的桶型面探测器内,设置为反射模式,每隔10 s计数一次,取值范围(2θ)3°~70°所测得。

  • 矿物的主量元素分析是在东华理工大学核资源与环境国家重点实验室完成,所用仪器为JXA-8530FPlus电子探针,加速电压15 kV,束流20 nA,束斑直径采用5 μm。矿物原位微区微量元素分析是在南京大学内生金属矿床成矿机制研究国家重点实验室完成,采用RESOlutionS155型193 nm的ArF准分子激光器和Thermo Fisher Scientifici CAPQ型四极杆ICP-MS联用分析获得。激光剥蚀的条件为:束斑直径29 μm,剥蚀频率4 Hz,能量密度4 J/cm2。实验中采用标准样品NISTSRM610、SRM612、BCR-2G和GSE-1G进行测试分析。本次分析采用多外标和无内标法对元素含量进行定量计算(Liu Yongsheng et al.,2008)。采用软件ICPMSDataCal对分析数据进行离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量计算)(Liu Yongsheng et al.,2008)。具体分析流程见Wu Shitou et al.(2018)

  • 3 分析结果

  • 3.1 全岩主微量元素

  • 样品的全岩主微量分析结果归纳于附表1。根据野外和镜下观察,这些变质岩大致可以分为四类,泥质板岩、千枚岩、变质砂岩(包括变质粉砂岩)、中高级变质岩(云母片岩和片麻岩)。分析结果显示,冷家溪群、双桥山群和溪口岩群中相同类型的岩石的化学组分相似(附表1)。其中,泥质板岩整体具有相对较低的SiO2(54.58%~68.25%)、CaO(0.02%~1.71%)含量,相对较高的Al2O3(15.24%~23.14%)、K2O含量(2.70%~5.55%),和变化的Na2O含量(0.06%~3.84%)(图3;附表1)。千枚岩成分整体上与泥质板岩相似,具有较低的SiO2含量(59.40%~69.06%),高的Al2O3(14.42%~19.37%)、K2O(2.27%~4.87%)、TiO2(0.67%~0.92%)、MgO(1.39%~3.21%)和TFe2O3含量(5.49%~8.64%)。相比于泥质板岩和千枚岩,变质砂岩具有较高的SiO2(55.50%~79.66%)、CaO(0.02%~4.84%)和Na2O含量(1.16%~5.25%),较低的Al2O3(8.43%~17.35%)、K2O(1.16%~5.25%)、TiO2(0.34%~0.94%)和MgO含量(0.53%~4.28%)。云母片岩和片麻岩的成分变化范围较大,其中云母片岩成分相似于千枚岩,而星子杂岩中的花岗质片麻岩更接近于变质砂岩。

  • 所有样品中SiO2与TiO2、Al2O3、TFe2O3、MgO、K2O有明显的负相关性,与Na2O有弱正相关性,与MnO、CaO无明显相关性(图3)。其中泥质板岩和千枚岩中,TiO2、Al2O3、TFe2O3、MgO、K2O的含量与澳大利亚后太古宙平均页岩(PAAS)的成分接近,而高于大陆上地壳平均值(UCC)。CIA是指示沉积岩化学风化程度的参数(CIA=[Al2O3/(Al2O3+CaO*+K2O+Na2O)]×100,主成分均为摩尔数,CaO*仅代表硅酸盐中的CaO)(Nesbitt and Young,1982),CIA越高说明源区中的长石风化更强。因此,板岩和千枚岩通常具有更高的CIA,与PAAS相似,而变质砂岩总体具有低的CIA(附表1;图4)。星子杂岩中的花岗质片麻岩具有最低的CIA,与未风化的花岗质岩石(CIA=45~55)一致(Nesbitt and Young,1982),与其原岩是花岗岩的推论相吻合(Wang Xiaolei et al.,2014)。

  • 微量元素在不同岩性中的丰度也有明显变化,通常泥质板岩和千枚岩富集稀有(如Li、Be、Rb、Cs、Sn和W)和稀土元素(附表1)。而且它们与CIA展示了较好的正相关性(图4)。Li在云母片岩和片麻岩中的含量高达115×10-6~652×10-6,明显高于冷家溪群、双桥山群和溪口岩群的泥质板岩、变质砂岩和千枚岩(附表1)。板溪群具有最低的锂含量(12.7×10-6~47.9×10-6)。Rb和Cs在仁里的片岩中也有很高的含量,但在星子杂岩中的片岩-片麻岩中并不高。各种岩性的平均Sn含量稍高于UCC(2.1×10-6),其中泥质板岩和千枚岩更高,但稍低于PAAS(4.0×10-6)。各种岩性的W含量变化于0.4×10-6~9×10-6,与UCC相似,也低于PAAS的W含量(2.7×10-6)。

  • 泥质板岩相对具有较高∑REE含量(114×10-6~445×10-6),轻重稀土分异中等(LREE/HREE=4.62~9.95);千枚岩也具有较高的∑REE含量(145×10-6~231×10-6),相似的LREE/HREE(6.12~9.13);变质砂岩的∑REE含量相对较低(91.7×10-6~270×10-6),但轻重稀土分异相似LREE/HREE(4.89~11.6)。所有这些样品的稀土配分模式都相似于UCC和PAAS,表现出中等的轻重稀土分异和中等的Eu负异常(图5),只是含量都高于UCC,尤其是重稀土。

  • 3.2 XRD全岩粉末衍射分析

  • 为了了解锂在样品中的赋存状态,我们选取了23件低级变质沉积岩样品进行XRD全岩粉晶衍射分析,并利用jade9.0软件对分析结果进行了半定量化计算(附表2)。分析结果表明,所有样品中都含有黏土矿物,但不同样品中黏土含量变化较大(6.3%~40.5%)。黏土矿物主要是绿泥石(0.9%~23.8%)、伊利石(1.2%~18.4%)和高岭石(0.5%~7.3%)。除了黏土矿物,石英(4.3%~67.9%)占比很大,其次是钠长石(1.3%~19%)和白云母(1.1%~14.9%)。造岩矿物在全岩中的占比很大程度上反映了沉积岩源区的矿物风化程度。由于副矿物在全岩中的占比很低,XRD衍射峰强度较低,不太容易识别和计算,因此很多样品中的副矿物没有检测出来,但似乎许多样品中都含有少量金红石。

  • 图3 江南造山带东段新元古代变质岩主量元素Harker图解(PAAS数据来自Taylor and McLennan,1985; UCC数据来自Rudnick and Gao,2003

  • Fig.3 Harker diagrams of major element compositions of Neoproterozoic metamorphic rocks in the eastern Jiangnan orogen (PAAS data after Taylor and McLennan, 1985; UCC data after Rudnick and Gao, 2003)

  • 3.3 矿物主微量元素

  • 为了确定稀有金属元素在变质矿物中的重新分配,本研究对几个中高级变质岩主要造岩矿物和副矿物进行了电子探针(EMPA)和LA-ICP-MS矿物原位微区微量元素分析(附表3、4)。分析结果显示,仁里云母片岩中的黑云母稀有金属元素含量整体较高,主要富集Li(1061×10-6~2253×10-6),平均值1647×10-6,另外也富集Rb(471×10-6~1800×10-6)、Cs(73.1×10-6~1718×10-6)、Nb(22.8×10-6~41.3×10-6)、Ta(1.62×10-6~3.02×10-6)、W(0.54×10-6~5.47×10-6)和Sn(3.70×10-6~10.2×10-6);白云母也同样富集Li(107×10-6~894×10-6)、Rb(153×10-6~583×10-6)、Cs(2.18×10-6~232×10-6)、W(5.13×10-6~15.7×10-6)和Sn(6.69×10-6~16.9×10-6),但其Nb(6.60×10-6~26.1×10-6)和Ta(0.37×10-6~1.80×10-6)含量较低;除了重稀土,石榴子石也含有一定的Li(22.2×10-6~113×10-6)和Sc(19.1×10-6~101×10-6);电气石中稀有金属元素含量总体偏低,其中Li的含量最高,为90.5×10-6~166×10-6,平均值为119×10-6,其次是Sc(8.94×10-6~168×10-6),平均值为10.4×10-6,其他稀有金属元素含量都很低;十字石极其富Li(2951×10-6~3642×10-6),平均含量达3204×10-6,其次是Be(3.41×10-6~10.9×10-6),平均值6.97×10-6;副矿物磷灰石的Li含量平均值为26.9×10-6,钛铁矿Li含量平均值为21.5×10-6。星子片麻岩的黑云母同样富集Li(808×10-6~1987×10-6)、Rb(911×10-6~1412×10-6)、Cs(92.3×10-6~314×10-6)、Nb(39.5×10-6~159×10-6)、Ta(2.08×10-6~13.0×10-6)、W(2.50×10-6~13.3×10-6)和Sn(18.4×10-6~66.0×10-6);白云母也富集Li(199×10-6~790×10-6)、Rb(482×10-6~1048×10-6)、Cs(15.5×10-6~78.6×10-6)、Nb(17.4×10-6~115×10-6)、W(6.60×10-6~85.2×10-6)和Sn(31.4×10-6~147×10-6)。片麻岩中石榴子石含Li=30.6×10-6~188×10-6,均值76.6×10-6,高于片岩中石榴子石Li的含量;斜长石中Li含量较低(1.75×10-6~37.1×10-6),平均值为10.5×10-6,但Be含量较高(3.56×10-6~29.0×10-6),平均11.7×10-6(附表3);钾长石中Li含量稍高(9.78×10-6~41.2×10-6),而其Rb含量(440×10-6~539×10-6)明显高于斜长石中的Rb含量,平均值493×10-6;副矿物磁铁矿中各种稀有元素的含量都很低;独居石除了富含稀土和Th-U外,只含少量的Rb、W和Hf;而钛铁矿是Nb(平均值1652×10-6)和Ta(平均值327×10-6)最重要的携带者,而且还含有很高的W(平均值13.3×10-6)和Sn(平均值31.1×10-6)。总的来说,稀有金属元素大多富集在硅酸盐造岩矿物中,尤其是云母中,而副矿物中只有钛铁矿富集了Nb、Ta、W和Sn。

  • 图4 江南造山带东段新元古代变质沉积岩微量元素特征(PAAS数据来自Taylor and McLennan,1985; UCC数据来自Rudnick and Gao,2003

  • Fig.4 Characteristics of trace element compositions of Neoproterozoic meta-sedimentary rocks in the eastern Jiangnan orogen (PAAS data after Taylor and McLennan, 1985; UCC data after Rudnick and Gao, 2003)

  • 图5 江南造山带东段不同岩性变质沉积岩的稀土元素配分图(PAAS数据来自Taylor and McLennan,1985; 球粒陨石标准化数据来自Sun and McDonough,1989; UCC数据来自Rudnick and Gao,2003

  • Fig.5 Chondrite-normalized REE patterns of meta-sedimentary rocks in the eastern Jiangnan orogen (reference data after Sun and McDonough, 1989; Taylor and McLennan, 1985; Rudnick and Gao, 2003)

  • 对云母的电子探针分析结果显示,仁里片岩中的白云母均匀,都落入典型的白云母区域,而两个星子片麻岩中的白云母具有稍高的Si和Fe,落入多硅白云母区域(图6)。黑云母的成分也明显分成两类,仁里片岩和星子杂岩一个二云母片麻岩的黑云母具有低TFeO(20.49%~23.80%)和高MgO(6.74%~9.29%)的特征,属于富铁黑云母(图6),而两个黑云母花岗片麻岩中的黑云母富TFeO(27.88%~30.20%)贫MgO(2.21%~3.62%),落入铁叶云母与富铁黑云母过渡区(图6)。

  • 图6 仁里片岩和星子杂岩中片麻岩的云母化学组成分类图解(底图据Tischendorf et al.,1997

  • Fig.6 Classification diagram of micas of the Renli schistes and the Xingzi gneisses (after Tischendorf et al., 1997)

  • 4 讨论

  • 4.1 江南造山带东段新元古代变质沉积岩中锂的分布

  • 本次研究显示湘北—湘东北冷家溪群、赣北双桥山群和皖南溪口岩群具有相似的主量元素和稀有金属元素含量,反映了它们的原岩沉积岩具有相似的碎屑物来源和相似的化学风化程度。它们的稀有金属元素含量整体上高于大陆上地壳平均值(UCC),尤其是Li、Rb、Cs和Sn(图7)。通常泥质板岩和千枚岩具有更高的稀有金属元素含量,而变质砂岩中稀有金属元素含量降低,接近UCC(图7)。从湖南的冷家溪群经赣北的双桥山群到皖南的溪口群,Li、Rb、Cs和W含量展示了下降的趋势(附表1)。板溪群沉积岩总体具有低的稀有金属含量(图7)。

  • 冷家溪群、双桥山群和溪口岩群变质沉积岩(尤其是泥质板岩和千枚岩等)的锂含量明显高于UCC,也高于松潘-甘孜构造带可尔因地区花岗岩-伟晶岩型锂矿的变质沉积围岩和桂北湘南地区的基底变质沉积岩(图8)。星子杂岩中低级变质岩和板溪群沉积岩具有最低的锂含量(附表1),而仁里云母片岩和星子杂岩中的花岗质片麻岩具有极高的锂含量(附表1,图7)。这种较高级变质岩石中锂含量增加的现象也见于松潘-甘孜构造带可尔因等地区的变质沉积岩(王登红等,2017; 胡方泱等,2022)。王登红等(2017)认为川西甲基卡矿区外围变质围岩中锂含量随变质级增加而富集的现象是因为热变质过程中锂发生迁移富集的结果。而胡方泱等(2022)认为深埋或接触热变质过程不是导致这些沉积岩锂超常富集的因素。他们发现那些锂含量异常高的样品都靠近大的花岗质岩体或伟晶岩,因此,认为变质沉积围岩中锂的富集是来自岩浆的热液流体交代作用的结果。本次研究的仁里片岩和星子片麻岩也都靠近中生代花岗质岩体。而且对比仁里片岩与附近的冷家溪群浅变质沉积岩可以发现,除了Li、Rb、Cs等强活动元素,其他元素没有明显差异(附表1)。因此,我们倾向于这些变质岩中Li、Rb、Cs含量的升高是来自花岗质岩浆的流体渗透交代的结果。

  • 图7 江南造山带东段不同岩性变质岩中稀有金属元素的分布(PAAS数据来自Taylor and McLennan,1985; UCC数据来自Rudnick and Gao,2003

  • Fig.7 Distribution of rare-metal elements in different metamorphic rocks from the eastern Jiangnan orogen (PAAS data after Taylor and McLennan, 1985; UCC data after Rudnick and Gao, 2003)

  • 松潘-甘孜构造带三叠系沉积岩具有比江南造山带东段基底变质沉积岩更低的锂含量,而且已有的研究显示,那些与锂成矿有关的三叠纪晚期花岗岩的源区就是这些变质沉积岩(Fei Guangchun et al.,2020; 袁彦伟等,2022)。这样,甲基卡等大型锂矿的形成就要求特殊的部分熔融及其随后熔体的强烈演化。本文搜集了一些位于江南造山带湘东北—赣北的花岗岩中锂含量数据作为对比(图8)。相对于变质沉积岩,花岗岩的锂含量更加分散,大多位于20×10-6~1800×10-6范围,整体上明显高于变质沉积岩,说明部分熔融是锂富集的重要机制。当然,要形成含矿花岗岩,仍需要进一步分离结晶演化(吴福元等,2017Wu Fuyuan et al.,2020; 胡方泱等,2022)。因此,相对而言,江南造山带东段基底变质沉积岩具有更大的锂成矿的潜力,只要通过有效的部分熔融和强烈的分异演化。

  • 4.2 变质沉积岩中锂的赋存形式和富集机制

  • 从地球化学性质的角度分析,Li+的化学性质与Na+相似,但离子半径却与Mg2+、Fe2+和Al3+相似。因此,与其他碱金属(Na、K、Rb和Cs)的地球化学行为有所不同,Li通常在矿物八面体配位位置以不等价类质同象替换Mg、Fe和Al,使得Li普遍存在于辉石、角闪石、云母类和部分副矿物中(Seitz and Woodland,2000; 薛颖瑜等,2021)。在自然界中,卤水型(盐湖型)和花岗伟晶岩型(花岗岩型)是全球锂矿床的主要类型,占锂矿床总量的84%,分别对应了化学风化作用和岩浆作用的产物(薛颖瑜等,2021)。在地表风化过程中,造岩矿物分解,Li可以从矿物晶格中析出,以Li+离子形式与卤族元素化合形成可溶盐(如LiCl),被流水带走进入稳定的水域,经强蒸发作用形成卤水型或蒸发盐类锂矿床(Huh et al.,1998; Pistiner and Henderson,2003; Helvaci et al.,2004; 薛颖瑜等,2021)。然而,造岩矿物分解出来的Li并非都被水体带走,其大部分被分解产生的黏土矿物和氧化物等次生矿物表面吸附,也有部分进入黏土矿物中,与Mg2+和Fe2+产生类质同象置换进入表生新矿物晶格,在风化残余物中发生不同程度的富集(Misra and Froelich et al.,2012; 薛颖瑜等,2021)。

  • 除了仁里片岩和星子片麻岩,冷家溪群、双桥山群和溪口岩群的沉积岩都经历了很低级的变质作用(低绿片岩相以下),它们的元素含量基本不受变质影响,因此反映了原岩的地球化学特征。本次研究的大部分样品的CIA值落在65~80的区间,反映了中等—较强的化学风化作用,指示原岩沉积环境为温暖、湿润的条件。图4显示这些低级变质沉积岩的许多微量元素,如Li、Be、Rb、Cs、W、Sn、Nb和∑REE,与其CIA值具有大致的正相关关系,反映了化学风化程度对稀有和稀土金属元素在沉积岩中富集具有重要的控制作用。实际上,高CIA值指示风化过程中更多的长石转化成了黏土矿物(Nesbitt and Young,1982)。因此,高CIA样品稀有稀土金属元素的富集很可能是黏土矿物的吸附起了关键作用。冷家溪群、双桥山群和溪口岩群沉积岩具有高的锂含量就可能与其高的CIA有关,而松潘-甘孜三叠系沉积岩低的锂含量与其低的CIA相对应(53,胡方泱等,2022)。仔细分析可以发现,Li与CIA的正相关性的相关系数并不高(R2=0.37,图4),而与样品中的MgO和TFe2O3具有更好的相关性(R2=0.39和0.48;图9),这意味着Li更容易被含Mg-Fe的黏土矿物吸附,如蒙脱石和绿泥石。XRD粉晶衍射分析显示,样品中含有较多的黏土矿物。黏土矿物总量与全岩锂含量具正相关性,而且与绿泥石、高岭石和黑云母的含量相关性更好,尤其是与绿泥石含量(R2=0.59;图10)。综合以上分析和前人的实验,考虑到岩石已经历了低级变质作用,蒙脱石等已被转变为绿泥石(徐兴旺等,2023)。因此,我们推测在风化—沉积过程中,Li是优先被蒙脱石和(锂)绿泥石吸附。即含Fe-Mg的原岩化学风化容易形成更多的蒙脱石和绿泥石,更有利于Li的吸附和富集。

  • 图8 不同地区不同地层中锂含量分布直方图

  • Fig.8 Histogram of lithium content distribution in different strata in different regions

  • (a)—冷家溪群;(b)—板溪群(王鹏鸣,2012;本文);(c)—双桥山群;(d)—星子杂岩(张海祥和张伯友,2003;本文);(e)—溪口岩群(徐生发等,2017;本文);(f)—桂北湘南变质岩(王鹏鸣,2012李敏业,2014);(g)—松潘-甘孜可尔因地区变质沉积岩(胡方泱等,2022);(h)—湘东北-赣北中生代花岗岩(李洁和黄小龙,2013Zhu Zeying et al.,2015Wang Denghong et al.,2020张勇等,2020黄迪等,2022

  • (a) —Lengjiaxi Group; (b) —Banxi Group (Wang Pengming,2012; this study) ; (c) —Shuangqiaoshan Group; (d) —Xingzi complex (Zhang Haixiang and Zhang Boyou, 2003; this study) ; (e) —Xikou Group (Xu Shengfa et al., 2017; this study) ; (f) —basement rocks in North Guangxi and South Hunan (Li Minye, 2014; Wang Pengming, 2012) ; (g) —metasedimentary rocks in the Keeryin area, Songpan-Ganzi tectonic domain (Hu Fangyang et al., 2022) ; (h) —Mesozoic granites from northeastern Hunan to northern Jiangxi (Li Jie and Huang Xiaolong, 2013; Zhu Zeying et al., 2015; Wang Denghong et al., 2020; Zhang Yong et al., 2020; Huang Di et al., 2022)

  • 图9 江南造山带东段变质沉积岩的MgO-Li和TFe2O3-Li相关图

  • Fig.9 Plots of Li vs. MgO and TFe2O3 of meta-sedimentary rocks in the eastern Jiangnan orogen

  • 图10 江南造山带东段变质沉积岩中Li含量与矿物含量相关图

  • Fig.10 Correlation diagrams of Li contents and mineral proportions of Neoproterozoic meta-sedimentary rocks in the eastern Jiangnan orogen

  • 4.3 锂在中高级变质岩中的分配和在部分熔融过程中的行为

  • 随着变质作用温压的升高,黏土矿物和低级变质矿物会发生分解形成新的变质矿物,锂等稀有金属元素也会重新分配。对主要造岩矿物和副矿物中稀有金属元素含量的分析显示,云母类矿物是大部分稀有金属元素的主要载体,除了Zr-Hf(图11)。

  • 尽管十字石也富集Li,但由于十字石是中级变质过程中的产物,当变质温度超过640℃ 就会全部分解。因此,在中高级变质岩中,云母是Li的最重要的寄主矿物,尤其是黑云母。根据前人的研究,堇青石也是一种富Li的矿物(Bea et al.,1994; 徐兴旺等,2023),它可以稳定在较高的温度条件下。除了斜长石富集Be和钾长石富集Rb以外,其他造岩矿物中的稀有金属元素的含量都很低(图11)。在副矿物中,只有钛铁矿显示出对Nb、Ta、Sc、Sn的明显富集,其余副矿物基本不富集稀有金属元素(图12)。因此,在部分熔融过程中只有云母、堇青石和钛铁矿等少数副矿物对产生熔体中的Li等稀有金属元素含量有明显的控制作用。

  • 图11 稀有金属元素在江南造山带东段中高级变质岩与造岩矿物间的分配

  • Fig.11 Distribution of rare metal elements in rock forming minerals of middle and high grade metamorphic rocks in eastern Jiangnan orogen

  • 图12 稀有金属元素在江南造山带东段中高级变质岩与副矿物间的分配

  • Fig.12 Distribution of rare metal elements between accessory minerals and middle and high grade metamorphic rocks in eastern Jiangnan orogen

  • 为了探究高级变质-部分熔融过程中Li在矿物-熔体中分配行为,我们采用批式熔融模型来模拟。部分熔融模型采用Zhao Panlao et al.(2022)的方法建立。虽然现有的关于Li的矿物-熔体分配系数的数据较少,但Li在岩石中主要赋存于云母和堇青石中(Bea et al.,1994; 徐兴旺等,2023),其他矿物中的含量都很低,因此我们重点关注部分熔融过程中云母-熔体和堇青石-熔体之间Li的分配行为。Li的矿物熔体分配系数来自Simons et al.(2017)。本次部分熔融模拟选用仁里Nb-Ta-Li矿的围岩冷家溪群泥质板岩的平均成分作为模拟的初始值(Li含量初始值CLi=65×10-6)。矿物和熔体的相对比例利用GeoPS相平衡计算软件来模拟(Xiang Hua and Connolly,2021; http://www.geology.ren/zh-cn/index.html)。本次模拟计算了在0.6 GPa和1.0 GPa的压力下,600~1000℃温度以及不同水含量条件下体系中矿物组合和熔体的变化(图13a、b,图14a、b)。本文选择在MnNCKFMASHTO(MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-O)体系下对平均泥质板岩成分进行相平衡模拟。矿物活度模型选择的是White的活度模型(White et al.,2014),岩石Fe3+/Fetot比值(0.03)和H2O含量利用GeoPS软件根据P/T-X视剖面图确定,具体方法见田作林等(2020)。相平衡模拟时选择Chl、Grt、Mus、Bt、Crd、St、melt、Fsp、Sp、Ilm、Opx等矿物相。Li是微量元素,以类质同相置换某些元素的形式赋存在矿物相中,其浓度基本不影响主要造岩矿物的稳定性。

  • 模拟结果表明,熔体中锂的富集主要与白云母和黑云母中Li组分的减少有关,堇青石的存在也会对熔体中的Li含量有一定的影响(图13c、d,图14c、d)。在P=0.6 GPa,H2O=0.75%条件下(图13c),当温度达到728℃,黑云母开始熔融分解,熔体开始产生。温度继续上升,部分熔融程度持续增加,Li在黑云母中的占比量逐渐减少,熔体中Li的百分含量逐渐上升;当温度上升到805℃时,虽然此时生成新的矿物相堇青石带走了熔体中的部分Li,但是同时黑云母开始加速分解熔融并占主导,Li在熔体中的占比和熔体中的Li的浓度均出现快速上升(图13c、e);一直到809℃黑云母全部分解熔融,此时部分熔融程度达到11.8%,熔体中Li含量达到最高值429×10-6,相较于原岩的初始浓度富集了6.6倍,并向熔体中释放了77.7%的Li。如果部分熔融继续进行,堇青石开始分解熔融并向熔体中释放Li,但熔体含量的上升将稀释Li在熔体中的浓度。

  • P=0.6 GPa,H2O=1.9%条件下,温度达到644℃,岩石中白云母开始快速分解,寄主于白云母中的Li含量下降,而寄主于黑云母中的Li含量逐渐升高。此时由于没有熔体产生,Li只能寻找新的宿主,黑云母成为最佳的选择。在672℃下白云母加速分解并发生脱水熔融。此时熔体含量较少,Li作为不相容元素从白云母和黑云母中快速析出进入熔体,导致熔体中的Li浓度快速上升,达到了原岩初始浓度的近2倍(图13f);随后白云母大量快速熔融,并在693℃时完全耗尽,熔体的比例达到了10.8%,Li在熔体中的比重上升到12.6%(图13d)。可能是熔体大量产生的原因,此时Li在熔体中的浓度只有少量的增长。当温度达到704℃,黑云母开始熔融分解。温度继续上升,部分熔融程度持续增加,Li在黑云母中的占比量开始减少,但熔体中Li的百分含量上升不明显;当温度上升到813℃时,虽然此时生成新的矿物相堇青石带走了熔体中的部分Li,但是同时黑云母开始加速分解熔融并占主导,Li在熔体中的占比和熔体中的Li的浓度均出现快速上升(图13d、f);一直到818℃黑云母全部分解熔融,此时部分熔融程度达到35.3%,熔体中Li含量达到最高值168×10-6,相较于原岩的初始浓度富集了2.6倍,并向熔体中释放了91%的Li。如果部分熔融继续进行,堇青石开始分解熔融并向熔体中释放Li,但熔体含量的上升将稀释Li在熔体中的浓度。

  • 图13 泥质板岩在0.6 GPa条件下部分熔融过程中矿物组成变化及熔体和矿物中Li含量的变化

  • Fig.13 Change of mineral assemblage and Li contents in minerals and melt during partial melting of argillite at 0.6 GPa

  • (a)、(c)、(e)—H2O含量0.75%的模拟结果;(b)、(d)、(f)—H2O含量1.9%的模拟结果;(a)、(b)—温度升高矿物组合变化;(c)、(d)—Li在各矿物相和熔体相中的含量百分比随温度升高的变化,所有相Li含量百分比之和为100%;(e)、(f)—熔体中Li含量和部分熔融程度随温度的变化;Q—石英;Bt—黑云母;Grt—石榴子石;Pl—斜长石;Kfs—钾长石;St—十字石;Ky—蓝晶石;Sil—矽线石;Crd—堇青石;Ab—钠长石;Sp—尖晶石;Ilm—钛铁矿;Mus—白云母;Melt—熔体

  • (a) , (c) and (e) —the modeling results at H2O=0.75%; (b) , (d) and (f) —the modeling results at H2O=1.9%; (a) and (b) —the variation of mineral assemblage with increasing temperature; (c) and (d) —the percentages of Li in all mineral phases and melt phases are changed with increasing temperature; (e) and (f) —change of Li content and partial melting degree (F) with temperature; Q—quartz; Bt—biotite; Grt—garnet; Pl—plagioclase; Kfs—potassium feldspar; St—staurolite; Ky—kyanite; Sil—sillimanite; Crd—cordierite; Ab—albite; Sp—spinel; Ilm—ilmenite; Mus—muscovite

  • 图14 泥质板岩在1.0 GPa条件下部分熔融过程中矿物组成变化及熔体和矿物中Li含量的变化

  • Fig.14 Change of mineral assemblage and Li contents in minerals and melt during partial melting of argillite at 1.0 GPa

  • (a)、(c)、(e)—H2O含量0.75%的模拟结果;(b)、(d)、(f)—H2O含量1.9%的模拟结果;(a)、(b)—温度升高矿物组合变化;(c)、(d)—Li在各矿物相和熔体相中的含量百分比随温度升高的变化,所有相Li含量百分比之和为100%;(e)、(f)—熔体中Li含量和部分熔融程度随温度的变化;Q—石英;Bt—黑云母;Grt—石榴子石;Pl—斜长石;Kfs—钾长石;St—十字石;Ky—蓝晶石;Sil—矽线石; Ab—钠长石;Pa—钠云母;Ilm—钛铁矿;Mus—白云母;Melt—熔体

  • (a) , (c) and (e) —the modeling results at H2O=0.75%; (b) , (d) and (f) —the modeling results at H2O=1.9%; (a) and (b) —the variation of mineral assemblage with increasing temperature; (c) and (d) —the percentages of Li in all mineral phases and melt phases are changed with increasing temperature; (e) and (f) —change of Li content and partial melting degree (F) with temperature; Q—quartz; Bt—biotite; Grt—garnet; Pl—plagioclase; Kfs—potassium feldspar; St—staurolite; Ky—kyanite; Sil—sillimanite; Ab—albite; Pa—paragonite; Ilm—ilmenite; Mus—muscovite

  • P=1.0 GPa的条件下,由于压力增大,云母和其他矿物的组合在600~1000℃范围内发生变化(图14a、b),白云母和黑云母的初始熔融温度变得更高(图14c、d)。并且,白云母和黑云母的完全熔融消失的温度也有所升高(图14c、d)。在新的压力条件下,H2O=0.75%和H2O=1.9%条件下黑云母全部消失时,熔体的部分熔融程度分别为10.7%和28.3%,此时,几乎所有的Li都进入了熔体,Li在熔体中的占比达到近乎100%,熔体中Li含量分别达到606×10-6和230×10-6,分别是原岩Li含量的9.3倍和3.5倍,表明压力增加有利于Li的抽取(图14e、f)。如果用仁里片岩的Li含量作为初始值(350×10-6)计算,在P=0.6 GPa,H2O=0.75%条件下,熔体中的Li含量最高可达3403×10-6。通过图13e、f和图14e、f对比发现,在相同温压条件下,岩石中水含量越高,部分熔融程度越高,黑云母全部分解熔融时产生的熔体中Li含量越低。因此,控制部分熔融过程中花岗质岩浆中锂浓度的主要因素是原岩中锂含量、部分熔融程度和岩石中水含量,而部分熔融程度主要取决于温度、压力和岩石中水含量。当然原岩成分也是一个重要的控制因素,因为它决定了变质和部分熔融阶段云母类矿物与其他矿物的比例,从而影响部分熔融发生的温度和云母类矿物消失时熔体的比例。上述熔融模拟显示,当云母类矿物完全熔融消失时,熔体中的Li浓度达到最高。温度继续升高,部分熔融增加,熔体中的Li浓度将降低。这意味着要产生最富锂的熔体,部分熔融的温度既不能太高又不能太低。另一方面,压力继续上升(如1.5 GPa)将对矿物组合和产生熔融的比例有明显的影响,熔体量减少,熔体中Li浓度升高,但这样条件在地壳环境难以达到。因此,挤压背景且没有明显外来热量和流体(如幔源)加入的构造环境更有利于形成富锂的花岗质岩浆。松潘-甘孜构造带东部甲基卡等特大型锂矿床的形成很可能就与这样的构造背景有关,形成母岩浆的部分熔融发生在中压相系(以发育巴罗变质带为证)温压条件下,产生的熔体达到了最富集锂的状态。相反,拉张(低压)背景并伴有地幔物质参与(带来高温流体)将不利于形成富锂的花岗质岩浆。

  • 5 结论

  • (1)江南造山带东段冷家溪群、双桥山群和溪口岩群变质沉积岩具有相似的地球化学组成,它们都富集锂等稀有金属元素,其中锂含量整体高于平均大陆上地壳,也高于松潘-甘孜构造带东端可尔因地区三叠系变质沉积岩的锂含量。板溪群变质沉积岩中的锂含量较低。

  • (2)冷家溪群、双桥山群和溪口岩群变质沉积岩中的锂含量存在变化,其中泥质板岩和千枚岩含有更高的锂含量(61.8×10-6),而变质砂岩的锂丰度较低(44.9×10-6)。这些浅变质岩中的锂含量与化学风化指数(CIA)和MgO、TFe2O3含量显示了较好的正相关性,而且与岩石中的黏土矿物,尤其是绿泥石含量,具有很好的正相关性,表明黏土矿物的吸附作用是这些变质沉积岩中锂初始富集的重要机制。其中,蒙脱石和绿泥石对Li的吸附作用尤为突出。

  • (3)在中高级变质岩中,绝大多数的Li赋存于黑云母、白云母和十字石中。十字石含量低,且在部分熔融前或初期已转变成其他矿物相,所以控制部分熔融过程中熔体中的锂含量主要是黑云母和白云母。对冷家溪群变质沉积岩的部分熔融模拟显示,从熔融开始,熔体中的锂浓度逐渐上升,直到云母完全熔融消失,熔体中的锂浓度达到高峰。熔融再继续,熔体中的Li浓度将会下降。压力增加有利于锂在熔体中的富集,而水含量的增加对锂在熔体中的富集有抑制作用。因此,挤压背景中等地温梯度且贫水环境的部分熔融最有利于熔体中锂的富集。

  • 致谢:感谢南京大学地球科学与工程学院胡欢副教授和李巍巍在LA-ICP-MS和XRD粉末衍射实验过程中提供的帮助;感谢东华理工大学地球科学学院邬斌副教授在电子探针分析过程中提供的帮助;感谢刘冰琪、赵茜和张贺共同参加了野外地质考察和采样。审稿人宝贵的意见和建议对本文的提高具有重要作用,在此表示衷心的感谢。

  • 附件:本文附件(附表1~3)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202311095?st=article_issue

  • 参考文献

    • Barros R, Menuge J F. 2016. The Origin of spodumene pegmatites associated with the leinster granite in Southeast Ireland. Canadian Mineralogist, 54(4): 847~862.

    • Bea F, Pereira M D, Stroh A. 1994. Mineral/leucosome trace element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemcal Geology, 117: 291~312.

    • Dill H G. 2018. Geology and chemistry of Variscan-type pegmatite systems (SE Germany)—With special reference to structural and chemical pattern recognition of felsic mobile components in the crust. Ore Geology Reviews, 92: 205~239.

    • Fei Guangchun, Menuge Julian F, Li Yunqiang, Yang Jiyi, Deng Yun, Chen Changsheng, Yang Yufan, Yang Zheng, Qin Liye, Zheng Luo, Tang Wenchun. 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze fold belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos, 364~365.

    • Fei Guangchun, Menuge Julian F, Chen Changsheng, Yang Yulong, Deng Yun, Li Youguo, Zheng Luo. 2021. Evolution of pegmatite ore-forming fluid: The Lijiagou spodumene pegmatites in the Songpan-Garze fold belt, southwestern Sichuan Province, China. Ore Geology Reviews, 139: 104441.

    • Feng Chengyou, Zhang Dequan, Xiang Xinkui, Li Daxin, Qu Hongying, Liu Jiannan, Xiao Ye. 2012. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication. Acta Petrologica Sinica, 28(12): 3858~3868 (in Chinese with English abstract).

    • Helvaci C, Mordogan H, Colak M, Gundogan I. 2004. Presence and distribution of lithium in borate deposits and some recent lake waters of west-central Turkey. International Geology Review, 46(2): 177~190.

    • Hu Fangyang, Wu Fuyuan, Chen Guohui, Yang Lei. 2022. The critical factors of lithium enrichment in the metasedimentary wall rocks of granitic pegmatite-type lithium deposit: Insights from the Ke'eryin area in the eastern Songpan-Ganzi belt. Acta Petrologica Sinica, 38(7): 2017~2051 (in Chinese with English abstract).

    • Huang Di, Huang Xudong, Zhang Rongqing, Lu Jianjun, Wu Jinwei, Huang Yu. 2022. Comparative study of the Huashandong and Jiuling granites in northwestern Jiangxi and its metallogenic implications. Journal of Geology, 46(1): 22~33 (in Chinese with English abstract).

    • Huh Y, Chan L H, Zhang L, Edmond J M. 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochimica et Cosmochimica Acta, 62(12): 2039~2051.

    • Li Jie, Huang Xiaolong. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311~4322 (in Chinese with English abstract).

    • Li Minye. 2014. The geochemisty and geochronology of Neoproterozoic-Devonian sedimentary rocks in Guangxi Province, South China. Master thesis of Nanjing University (in Chinese with English abstract).

    • Li Peng, Zhang Liping, Li Jiankang, Huang Zhibiao, Zhou Fangchun, Jiang Pengfei. 2021. Metallogenic regularity of rare metal deposits in Mufushan area of Central China, and its application in ore prospecting. Mineral Deposits, 40(4): 819~841 (in Chinese with English abstract).

    • Linnen R L, van Lichtervelde M, Cerny P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275~280.

    • Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine. Geology in China, 44(2): 263~278(in Chinese with English abstract).

    • Liu Yongsheng, Hu Zhaochun, Gao Shan, Gunther Detlef, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.

    • London D. 2005. Granitic pegmatites: An assessment of current concepts and directions for the future. Lithos, 80(1~4): 281~303.

    • Lu Jianjun, Zhang Rongqing, Huang Xudong, Zhang Qiang, Li Xiaoyu, Zhou Weifa, Huang Di, Huang Yu, Ma Dongsheng, Jiang Yaohui. 2022. Metallogenic characteristics of tungsten, tin, and rare metal deposits in the Jiangnan orogenic belt. South China Geology, 38(3): 359~381 (in Chinese with English abstract).

    • Misra S, Froelich P N. 2012. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science, 335(6070): 818~823.

    • Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715~717.

    • Pistiner J S, Henderson G M. 2003. Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214(1~2): 327~339.

    • Rudnick R L, Shan G. 2003. Composition of the continental crust. Treatise Geochem. , 3: 1~64.

    • Seitz H M, Woodland A B. 2000. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes. Chemical Geology, 166(1~2): 47~64.

    • Simons B, Andersen J C O, Shail R K, Jenner F E. 2017. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation. Lithos, 278: 491~512.

    • Sun Junjun, Shu Liangshu, Santosh M, Wang Liangshu. 2018. Precambrian crustal evolution of the central Jiangnan orogen (South China): Evidence from detrital zircon U-Pb ages and Hf isotopic compositions of Neoproterozoic metasedimentary rocks. Precambrian Research, 318: 1~24.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publication.

    • Tian Zuolin, Zhang Zeming, Dong Xin. 2020. Calculation of effective bulk composition and its application in metamorphic phase equilibria modeling. Acta Petrologica Sinica, 36(9): 2616~2630 (in Chinese with English abstract).

    • Tischendorf G, Gottesmann B, Forster H J, Trumbull R B. 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(6): 809~834.

    • Wang Denghong, Wang Chenghui, Sun Yan, Li Jiankang, Liu Shanbao, Rao Kuiyuan. 2017. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China. Geological Survey of China, 4(5): 1~8 (in Chinese with English abstract).

    • Wang Denghong, Dai Hongzhang, Liu Shanbao, Wang Chenghui, Yu Yang, Dai Jingjing, Liu Lijun, Yang Yueqing, Ma Shengchao. 2020. Research and exploration progress on lithium deposits in China. China Geology, 3(1): 137~152.

    • Wang Pengming. 2012. The geochemisty and geochronogy comprehensive study of Precambrian-strata in Hunan and Guangxi Province, Master thesis of Nanjing University (in Chinese with English abstract).

    • Wang Ziqiang, Gao Linzhi, Ding Xiaozhong, Huang Zhizhong. 2012. Tectonic environment of the metamorphosed basement in the Jiangnan orogen and its evolutional features. Geological Review, 58(3): 401~413 (in Chinese with English abstract).

    • Wang Xiaolei, Zhou Jincheng, Griffin W L, Zhao Guochun, Yu Jinhai, Qiu Jiansheng, Zhang Yanjie, Xing Guangfu. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 242: 154~171.

    • White R W, Powell R, Johnson T E. 2014. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals. Journal of Metamorphic Geology, 32(8): 809~828.

    • Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granties: Recognition and research. Science China (Earth Sciences), 47(7): 745~765 (in Chinese with English abstract).

    • Wu Fuyuan, Liu Xiaochi, Liu Zhichao, Wang Rucheng, Xie Lei, Wang Jiamin, Ji Weiqiang, Yang Lei, Liu Chen, Khanal G P, He Shaoxiong. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352~353: 105319.

    • Wu Shitou, Volker K, Burkhard S C, Klaus S, Gerhard W. 2018. Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 42(4): 575~591.

    • Xiang Hua, Connolly J A D. 2021. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. Journal of Metamorphic Geology, 40(2): 243~255.

    • Xie Lei, Liu Ying, Wang Rucheng, Hu Huan, Che Xudong, Xiang Lu. 2019. Li-Nb-Ta mineralization in the Jurassic Yifeng granite-aplite intrusion within the Neoproterozoic Jiuling batholith, South China: A fluid-rich and quenching ore-forming process. Journal of Asian Earth Sciences, 185: 104047. 1~104047. 16.

    • Xu Shengfa, Zhu Qiang, Hu Zhaoqi. 2017. Petrogeochemical features of Neoproterozoic Xikou Group complex in South Anhui and their structural implications. Geology of Anhui, 27(1): 1~6 (in Chinese with English abstract).

    • Xu Xingwang, Zhai Mingguo, Hong Tao, Ma Yince, Guo Jinghui. 2023. Migration-circulation processes and enrichment-mineralization mechanism of lithium-beryllium elements in the continental crust. Acta Petrologica Sinica, 39(3): 639~658 (in Chinese with English abstract).

    • Xue Yingyu, Liu Haiyang, Sun Weidong. 2021. The geochemical properties and enrichment mechanism of lithium. Geotectonica et Metallogenia, 45(6): 1202~1215 (in Chinese with English abstract).

    • Yuan Xiaojing, Ma Zhe, Li Jianwu. 2019. Forecast and suggestions of lithium resources demand for new energy vehicles in China. China Mining Magazine, 28(8): 5 (in Chinese with English abstract).

    • Yuan Yanwei, Fei Guangchun, Zheng Luo, Jiang Jianwen, Ma Zhiping, Jiang Xiaomei, Zhang Gui. 2022. U-Pbage and Lu-Hf isotope of detrital zircons, geochemical characteristics and geological significance for Zhuwo Formation meta-sedimentary rocks in Ke'eryin region, western Sichuan. Earth Science, 47(8): 2902~2924 (in Chinese with English abstract).

    • Zhang Haixiang, Zhang Boyou. 2003. Rconstruction of protoliths of metamorphic rocks of the Xingzi Group and discrimination of their tectonic setting. Geology in China, 30(3): 254~260 (in Chinese with English abstract).

    • Zhang Yong, Pan Jiayong, Ma Dongsheng. 2020. Lithium element enrichment and inspiration for prospecting for rare-metal mineralization in the Dahutang tungsten deposit: Constraints from mineralogy and geochemistry of hydrothermal alteration. Acta Geologica Sinica, 94(11): 3321~3342 (in Chinese with English abstract).

    • Zhao Panlao, Chu Xu, Anthony W-J E, Mao Jinwen, Yuan Shunda. 2022. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology, 50(1): 121~125.

    • Zhao Zheng, Chuan Yuchuan, Wang Denghong, Li Jiankang, Liu Shanbao, Chen Zhenyu, Guo Chunli, Wang Pingan. 2022. Transformation of Mesozoic dynamic systems and superposition of metallogenic series of W-Sn-Li-Be-Nb-Ta-REE mineral deposits in South China. Acta Petrologica Sinica, 38(2): 301~322 (in Chinese with English abstract).

    • Zhou Xueyao, Yu Jinhai, O'Reilly S Y, Griffin W L, Sun Tao, Wang Xiaolei, MyDung Tran, DinhLuyen Nguyen. 2018. Component variation in the late Neoproterozoic to Cambrian sedimentary rocks of SW China-NE Vietnam, and its tectonic significance. Precambrian Research, 308: 92~110.

    • Zhu Zeying, Wang Rucheng, Che Xudong, Zhu Jinchun, Wei Xinglin, Huang Xiaoe. 2015. Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb-Ta-Zr minerals. Ore Geology Reviews, 65: 749~760.

    • 丰成友, 张德全, 项新葵, 李大新, 瞿泓滢, 刘建楠, 肖晔. 2012. 赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意义. 岩石学报, 28(12): 3858~3868.

    • 胡方泱, 吴福元, 陈国辉, 杨雷. 2022. 花岗-伟晶岩型锂矿床围岩变质沉积岩中锂富集的关键因素: 以松潘-甘孜构造带东部可尔因地区为例. 岩石学报, 38(7): 2017~2051.

    • 黄迪, 黄旭栋, 章荣清, 陆建军, 吴劲薇, 黄玉. 2022. 赣西北花山洞与九岭花岗岩对比及其成矿指示意义. 地质学刊, 46(1): 22~33.

    • 李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制. 岩石学报, 29(12): 4311~4322.

    • 李敏业. 2014. 桂北基底变质岩的地球化学和年代学研究. 南京大学硕士学位论文.

    • 李鹏, 张立平, 李建康, 黄志飚, 周芳春, 姜鹏飞. 2021. 江南造山带中段幕阜山地区稀有金属成矿规律及其在找矿中的应用. 矿床地质, 40(4): 819~841.

    • 刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿主要类型、分布特点及勘查开发现状. 中国地质, 44(2): 263~278.

    • 陆建军, 章荣清, 黄旭栋, 张强, 李晓宇, 周维法, 黄迪, 黄玉, 马东升, 姜耀辉. 2022. 江南造山带钨锡稀有金属矿床成矿作用特征. 华南地质, 38(3): 359~381.

    • 田作林, 张泽明, 董昕. 2020. 有效全岩成分的计算方法及其在变质相平衡模拟中的应用. 岩石学报, 36(9): 2616~2630.

    • 王登红, 王成辉, 孙艳, 李建康, 刘善宝, 饶魁元. 2017. 我国锂铍钽矿床调查研究进展及相关问题简述. 中国地质调查, 4(5): 1~8.

    • 王鹏鸣. 2012. 湘桂地区基底变质岩的地球化学和年代学研究. 南京大学硕士学位论文.

    • 王自强, 高林志, 丁孝忠, 黄志忠. 2012. “江南造山带”变质基底形成的构造环境及演化特征. 地质论评, 58(3): 401~413.

    • 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745~765.

    • 徐生发, 朱强, 胡召齐. 2017. 皖南新元古代溪口岩群岩石地球化学特征及其构造意义. 安徽地质, 27(1): 1~6.

    • 徐兴旺, 翟明国, 洪涛, 马垠策, 郭敬辉. 2023. 大陆地壳锂铍迁移-循环过程与富集-成矿机制. 岩石学报, 39(3): 639~658.

    • 薛颖瑜, 刘海洋, 孙卫东. 2021. 锂的地球化学性质与富集机理. 大地构造与成矿学, 45(6): 1202~1215.

    • 袁小晶, 马哲, 李建武. 2019. 中国新能源汽车产业锂资源需求预测及建议. 中国矿业, 28(8): 5.

    • 袁彦伟, 费光春, 郑硌, 蒋建文, 马志平, 江笑梅, 张贵. 2022. 川西可尔因地区侏倭组变质沉积岩地球化学, 碎屑锆石U-Pb年龄和Lu-Hf同位素特征及其地质意义. 地球科学, 47(8): 2902~2924.

    • 张海祥, 张伯友. 2003. 赣北星子群变质岩的原岩恢复及其形成构造环境判别. 中国地质30(3): 254~260.

    • 张勇, 潘家永, 马东升. 2020. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示. 地质学报, 94(11): 3321~3342.

    • 赵正, 陈毓川, 王登红, 李建康, 刘善宝, 陈振宇, 郭春丽, 王平安. 2022. 华南中生代动力体制转换与钨锡锂铍铌钽稀土矿床成矿系列的叠加演化. 岩石学报, 38(2): 301~322.

  • 参考文献

    • Barros R, Menuge J F. 2016. The Origin of spodumene pegmatites associated with the leinster granite in Southeast Ireland. Canadian Mineralogist, 54(4): 847~862.

    • Bea F, Pereira M D, Stroh A. 1994. Mineral/leucosome trace element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemcal Geology, 117: 291~312.

    • Dill H G. 2018. Geology and chemistry of Variscan-type pegmatite systems (SE Germany)—With special reference to structural and chemical pattern recognition of felsic mobile components in the crust. Ore Geology Reviews, 92: 205~239.

    • Fei Guangchun, Menuge Julian F, Li Yunqiang, Yang Jiyi, Deng Yun, Chen Changsheng, Yang Yufan, Yang Zheng, Qin Liye, Zheng Luo, Tang Wenchun. 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze fold belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos, 364~365.

    • Fei Guangchun, Menuge Julian F, Chen Changsheng, Yang Yulong, Deng Yun, Li Youguo, Zheng Luo. 2021. Evolution of pegmatite ore-forming fluid: The Lijiagou spodumene pegmatites in the Songpan-Garze fold belt, southwestern Sichuan Province, China. Ore Geology Reviews, 139: 104441.

    • Feng Chengyou, Zhang Dequan, Xiang Xinkui, Li Daxin, Qu Hongying, Liu Jiannan, Xiao Ye. 2012. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication. Acta Petrologica Sinica, 28(12): 3858~3868 (in Chinese with English abstract).

    • Helvaci C, Mordogan H, Colak M, Gundogan I. 2004. Presence and distribution of lithium in borate deposits and some recent lake waters of west-central Turkey. International Geology Review, 46(2): 177~190.

    • Hu Fangyang, Wu Fuyuan, Chen Guohui, Yang Lei. 2022. The critical factors of lithium enrichment in the metasedimentary wall rocks of granitic pegmatite-type lithium deposit: Insights from the Ke'eryin area in the eastern Songpan-Ganzi belt. Acta Petrologica Sinica, 38(7): 2017~2051 (in Chinese with English abstract).

    • Huang Di, Huang Xudong, Zhang Rongqing, Lu Jianjun, Wu Jinwei, Huang Yu. 2022. Comparative study of the Huashandong and Jiuling granites in northwestern Jiangxi and its metallogenic implications. Journal of Geology, 46(1): 22~33 (in Chinese with English abstract).

    • Huh Y, Chan L H, Zhang L, Edmond J M. 1998. Lithium and its isotopes in major world rivers: Implications for weathering and the oceanic budget. Geochimica et Cosmochimica Acta, 62(12): 2039~2051.

    • Li Jie, Huang Xiaolong. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311~4322 (in Chinese with English abstract).

    • Li Minye. 2014. The geochemisty and geochronology of Neoproterozoic-Devonian sedimentary rocks in Guangxi Province, South China. Master thesis of Nanjing University (in Chinese with English abstract).

    • Li Peng, Zhang Liping, Li Jiankang, Huang Zhibiao, Zhou Fangchun, Jiang Pengfei. 2021. Metallogenic regularity of rare metal deposits in Mufushan area of Central China, and its application in ore prospecting. Mineral Deposits, 40(4): 819~841 (in Chinese with English abstract).

    • Linnen R L, van Lichtervelde M, Cerny P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275~280.

    • Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine. Geology in China, 44(2): 263~278(in Chinese with English abstract).

    • Liu Yongsheng, Hu Zhaochun, Gao Shan, Gunther Detlef, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.

    • London D. 2005. Granitic pegmatites: An assessment of current concepts and directions for the future. Lithos, 80(1~4): 281~303.

    • Lu Jianjun, Zhang Rongqing, Huang Xudong, Zhang Qiang, Li Xiaoyu, Zhou Weifa, Huang Di, Huang Yu, Ma Dongsheng, Jiang Yaohui. 2022. Metallogenic characteristics of tungsten, tin, and rare metal deposits in the Jiangnan orogenic belt. South China Geology, 38(3): 359~381 (in Chinese with English abstract).

    • Misra S, Froelich P N. 2012. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science, 335(6070): 818~823.

    • Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715~717.

    • Pistiner J S, Henderson G M. 2003. Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214(1~2): 327~339.

    • Rudnick R L, Shan G. 2003. Composition of the continental crust. Treatise Geochem. , 3: 1~64.

    • Seitz H M, Woodland A B. 2000. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes. Chemical Geology, 166(1~2): 47~64.

    • Simons B, Andersen J C O, Shail R K, Jenner F E. 2017. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation. Lithos, 278: 491~512.

    • Sun Junjun, Shu Liangshu, Santosh M, Wang Liangshu. 2018. Precambrian crustal evolution of the central Jiangnan orogen (South China): Evidence from detrital zircon U-Pb ages and Hf isotopic compositions of Neoproterozoic metasedimentary rocks. Precambrian Research, 318: 1~24.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publication.

    • Tian Zuolin, Zhang Zeming, Dong Xin. 2020. Calculation of effective bulk composition and its application in metamorphic phase equilibria modeling. Acta Petrologica Sinica, 36(9): 2616~2630 (in Chinese with English abstract).

    • Tischendorf G, Gottesmann B, Forster H J, Trumbull R B. 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(6): 809~834.

    • Wang Denghong, Wang Chenghui, Sun Yan, Li Jiankang, Liu Shanbao, Rao Kuiyuan. 2017. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China. Geological Survey of China, 4(5): 1~8 (in Chinese with English abstract).

    • Wang Denghong, Dai Hongzhang, Liu Shanbao, Wang Chenghui, Yu Yang, Dai Jingjing, Liu Lijun, Yang Yueqing, Ma Shengchao. 2020. Research and exploration progress on lithium deposits in China. China Geology, 3(1): 137~152.

    • Wang Pengming. 2012. The geochemisty and geochronogy comprehensive study of Precambrian-strata in Hunan and Guangxi Province, Master thesis of Nanjing University (in Chinese with English abstract).

    • Wang Ziqiang, Gao Linzhi, Ding Xiaozhong, Huang Zhizhong. 2012. Tectonic environment of the metamorphosed basement in the Jiangnan orogen and its evolutional features. Geological Review, 58(3): 401~413 (in Chinese with English abstract).

    • Wang Xiaolei, Zhou Jincheng, Griffin W L, Zhao Guochun, Yu Jinhai, Qiu Jiansheng, Zhang Yanjie, Xing Guangfu. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 242: 154~171.

    • White R W, Powell R, Johnson T E. 2014. The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals. Journal of Metamorphic Geology, 32(8): 809~828.

    • Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granties: Recognition and research. Science China (Earth Sciences), 47(7): 745~765 (in Chinese with English abstract).

    • Wu Fuyuan, Liu Xiaochi, Liu Zhichao, Wang Rucheng, Xie Lei, Wang Jiamin, Ji Weiqiang, Yang Lei, Liu Chen, Khanal G P, He Shaoxiong. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352~353: 105319.

    • Wu Shitou, Volker K, Burkhard S C, Klaus S, Gerhard W. 2018. Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 42(4): 575~591.

    • Xiang Hua, Connolly J A D. 2021. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. Journal of Metamorphic Geology, 40(2): 243~255.

    • Xie Lei, Liu Ying, Wang Rucheng, Hu Huan, Che Xudong, Xiang Lu. 2019. Li-Nb-Ta mineralization in the Jurassic Yifeng granite-aplite intrusion within the Neoproterozoic Jiuling batholith, South China: A fluid-rich and quenching ore-forming process. Journal of Asian Earth Sciences, 185: 104047. 1~104047. 16.

    • Xu Shengfa, Zhu Qiang, Hu Zhaoqi. 2017. Petrogeochemical features of Neoproterozoic Xikou Group complex in South Anhui and their structural implications. Geology of Anhui, 27(1): 1~6 (in Chinese with English abstract).

    • Xu Xingwang, Zhai Mingguo, Hong Tao, Ma Yince, Guo Jinghui. 2023. Migration-circulation processes and enrichment-mineralization mechanism of lithium-beryllium elements in the continental crust. Acta Petrologica Sinica, 39(3): 639~658 (in Chinese with English abstract).

    • Xue Yingyu, Liu Haiyang, Sun Weidong. 2021. The geochemical properties and enrichment mechanism of lithium. Geotectonica et Metallogenia, 45(6): 1202~1215 (in Chinese with English abstract).

    • Yuan Xiaojing, Ma Zhe, Li Jianwu. 2019. Forecast and suggestions of lithium resources demand for new energy vehicles in China. China Mining Magazine, 28(8): 5 (in Chinese with English abstract).

    • Yuan Yanwei, Fei Guangchun, Zheng Luo, Jiang Jianwen, Ma Zhiping, Jiang Xiaomei, Zhang Gui. 2022. U-Pbage and Lu-Hf isotope of detrital zircons, geochemical characteristics and geological significance for Zhuwo Formation meta-sedimentary rocks in Ke'eryin region, western Sichuan. Earth Science, 47(8): 2902~2924 (in Chinese with English abstract).

    • Zhang Haixiang, Zhang Boyou. 2003. Rconstruction of protoliths of metamorphic rocks of the Xingzi Group and discrimination of their tectonic setting. Geology in China, 30(3): 254~260 (in Chinese with English abstract).

    • Zhang Yong, Pan Jiayong, Ma Dongsheng. 2020. Lithium element enrichment and inspiration for prospecting for rare-metal mineralization in the Dahutang tungsten deposit: Constraints from mineralogy and geochemistry of hydrothermal alteration. Acta Geologica Sinica, 94(11): 3321~3342 (in Chinese with English abstract).

    • Zhao Panlao, Chu Xu, Anthony W-J E, Mao Jinwen, Yuan Shunda. 2022. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology, 50(1): 121~125.

    • Zhao Zheng, Chuan Yuchuan, Wang Denghong, Li Jiankang, Liu Shanbao, Chen Zhenyu, Guo Chunli, Wang Pingan. 2022. Transformation of Mesozoic dynamic systems and superposition of metallogenic series of W-Sn-Li-Be-Nb-Ta-REE mineral deposits in South China. Acta Petrologica Sinica, 38(2): 301~322 (in Chinese with English abstract).

    • Zhou Xueyao, Yu Jinhai, O'Reilly S Y, Griffin W L, Sun Tao, Wang Xiaolei, MyDung Tran, DinhLuyen Nguyen. 2018. Component variation in the late Neoproterozoic to Cambrian sedimentary rocks of SW China-NE Vietnam, and its tectonic significance. Precambrian Research, 308: 92~110.

    • Zhu Zeying, Wang Rucheng, Che Xudong, Zhu Jinchun, Wei Xinglin, Huang Xiaoe. 2015. Magmatic-hydrothermal rare-element mineralization in the Songshugang granite (northeastern Jiangxi, China): Insights from an electron-microprobe study of Nb-Ta-Zr minerals. Ore Geology Reviews, 65: 749~760.

    • 丰成友, 张德全, 项新葵, 李大新, 瞿泓滢, 刘建楠, 肖晔. 2012. 赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意义. 岩石学报, 28(12): 3858~3868.

    • 胡方泱, 吴福元, 陈国辉, 杨雷. 2022. 花岗-伟晶岩型锂矿床围岩变质沉积岩中锂富集的关键因素: 以松潘-甘孜构造带东部可尔因地区为例. 岩石学报, 38(7): 2017~2051.

    • 黄迪, 黄旭栋, 章荣清, 陆建军, 吴劲薇, 黄玉. 2022. 赣西北花山洞与九岭花岗岩对比及其成矿指示意义. 地质学刊, 46(1): 22~33.

    • 李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制. 岩石学报, 29(12): 4311~4322.

    • 李敏业. 2014. 桂北基底变质岩的地球化学和年代学研究. 南京大学硕士学位论文.

    • 李鹏, 张立平, 李建康, 黄志飚, 周芳春, 姜鹏飞. 2021. 江南造山带中段幕阜山地区稀有金属成矿规律及其在找矿中的应用. 矿床地质, 40(4): 819~841.

    • 刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿主要类型、分布特点及勘查开发现状. 中国地质, 44(2): 263~278.

    • 陆建军, 章荣清, 黄旭栋, 张强, 李晓宇, 周维法, 黄迪, 黄玉, 马东升, 姜耀辉. 2022. 江南造山带钨锡稀有金属矿床成矿作用特征. 华南地质, 38(3): 359~381.

    • 田作林, 张泽明, 董昕. 2020. 有效全岩成分的计算方法及其在变质相平衡模拟中的应用. 岩石学报, 36(9): 2616~2630.

    • 王登红, 王成辉, 孙艳, 李建康, 刘善宝, 饶魁元. 2017. 我国锂铍钽矿床调查研究进展及相关问题简述. 中国地质调查, 4(5): 1~8.

    • 王鹏鸣. 2012. 湘桂地区基底变质岩的地球化学和年代学研究. 南京大学硕士学位论文.

    • 王自强, 高林志, 丁孝忠, 黄志忠. 2012. “江南造山带”变质基底形成的构造环境及演化特征. 地质论评, 58(3): 401~413.

    • 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745~765.

    • 徐生发, 朱强, 胡召齐. 2017. 皖南新元古代溪口岩群岩石地球化学特征及其构造意义. 安徽地质, 27(1): 1~6.

    • 徐兴旺, 翟明国, 洪涛, 马垠策, 郭敬辉. 2023. 大陆地壳锂铍迁移-循环过程与富集-成矿机制. 岩石学报, 39(3): 639~658.

    • 薛颖瑜, 刘海洋, 孙卫东. 2021. 锂的地球化学性质与富集机理. 大地构造与成矿学, 45(6): 1202~1215.

    • 袁小晶, 马哲, 李建武. 2019. 中国新能源汽车产业锂资源需求预测及建议. 中国矿业, 28(8): 5.

    • 袁彦伟, 费光春, 郑硌, 蒋建文, 马志平, 江笑梅, 张贵. 2022. 川西可尔因地区侏倭组变质沉积岩地球化学, 碎屑锆石U-Pb年龄和Lu-Hf同位素特征及其地质意义. 地球科学, 47(8): 2902~2924.

    • 张海祥, 张伯友. 2003. 赣北星子群变质岩的原岩恢复及其形成构造环境判别. 中国地质30(3): 254~260.

    • 张勇, 潘家永, 马东升. 2020. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示. 地质学报, 94(11): 3321~3342.

    • 赵正, 陈毓川, 王登红, 李建康, 刘善宝, 陈振宇, 郭春丽, 王平安. 2022. 华南中生代动力体制转换与钨锡锂铍铌钽稀土矿床成矿系列的叠加演化. 岩石学报, 38(2): 301~322.