en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

田忠华,男,1984年生。副研究员,主要从事构造解析、前寒武纪变质变形与成矿研究。E-mail:tianzhonghua@cags.ac.cn。

参考文献
Bai Jin. 1993. The Precambrian Geology and Pb-Zn Mineralization in the Northern Margin of North China Platform. Beijing: Geological Publishing House, 47~89 (in Chinese with English abstract)
参考文献
Cai Jia, Liu Fulai, Liu Pinghua, Wang Fang. 2020. Metamorphic P-T evolution and tectonic implications of pelitic granulites in the Ji'an area, northeastern Jiao-Liao-Ji Belt, North China Craton. Journal of Asian Earth Sciences, 191: 104197.
参考文献
Deng Jun, Yang Liqiang, Groves D I, Zhang Liang, Qiu Kunfeng, & Wang Qingfei. 2020. An integrated mineral system model for the gold deposits of the giant Jiaodong Province, eastern China. Earth-Science Reviews, 208: 103274.
参考文献
Dong Aiguo, Zhu Xiangkun. , Li Shizhen, Kendall B, Wang Yue, Gao Zhaofu. 2016. Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: Constraints from Mg isotopes. Precambrian Research, 281: 673~683.
参考文献
Dong Shuwen, Zhang Yueqiao, Li Hailong, Shi Wei, Xue Huaimin, Li Jianhua, Huang Shiqi, Wang Yongchao. 2019. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”. Science China Earth Sciences, 61: 1888~1909 (in Chinese with English abstract)
参考文献
Dong Yaosong. 2001. Cobalt element geochmical characteristics of Dahenglu cobalt-copper ore deposit in Jilin Province and its genetics. World Geology, 20: 30~33 (in Chinese with English abstract)
参考文献
Guo Wenxiu, Liu Jianming. 2002. The geologic features of Dahenglu Cu, Co deposit and ore-controling factors in Jinlin Province, China. Progress in Precambrian Research, 25(3-4): 206~213 (in Chinese with English abstract)
参考文献
Hou Zengqian, Wang Erqi, Mo Xuanxue. 2008. Collisional Orogenesis and Mineralization in Tibetan Pleatau, Beijing, Geological Publishing House,
参考文献
Hou Zengqian, Wang Rui. 2019. Fingerprinting metal transfer from mantle. Nature Communications, dio. org/10. 1038/s41461-019-11445-w.
参考文献
Kusky T M, Li, Jianghai, Tucker R D. 2001. The Archean Dongwanzi ophiolite complex, North China Craton: 2. 505-billion-year-old oceanic crust and mantle. Science, 292(5519): 1142~1145.
参考文献
Li Chao, Li Zhuang, Yang Chuan. 2018. Palaeoproterozoic granitic magmatism in the northern segment of the Jiao-Liao-Ji Belt: Implications for orogenesis along the Eastern Block of the North China Craton. International Geology Review, 60(2): 217~241.
参考文献
Li Hongmin, Zhang Zengjie, Li Lixing, Zhang Zhaochong, Chen Jing, Yao Tong. 2014. Types and general characteristics of the BIF-related iron deposits in China. Ore Geology Reviews, 57: 264~287.
参考文献
Li Jian, Cai Wenyan, Li Bin, Wang Keyong, Liu Hanlun, Konare Y, Qian Ye, Lee G J, Yoo B C, 2019. Paleoproterozoic SEDEX-type stratiform mineralization overprinted by Mesozoic vein-type mineralization in the Qingchengzi Pb-Zn deposit, northeastern China. Journal of Asian Earth Sciences, 184: 104009.
参考文献
Li Sanzhong, Zhao Guochun, Sun Ming, Han Zongzhu, Luo Yan, Hao Defeng, Xia Xiaoping. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the eastern block of the North China Craton. Journal of Asian Earth Sciences, 24: 659~674.
参考文献
Li Sanzhong, Jahn Boming, Zhao Shujuan, Dai Liming, Li Xiyao, Suo Yanhui, Guo Linli, Li Yongming, Liu Xiaochun, Lan Haoyuan, Zhou Zaizheng, Zheng Qiliang, Wang Pengcheng. 2017a. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 166: 270~285.
参考文献
Li Zhuang, Chen Bin, Wei Chunjing. 2017b. Is the Paleoproterozoic Jiao-Liao-Ji Belt Belt (North China Craton) a rift? International Journal of Earth Science, 106: 355~375.
参考文献
Lin Wei, Monié P, Faure M, Schärer U, Shi Yonghong, Breton N L, Wang Qingcheng. 2011. Cooling paths of the NE China crust during the Mesozoic extensional tectonics: Example from the south-Liaodong Peninsula metamorphic core complex. Journal of Asian Earth Sciences, 42(5): 1048~1065.
参考文献
Liu Fulai, Wang Fang, Liou J G, Meng En, Liu Jianhui, Yang Hong, Xiao Lingling, Cai Jia, Shi Jianrong. 2014. Mid-Late metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton: Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating. Journal of Asian Earth Sciences, 94: 205~225.
参考文献
Liu Fulai, Liu Pinghua, Wang Fang, Liu Chaohui, Cai Jia. 2015. Progress and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrologica Sininica, 31 (10), 2816~2846 (in Chinese with English abstract).
参考文献
Liu Fulai, Liu Lishuang, Liu Pinghua, Wang Fang, Cai Jia, Liu Jianhui, Wang Wei, Ji Lei. 2017. A relic slice of Archean-Early Paleoproterozoic basement of Jiaobei Terrane identified within the Sulu UHP belt: Evidence from protolith and metamorphic ages from meta-mafic rocks, TTG-granitic gneisses, and metasedimentary rocks in the Haiyangsuo region. Precambrian Research, 303: 117~152.
参考文献
Liu Junlai, Davis G A, Lin Zhiyong, Wu Fuyuan. 2005. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407(1-2): 65~80.
参考文献
Liu Junlai, Chen Xiaoyu, Zhang Jian, Zhou Baojun, Fan Wenkui, Yan Jiaxin. 2022. Gneiss domes and stratified middle to lower crustal flow in continental mobile belt. Acta Geologica Sinica, 96(9): 3158~3181 (in Chinese with English abstract).
参考文献
Liu Lishuang, Liu Fulai, Santosh M, Ji Lei. 2018. Paleoproterozoic and Triassic metamorphic events in the Jiaobei terrane, Jiao-Liao-Ji Belt, China: Hidden clues on multiple metamorphism and new insights into complex tectonic evolution. Gondwana Research, 60: 105~128.
参考文献
Liu Peidong. 2008. Characteristics and potential evaluation of copper and cobalt mineral resources in Liaodong Rift. Master-degree thesis from Jilin University (in Chinese with English abstract).
参考文献
Liu Pinghua, Liu Fulai, Tian honghua, Wang Wei, Cai Jia. 2017. Barrovian-typemetamorphism and deformation history of the North Liaohe Grupin the Liaoyang-Benxi area, Liaodong Peninsula, implication for the Paleoproterozoic orogenesis in the Jiao-Liao-Ji orogenic belt. Abstract submitted to CGU, 2017, Beijing, China (in Chinese)
参考文献
Liu Pinghua, Liu Fulai, Tian Zhonghua, Cai Jia, Ji Lei, Wang Fang. 2019. Petrological and geochronological evidence for Paleoproterozoic granulite-facies metamorphism of the South Liaohe Group in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 327: 121~143.
参考文献
Liu Yongjiang, Li Sangzhong, Yang Zhensheng. 1997 Early Proterozoic uplift-slide structural model on the eastern margin of the Northern China Platform. Geological Review, 43: 569~576 (in Chinese with English abstract)
参考文献
Liu Zhenyi, Guo Chunying, Hao Ruixiang, Du Letian, Bai Yun. 2019, Mineralization characteristics of No. 3075 uranium deposit. Journal of East China University of Technology, 42(1): 8~15 (in Chinese with English abstract).
参考文献
Luo Yan, Sun Min, Zhao Guochun, Li Sanzhong, Xu Ping, Ye Kai. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134: 349~371
参考文献
Qiu, Zhengjie, Fan Hongrui, Goldfarb R, Tomkins A G, Yang Kuifeng, Li Xiaochun, Xie Liewen, Liu Xuan. 2021. Cobalt concentration in a sulfidic sea and mobilization during orogenesis: Implications for targeting epigenetic sediment-hosted Cu-Co deposits. Geochimica et Cosmochimica Acta, 305: 1~18.
参考文献
Ramsay J G. 1967. Folding and Fracturing of Rocks. New York: McGraw-Hill.
参考文献
Ren Liming, Li Xiaopeng. 2022. Geological features and metallogenic genesis of Dongbaligou gold deposit in Linjiang City, Jilin Province, Jilin Geology, 41(3): 1~10 (in Chinese with English abstract).
参考文献
Ren Qiwu, Xue Jianbo, Wang Limei, Li Dehong, Su Weihua. 2005. The ore-control factor and criteria for ore prospecting of the Dahenglu Co, Cu deposit. Jilin Geology, (4): 26~31 (in Chinese with English abstract).
参考文献
Song Quanheng, Wei Fa, Luo Chen. 2000. The primary rock nature of the Dalizi Formation of ore-bearing rock series in the Dahenglu Cu-Co mining area, Baishan area, Jilin Province and its sedimentary environmental geochemical characteristics. Jilin Geology, 19(3): 55~60 (in Chinese with English abstract).
参考文献
Tam P Y, Zhao Guochun, Liu Fulai, Zhou Xiwen, Sun Min, Li Sanzhong. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research, 19: 150~162.
参考文献
Tang Haoshu, Chen Yanjing, Santosh M, Zhong Hong, Wu Guang, Lai Yong. 2013. C-O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: Implications for great oxidation event and ore genesis. Geological Journal, 48: 467~483.
参考文献
Tian Feng, Wang Keyong, Liang Yihong, Li Shunda, Dong Guanhong. 2017. Characteristics of hydrothermal superimposed mineralization and source of ore-forming fluids in the Dahenglu Co-Cu deposit. Northwestern Geology, 50(2): 167~177 (in Chinese with English abstract).
参考文献
Tian Zhonghua. 2021. Structural complexity of the suture zone: A case study from the multiphase modified suture zone in the Sulu area. Chinese Journal of Geology, 56(2): 635~666 (in Chinese with English abstract).
参考文献
Tian Zhonghua, Liu Fulai, Windley B F, Liu Pinghua, Wang Fang, Liu Chaohui, Wang Wei, Cai Jia, Xiao Wenjiao. 2017. Polyphase structural deformation of low- to medium-grade metamorphic rocks of the Liaohe Group in the Jiao-Liao-Ji Orogenic Belt, North China Craton: Correlations with tectonic evolution. Precambrian Research, 303: 641~659.
参考文献
Tian Zhonghua, Xu Wang, Liu Lishuang, Ji Lei. 2020a. Paleoproterozoic back-arc basin opening and closure: Evidence from the structural research of the volcanic-sedimentary rocks in the Helan Town, Liaodong Peninsula. Earth Science, 45(9): 3217~3238 (in Chinese with English abstract).
参考文献
Tian Zhonghua, Liu Fulai, Liu Pinghua, Wen Fei, Xiao Wenjiao. 2020b. A Paleoproterozoic nappe on Meso-Archean gneisses exhumed by a Cretaceous metamorphic core complex in northeastern North China Craton. Accepted by International Journal of Earth Sciences, DOI : 10. 1007/s00531-020-01870-4.
参考文献
Tian Zhonghua, Liu Fulai, Yan Zhen, Liu Pinghua, Xu Wang, Liu Lishuang, Wen Fei, Xiao Wenjiao. 2021. Palaeoproterozoic turbidite deposition in the Liaodong Penisula, northeastern North China craton-Constraints from the Gaojiayu Formation of the Liaohe Group. Precambrian Research, 352: 106008.
参考文献
Tian Zhonghua, Liu Pinghua, Wen Fei, Zhu Haozhong, Wang Wei, Liu Fulai. 2022. Mesoproterozoic accretionary orogenesis: Evidence from ~1. 4 Ga metamorphism on the southeastern margin of the North China Craton. Journal of Asian Earth Sciences, 232: 105247.
参考文献
Tian Zhonghua, Wang Wei, Liu Pinghua. 2022. Late Neoarchean tectonic evolution in eastern China: Enlightenment from the ancient continental core restoration, Acta Petrologica et Mineralogica, 41(4): 681~694 (in Chinese with English abstract).
参考文献
Wan Bo, Yang Xusong, Tian Xiaobo, Yuan Huayu, Kirscher U, Mitchell R N. 2020. Seismological evidence for the earliest global subduction network at 2 Ga ago. Science Advances, 6(32): eabc5491.
参考文献
Wang Huining, Liu Fulai, Zhu Zhiyong, Wang Fang, Tian Zhonghua. 2023. Complex evolution of the sedimentation, metamorphism-deformation and hydrothermal processes and their constraints on the occurrence, enrichment and mineralization of Co in the Dahenglu Cu-Co deposit, Jilin Province. Acta Petrologica Sinica, 39(4): 998~1018 (in Chinese with English abstract).
参考文献
Wei Yanguang, Wang Keyong, Yang Yanchen, Zhao Hongjun, Liu Zongxiu. 2002. The features of metamorphic minerogenetic fluid of Dahenglu Cu-Co deposit in Baishan County, Jilin Province. Journal of Jilin University (Earth Science Edition), 32(2): 128~133 (in Chinese with English abstract).
参考文献
Windley B F, Kusky T, Polat A. 2021. Onset of plate tectonics by the Eoarchean. Precambrian Research, 352: 105980.
参考文献
Wu Xiaodong, Zhu Guang, Yin Hao, Su Nan, Lu Yuanchao, Zhang Shuai, Xie Chenglong. 2020. Origin of low-angle ductile/brittle detachments: Examples from the Cretaceous Linglong metamorphic core complex in eastern China. Tectonics, 39(9): e2020TC006132.
参考文献
Xu Chen, Kynický J, Song Wenlei, Tao Renbiao, Lv Zeng, Li Yunxiu, Yang Yueheng, Pohanka M, Galiova M V, Zhang Lifei, Fei Yingwei. 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nature Communications, 9(1): 2790~2797.
参考文献
Xu Wang, Liu Fulai. 2019. Geochronological and geochemical insights into the tectonic evolution of the Paleoproterozoic Jiao-Liao-Ji Belt, Sino-Korean Craton. Earth-Science Reviews, 193: 162~198.
参考文献
Yang Hong, Wang Wei, Liu Jianhui. 2017. Zircon U-Pb dating and its geological significance of granitic pegmatites from the Kuandian and Sanjiazi area in eastern Liaoning Province. Acta Petrologica Sinica, 33(9): 2675~2688 (in Chinese with English abstract).
参考文献
Yang Tiannan, Peng Y, Leech M L, Lin H Y. 2011. Fold patterns indicating Triassic constrictional deformation on the Liaodong Peninsula, eastern China, and tectonic implications. Journal of Asian Earth Sciences, 40(1): 72~83.
参考文献
Yang Yanchen, Wang Keyong, Feng Benzhi. 2004. Geological characteristics and genesis of the Dahenglu type cobalt (copper) deposits, Jilin Province. Geology and Prospecting, 40(1): 7~11 (in Chinese with English abstract).
参考文献
Zhai Mingguo, Zhao Yue, Zhao Taiping. 2016. Main Tectonic Events and Metallogeny of the North China Craton. Berlin: Springer.
参考文献
Zhang Lianxiang, Tian Zhonghua, Liu Pinghua, Wen Fei, Zhu Haozhong, Zhang Chuanheng, Ye Zhanghuang. 2021. Yanshanian metamorphism of Jiaodong Peninsula: New evidence from zircon and titanite U-Pb dating of (garnet) amphibolites in the Rushan area, Sulu tectonic complex belt. Geological Bulletin of China , 40(5): 674~686.
参考文献
Zhang Qiusheng, Yang Zhensheng. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula, China. Beijing: Geological Publishing House, 218~450 (in Chinese with English abstract).
参考文献
Zhang Wen, Liu Fulai, Cai Jia, Liu Chaohui, Liu Jianhui, Liu Pinghua, Liu Lishuang, Wang Fang, Yang Hong. 2018. Geochemistry, zircon U-Pb dating and tectonic implications of the Palaeoproterozoic Ji'an and Laoling Groups, northeastern Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 314: 264~287.
参考文献
Zhao Guochun, Sun Min, Wilde S A, li Sanzhong. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136: 177~202.
参考文献
Zhao Guochun, Cawood P A, Li Sanzhong, Wilde S A, Sun Min, Zhang Jian, He Yanhong, Yin Changqing. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55~76.
参考文献
Zhao Junxing, Li Guangming, Qin Kezhang, Tang Dongmei. 2019. A review of the types and ore mechanism of the cobalt deposits. Chinese Science Bulletin, 64(2): 2484~2500 (in Chinese with English abstract).
参考文献
Zhong Yating, Kusky T, Wang Lu, Polat A, Liu Xuanyu, Peng Yaying, Luan Zhikang, Wang Chuanhai, Wang Junpeng, Deng Hao. 2021. Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nature Communications, 12(1): 6172.
参考文献
Zhu Rixiang, Zhang Hongfu, Zhu Guang, Meng Qingren, Fan Hongrui, Yang Jinghui, Wu Fuyuan, Zhang Zhiyong, Zheng Taiyu. 2017. Craton destruction and related resources. International Journal of Earth Sciences, 106(7): 2233~2257.
参考文献
白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用. 北京: 地质出版社, 47~89
参考文献
董树文, 张岳桥, 李海龙, 施炜, 薛怀民, 李建华, 黄始琪, 王永超. 2019. “燕山运动”与中亚大陆晚中生代多板块汇聚构造——纪念“燕山运动”90周年. 中国科学: 地球科学, 49(6): 913~938.
参考文献
董耀松. 2001. 吉林大横路钴铜矿床钴元素地球化学特征及矿床成因. 世界地质, 20: 30~33.
参考文献
郭文秀, 刘建民. 2002. 吉林省大横路铜、钴矿床地质特征及控矿因素. 前寒武纪研究进展, 25(3-4): 206~213.
参考文献
侯增谦, 王二七, 莫宣学. 2008. 青藏高原碰撞造山与成矿作用. 北京: 地质出版社.
参考文献
刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 33(10): 2816~2846.
参考文献
刘俊来, 陈小宇, 张健, 周保军, 樊文魁, 闫佳鑫. 2022. 大陆地壳活动带片麻岩穹隆构造与分层流变. 地质学报, 96(9): 3158~3181.
参考文献
刘培栋. 2008. 辽东裂谷铜钴矿产资源特征与潜力评价. 吉林大学硕士学位论文.
参考文献
刘平华, 刘福来, 田忠华, 王伟, 蔡佳. 2017. 辽东半岛辽阳-本溪地区北辽河群巴罗型变质带变质变形历史: 对胶-辽吉带古元古代造山作用过程的启示. 北京: 2017中国地球科学联合学术年会.
参考文献
刘永江, 杨振升, 李三忠, 刘祥. 1997. 古元古代拉伸构造模式——以胶北、辽东和吉南地区为例. 长春地质学院学报, 27 (2): 141~146
参考文献
刘正义, 郭春影, 郝瑞祥, 杜乐天, 白芸. 2019. 3075铀矿床矿化特征. 东华理工大学学报(自然科学版), 42(1): 8~15.
参考文献
任利明, 李晓朋. 2022. 吉林省临江市东八里沟金矿地质特征及成矿成因. 吉林地质, 41(3): 1~10.
参考文献
任启武, 薛剑波, 王丽梅, 李德洪, 苏伟华. 2005. 大横路钴铜矿床控矿因素及找矿标志. 吉林地质, (4): 26~31.
参考文献
松权衡, 魏发, 罗琛. 2000. 白山市大横路铜钴矿区含矿岩系大栗子组原岩性质及沉积环境地球学特征. 吉林地质, 19(3): 55~60.
参考文献
田丰, 王可勇, 梁一鸿, 李顺达, 董冠宏. 2017. 吉林省大横路钴铜矿床地质特征及成矿流体来源讨论. 西北地质, 50(2): 167~177.
参考文献
田忠华. 2021. 缝合带结构的复杂性: 以苏鲁地区多期改造缝合带为例. 地质科学, 56(2): 635~666.
参考文献
田忠华, 许王, 刘利双, 冀磊. 2020. 辽东半岛河栏镇火山-沉积岩构造研究——对古元古代弧后盆地张裂与闭合的启示. 地球科学, 45(9): 3217~3238.
参考文献
田忠华, 王伟, 刘平华. 2022. 中国东部新太古代末期构造演化——来自古老陆核构造恢复的启示. 岩石矿物学杂志, 41(4): 681~694.
参考文献
王慧宁, 刘福来, 朱志勇, 王舫, 田忠华. 2023. 吉林省大横路铜钴矿复杂的沉积-变质变形-热液作用演化过程及其对钴的赋存状态和富集成矿的制约. 岩石学报, 39(4): 998~1018.
参考文献
韦延光, 王可勇, 杨言辰, 赵宏军, 刘宗秀. 2002. 吉林白山市大横路Cu-Co矿床变质成矿流体特征. 吉林大学学报(地球科学版), 32(2): 128~133.
参考文献
杨红, 王伟, 刘建辉. 2017. 辽东宽甸和三家子地区花岗伟晶岩的锆石U-Pb年代学及其地质意义. 岩石学报, 33(9): 2675~2688.
参考文献
杨言辰, 王可勇, 冯本智. 2004. 大横路式钴(铜)矿床地质特征及成因探讨. 地质与勘探, 40(1): 7~11.
参考文献
张连祥, 田忠华, 刘平华, 文飞, 张传恒, 叶张煌. 2021. 胶东半岛燕山期变质作用——来自苏鲁构造杂岩带乳山地区(石榴)斜长角闪岩锆石与榍石U-Pb测年的新证据. 地质通报, 40(5): 674~686.
参考文献
张秋生, 杨振升. 1988. 辽东半岛早期地壳与矿床. 北京: 地质出版社: 218~450.
参考文献
赵俊兴, 李光明, 秦克章, 唐冬梅. 2019. 富含钴矿床进展与问题分析. 科学通报, 64(2): 2484~2500.
目录contents

    摘要

    钴矿是重要的战略性金属矿产资源之一,对其成矿作用(如构造与成矿的关系)进行深入的研究能为前期指导找矿提供理论依据。本文对中国东部吉林白山市三道沟镇三岔河村大横路Cu-Co矿开展了相关工作,包括野外构造解析、钻孔-岩芯资料分析、钻孔薄片综合矿物分析系统(TIMA)实验和区域相关岩石年代学等。构造解析显示大横路Cu-Co矿围岩变形包括层片交切、S1面理和褶劈理等构造要素。钻孔-岩芯资料分析矿区发育大量F2紧闭褶皱、逆冲断层及断层相关褶皱、倒转褶皱F2等。钻孔、探槽薄片样品TIMA实验显示含Co流体大量富集于低角度逆冲断裂、倒转褶皱韧性剪切域和断层相关褶皱转折端处。这些工作显示走向为NE的低角度逆冲断裂及断层相关褶皱对大横路Cu-Co矿的富集起到关键的控制作用。相关年代学工作,结合前人研究及大量区域地质资料表明:① 矿区内逆冲断层及褶皱等控矿构造要素为古元古代构造事件的产物;② 中生代构造事件对成矿作用的制约(Cu-Co矿的再富集)可能来自于白垩纪大规模的伸展作用。

    Abstract

    Cobalt ore deposit is one of the significant strategic metal minerals. The in-depth study of its mineralization (such as the relationship between structure and mineralization) can provide the theoretical basis for guiding ore prospecting. Based on the research of Dahenglu Cu-Co mine in Sanchahe Village, Sandaogou Town, Baishan City, Jilin Province, China, the field structural deciphering, drilling and core data analysis, TIMA test of drilled sections and regional rock chronology are mainly carried out. Structural deciphering shows that the country rock of Dahenglu Cu-Co mine includes bedding-cleavage interaction, S1 cleavage, and crenulation cleavage. A large number of F2 closed folds, thrust faults, and their related asymmetric folds, and overturned folds are developed in the Dahenglu Cu-Co mine based on drilling holes and cores analysis. TESCAN Integrated Mineral Analyzer (TIMA) experiments of thin section samples from boreholes and exploratory trenches show that Co-containing fluids are enriched in the low-angle thrust faults, the ductile shear domain of overturned folds, and the hinge zone of fault-related folds. These works show that the NE low-angle thrust fault and fault-related fold play a key role in controlling the enrichment of the Dahenglu Cu-Co deposit. Combined with previous studies, a large number of regional geological data, and the relevant geochronological data show that: ① the ore-controlling structures such as thrust fault and fold in the mine area are the products of the Paleoproterozoic tectonic event. ② The restriction of Mesozoic tectonic events on mineralization (Cu-Co ore re-enrichment) may come from the large-scale extension produced by the Cretaceous tectonic event.

  • 钴是当今世界最为稀缺的关键金属矿产之一,也是中国目前最为紧缺的稀贵金属资源(赵俊兴等,2019)。因此,寻找钴矿是当前地质科技工作者的重要任务之一。钴矿很少独立成矿,一般会与其他金属相伴生,如与Cu、Fe、Ni等组成Cu-Co、Fe-Co、Ni-Co矿床。钴伴生矿床一般可划分为现代海底型和大陆型。其中,现代海底Fe-Mn-Co结核和结壳中钴矿资源十分丰富,但由于现代深海开采技术尚未成熟,难以利用海底丰富的钴矿资源。当今世界仍然以陆地的钴矿资源开发利用为主。大陆型钴矿主要类型包括:(变质)沉积岩赋矿层控型Cu-Co矿床、风化型红土Ni-Co矿床、岩浆Cu-Co-Ni硫化物矿床等(赵俊兴等,2019)。位于我国华北克拉通东部陆块的胶-辽-吉造山带(图1),是钴等关键金属矿床重要的富集地(赵俊兴等,2019),其中最著名的钴矿床包括:吉林南部大横路大型Cu-Co矿(董耀松,2001; 郭文秀和刘建民,2002; 韦延光等,2002; 刘培栋,2008)、鞍山小女寨Ni-Co矿和辽南大石桥周家镇中型Fe-Co矿(刘培栋,2008)(图1b)。此外,丹东至宽甸地区也发现较多不同类型的Co矿,为研究关键金属Co矿床的重要富集提供理想的研究基地。

  • 构造作用、变质作用、岩浆热液流体等各种因素对矿床的形成起着关键的控制作用(侯增谦等,2008)。其中,构造变形、变质-岩浆热液流体的产生大多与板块俯冲-碰撞相关,俯冲-碰撞过程引起造山区地壳增厚,并伴随着变质、构造变形和同碰撞岩浆作用,它们对含矿流体的产生、运移及其富集起着关键的控制作用。许多造山带(尤其是前寒武纪造山带)经历了多期构造事件,对多期重大变质、岩浆、构造-变形事件与成矿效应制约的综合研究,是当今国际固体地球科学探索的前沿领域和热点(Zhai et al.,2016; Hou and Wang,2019)。胶-辽-吉造山带是一条古元古代造山带(1.95~1.85 Ga),后期经历了中元古代(1.4 Ga)、三叠纪(240~220 Ma)和侏罗纪—白垩纪构造改造(Li et al.,2005; 刘福来等,2015; Tian et al.,2017,2022),是一条典型的复合型造山带,经历了多期重大变质、岩浆、构造-变形事件。前人也对胶-辽-吉造山带俯冲-碰撞过程进行了相关研究,在多期变质-变形-岩浆(火山)作用及其复杂的构造演化等方面取得了一系列重要进展(Li et al.,2005; Zhao et al.,2012; Tian et al.,2017; Xu and Liu,2019)。

  • 图1 华北克拉通大地构造划分区图(a,修改自Zhao et al.,2005)及辽东-吉南地区区域地质简图(b)(胶-辽-吉造山带位于龙岗地块和狼林(或辽南)地块之间,形成于古元古代造山作用事件;主要Co矿分布点及图2相应位置标于此图中)

  • Fig.1 Tectonic division map of the North China Craton (a, modified after Zhao et al., 2005) and regional simplified geological map of the Liaodong and Southern Jilin region (b) (the Jiao-Liao-Ji orogenic belt is between Longgang block and Nangrim block (or Liaonan block) forming in the Paleoproterozoic orogenesis; the locations of major Co ore deposits and the location of the Fig.2 are shown in this map)

  • 然而需要指出的是,对于多期构造作用、变质作用、岩浆热液流体与成矿作用方面的研究,却较为缺乏。例如,对于大横路Cu-Co矿床来说,前人的研究主要集中在控矿因素、找矿标志、矿床地质特征及成因探讨(郭文秀和刘建民,2002; 杨言辰等,2004任启武等,2005),对多期构造变形事件与大横路铜-钴矿床钴富集成矿的关键制约作用较少论述。因此,本研究:① 对胶-辽-吉造山带吉南地区大横路Co-Cu矿进行构造解析工作;② 对大横路Co-Cu矿区大量钻孔和岩性资料进行深入分析;③ 对其矿床周边相关岩石单元进行年代学测定;④ 收集前人矿床地质资料(如任启武等,2005田丰等,2017),关联构造作用与成矿作用,最终探讨区域地质演化过程Co富集成矿的构造控制作用及其动力力学背景。

  • 1 区域地质概况与成矿作用

  • 1.1 区域地质概况

  • 胶-辽-吉造山带(又名胶-辽-吉构造带),位于华北克拉通东部陆块中,形成于古元古代龙岗陆块和狼林陆块的相互作用(刘福来等,2015)。对该造山带的形成,目前主要有以下两种看法:① 俯冲增生模式,白瑾(1993)等结合现代板块构造理论,基于岩石、构造和古地热等几个方面的证据,认为胶-辽-吉造山带的形成与岛弧增生作用相关,造山带形成于弧后盆地的关闭; ② 大陆裂谷闭合模式(张秋生和杨振升,1988; 刘永江等,1997; Li et al.,2005),该模式主张辽-吉地区形成于大陆张裂环境,接受沉积后随即发生闭合,属于陆内造山作用,未强调板块构造作用。然而无论是裂谷盆地模式还是俯冲碰撞模式,胶-辽-吉造山带在古元古代(2.16~1.85 Ga)、三叠纪(240~220 Ma)、侏罗纪和白垩纪等时期,都经历了多期次、多阶段的构造、变质和岩浆改造(Liu et al.,2017,2018; Li et al.,2017a; Tian et al.,2020b;田忠华等,2020a;田忠华,2021)。需要指出的是,白垩纪大规模伸展构造对胶-辽-吉造山带产生了深远的影响(Tian et al.,2020b)。

  • 胶-辽-吉造山带自吉林南部,经辽东宽甸—辽南岫岩—大石桥,穿越黄海至胶北烟台—栖霞—平度,并穿越郯庐断裂一直延伸到安徽五河—蚌埠一带,该带的空间延伸规模可达上千千米(图1a; Zhao et al.,2012; Liu et al.,2017)。胶-辽-吉造山带从地层组成上来说,北部主要包含了北朝鲜摩天岭群,吉林南部的老岭群和集安群,辽东半岛辽河群,南部主要包含了胶北地体中的粉子山群和荆山群组以及安徽地区的五河群(刘福来等,2015)。从地层对比上来说,粉子山群、北辽河群、老岭群可以进行对比,位于胶-辽-吉造山带的北部带,荆山群、南辽河群和集安群可以对比,位于胶-辽-吉造山带南部(Luo et al.,2004; Li et al.,2005; Tam et al.,2011)。本次研究主要在吉林南部地区,地层主要包括集安群和老龄群(图1b)。集安群和老龄群西南侧主要分布辽河群,根据前人填图工作(如1∶20万和1∶5万地质图)可以分成五个组,从下部单元到上部单元分别是:浪子山组、里尔峪组、高家峪组、大石桥组和盖县组,岩性变化特征主要是从长英质和火山物质含量较高的成分,到碳酸盐岩含量较高,最后转变为碎屑含量较高的序列。

  • 1.2 区域成矿作用

  • 胶-辽-吉复合造山带是世界闻名的金属-非金属成矿带,各类大型—超大型矿床广泛分布于该造山带中。关键金属Co矿主要以伴生矿物形式,以Fe-Cu-Ni-Co矿广泛分布在辽东半岛至吉林南部一带(图1b),主要富集在老岭群和辽河群中(图1b)。大横路Cu-Co矿主要赋存于老岭群上部大栗子组(郭文秀和刘建民,2002)(图2、3);大石桥周家地区Fe-Co矿主要赋存于里尔峪组变粒岩中;红旗岭岩浆型Ni-Co矿床赋存于与里尔峪组伴生的超基性—基性侵入岩中。老岭群中除Cu-Co矿外,还存在大量的金矿,如老岭金矿主要赋存于老岭群花山组二云片岩中(任利明和李晓朋,2022)(图3)。老岭群中还赋存大栗子铁矿,荒山沟铅锌矿等重要矿床,其中前者赋存在大栗子组千枚岩夹大理岩中(Li et al.,2014),后者主要赋存于花山组片岩中(图3)。

  • 除此之外,值得一提的是,铀矿也为重要的战略型金属矿产,主要分布在辽河群底部的浪子山组中(刘正义等,2019)。里尔峪组火山岩中还含有大量的硫铁矿、铅锌矿等金属矿床。非金属矿产在辽东地区至吉南地区也较为发育,如大石桥非金属菱镁矿成矿带储量位居世界第一位(Tang et al.,2013; Dong et al.,2016)。菱镁矿主要分布在大石桥组大理岩中,硼矿主要分布在里尔峪组底部,石墨矿主要分布于高家峪组变粒岩中。对于这些金属和非金属矿床来说,部分学者认为早期的盆地沉积作用为矿床的形成提供了重要的物源储备,古元古代造山运动所产生的变质流体对成矿起到了关键性的作用(Dong et al.,2016)。后期的构造改造作用也对矿床的再次富集起到重要的作用(Li et al.,2019)。因此,这些矿床的成因与多期变质-岩浆事件、多期构造-变形事件及其复杂的构造背景和演化过程存在密切的关系(Zhai et al.,2016)。

  • 2 大横路Cu-Co矿床地质特征与围岩变形

  • 2.1 矿床地质特征

  • 大横路Cu-Co矿位于吉林省白山市三道沟镇三岔河村(图2),矿床主要分布于老岭群大栗子组千枚岩中,大栗子组千枚岩北侧为珍珠门组,主要由大理岩组成(图2,图3)。地层北侧为太古宙基底,基底内部可见大量中生代花岗岩侵入(图2)。此外,还可见中生代花岗岩侵入到元古宙地层中,岩体中可见大量元古宙地层捕虏体。达台山组石英岩分布于太古宙基底西北侧,临江组和花山组主要分布在大横路Cu-Co矿床的东北侧。大栗子菱铁矿位于大栗子镇西北侧,是一类较为典型的古元古代苏必利尔型铁矿(Li et al.,2014)。新元古代地层不整合覆盖于古元古代地层之上,此后可见侏罗系不整合覆盖和白垩系不整合覆盖(图2),暗示两期伸展性盆地的形成。

  • 大横路Cu-Co矿东西长约1.8 km,南北宽300~600 m(图4),初步控制东西长5.5 km,南北宽2.5 km,轴向NE60°左右,南东翼已发现多处Cu、Co化探异常,显示了良好的找矿前景(任启武等,2005)。矿区内断裂构造及相关褶皱十分发育,对钴铜矿的展布、成生、富集具明显的控制作用。前人地质资料显示矿区位于区域老岭背斜西南方向末端,在其南东翼的寄生褶皱的北西翼,区域上著名的南岔-荒沟山“S”型断裂带的南西段(任启武等,2005)。矿区褶皱叠加特征较为明显,第一期褶皱轴面NE-SW向,第二期褶皱轴面NW-SE向,两期褶皱正交叠加。大量矿体位于褶皱转折端部位。矿区内断裂构造也十分发育,对矿床具有控制作用的大致可以分为两类断裂,北东向断裂和东西向断裂。北东向断裂属控矿断裂,断层内可见大多数脉岩和矿化石英脉,该组断裂对钴铜矿形成起一定的叠加和富集作用。矿体总体呈北东60°方向展布,与NE向低角度断裂一致。东西向断裂一般长300~500 m,宽1~3 m,倾向近南,倾角较低,该组断裂与钴铜矿化关系比较密切。

  • 图2 吉林省白山市三道沟镇区域地质图(修改自吉林省地质局,1976 ;采样点和图4标注在此图上)

  • Fig.2 Regional geological map of the Sandaogou Town, Baishan City, Jilin Province (modified after GBJL, 1976 ; sample locations and location of the Fig.4 are marked on this map)

  • 大横路Cu-Co矿早期地质勘探工作包括钻井、坑道(图5a)和探槽等,一般将大横路Cu-Co矿分为两类矿体(任启武等,2005),I号矿体较大,矿体控制长度约为1340 m,控制宽度为120~495 m,控制厚度为6~146 m;其中钴最高品位为0.596%,最低品位为0.02%,平均品位为0.054%。II号矿体相对来说规模小一些,长度1040 m,宽度为3~30 m之间,钴最高品位为0.248%,最低品位为0.02%,平均品位为0.036%。金属钴主要以镍钴矿、方钴矿、辉钴矿以及含Co黄铁矿、方铅矿等形式存在,也广泛分布于氧化矿物如褐铁矿中(董耀松,2001; 郭文秀和刘建民,2002; 韦延光等,2002; 刘培栋,2008)。此外,田丰等(2017)做了更加细致的矿物观察,认为大横路Cu-Co矿矿石中主要有黄铁矿、黄铜矿、磁黄铁矿、Ni-Co矿,方铅矿、辉钴矿、方钴矿、褐铁矿、孔雀石和蓝铜矿等。

  • 王慧宁等(2023)对大横路Cu-Co矿内典型钻孔样品进行了深入的矿物相结构观察,得出钴主要以类质同象进入富Co黄铁矿、Co独立矿物如硫镍钴矿和辉砷钴矿和在磁黄铁矿中发育钴镍黄铁矿出溶体等形式存在。文中认为大横路Cu-Co矿经历了沉积作用、变质-变形、热液作用三期成矿富集作用,沉积阶段以零星分布的黄铁矿-磁黄铁矿-黄铜矿细粒包体为特点;变质-变形阶段以磁黄铁矿-硫镍钴矿-黄铜矿组合沿黑云母-绢云母-石英变质面理定向分布为特点,变质程度达绿片岩相。需要说明的是文中指出晚期热液作用包括三个阶段的影响,第一阶段热液作用主要沉淀粗大脉状磁黄铁矿及其钴镍黄铁矿出溶体;第二阶段热液成矿的标志为条带状自形富Co黄铁矿和硫镍钴矿,该阶段为Co富集成矿的主成矿期;第三阶段热液成矿的标志网脉状黄铜矿沉淀,同时发育极少量细粒辉砷钴矿(王慧宁等,2023)。矿体的蚀变类型包括:① 钠长石化、硅化、碳酸盐化和绿泥石化; ② 钾长石化和绢云母化。其中铁白云石化、硅化和钠长石化蚀变稍早于金属硫化物形成,为金属硫化物的沉淀与富集提供了有利条件,辉砷钴矿的沉淀与钠长石的绿泥石化、钾长石化和绢云母化等蚀变作用关系密切(王慧宁等,2023)。

  • 图3 老岭群地层柱状图(修改自Zhang et al.,2018)

  • Fig.3 Stratigraphic column of the Laoling Group (modified after Zhang et al., 2018)

  • 2.2 围岩多期、多阶段构造变形

  • 2.2.1 古元古代变形特征

  • 通过对大横路Cu-Co矿围岩千枚岩的构造解析,发现部分含矿围岩千枚岩变形程度不高(图5b),露头尺度S0面理较为少见,镜下薄片可见成分层差异所指示的原生层理S0(图6a、b)。此外,可见一期与S0平行的早期沉积压实过程中形成的S0-1面理(图6c)。由S0向S1过渡,野外可见较为明显的层片交切现象(图5b,图6d)。此外,还可见S0变形形成F1褶皱。需要指出的是S0面理受到后期多阶段构造改造,产状变化较大。透入性面理S1野外较为常见(图5c),面理由云母、绿泥石、石英和长石等矿物的定向排列来定义,其中云母类矿物定向性表现较为明显,这些构造深刻影响了原生层理S0及S0-1。此外,王慧宁等(2023)观察到,磁黄铁矿-硫镍钴矿-黄铜矿组合沿黑云母-绢云母-石英变质千枚理(S1)定向分布。S1面理由于受到第二期叠加褶皱的改造,面理产状变化也较大。S1面理受F2褶皱改造,局部地区可见S2褶劈理(图6e),S3膝折野外和镜下较为少见。本研究所观测到含矿围岩千枚岩的变形特征与郭文秀和刘建民(2002)的观察能够进行对比,其文中提到早期构造要素包含千枚理、片理和F1褶皱,拉伸线理L1局部可见,由于S1强烈改造早期S0,故此出现典型的层片交切现象。第二阶段变形主要表现为F2褶皱,片理S2和少量拉伸线理L2;第三阶段构造要素主要包含了F3褶皱、叶理和线理L3。需要指出的是,郭文秀和刘建民(2002)认为S2面理主要发育于褶皱的核部,为轴面片理,非透入性面状构造,与早期S1面理共同形成大量交面线理L2。本研究所观察到的S2面理主要为镜下所见褶劈理。

  • 图4 吉林省白山市三道沟镇三岔河村大横路Cu-Co矿矿区地质图,显示断层及褶皱对矿床的控制特征(此图标注图5照片的拍摄位置、图11位置以及文中提到钻孔样品位置)

  • Fig.4 Geological map of the Dahenglu mining area, Sanchahe Village, Sandaogou Town, Baishan City, Jilin Province, shows that faults and folds control the mineralization (the shooting location of the pictures in Fig.5, the location of Fig.11 and sample locations mentioned in this paper are shown)

  • 本研究还对大量钻孔岩芯样品进行了深入的观察和解译,例如从样品ZK2004-2号薄片的镜下特征(图7a、b)可以看出,S1(平行于S0及S0-1)发生了较为强烈的变形作用,形成了较为紧闭的褶皱F2,局部可见长石石英等矿物聚集于褶皱转折端,发生较为韧性的变形作用。此外,在另外一个薄片(样品ZK802-15)中可见细微逆冲断层及断层相关褶皱形成,断层上盘可见较好的断层相关褶皱F2、寄生褶皱。断层下盘可以观察到褶劈理(图7c、d)。该阶段构造作用致使早期S1(平行于S0及S0-1)发生强烈韧脆性变形。

  • 图5 野外照片显示大横路Cu-Co矿矿区及岩石特征

  • Fig.5 Field pictures showing the mining area and rock characteristics of the Dahenglu Cu-Co ore deposit

  • (a)—大横路Cu-Co矿矿洞口千枚岩碎石堆;(b)—千枚岩转石内显示较好的层片交切特征;(c)—露头显示千枚岩中较好的S1面理特征;(d)—千枚岩中可见石英脉,石英脉中可见网脉状黄铁矿

  • (a) —phyllite rubble pile at the entrance of the Dahenglu Cu-Co mine; (b) —bedding-cleavage intersection features in phyllite; (c) —outcrop shows S1 foliation in phyllite; (d) —quartz veins are seen in phyllite, and reticulated pyrites are seen in quartz veins

  • 为进一步探明逆冲断层及褶皱与大横路Cu-Co矿中Co富集之间的关系,本文对矿区内典型变质变形钻孔样品及矿区探槽样品(样品ZK1602-21b和21TZH10-2b)进行了TIMA面扫描工作。方法如下:TIMA(TESCAN,Intergrated Mineral Analyzer)测试在南京宏创地质勘查技术服务有限公司采用配有4个能谱探头(EDAX Element 30)的Mira-3扫描电镜完成,薄片(靶)样品在实验前进行喷碳。实验中加速电压为25 kV,电流为9 nA,工作距离为15 mm,电流和BSE信号强度使用铂法拉第杯自动程序校准,EDS信号使用Mn标样校准。测试中使用解离模式,同时获取BSE图和EDS数据,每个点的X射线计数为1000。像素大小为2.5 μm,能谱步长为7.5 μm。

  • 样品分析结果见图8~10。TIMA面扫描工作首先可以得到代表性样品的矿物组成,样品21TZH10-2b主要的石英、长石、云母等成岩矿物,金属矿物包括黄铁矿、硫铁矿、赤铁矿、黄铜矿和闪锌矿等。精细的构造控矿结构也可以在TIMA面扫描中观察到,大量成矿流体顺着低角度断层面灌入到断层破碎带,形成黄铁矿化(图8)。其次,TIMA面扫描可以观察到典型矿物中成矿元素的含量。通过对局部断层破碎带中黄铁矿的TIMA面扫描,见黄铁矿中含Co较高(图9)。此外,还可观察到流体直接灌入到褶皱转折端中(图8),暗示该时期逆冲断层及相关褶皱对成矿作用起到较为积极的作用。对大量倒转褶皱(F2)中褶皱间韧性域中黄铁矿进行分析(样品ZK1602-21b),也可得出强应变带中的黄铁矿也含Co(图10)。结合王慧宁等(2023)的工作,本研究得出古元古代第二阶段变形中大量含Co流体主要富集于黄铁矿和硫镍钴矿中。

  • 图6 原生层理S0到褶劈理S2的发育过程示意图(a)、薄片下成分层差异显示S0面理(b)、盆地沉积过程中形成的S0-1面理(c)、褶皱枢纽部位层片交切特征(d)及千枚岩中褶劈理的镜下特征(e)

  • Fig.6 Development process from primary bedding S0 to crenulation cleavage S2 (a) , the composition difference of rock under the microscope indicates primary S0 texture (b) , S0-1 foliation formed during basin depositional process (c) , bedding-cleavage cross-cutting characteristics at the hinge of the fold (d) , and microscopic characteristics of crenulation cleavage in phyllite (e)

  • 钻孔剖面的绘制更能体现含矿围岩受倾向东南方向断层及其相关褶皱的控制(图11)。从图11中可知,逆冲断层表现为地表角度稍高,进入深部岩层后产状变低,大量逆冲断层将千枚岩及其矿体切断,形成叠瓦扇。钻孔岩石镜下薄片观察也可见大量不对称褶皱,指示逆冲向NW方向的运动学特征,与图7c、d中观察到的现象一致。故此,无论从镜下薄片观察,还是对钻孔剖面图解译的结果都表明,大横路Cu-Co矿床成矿流体受逆冲断层及其相关褶皱所控制。

  • 前人对胶-辽-吉造山带内辽河群进行构造解析工作,一般将古元古代变形分为以下几个阶段(Li et al.,2005; Tian et al.,2017):① 沉积阶段S0及压实埋藏过程中面理S0-1(平行于层理S0)的形成;② S0变形形成F1褶皱过程中,大量层片交切面理S1的形成,该阶段S1面理在褶皱核部垂直于S0,在褶皱的翼部斜交于S0面理;③ S1变形形成F2过程中,大量褶劈理的形成;④ 晚期膝折的形成。通过对比可知,发育于大横路Cu-Co矿围岩千枚岩中的构造与北辽河群中千枚岩内的构造一致,暗示辽东半岛辽河群变形特征与吉林南部老岭群变形特征一致。此外,田忠华等(2020a)对辽河群内构造进行了系统的梳理,发现其中包含大规模逆冲推覆构造,大量片岩及千枚岩推覆到太古宙片麻岩之上,与其呈断层接触。年代学工作认为这些构造变形阶段都发生在基性岩侵入2115 Ma之后和伟晶岩侵入1840 Ma之前,主要依据为侵入到浪子山组千枚岩中的基性岩发生变形并记录早期面理S1,故此可限定变形下限,侵入到辽河群中未变形的伟晶岩能限定变形上限,故此锁定这套千枚岩中发育的变形构造属于古元古代(Tian et al.,2017)。最后,笔者将辽河群中发育的逆冲推覆构造归结为古元古代峰期造山阶段的产物。

  • 图7 大横路Cu-Co矿钻孔岩性镜下照片显示紧闭褶皱F2发育(a、b)以及显微逆冲断层及不对称褶皱发育(c、d)

  • Fig.7 Borehole-core samples from the Dahenglu Cu-Co mine show the overturned fold F2 under the microscope (a, b) and show micro-thrust and asymmetric fold development in the phyllite (c, d)

  • 2.2.2 中生代变形特征

  • 研究区中生代构造变形主要受印支期运动和燕山期运动(包含白垩纪大规模伸展作用)控制。构造运动致使F2褶皱叠加于早期F1之上(图4),其时代有可能为印支运动的产物,但是由于缺乏年代学工作,第二期褶皱叠加的时代难以厘定。需要指出的是,研究区西南侧,辽东半岛大连旅顺地区发现新元古代到二叠纪沉积物中记录了这一期构造事件的痕迹,沉积物中发育大量叠加褶皱,显示较好的穹隆-盆地型叠加褶皱特征(Ramsay,1967),通过几何学性质及运动学特征总结出的区域最大主应力方向为NNW-SSE,属于典型陆陆俯冲碰撞过程中的压扭过程(Yang et al.,2011),该文作者故此认为叠加褶皱的形成与三叠纪华南板块向华北板块的俯冲碰撞相关。

  • 董树文等(2019)将燕山运动划分为三个构造期次,早期挤压应力作用期(约175~136 Ma),中期伸展应力作用期(135~90 Ma)和晚期弱挤压应力作用期(约80 Ma)。由此可知,侏罗纪早期构造以挤压构造为主,然而受到晚期白垩纪伸展作用的影响,大量伸展性构造叠加于挤压构造之上,致使早期构造难以发现。区域上伸展性构造以变质核杂岩为主,例如研究区西南侧弓长岭变质核杂岩(Tian et al.,2020b),辽南地区辽南变质核杂岩(Liu et al.,2005; Lin et al.,2011; 刘俊来等,2022)。从图2中可以看出,大横路地区发育大量白垩纪伸展性盆地,太古宙片麻岩及表壳岩被伸展剥露出地表,故此可见,白垩纪伸展性构造对区域有一定的影响,大量携带成矿流体的伸展性石英脉可能形成于该时代,当然这需要更进一步年代学工作佐证。

  • 图8 大横路Cu-Co矿矿道样品21TZH10-2b TIMA工作结果,显示成矿流体顺着断层面灌入到断层破碎带中,随后进入褶皱转折端

  • Fig.8 TIMA work for sample 21TZH10-2b from the exploratory trench in the Dahenglu Cu-Co ore deposit, showing that the ore-forming fluid is poured into the fault fracture zone along the fault plane and then into the fold hinge zone

  • 3 年代学特征

  • 3.1 方法

  • 由于构造变形时代较难限定,本研究在大横路Cu-Co矿的周边采集了相关样品,结合区域上其他年代学测定结果,以此初步限定构造及相关岩浆事件的时代,样品主要包括矿区西北侧达台山组沉积岩(21TZH 44-1)、东北侧太古宙花岗岩(21TZH46-2)和后期侵入到太古宙花岗岩和地层中的花岗岩(21TZH45-1) (图2)。其中达台山组在1∶20万地质填图(浑江幅)中被当做为古元古界老岭群的底部,对其中贴近太古宙片麻岩的石英岩进行样品采集,进行碎屑锆石年代学测定。同样对大横路Cu-Co矿东北侧太古宙片麻岩及花岗侵入岩进行年代学测定。锆石CL拍照和年代学测定方法如下:

  • 图9 大横路Cu-Co矿矿道样品21TZH10-2b TIMA工作结果

  • Fig.9 TIMA work for sample 21TZH10-2b from the exploratory trench in the Dahenglu Cu-Co ore deposit

  • (a)—矿物组成;(b)—电子背散射图像BSE;(c)—相分割图;(d)—Co含量显示图

  • (a) —mineral composition; (b) —BSE image; (c) —segment; (d) —Co content image

  • 三个样品21TZH44-1、21TZH 45-1、21TZH46-2锆石分选在河北省区域地质矿产调查研究所实验室完成。首先,将样品破碎至适当粒级,经过清洗、烘干和筛选等基本过程后,采用磁选和重液分选出不同粒度的锆石晶体,然后在双目镜下挑选出200粒相对完整的锆石晶体。锆石制靶完成后,首先在显微镜下对锆石颗粒进行透射光和反射光的观察,便于了解锆石颗粒中包裹体发育情况和表面裂纹发育情况。然后将锆石靶镀金,进行阴极发光图像(CL)的拍摄,便于观察锆石内部结构,锆石CL图像拍摄于南京宏创地质勘查技术服务有限公司,其拍摄实验仪器为TESCAN场发射扫描电镜(型号:MIRA 3LMH)搭配CL探头完成。实验过程中加速电压为7 kV,吸收电流为1.2 nA,每80 s进行一次扫描。

  • 三个样品21TZH44-1、21TZH 45-1、21TZH 46-2锆石U-Pb年龄测试在北京快科赛默科技有限公司测试完成,实验仪器为安捷伦公司串联四级杆电感耦合等离子体质谱(Agilent ICP-MS/MS 8900),搭载ESI公司准分子激光剥蚀系统New Wave NWR 193UC。LA-ICPMS 用 NIST SRM 612进行载气和补偿气比例的最优化,208Pb 达到最大的信号强度而保持较低的ThO/Th(0.1%~0.3%)和 Ca2+/Ca+(0.4%~0.7%),用 NIST SRM 612的238U和232Th离子信号强度的比值(238U/232Th约为 1)指示样品完全气化。在调谐过程中,激光剥蚀系统的参数设置如下:采样方式为单点剥蚀;以He 作为剥蚀物质的载气,流速为 700 mL/min;能量密度为 3.1 J/cm2。由于采用高纯度的液Ar和 He 气(99.999%),每秒各元素的背景值<100 计数。ICPMS 参数设置如下:RF 功率为 1500 W;等离子气为Ar,流速为 15 L/min;辅助气为Ar,流速为1 L/min;补偿气为Ar,流速为 0.95 L/min;采样深度为 5.6 mm。

  • 图10 大横路Cu-Co矿钻孔样品ZK1602-21b TIMA工作结果

  • Fig.10 TIMA work for sample ZK1602-21b from borehole in the Dahenglu Cu-Co ore deposit

  • (a)—矿物组成;(b)—电子背散射图像BSE;(c)—相分割图;(d)—Co含量显示图

  • (a) —mineral composition; (b) —BSE image; (c) —segment; (d) —Co content image

  • 待激光剥蚀系统和ICPMS两台仪器都预热完毕,开始调谐仪器,仪器的各项指标正常后,开始测试样品。本次实验所使用的激光剥蚀系统为 New Wave NWR 193UC准分子激光器,通过一根内径为 4 mm、外径为 6 mm、长度约 l m 长的塑料管子与型号为 Agilent 8900 的 ICP-MS 联接。为了校准与时间有关的仪器灵敏度漂移及 ICP-MS 的质量歧视,每测定5个样品点,测定一次标准物质。ICPMS 数据采集选用跳峰方式,利用双模式(脉冲模式和模拟模式)检测。所有元素的单点停留时间设定为6 ms。每个分析点的气体背景采集时间为6~8 s(一般为7 s),信号采集时间为30~40 s(一般为35 s)。激光剥蚀过程中采用He作载气、N2以2.5 mL/min流量为补偿气以调节灵敏度,两者在进入 ICP 之前通过一个 T 型接头混合。对离线数据的分析处理,采用澳大利亚墨尔本大学同位素研究组开发的数据处理软件Iolite,该软件优化了剥蚀孔下分馏模型,同时可调用激光日志文件,数据处理更加快捷与专业。普通Pb的校正使用 Andersen 2002 年开发的 ComPbCorr#3.18 程序进行普通Pb校正。

  • 图11 大横路Cu-Co矿0号勘探线地质剖面解释图(修改自杨言辰等,2004

  • Fig.11 Geological profile interpretation map of No.0 exploration line in Dahenglu Cu-Co mine (modified after Yang et al., 2004)

  • 内部小图显示钻孔中千枚岩内不对称褶皱

  • The insert picture shows asymmetric folds in phyllite in the borehole under the microscope

  • 3.2 测试结果

  • 样品21TZH44-1中锆石颗粒较大,长轴长度约100~200 μm,长宽比为2∶1~1∶1(图12a),部分锆石呈半自形,锆石分为明暗两类,振荡环带清晰。部分锆石晶体在搬运过程中破碎成小颗粒,除了少部分锆石显示较为均匀的特征外,大部分锆石都具有振荡环带,指示其为岩浆成因,部分锆石受后期变质作用改造发育增生边(图12a),对样品中120颗碎屑锆石进行了LA-ICP-MS U-Pb定年(图12b)。样品年龄分布范围为2602~1109 Ma(附表1),对谐和度较好的年龄进行统计,大部分年龄都集中于2.5 Ga和1.89 Ga附近,频率分布直方图显示较强的2522 Ma和1892 Ma峰值年龄,指示2.5 Ga和1.89 Ga源区为主要物源区。需要指出的是,1.89 Ga锆石振荡环带比较明显,指示岩浆锆石特征。此峰值暗示碎屑中有大量来自古元古代晚期的碎屑锆石,指示地层形成时代小于古元古代晚期(<1.89 Ga)。此外,样品中有一个极小峰值,锆石不足5颗,部分样品显示1200 Ma的锆石年龄,然而该峰值年龄较少,本研究认为不能作为地层时代的判断依据。

  • 样品21TZH46-2中锆石颗粒较大,长轴长度约100~200 μm,长宽比为2∶1~1.5∶1(图13a),锆石呈浑圆状,可以分为暗色和浅色两类,两类锆石都均匀,振荡环带不发育。对样品40颗锆石进行了LA-ICP-MS U-Pb定年(图13c)。谐和图上得出其上交点年龄为2522±10 Ma;部分锆石加权平均年龄为2510±10 Ma(图13f)。样品21TZH45-1中锆石颗粒较长,长轴长度约200~300 μm,长宽比为2∶1~5∶1(图13b),锆石呈自形长柱状,部分锆石有暗色增生边,振荡环带发育,是较为典型的岩浆锆石。对样品中25颗锆石进行了LA-ICP-MS U-Pb定年(图13d),除一颗捕获锆石年龄在2059 Ma外,其余锆石均在170 Ma左右。谐和图上得出其年龄为170.5±2 Ma,部分锆石加权平均年龄也为170.5 Ma。

  • 图12 吉林南部白山市三道沟镇三岔河村大横路Cu-Co矿北侧达台山组样品21TZH44-1碎屑锆石的阴极发光图像(a)、年龄频率分布直方图(b)、及U-Pb谐和图指示2522 Ma 年龄(c,谐和度≥90%)和1982 Ma(d,谐和度≥90%)

  • Fig.12 Cathodoluminescence (CL) images (a) , probability density plot (b) , and U-Pb concordia diagrams for the age of 2522 Ma (c, concordance ≥90%) and 1982 Ma (d, concordance ≥90%) of zircons in the sample 21TZH44-1 from the Dataishan Formation, which is located to the north of the Dahenglu Cu-Co ore deposit in the Sanchahe Village, Sandaogou Town, Baishan City, the southern part of the Jilin Province

  • 4 讨论

  • 4.1 多期重大构造事件与Cu-Co富集成矿作用

  • 4.1.1 Co潜在物源

  • 胶-辽-吉造山带及其周缘太古宙表壳岩从太古宙至中生代,经历了多期次重大构造事件。新太古代末期重大构造事件(D1)虽然没有对古元古代的Cu-Co富集成矿产生直接的影响,但是这些重生的表壳岩可能为古元古代的成矿物源提供了潜在的物源。例如,杨言辰等(2004)认为太古宙表壳岩在高压和还原的情况下,其Co-Cu等成矿物质在古元古代被迁移至胶-辽-吉弧后盆地(或辽吉裂谷盆地)中,在海底喷流沉积热水喷口与周围海水混合,当温度降低、热流压力降低和氧逸度增加时形成初始的矿源层,这可能暗示了最早期Co成矿物质的来源。需要指出的是,对大横路南侧老岭群中碎屑锆石的研究表明,碎屑锆石主要来源于2.5 Ga太古宙表壳岩和2.17 Ga造山带内岩浆岩(Zhang et al.,2018)。本研究也对大横路Cu-Co矿北侧达台山组石英岩(老岭群底部,图3)进行了碎屑锆石研究(图12),碎屑锆石中的第一期峰值与北侧太古宙片麻岩年龄一致(图13a、c、e),暗示其主要物源也来自于太古宙表壳岩,说明太古宙表壳岩为老岭群地层提供了重要的物源。需要指出的是,碎屑锆石中的第二期峰值指示其时代晚于1.87 Ga,暗示达台山组相对于老岭群其他地层来说(Zhang et al.,2018)形成时代较晚。这个结果与1∶5万填图结果一致,将达台山组放置在老岭群顶部。认为其部分地层不整合在古元古代老岭群之上,可以限定古元古代构造变形时代。

  • 图13 吉林南部白山市三道沟镇三岔河村大横路Cu-Co矿北侧太古宙片麻岩和花岗侵入岩锆石CL 图像(a、b)及其年代学特征(c~f)

  • Fig.13 Cathodoluminescence (CL) images (a, b) and geochronological characteristics (c~f) of the Archean gneiss and later granite intrusion in the Sanchahe Village, Sandaogou Town, Baishan City, the southern part of the Jilin Province

  • (a、c、e)—分别显示太古宙片麻岩21TZH46-2锆石CL特征,谐和图和加权平均年龄图;(b、d、f)—分别显示侏罗纪花岗岩21TZH45-1锆石CL特征,谐和图和加权平均年龄图

  • (a, c, e) —showing zircon CL images, concordia diagram, and the weighted average age for sample 21TZH46-2, respectively; (b, d, f) —showing zircon CL images, concordia diagram, and the weighted average age for sample 21TZH45-1, respectively

  • 此外,有学者认为含Cu-Co矿的变沉积岩系与原岩沉积物源区的基性岩Cu-Co元素丰度值较高有直接关系,而大栗子组变沉积岩-碳酸盐岩建造的物质来源主要为含Cu、Co较高的龙岗地块太古宙古老变质基底(松权衡等,2000)。因此,太古宙物质可能作为古元古代盆地(裂谷盆地或弧后盆地)中沉积物潜在的物源,为古元古代沉积、变质变形成矿作用提供先决条件。

  • 4.1.2 古元古代构造事件(D2

  • 古元古代造山作用为Co-Cu矿的富集提供了重要条件,构造变形作用通常为大型矿床所需的成矿流体提供重要通道。上文已述,古元古代构造事件D2(太古宙构造事件为D1,本文不论述)一般可以分为三个阶段:早期与俯冲阶段相关的构造(D2-1)包含S1面理、F1褶皱和L1线理;中期与碰撞挤压阶段相关的构造要素包括褶劈理、F2褶皱和L2线理、逆冲断层及其相关褶皱;晚期与造山后抬升、垮塌相关的构造要素主要包括膝折和宽缓褶皱(Li et al.,2005; Tian et al.,2017)。古元古代造山事件体现了胶-辽-吉弧后盆地或辽吉裂谷盆地造山收缩的完整过程,为区域成矿提供重要沉积至再富集的过程。首先,田忠华等(2020)通过对弧后盆地中大量沉积物及其相关基性岩(包括枕状熔岩)进行了分析并总结,认为造山作用最初引起盆地收缩期在其最早阶段表现为原生层理S0的变形,形成早期褶皱F1,局部可见透入性的轴面劈理S1,早期层片交切现象较为发育(Tian et al.,2017,2020)。该现象在大横路Cu-Co矿围岩千枚岩中也能够很好地观察到(本研究及郭文秀和刘建民,2002)。大横路部分薄片中可见少量含Co黄铁矿沿着S1面理(千枚理)分布(主要出现在无热液脉发育的样品中),特点为硫化物的含量增多,黄铜矿、黄铁矿和磁黄铁矿等呈半自形细粒(20~50 μm)沿千枚理断续近定向分布或呈包裹体分布于石英之内,暗示古元古代最早阶段的富集成矿作用(王慧宁等,2023)。

  • 此后,造山作用导致盆地剧烈收缩,形成大量逆冲断层及相关褶皱(图7,图11),本研究对大横路钻井资料、探槽资料和薄片进行了深入的研究,发现逆冲断层是大横路Cu-Co矿的成矿流体重要的导矿通道。大量含Co的黄铁矿、硫镍钴矿发育在低角度逆冲断层面和F2褶皱转折端(图9~11),故此认为古元古代构造作用第二个阶段(D2-2)为Co-Cu矿的富集作用提供了重要的制约。这个阶段构造与辽河群中观察到的一期强烈的逆冲推覆构造(属于D2-2)能够进行对比(Tian et al.,2020)。通过对同构造期变质独居石进行年代学测定,发现其时代为1950~1930 Ma(刘平华等,2017)。同构造期产物表现为大量泥质麻粒岩,例如,大横路Cu-Co矿西侧通化地区发育大量基性麻粒岩,其峰期变质时代为1890~1870 Ma(Cai et al.,2020b);辽河群三家子地区高压麻粒岩峰期变质时代为1910 Ma(Liu et al.,2019)。造山作用峰期之后,研究区转为造山后伸展阶段D2-3,构造要素包含大量造山后膝折和宽缓褶皱,同时代角闪岩相退变质作用时代约1840 Ma,与大量伟晶岩的侵入时代一致(杨红等,2017)。

  • 韦延光等(2002)通过对大横路Cu-Co矿中矿床成矿流体特征的研究,认为该矿床经历了沉积成岩成矿阶段和区域变质变形成矿阶段的两个主要成矿阶段,其中变质变形过程中产生的变质热液成矿流体对大横路Cu-Co矿的成矿作用起到了关键的作用,其成矿时代可能为古元古代造山作用事件。其他对大横路Cu-Co矿进行研究的学者也肯定了古元古代造山作用对Cu-Co矿床富集的关键作用(田丰等,2017)。值得一提的是,华北克拉通的中部带中条山地区,有学者报道了古元古代构造热事件对Cu-Co矿床的富集作用起到关键作用,其精细的年代学工作显示变质蒸发岩中变质成因磷灰石U-Pb年龄(1844±25 Ma)与含Cu-Co石英脉中辉钼矿Re-Os年龄(1819±19 Ma)几乎一致,表明成矿作用和变质时代一致,并认为大氧化事件后的蒸发岩相沉积地层可能是沉积岩容矿铜钴矿床一个潜在的钴来源,随后发生的造山作用可以进一步释放和迁移金属元素,使其进一步富集(Qiu et al.,2021)。因此,古元古代被动大陆边缘或裂谷盆地是全球潜在的钴矿勘探远景区,尤其是经历过变质、变形作用改造的含蒸发岩沉积地层区(Qiu et al.,2021)。

  • 通过观察和对比矿物组合及岩脉穿切特征,田丰等(2017)将大横路Cu-Co矿划分为四个期次,包括早期热水喷流沉积期、后期变质改造期、热液叠加期和表生氧化期(表1)。早期热水喷流沉积期和后期变质改造期为古元古代构造事件的产物(田丰等,2017)。对于早期变质改造期流体包裹体的特征,笔者引用了韦延光等(2002)的数据,认为古元古代成矿流体以石英-含Co-Cu元素金属硫化物脉为主,早期成矿阶段(对应变质改造期)含子矿物三相包体均一温度为320.7~368.4℃,热液盐度为39.6%~45.7% NaCleq。由此可知,古元古代造山作用变质阶段的流体包裹体工作,能够与构造变形工作进行对比,流体包裹体所指示的温度条件与逆冲断层及其断层相关褶皱所形成的温度较为一致(如地温梯度为30℃,其形成温度在10 km左右)(表1)。

  • 4.1.3 中生代构造事件

  • 中生代(三叠纪?)Cu-Co再富集作用,对于大横路Cu-Co矿来说目前没有明确的年代学证据。目前来看三叠纪构造作用和变质作用(D3)对研究区的影响较为有限,构造和变质较发育的区域主要集中在辽东半岛及沿海一带。例如,Liu et al.(2014)对胶-辽-吉造山带东南部辽东半岛长山岛上含石榴子石-蓝晶石变质泥质岩进行了详细的变质及年代学工作,独居石中包体矿物组成为Grt+Mus+Qtz±Ctd±Ky (片岩中)和 Grt + Ky+St+Mus+Pl+Kfs+Qtz(片麻岩中)。对独居石和构造相关云母分别进行U-Pb和Ar-Ar定年,发现其变质时代为(236.1~218.2 Ma),而并非为前人所认为的1950~1850 Ma。故此论证三叠纪构造事件影响到了辽东半岛地区。Yang et al.(2011)也认为大连地区所发育的叠加褶皱为印支期的产物。郭文秀和刘建民(2002)通过区域地质对比,认为印支期—燕山期构造岩浆活动提供了成矿热源,大横路Cu-Co矿就位在岩浆岩分布区附近。矿区内辉绿玢岩、闪长玢岩发育地段,矿化较强,有的辉绿玢岩和闪长玢岩已构成工业矿体,矿石中叠加在浸染状矿化之上的细脉及网脉状矿化,都证明岩浆活动对矿化起到再富集作用。然而其文章中并没有说明是三叠纪岩浆还是侏罗纪岩浆。从图2上可以看出,中生代岩浆作用大面积侵入到太古宙表壳岩和老岭群地层中,本研究通过对大横路Cu-Co矿北侧的中生代侵入岩进行了定年工作,得出其精确时代为170.5 Ma(图13b、d、f)。然而这期岩浆作用对成矿的贡献有多大,还需要更加深入的研究工作。

  • 表1 大横路Cu-Co矿区域重大地质事件与成矿作用关系表(据韦延光等,2002; 田丰等,2017; 王慧宁等,2023;本研究相关数据而编)

  • Table1 Relationship between regional tectonic events and enrichment and mineralization of the Dahenglu Cu-Co ore deposit (adapted after Wei Yanguang et al., 2002; Tian Feng et al., 2017; Wang Huining et al., 2023; data of this study)

  • 注:D2—古元古代构造事件; D3—三叠纪构造事件; D4-1—侏罗纪挤压构造事件; D4-2—白垩纪伸展事件。

  • 值得一提的是,田丰等(2017)认为大横路Cu-Co矿中的热液叠加期和表生氧化期为中生代构造事件的产物,并做了流体包裹体的相关研究。热液叠加期分为2个成矿阶段,第一个阶段为石英-黄铁矿成矿阶段,第二个阶段为石英-方铅矿阶段(田丰等,2017)。该期两个阶段流体包裹体的研究显示,石英-黄铁矿阶段发育气、液两相流体包裹体,形成于中温、低盐度体系,其均一化温度为178~229℃,形成盐度约为6%~12% NaCleq;石英方铅矿阶段也存在气液两相包裹体,属于低温、低盐度水盐体系,均一化温度在113~169℃,盐度为3%~8.5% NaCleq。

  • 从图2上可以看出,白垩纪断陷盆地较为发育,并受两期断裂控制,早期NE-SW向断裂和晚期NW-SE向断裂。白垩纪伸展性盆地的出现暗示研究区白垩纪受到伸展性构造事件(D4-2、D4-1燕山运动早期挤压性构造事件)的影响。中生代重大构造事件除印支运动外,白垩纪大规模岩石圈拆沉所引起的伸展性构造对区域影响较大,前人有大量相关工作,如对辽南变质核杂岩的研究(Liu et al,2005; Lin et al,2011; Zhu et al.,2017)。本研究偏向于白垩纪伸展性构造对大横路Cu-Co的富集起到一定的作用,具体理由如下:① 大横路Cu-Co北侧太古宙片麻岩穹隆的剥露,暗示了研究区可能为一个白垩纪变质核杂岩区,能够与区域上伸展性构造进行对比,研究区出现同时代的断陷盆地;② 白垩纪伸展性应力场与古元古代应力场方向一致,低角度倾向SE方向的低角度断层更容易活化古元古代的各类构造;③ 大量的薄片观察发现最晚期的石英脉携带黄铁矿(含Co,图5d)穿切了古元古代构造作用(D2)所形成的面理,这些晚期的脉体更容易出现在伸展性构造中,而不容易出现在D3和D4-1的挤压背景中。④ 郭文秀和刘建民(2002)田丰等(2017)王慧宁等(2023)大量区域矿床对比、岩石钻孔薄片和流体包裹体等的研究都表明,中生代构造(可能为白垩纪伸展构造)对大横路Cu-Co矿的再富集作用起到了正面的作用。

  • 图14 多期区域重大地质事件所产生的变质变形及岩浆作用与大横路Cu-Co矿床富集成矿的关系 (下图修改自张连祥等,2021

  • Fig.14 Relationship between metamorphism, deformation, and magmatism caused by multi-stage regional tectonic events and enrichment and mineralization of the Dahenglu Cu-Co ore deposit (the lower figure was modified after Zhang Lianxiang et al., 2021)

  • 综上所述,本研究对胶-辽-吉造山带多期重大构造事件与Cu-Co富集成矿作用有如下认识(图14):① 太古宙构造事件(D1)所产生的变质变形表壳岩,可能为古元古代盆地沉积物的潜在物源区;② 古元古代造山事件(D2)对Cu-Co矿的第一次富集起到重要作用;③ 三叠纪构造事件D3和侏罗纪早期挤压事件D4-1对区域的影响较为有限,还需更多的研究工作;④ 白垩纪大规模伸展构造事件D4-2可能对Cu-Co矿的再次富集起到了积极的作用。

  • 4.2 成矿动力学背景

  • 厘清大横路Cu-Co矿床成矿的动力学背景对指导找矿具有重要的意义。通过前面的工作总结,可以得出古元古代造山作用对于大横路Cu-Co矿床的富集作用起到了关键的作用。中生代(印支期运动和燕山期运动)及白垩纪大规模岩石圈拆沉事件,对大横路Cu-Co矿床的再富集作用由于年代学资料不完整,故此需要更多的研究工作。对于古元古代造山作用成矿来说,需要讨论的是胶-辽-吉造山带(又名胶-辽-吉构造带)的形成。对该造山带的形成,目前主要有以下两种看法:俯冲增生模式(白瑾,1993)和大陆裂谷张裂-闭合模式(张秋生和杨振升,1988; 刘永江等,1997; Li et al.,2005)。其实二者的根本区别在于古元古代(约2.0~1.8 Ga)该地区是否发育俯冲带,是否有岛弧的存在。对于俯冲的起始问题,部分学者发现太古宙和元古宙之交(2.5 Ga)存在大量水平构造体制下的产物,如逆冲推覆构造、增生楔和混杂带,故此认为类似现代板块构造冷俯冲作用的体制在该时期已经全面启动(Kusky et al.,2001; Windley et al.,2021; Zhong et al.,2021;田忠华等,2022)。此外,全球联动效应是板块构造初始启动的表现,其关键特征应该与现代板块构造体制下的观测相符合,例如重要的冷俯冲地质证据(Xu et al.,2018)、大洋岩石圈的残片(蛇绿岩)和古俯冲带的地球物理证据(Wan et al.,2020)等。上述所有特征都暗示2.0~1.8 Ga的固体地球早已存在现今板块构造体制,因为地质研究表明全球几乎所有的古老陆块都记录了该时期的俯冲造山作用。

  • 对于胶-辽-吉造山带来说,前人认为出露于辽吉地区的辽吉花岗岩为A型花岗岩,能够和基性岩一起组成双峰式火山岩,代表裂谷活动的起始(张秋生和杨振升,1988)。然而需要说明的是双峰式火山岩的形成仅仅代表了伸展性环境,并不能说明该地区一直处于裂谷状态,裂谷最终也可能发育成弧后盆地或者大洋盆地。是否存在俯冲作用还需要更多的证据来证明,例如弧相关的火山岩。Xu and Liu(2019)对胶-辽-吉构造带所有的岩浆作用进行了深入的总结工作,得出早期A型花岗岩(2190~2160 Ma)产生于太古宙地壳的部分熔融,长英质火山岩(2180~2160 Ma)为地壳和地幔基性岩浆的混合; 变基性岩(2160~2110 Ma)显示类似于大洋中脊或者岛弧玄武岩相关的性质。此外,近年来众多学者的观点都认为胶-辽-吉造山带存在大量岛弧相关的岩浆岩(Li et al.,2017b,2018)。值得一提的是,Tian et al.(2021)在辽阳市河栏镇识别出一套深海浊积岩,综合前人岛弧相关火山岩的研究工作暗示具有现今大地构造特征的沟-弧-盆体系在古元古代(2.1 Ga)已经存在。因此,本研究认为古元古代俯冲作用已经影响到了华北克拉通的东部陆块,胶-辽-吉造山带形成的动力学背景与古元古代的俯冲作用相关。古元古代俯冲造山作用所引起的大规模侧向运动(逆冲推覆构造的形成)对于大横路Cu-Co矿床的富集作用起到了关键作用(图15a)。

  • 中生代构造事件的动力学背景,相对来说较好厘定,例如三叠纪构造事件的动力学来自于华南板块向华北板块的俯冲作用(Yang et al.,2011)。燕山运动早期的地球动力学背景为古太平洋板块的俯冲作用(董树文等,2019)。强烈的俯冲作用引起板片后撤,在白垩纪引起大规模岩石圈拆沉,大量伸展性构造产生(如变质核杂岩)(Zhu et al.,2017)。白垩纪伸展作用对胶-辽-吉造山带产生了深远的影响,例如促使胶东半岛大规模变质核杂岩的形成(Wu et al.,2020)、大规模金矿的富集(Deng et al.,2020)、辽东半岛辽东变质核杂岩的形成(Liu et al.,2005)、弓长岭变质核杂岩形成(Tian et al.,2020b)。中生代伸展事件所引起的岩浆作用及伸展性构造为成矿流体提供重要的物源及通道(图15b)。

  • 图15 古元古代造山作用使大横路Cu-Co矿第一次富集(a),中生代伸展事情可能致使大横路Cu-Co矿的再次富集(b)

  • Fig.15 First enrichment of Dahenglu Cu-Co deposit was produced by Paleoproterozoic orogenesis (a) , Mesozoic extensional events may have led to the re-enrichment of Dahenglu Cu-Co deposit (b)

  • 5 结论

  • 本研究对大横路Cu-Co矿床进行了构造与成矿作用相关研究,得出以下几点认识:

  • (1)大横路Cu-Co矿围岩千枚岩经历了古元古代多阶段变形作用,最早阶段包含了S0面理的变形,可见明显的层片交切, F1褶皱常见。造山峰期阶段变形包括S2褶劈理,逆冲断层及断层相关褶皱、倒转褶皱等。

  • (2)岩芯、探槽TIMA工作显示Co主要赋存于黄铁矿和硫镍钴矿中,大量黄铁矿和硫镍钴矿富集于低角度逆冲断层内、断层相关褶皱转折端处和倒转褶皱间韧性剪切域中。结合钻孔剖面、岩芯薄片镜下观察等资料,早期断层及其相关褶皱对Cu-Co矿的第一次富集起到重要的控制作用,大横路Cu-Co矿为典型的构造控制型矿床。

  • (3)大横路Cu-Co矿相邻岩石年代学特征显示:达台山组内峰期碎屑锆石组合与矿区太古宙片麻岩锆石年龄一致,暗示太古宙表壳岩为盆地提供了重要的物源,可能为Cu-Co矿床的富集做了必要的准备;侏罗纪岩浆作用在研究区较为发育。

  • (4)综合区域资料,本研究得出古元古代造山作用事件对Cu-Co矿富集起到重要作用,三叠纪印支期事件和侏罗纪早期挤压构造事件对矿区的影响有限,白垩纪伸展作用对Cu-Co矿的再次富集可能起到一定的作用。

  • 致谢:感谢王舫研究员、蔡佳副研究员、王伟副研究员、王丹副研究员和冀磊副研究员在文章写作过程中提供的重要帮助,感谢硕士研究生文飞、朱浩忠、李同宇、郝志宣、罗博文、贾督、李晓东和周进伟在实验方面提供的帮助。

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202311092?st=article_issue

  • 注释

  • ❶ 吉林省地质局.1976.1∶20万地质图浑江幅.

  • 参考文献

    • Bai Jin. 1993. The Precambrian Geology and Pb-Zn Mineralization in the Northern Margin of North China Platform. Beijing: Geological Publishing House, 47~89 (in Chinese with English abstract)

    • Cai Jia, Liu Fulai, Liu Pinghua, Wang Fang. 2020. Metamorphic P-T evolution and tectonic implications of pelitic granulites in the Ji'an area, northeastern Jiao-Liao-Ji Belt, North China Craton. Journal of Asian Earth Sciences, 191: 104197.

    • Deng Jun, Yang Liqiang, Groves D I, Zhang Liang, Qiu Kunfeng, & Wang Qingfei. 2020. An integrated mineral system model for the gold deposits of the giant Jiaodong Province, eastern China. Earth-Science Reviews, 208: 103274.

    • Dong Aiguo, Zhu Xiangkun. , Li Shizhen, Kendall B, Wang Yue, Gao Zhaofu. 2016. Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: Constraints from Mg isotopes. Precambrian Research, 281: 673~683.

    • Dong Shuwen, Zhang Yueqiao, Li Hailong, Shi Wei, Xue Huaimin, Li Jianhua, Huang Shiqi, Wang Yongchao. 2019. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”. Science China Earth Sciences, 61: 1888~1909 (in Chinese with English abstract)

    • Dong Yaosong. 2001. Cobalt element geochmical characteristics of Dahenglu cobalt-copper ore deposit in Jilin Province and its genetics. World Geology, 20: 30~33 (in Chinese with English abstract)

    • Guo Wenxiu, Liu Jianming. 2002. The geologic features of Dahenglu Cu, Co deposit and ore-controling factors in Jinlin Province, China. Progress in Precambrian Research, 25(3-4): 206~213 (in Chinese with English abstract)

    • Hou Zengqian, Wang Erqi, Mo Xuanxue. 2008. Collisional Orogenesis and Mineralization in Tibetan Pleatau, Beijing, Geological Publishing House,

    • Hou Zengqian, Wang Rui. 2019. Fingerprinting metal transfer from mantle. Nature Communications, dio. org/10. 1038/s41461-019-11445-w.

    • Kusky T M, Li, Jianghai, Tucker R D. 2001. The Archean Dongwanzi ophiolite complex, North China Craton: 2. 505-billion-year-old oceanic crust and mantle. Science, 292(5519): 1142~1145.

    • Li Chao, Li Zhuang, Yang Chuan. 2018. Palaeoproterozoic granitic magmatism in the northern segment of the Jiao-Liao-Ji Belt: Implications for orogenesis along the Eastern Block of the North China Craton. International Geology Review, 60(2): 217~241.

    • Li Hongmin, Zhang Zengjie, Li Lixing, Zhang Zhaochong, Chen Jing, Yao Tong. 2014. Types and general characteristics of the BIF-related iron deposits in China. Ore Geology Reviews, 57: 264~287.

    • Li Jian, Cai Wenyan, Li Bin, Wang Keyong, Liu Hanlun, Konare Y, Qian Ye, Lee G J, Yoo B C, 2019. Paleoproterozoic SEDEX-type stratiform mineralization overprinted by Mesozoic vein-type mineralization in the Qingchengzi Pb-Zn deposit, northeastern China. Journal of Asian Earth Sciences, 184: 104009.

    • Li Sanzhong, Zhao Guochun, Sun Ming, Han Zongzhu, Luo Yan, Hao Defeng, Xia Xiaoping. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the eastern block of the North China Craton. Journal of Asian Earth Sciences, 24: 659~674.

    • Li Sanzhong, Jahn Boming, Zhao Shujuan, Dai Liming, Li Xiyao, Suo Yanhui, Guo Linli, Li Yongming, Liu Xiaochun, Lan Haoyuan, Zhou Zaizheng, Zheng Qiliang, Wang Pengcheng. 2017a. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 166: 270~285.

    • Li Zhuang, Chen Bin, Wei Chunjing. 2017b. Is the Paleoproterozoic Jiao-Liao-Ji Belt Belt (North China Craton) a rift? International Journal of Earth Science, 106: 355~375.

    • Lin Wei, Monié P, Faure M, Schärer U, Shi Yonghong, Breton N L, Wang Qingcheng. 2011. Cooling paths of the NE China crust during the Mesozoic extensional tectonics: Example from the south-Liaodong Peninsula metamorphic core complex. Journal of Asian Earth Sciences, 42(5): 1048~1065.

    • Liu Fulai, Wang Fang, Liou J G, Meng En, Liu Jianhui, Yang Hong, Xiao Lingling, Cai Jia, Shi Jianrong. 2014. Mid-Late metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton: Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating. Journal of Asian Earth Sciences, 94: 205~225.

    • Liu Fulai, Liu Pinghua, Wang Fang, Liu Chaohui, Cai Jia. 2015. Progress and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrologica Sininica, 31 (10), 2816~2846 (in Chinese with English abstract).

    • Liu Fulai, Liu Lishuang, Liu Pinghua, Wang Fang, Cai Jia, Liu Jianhui, Wang Wei, Ji Lei. 2017. A relic slice of Archean-Early Paleoproterozoic basement of Jiaobei Terrane identified within the Sulu UHP belt: Evidence from protolith and metamorphic ages from meta-mafic rocks, TTG-granitic gneisses, and metasedimentary rocks in the Haiyangsuo region. Precambrian Research, 303: 117~152.

    • Liu Junlai, Davis G A, Lin Zhiyong, Wu Fuyuan. 2005. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407(1-2): 65~80.

    • Liu Junlai, Chen Xiaoyu, Zhang Jian, Zhou Baojun, Fan Wenkui, Yan Jiaxin. 2022. Gneiss domes and stratified middle to lower crustal flow in continental mobile belt. Acta Geologica Sinica, 96(9): 3158~3181 (in Chinese with English abstract).

    • Liu Lishuang, Liu Fulai, Santosh M, Ji Lei. 2018. Paleoproterozoic and Triassic metamorphic events in the Jiaobei terrane, Jiao-Liao-Ji Belt, China: Hidden clues on multiple metamorphism and new insights into complex tectonic evolution. Gondwana Research, 60: 105~128.

    • Liu Peidong. 2008. Characteristics and potential evaluation of copper and cobalt mineral resources in Liaodong Rift. Master-degree thesis from Jilin University (in Chinese with English abstract).

    • Liu Pinghua, Liu Fulai, Tian honghua, Wang Wei, Cai Jia. 2017. Barrovian-typemetamorphism and deformation history of the North Liaohe Grupin the Liaoyang-Benxi area, Liaodong Peninsula, implication for the Paleoproterozoic orogenesis in the Jiao-Liao-Ji orogenic belt. Abstract submitted to CGU, 2017, Beijing, China (in Chinese)

    • Liu Pinghua, Liu Fulai, Tian Zhonghua, Cai Jia, Ji Lei, Wang Fang. 2019. Petrological and geochronological evidence for Paleoproterozoic granulite-facies metamorphism of the South Liaohe Group in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 327: 121~143.

    • Liu Yongjiang, Li Sangzhong, Yang Zhensheng. 1997 Early Proterozoic uplift-slide structural model on the eastern margin of the Northern China Platform. Geological Review, 43: 569~576 (in Chinese with English abstract)

    • Liu Zhenyi, Guo Chunying, Hao Ruixiang, Du Letian, Bai Yun. 2019, Mineralization characteristics of No. 3075 uranium deposit. Journal of East China University of Technology, 42(1): 8~15 (in Chinese with English abstract).

    • Luo Yan, Sun Min, Zhao Guochun, Li Sanzhong, Xu Ping, Ye Kai. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134: 349~371

    • Qiu, Zhengjie, Fan Hongrui, Goldfarb R, Tomkins A G, Yang Kuifeng, Li Xiaochun, Xie Liewen, Liu Xuan. 2021. Cobalt concentration in a sulfidic sea and mobilization during orogenesis: Implications for targeting epigenetic sediment-hosted Cu-Co deposits. Geochimica et Cosmochimica Acta, 305: 1~18.

    • Ramsay J G. 1967. Folding and Fracturing of Rocks. New York: McGraw-Hill.

    • Ren Liming, Li Xiaopeng. 2022. Geological features and metallogenic genesis of Dongbaligou gold deposit in Linjiang City, Jilin Province, Jilin Geology, 41(3): 1~10 (in Chinese with English abstract).

    • Ren Qiwu, Xue Jianbo, Wang Limei, Li Dehong, Su Weihua. 2005. The ore-control factor and criteria for ore prospecting of the Dahenglu Co, Cu deposit. Jilin Geology, (4): 26~31 (in Chinese with English abstract).

    • Song Quanheng, Wei Fa, Luo Chen. 2000. The primary rock nature of the Dalizi Formation of ore-bearing rock series in the Dahenglu Cu-Co mining area, Baishan area, Jilin Province and its sedimentary environmental geochemical characteristics. Jilin Geology, 19(3): 55~60 (in Chinese with English abstract).

    • Tam P Y, Zhao Guochun, Liu Fulai, Zhou Xiwen, Sun Min, Li Sanzhong. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research, 19: 150~162.

    • Tang Haoshu, Chen Yanjing, Santosh M, Zhong Hong, Wu Guang, Lai Yong. 2013. C-O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: Implications for great oxidation event and ore genesis. Geological Journal, 48: 467~483.

    • Tian Feng, Wang Keyong, Liang Yihong, Li Shunda, Dong Guanhong. 2017. Characteristics of hydrothermal superimposed mineralization and source of ore-forming fluids in the Dahenglu Co-Cu deposit. Northwestern Geology, 50(2): 167~177 (in Chinese with English abstract).

    • Tian Zhonghua. 2021. Structural complexity of the suture zone: A case study from the multiphase modified suture zone in the Sulu area. Chinese Journal of Geology, 56(2): 635~666 (in Chinese with English abstract).

    • Tian Zhonghua, Liu Fulai, Windley B F, Liu Pinghua, Wang Fang, Liu Chaohui, Wang Wei, Cai Jia, Xiao Wenjiao. 2017. Polyphase structural deformation of low- to medium-grade metamorphic rocks of the Liaohe Group in the Jiao-Liao-Ji Orogenic Belt, North China Craton: Correlations with tectonic evolution. Precambrian Research, 303: 641~659.

    • Tian Zhonghua, Xu Wang, Liu Lishuang, Ji Lei. 2020a. Paleoproterozoic back-arc basin opening and closure: Evidence from the structural research of the volcanic-sedimentary rocks in the Helan Town, Liaodong Peninsula. Earth Science, 45(9): 3217~3238 (in Chinese with English abstract).

    • Tian Zhonghua, Liu Fulai, Liu Pinghua, Wen Fei, Xiao Wenjiao. 2020b. A Paleoproterozoic nappe on Meso-Archean gneisses exhumed by a Cretaceous metamorphic core complex in northeastern North China Craton. Accepted by International Journal of Earth Sciences, DOI : 10. 1007/s00531-020-01870-4.

    • Tian Zhonghua, Liu Fulai, Yan Zhen, Liu Pinghua, Xu Wang, Liu Lishuang, Wen Fei, Xiao Wenjiao. 2021. Palaeoproterozoic turbidite deposition in the Liaodong Penisula, northeastern North China craton-Constraints from the Gaojiayu Formation of the Liaohe Group. Precambrian Research, 352: 106008.

    • Tian Zhonghua, Liu Pinghua, Wen Fei, Zhu Haozhong, Wang Wei, Liu Fulai. 2022. Mesoproterozoic accretionary orogenesis: Evidence from ~1. 4 Ga metamorphism on the southeastern margin of the North China Craton. Journal of Asian Earth Sciences, 232: 105247.

    • Tian Zhonghua, Wang Wei, Liu Pinghua. 2022. Late Neoarchean tectonic evolution in eastern China: Enlightenment from the ancient continental core restoration, Acta Petrologica et Mineralogica, 41(4): 681~694 (in Chinese with English abstract).

    • Wan Bo, Yang Xusong, Tian Xiaobo, Yuan Huayu, Kirscher U, Mitchell R N. 2020. Seismological evidence for the earliest global subduction network at 2 Ga ago. Science Advances, 6(32): eabc5491.

    • Wang Huining, Liu Fulai, Zhu Zhiyong, Wang Fang, Tian Zhonghua. 2023. Complex evolution of the sedimentation, metamorphism-deformation and hydrothermal processes and their constraints on the occurrence, enrichment and mineralization of Co in the Dahenglu Cu-Co deposit, Jilin Province. Acta Petrologica Sinica, 39(4): 998~1018 (in Chinese with English abstract).

    • Wei Yanguang, Wang Keyong, Yang Yanchen, Zhao Hongjun, Liu Zongxiu. 2002. The features of metamorphic minerogenetic fluid of Dahenglu Cu-Co deposit in Baishan County, Jilin Province. Journal of Jilin University (Earth Science Edition), 32(2): 128~133 (in Chinese with English abstract).

    • Windley B F, Kusky T, Polat A. 2021. Onset of plate tectonics by the Eoarchean. Precambrian Research, 352: 105980.

    • Wu Xiaodong, Zhu Guang, Yin Hao, Su Nan, Lu Yuanchao, Zhang Shuai, Xie Chenglong. 2020. Origin of low-angle ductile/brittle detachments: Examples from the Cretaceous Linglong metamorphic core complex in eastern China. Tectonics, 39(9): e2020TC006132.

    • Xu Chen, Kynický J, Song Wenlei, Tao Renbiao, Lv Zeng, Li Yunxiu, Yang Yueheng, Pohanka M, Galiova M V, Zhang Lifei, Fei Yingwei. 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nature Communications, 9(1): 2790~2797.

    • Xu Wang, Liu Fulai. 2019. Geochronological and geochemical insights into the tectonic evolution of the Paleoproterozoic Jiao-Liao-Ji Belt, Sino-Korean Craton. Earth-Science Reviews, 193: 162~198.

    • Yang Hong, Wang Wei, Liu Jianhui. 2017. Zircon U-Pb dating and its geological significance of granitic pegmatites from the Kuandian and Sanjiazi area in eastern Liaoning Province. Acta Petrologica Sinica, 33(9): 2675~2688 (in Chinese with English abstract).

    • Yang Tiannan, Peng Y, Leech M L, Lin H Y. 2011. Fold patterns indicating Triassic constrictional deformation on the Liaodong Peninsula, eastern China, and tectonic implications. Journal of Asian Earth Sciences, 40(1): 72~83.

    • Yang Yanchen, Wang Keyong, Feng Benzhi. 2004. Geological characteristics and genesis of the Dahenglu type cobalt (copper) deposits, Jilin Province. Geology and Prospecting, 40(1): 7~11 (in Chinese with English abstract).

    • Zhai Mingguo, Zhao Yue, Zhao Taiping. 2016. Main Tectonic Events and Metallogeny of the North China Craton. Berlin: Springer.

    • Zhang Lianxiang, Tian Zhonghua, Liu Pinghua, Wen Fei, Zhu Haozhong, Zhang Chuanheng, Ye Zhanghuang. 2021. Yanshanian metamorphism of Jiaodong Peninsula: New evidence from zircon and titanite U-Pb dating of (garnet) amphibolites in the Rushan area, Sulu tectonic complex belt. Geological Bulletin of China , 40(5): 674~686.

    • Zhang Qiusheng, Yang Zhensheng. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula, China. Beijing: Geological Publishing House, 218~450 (in Chinese with English abstract).

    • Zhang Wen, Liu Fulai, Cai Jia, Liu Chaohui, Liu Jianhui, Liu Pinghua, Liu Lishuang, Wang Fang, Yang Hong. 2018. Geochemistry, zircon U-Pb dating and tectonic implications of the Palaeoproterozoic Ji'an and Laoling Groups, northeastern Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 314: 264~287.

    • Zhao Guochun, Sun Min, Wilde S A, li Sanzhong. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136: 177~202.

    • Zhao Guochun, Cawood P A, Li Sanzhong, Wilde S A, Sun Min, Zhang Jian, He Yanhong, Yin Changqing. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55~76.

    • Zhao Junxing, Li Guangming, Qin Kezhang, Tang Dongmei. 2019. A review of the types and ore mechanism of the cobalt deposits. Chinese Science Bulletin, 64(2): 2484~2500 (in Chinese with English abstract).

    • Zhong Yating, Kusky T, Wang Lu, Polat A, Liu Xuanyu, Peng Yaying, Luan Zhikang, Wang Chuanhai, Wang Junpeng, Deng Hao. 2021. Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nature Communications, 12(1): 6172.

    • Zhu Rixiang, Zhang Hongfu, Zhu Guang, Meng Qingren, Fan Hongrui, Yang Jinghui, Wu Fuyuan, Zhang Zhiyong, Zheng Taiyu. 2017. Craton destruction and related resources. International Journal of Earth Sciences, 106(7): 2233~2257.

    • 白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用. 北京: 地质出版社, 47~89

    • 董树文, 张岳桥, 李海龙, 施炜, 薛怀民, 李建华, 黄始琪, 王永超. 2019. “燕山运动”与中亚大陆晚中生代多板块汇聚构造——纪念“燕山运动”90周年. 中国科学: 地球科学, 49(6): 913~938.

    • 董耀松. 2001. 吉林大横路钴铜矿床钴元素地球化学特征及矿床成因. 世界地质, 20: 30~33.

    • 郭文秀, 刘建民. 2002. 吉林省大横路铜、钴矿床地质特征及控矿因素. 前寒武纪研究进展, 25(3-4): 206~213.

    • 侯增谦, 王二七, 莫宣学. 2008. 青藏高原碰撞造山与成矿作用. 北京: 地质出版社.

    • 刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 33(10): 2816~2846.

    • 刘俊来, 陈小宇, 张健, 周保军, 樊文魁, 闫佳鑫. 2022. 大陆地壳活动带片麻岩穹隆构造与分层流变. 地质学报, 96(9): 3158~3181.

    • 刘培栋. 2008. 辽东裂谷铜钴矿产资源特征与潜力评价. 吉林大学硕士学位论文.

    • 刘平华, 刘福来, 田忠华, 王伟, 蔡佳. 2017. 辽东半岛辽阳-本溪地区北辽河群巴罗型变质带变质变形历史: 对胶-辽吉带古元古代造山作用过程的启示. 北京: 2017中国地球科学联合学术年会.

    • 刘永江, 杨振升, 李三忠, 刘祥. 1997. 古元古代拉伸构造模式——以胶北、辽东和吉南地区为例. 长春地质学院学报, 27 (2): 141~146

    • 刘正义, 郭春影, 郝瑞祥, 杜乐天, 白芸. 2019. 3075铀矿床矿化特征. 东华理工大学学报(自然科学版), 42(1): 8~15.

    • 任利明, 李晓朋. 2022. 吉林省临江市东八里沟金矿地质特征及成矿成因. 吉林地质, 41(3): 1~10.

    • 任启武, 薛剑波, 王丽梅, 李德洪, 苏伟华. 2005. 大横路钴铜矿床控矿因素及找矿标志. 吉林地质, (4): 26~31.

    • 松权衡, 魏发, 罗琛. 2000. 白山市大横路铜钴矿区含矿岩系大栗子组原岩性质及沉积环境地球学特征. 吉林地质, 19(3): 55~60.

    • 田丰, 王可勇, 梁一鸿, 李顺达, 董冠宏. 2017. 吉林省大横路钴铜矿床地质特征及成矿流体来源讨论. 西北地质, 50(2): 167~177.

    • 田忠华. 2021. 缝合带结构的复杂性: 以苏鲁地区多期改造缝合带为例. 地质科学, 56(2): 635~666.

    • 田忠华, 许王, 刘利双, 冀磊. 2020. 辽东半岛河栏镇火山-沉积岩构造研究——对古元古代弧后盆地张裂与闭合的启示. 地球科学, 45(9): 3217~3238.

    • 田忠华, 王伟, 刘平华. 2022. 中国东部新太古代末期构造演化——来自古老陆核构造恢复的启示. 岩石矿物学杂志, 41(4): 681~694.

    • 王慧宁, 刘福来, 朱志勇, 王舫, 田忠华. 2023. 吉林省大横路铜钴矿复杂的沉积-变质变形-热液作用演化过程及其对钴的赋存状态和富集成矿的制约. 岩石学报, 39(4): 998~1018.

    • 韦延光, 王可勇, 杨言辰, 赵宏军, 刘宗秀. 2002. 吉林白山市大横路Cu-Co矿床变质成矿流体特征. 吉林大学学报(地球科学版), 32(2): 128~133.

    • 杨红, 王伟, 刘建辉. 2017. 辽东宽甸和三家子地区花岗伟晶岩的锆石U-Pb年代学及其地质意义. 岩石学报, 33(9): 2675~2688.

    • 杨言辰, 王可勇, 冯本智. 2004. 大横路式钴(铜)矿床地质特征及成因探讨. 地质与勘探, 40(1): 7~11.

    • 张连祥, 田忠华, 刘平华, 文飞, 张传恒, 叶张煌. 2021. 胶东半岛燕山期变质作用——来自苏鲁构造杂岩带乳山地区(石榴)斜长角闪岩锆石与榍石U-Pb测年的新证据. 地质通报, 40(5): 674~686.

    • 张秋生, 杨振升. 1988. 辽东半岛早期地壳与矿床. 北京: 地质出版社: 218~450.

    • 赵俊兴, 李光明, 秦克章, 唐冬梅. 2019. 富含钴矿床进展与问题分析. 科学通报, 64(2): 2484~2500.

  • 参考文献

    • Bai Jin. 1993. The Precambrian Geology and Pb-Zn Mineralization in the Northern Margin of North China Platform. Beijing: Geological Publishing House, 47~89 (in Chinese with English abstract)

    • Cai Jia, Liu Fulai, Liu Pinghua, Wang Fang. 2020. Metamorphic P-T evolution and tectonic implications of pelitic granulites in the Ji'an area, northeastern Jiao-Liao-Ji Belt, North China Craton. Journal of Asian Earth Sciences, 191: 104197.

    • Deng Jun, Yang Liqiang, Groves D I, Zhang Liang, Qiu Kunfeng, & Wang Qingfei. 2020. An integrated mineral system model for the gold deposits of the giant Jiaodong Province, eastern China. Earth-Science Reviews, 208: 103274.

    • Dong Aiguo, Zhu Xiangkun. , Li Shizhen, Kendall B, Wang Yue, Gao Zhaofu. 2016. Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: Constraints from Mg isotopes. Precambrian Research, 281: 673~683.

    • Dong Shuwen, Zhang Yueqiao, Li Hailong, Shi Wei, Xue Huaimin, Li Jianhua, Huang Shiqi, Wang Yongchao. 2019. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”. Science China Earth Sciences, 61: 1888~1909 (in Chinese with English abstract)

    • Dong Yaosong. 2001. Cobalt element geochmical characteristics of Dahenglu cobalt-copper ore deposit in Jilin Province and its genetics. World Geology, 20: 30~33 (in Chinese with English abstract)

    • Guo Wenxiu, Liu Jianming. 2002. The geologic features of Dahenglu Cu, Co deposit and ore-controling factors in Jinlin Province, China. Progress in Precambrian Research, 25(3-4): 206~213 (in Chinese with English abstract)

    • Hou Zengqian, Wang Erqi, Mo Xuanxue. 2008. Collisional Orogenesis and Mineralization in Tibetan Pleatau, Beijing, Geological Publishing House,

    • Hou Zengqian, Wang Rui. 2019. Fingerprinting metal transfer from mantle. Nature Communications, dio. org/10. 1038/s41461-019-11445-w.

    • Kusky T M, Li, Jianghai, Tucker R D. 2001. The Archean Dongwanzi ophiolite complex, North China Craton: 2. 505-billion-year-old oceanic crust and mantle. Science, 292(5519): 1142~1145.

    • Li Chao, Li Zhuang, Yang Chuan. 2018. Palaeoproterozoic granitic magmatism in the northern segment of the Jiao-Liao-Ji Belt: Implications for orogenesis along the Eastern Block of the North China Craton. International Geology Review, 60(2): 217~241.

    • Li Hongmin, Zhang Zengjie, Li Lixing, Zhang Zhaochong, Chen Jing, Yao Tong. 2014. Types and general characteristics of the BIF-related iron deposits in China. Ore Geology Reviews, 57: 264~287.

    • Li Jian, Cai Wenyan, Li Bin, Wang Keyong, Liu Hanlun, Konare Y, Qian Ye, Lee G J, Yoo B C, 2019. Paleoproterozoic SEDEX-type stratiform mineralization overprinted by Mesozoic vein-type mineralization in the Qingchengzi Pb-Zn deposit, northeastern China. Journal of Asian Earth Sciences, 184: 104009.

    • Li Sanzhong, Zhao Guochun, Sun Ming, Han Zongzhu, Luo Yan, Hao Defeng, Xia Xiaoping. 2005. Deformation history of the Paleoproterozoic Liaohe assemblage in the eastern block of the North China Craton. Journal of Asian Earth Sciences, 24: 659~674.

    • Li Sanzhong, Jahn Boming, Zhao Shujuan, Dai Liming, Li Xiyao, Suo Yanhui, Guo Linli, Li Yongming, Liu Xiaochun, Lan Haoyuan, Zhou Zaizheng, Zheng Qiliang, Wang Pengcheng. 2017a. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 166: 270~285.

    • Li Zhuang, Chen Bin, Wei Chunjing. 2017b. Is the Paleoproterozoic Jiao-Liao-Ji Belt Belt (North China Craton) a rift? International Journal of Earth Science, 106: 355~375.

    • Lin Wei, Monié P, Faure M, Schärer U, Shi Yonghong, Breton N L, Wang Qingcheng. 2011. Cooling paths of the NE China crust during the Mesozoic extensional tectonics: Example from the south-Liaodong Peninsula metamorphic core complex. Journal of Asian Earth Sciences, 42(5): 1048~1065.

    • Liu Fulai, Wang Fang, Liou J G, Meng En, Liu Jianhui, Yang Hong, Xiao Lingling, Cai Jia, Shi Jianrong. 2014. Mid-Late metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton: Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating. Journal of Asian Earth Sciences, 94: 205~225.

    • Liu Fulai, Liu Pinghua, Wang Fang, Liu Chaohui, Cai Jia. 2015. Progress and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrologica Sininica, 31 (10), 2816~2846 (in Chinese with English abstract).

    • Liu Fulai, Liu Lishuang, Liu Pinghua, Wang Fang, Cai Jia, Liu Jianhui, Wang Wei, Ji Lei. 2017. A relic slice of Archean-Early Paleoproterozoic basement of Jiaobei Terrane identified within the Sulu UHP belt: Evidence from protolith and metamorphic ages from meta-mafic rocks, TTG-granitic gneisses, and metasedimentary rocks in the Haiyangsuo region. Precambrian Research, 303: 117~152.

    • Liu Junlai, Davis G A, Lin Zhiyong, Wu Fuyuan. 2005. The Liaonan metamorphic core complex, southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407(1-2): 65~80.

    • Liu Junlai, Chen Xiaoyu, Zhang Jian, Zhou Baojun, Fan Wenkui, Yan Jiaxin. 2022. Gneiss domes and stratified middle to lower crustal flow in continental mobile belt. Acta Geologica Sinica, 96(9): 3158~3181 (in Chinese with English abstract).

    • Liu Lishuang, Liu Fulai, Santosh M, Ji Lei. 2018. Paleoproterozoic and Triassic metamorphic events in the Jiaobei terrane, Jiao-Liao-Ji Belt, China: Hidden clues on multiple metamorphism and new insights into complex tectonic evolution. Gondwana Research, 60: 105~128.

    • Liu Peidong. 2008. Characteristics and potential evaluation of copper and cobalt mineral resources in Liaodong Rift. Master-degree thesis from Jilin University (in Chinese with English abstract).

    • Liu Pinghua, Liu Fulai, Tian honghua, Wang Wei, Cai Jia. 2017. Barrovian-typemetamorphism and deformation history of the North Liaohe Grupin the Liaoyang-Benxi area, Liaodong Peninsula, implication for the Paleoproterozoic orogenesis in the Jiao-Liao-Ji orogenic belt. Abstract submitted to CGU, 2017, Beijing, China (in Chinese)

    • Liu Pinghua, Liu Fulai, Tian Zhonghua, Cai Jia, Ji Lei, Wang Fang. 2019. Petrological and geochronological evidence for Paleoproterozoic granulite-facies metamorphism of the South Liaohe Group in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 327: 121~143.

    • Liu Yongjiang, Li Sangzhong, Yang Zhensheng. 1997 Early Proterozoic uplift-slide structural model on the eastern margin of the Northern China Platform. Geological Review, 43: 569~576 (in Chinese with English abstract)

    • Liu Zhenyi, Guo Chunying, Hao Ruixiang, Du Letian, Bai Yun. 2019, Mineralization characteristics of No. 3075 uranium deposit. Journal of East China University of Technology, 42(1): 8~15 (in Chinese with English abstract).

    • Luo Yan, Sun Min, Zhao Guochun, Li Sanzhong, Xu Ping, Ye Kai. 2004. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134: 349~371

    • Qiu, Zhengjie, Fan Hongrui, Goldfarb R, Tomkins A G, Yang Kuifeng, Li Xiaochun, Xie Liewen, Liu Xuan. 2021. Cobalt concentration in a sulfidic sea and mobilization during orogenesis: Implications for targeting epigenetic sediment-hosted Cu-Co deposits. Geochimica et Cosmochimica Acta, 305: 1~18.

    • Ramsay J G. 1967. Folding and Fracturing of Rocks. New York: McGraw-Hill.

    • Ren Liming, Li Xiaopeng. 2022. Geological features and metallogenic genesis of Dongbaligou gold deposit in Linjiang City, Jilin Province, Jilin Geology, 41(3): 1~10 (in Chinese with English abstract).

    • Ren Qiwu, Xue Jianbo, Wang Limei, Li Dehong, Su Weihua. 2005. The ore-control factor and criteria for ore prospecting of the Dahenglu Co, Cu deposit. Jilin Geology, (4): 26~31 (in Chinese with English abstract).

    • Song Quanheng, Wei Fa, Luo Chen. 2000. The primary rock nature of the Dalizi Formation of ore-bearing rock series in the Dahenglu Cu-Co mining area, Baishan area, Jilin Province and its sedimentary environmental geochemical characteristics. Jilin Geology, 19(3): 55~60 (in Chinese with English abstract).

    • Tam P Y, Zhao Guochun, Liu Fulai, Zhou Xiwen, Sun Min, Li Sanzhong. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research, 19: 150~162.

    • Tang Haoshu, Chen Yanjing, Santosh M, Zhong Hong, Wu Guang, Lai Yong. 2013. C-O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: Implications for great oxidation event and ore genesis. Geological Journal, 48: 467~483.

    • Tian Feng, Wang Keyong, Liang Yihong, Li Shunda, Dong Guanhong. 2017. Characteristics of hydrothermal superimposed mineralization and source of ore-forming fluids in the Dahenglu Co-Cu deposit. Northwestern Geology, 50(2): 167~177 (in Chinese with English abstract).

    • Tian Zhonghua. 2021. Structural complexity of the suture zone: A case study from the multiphase modified suture zone in the Sulu area. Chinese Journal of Geology, 56(2): 635~666 (in Chinese with English abstract).

    • Tian Zhonghua, Liu Fulai, Windley B F, Liu Pinghua, Wang Fang, Liu Chaohui, Wang Wei, Cai Jia, Xiao Wenjiao. 2017. Polyphase structural deformation of low- to medium-grade metamorphic rocks of the Liaohe Group in the Jiao-Liao-Ji Orogenic Belt, North China Craton: Correlations with tectonic evolution. Precambrian Research, 303: 641~659.

    • Tian Zhonghua, Xu Wang, Liu Lishuang, Ji Lei. 2020a. Paleoproterozoic back-arc basin opening and closure: Evidence from the structural research of the volcanic-sedimentary rocks in the Helan Town, Liaodong Peninsula. Earth Science, 45(9): 3217~3238 (in Chinese with English abstract).

    • Tian Zhonghua, Liu Fulai, Liu Pinghua, Wen Fei, Xiao Wenjiao. 2020b. A Paleoproterozoic nappe on Meso-Archean gneisses exhumed by a Cretaceous metamorphic core complex in northeastern North China Craton. Accepted by International Journal of Earth Sciences, DOI : 10. 1007/s00531-020-01870-4.

    • Tian Zhonghua, Liu Fulai, Yan Zhen, Liu Pinghua, Xu Wang, Liu Lishuang, Wen Fei, Xiao Wenjiao. 2021. Palaeoproterozoic turbidite deposition in the Liaodong Penisula, northeastern North China craton-Constraints from the Gaojiayu Formation of the Liaohe Group. Precambrian Research, 352: 106008.

    • Tian Zhonghua, Liu Pinghua, Wen Fei, Zhu Haozhong, Wang Wei, Liu Fulai. 2022. Mesoproterozoic accretionary orogenesis: Evidence from ~1. 4 Ga metamorphism on the southeastern margin of the North China Craton. Journal of Asian Earth Sciences, 232: 105247.

    • Tian Zhonghua, Wang Wei, Liu Pinghua. 2022. Late Neoarchean tectonic evolution in eastern China: Enlightenment from the ancient continental core restoration, Acta Petrologica et Mineralogica, 41(4): 681~694 (in Chinese with English abstract).

    • Wan Bo, Yang Xusong, Tian Xiaobo, Yuan Huayu, Kirscher U, Mitchell R N. 2020. Seismological evidence for the earliest global subduction network at 2 Ga ago. Science Advances, 6(32): eabc5491.

    • Wang Huining, Liu Fulai, Zhu Zhiyong, Wang Fang, Tian Zhonghua. 2023. Complex evolution of the sedimentation, metamorphism-deformation and hydrothermal processes and their constraints on the occurrence, enrichment and mineralization of Co in the Dahenglu Cu-Co deposit, Jilin Province. Acta Petrologica Sinica, 39(4): 998~1018 (in Chinese with English abstract).

    • Wei Yanguang, Wang Keyong, Yang Yanchen, Zhao Hongjun, Liu Zongxiu. 2002. The features of metamorphic minerogenetic fluid of Dahenglu Cu-Co deposit in Baishan County, Jilin Province. Journal of Jilin University (Earth Science Edition), 32(2): 128~133 (in Chinese with English abstract).

    • Windley B F, Kusky T, Polat A. 2021. Onset of plate tectonics by the Eoarchean. Precambrian Research, 352: 105980.

    • Wu Xiaodong, Zhu Guang, Yin Hao, Su Nan, Lu Yuanchao, Zhang Shuai, Xie Chenglong. 2020. Origin of low-angle ductile/brittle detachments: Examples from the Cretaceous Linglong metamorphic core complex in eastern China. Tectonics, 39(9): e2020TC006132.

    • Xu Chen, Kynický J, Song Wenlei, Tao Renbiao, Lv Zeng, Li Yunxiu, Yang Yueheng, Pohanka M, Galiova M V, Zhang Lifei, Fei Yingwei. 2018. Cold deep subduction recorded by remnants of a Paleoproterozoic carbonated slab. Nature Communications, 9(1): 2790~2797.

    • Xu Wang, Liu Fulai. 2019. Geochronological and geochemical insights into the tectonic evolution of the Paleoproterozoic Jiao-Liao-Ji Belt, Sino-Korean Craton. Earth-Science Reviews, 193: 162~198.

    • Yang Hong, Wang Wei, Liu Jianhui. 2017. Zircon U-Pb dating and its geological significance of granitic pegmatites from the Kuandian and Sanjiazi area in eastern Liaoning Province. Acta Petrologica Sinica, 33(9): 2675~2688 (in Chinese with English abstract).

    • Yang Tiannan, Peng Y, Leech M L, Lin H Y. 2011. Fold patterns indicating Triassic constrictional deformation on the Liaodong Peninsula, eastern China, and tectonic implications. Journal of Asian Earth Sciences, 40(1): 72~83.

    • Yang Yanchen, Wang Keyong, Feng Benzhi. 2004. Geological characteristics and genesis of the Dahenglu type cobalt (copper) deposits, Jilin Province. Geology and Prospecting, 40(1): 7~11 (in Chinese with English abstract).

    • Zhai Mingguo, Zhao Yue, Zhao Taiping. 2016. Main Tectonic Events and Metallogeny of the North China Craton. Berlin: Springer.

    • Zhang Lianxiang, Tian Zhonghua, Liu Pinghua, Wen Fei, Zhu Haozhong, Zhang Chuanheng, Ye Zhanghuang. 2021. Yanshanian metamorphism of Jiaodong Peninsula: New evidence from zircon and titanite U-Pb dating of (garnet) amphibolites in the Rushan area, Sulu tectonic complex belt. Geological Bulletin of China , 40(5): 674~686.

    • Zhang Qiusheng, Yang Zhensheng. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula, China. Beijing: Geological Publishing House, 218~450 (in Chinese with English abstract).

    • Zhang Wen, Liu Fulai, Cai Jia, Liu Chaohui, Liu Jianhui, Liu Pinghua, Liu Lishuang, Wang Fang, Yang Hong. 2018. Geochemistry, zircon U-Pb dating and tectonic implications of the Palaeoproterozoic Ji'an and Laoling Groups, northeastern Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 314: 264~287.

    • Zhao Guochun, Sun Min, Wilde S A, li Sanzhong. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136: 177~202.

    • Zhao Guochun, Cawood P A, Li Sanzhong, Wilde S A, Sun Min, Zhang Jian, He Yanhong, Yin Changqing. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55~76.

    • Zhao Junxing, Li Guangming, Qin Kezhang, Tang Dongmei. 2019. A review of the types and ore mechanism of the cobalt deposits. Chinese Science Bulletin, 64(2): 2484~2500 (in Chinese with English abstract).

    • Zhong Yating, Kusky T, Wang Lu, Polat A, Liu Xuanyu, Peng Yaying, Luan Zhikang, Wang Chuanhai, Wang Junpeng, Deng Hao. 2021. Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nature Communications, 12(1): 6172.

    • Zhu Rixiang, Zhang Hongfu, Zhu Guang, Meng Qingren, Fan Hongrui, Yang Jinghui, Wu Fuyuan, Zhang Zhiyong, Zheng Taiyu. 2017. Craton destruction and related resources. International Journal of Earth Sciences, 106(7): 2233~2257.

    • 白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用. 北京: 地质出版社, 47~89

    • 董树文, 张岳桥, 李海龙, 施炜, 薛怀民, 李建华, 黄始琪, 王永超. 2019. “燕山运动”与中亚大陆晚中生代多板块汇聚构造——纪念“燕山运动”90周年. 中国科学: 地球科学, 49(6): 913~938.

    • 董耀松. 2001. 吉林大横路钴铜矿床钴元素地球化学特征及矿床成因. 世界地质, 20: 30~33.

    • 郭文秀, 刘建民. 2002. 吉林省大横路铜、钴矿床地质特征及控矿因素. 前寒武纪研究进展, 25(3-4): 206~213.

    • 侯增谦, 王二七, 莫宣学. 2008. 青藏高原碰撞造山与成矿作用. 北京: 地质出版社.

    • 刘福来, 刘平华, 王舫, 刘超辉, 蔡佳. 2015. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展. 岩石学报, 33(10): 2816~2846.

    • 刘俊来, 陈小宇, 张健, 周保军, 樊文魁, 闫佳鑫. 2022. 大陆地壳活动带片麻岩穹隆构造与分层流变. 地质学报, 96(9): 3158~3181.

    • 刘培栋. 2008. 辽东裂谷铜钴矿产资源特征与潜力评价. 吉林大学硕士学位论文.

    • 刘平华, 刘福来, 田忠华, 王伟, 蔡佳. 2017. 辽东半岛辽阳-本溪地区北辽河群巴罗型变质带变质变形历史: 对胶-辽吉带古元古代造山作用过程的启示. 北京: 2017中国地球科学联合学术年会.

    • 刘永江, 杨振升, 李三忠, 刘祥. 1997. 古元古代拉伸构造模式——以胶北、辽东和吉南地区为例. 长春地质学院学报, 27 (2): 141~146

    • 刘正义, 郭春影, 郝瑞祥, 杜乐天, 白芸. 2019. 3075铀矿床矿化特征. 东华理工大学学报(自然科学版), 42(1): 8~15.

    • 任利明, 李晓朋. 2022. 吉林省临江市东八里沟金矿地质特征及成矿成因. 吉林地质, 41(3): 1~10.

    • 任启武, 薛剑波, 王丽梅, 李德洪, 苏伟华. 2005. 大横路钴铜矿床控矿因素及找矿标志. 吉林地质, (4): 26~31.

    • 松权衡, 魏发, 罗琛. 2000. 白山市大横路铜钴矿区含矿岩系大栗子组原岩性质及沉积环境地球学特征. 吉林地质, 19(3): 55~60.

    • 田丰, 王可勇, 梁一鸿, 李顺达, 董冠宏. 2017. 吉林省大横路钴铜矿床地质特征及成矿流体来源讨论. 西北地质, 50(2): 167~177.

    • 田忠华. 2021. 缝合带结构的复杂性: 以苏鲁地区多期改造缝合带为例. 地质科学, 56(2): 635~666.

    • 田忠华, 许王, 刘利双, 冀磊. 2020. 辽东半岛河栏镇火山-沉积岩构造研究——对古元古代弧后盆地张裂与闭合的启示. 地球科学, 45(9): 3217~3238.

    • 田忠华, 王伟, 刘平华. 2022. 中国东部新太古代末期构造演化——来自古老陆核构造恢复的启示. 岩石矿物学杂志, 41(4): 681~694.

    • 王慧宁, 刘福来, 朱志勇, 王舫, 田忠华. 2023. 吉林省大横路铜钴矿复杂的沉积-变质变形-热液作用演化过程及其对钴的赋存状态和富集成矿的制约. 岩石学报, 39(4): 998~1018.

    • 韦延光, 王可勇, 杨言辰, 赵宏军, 刘宗秀. 2002. 吉林白山市大横路Cu-Co矿床变质成矿流体特征. 吉林大学学报(地球科学版), 32(2): 128~133.

    • 杨红, 王伟, 刘建辉. 2017. 辽东宽甸和三家子地区花岗伟晶岩的锆石U-Pb年代学及其地质意义. 岩石学报, 33(9): 2675~2688.

    • 杨言辰, 王可勇, 冯本智. 2004. 大横路式钴(铜)矿床地质特征及成因探讨. 地质与勘探, 40(1): 7~11.

    • 张连祥, 田忠华, 刘平华, 文飞, 张传恒, 叶张煌. 2021. 胶东半岛燕山期变质作用——来自苏鲁构造杂岩带乳山地区(石榴)斜长角闪岩锆石与榍石U-Pb测年的新证据. 地质通报, 40(5): 674~686.

    • 张秋生, 杨振升. 1988. 辽东半岛早期地壳与矿床. 北京: 地质出版社: 218~450.

    • 赵俊兴, 李光明, 秦克章, 唐冬梅. 2019. 富含钴矿床进展与问题分析. 科学通报, 64(2): 2484~2500.