en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

易定红,男,1975年生。硕士,高级工程师,储层沉积学专业。E-mail:dingyh2007@126.com。

参考文献
Bai Yadong, Yang Wei, Ma Feng, Shi Zhenhao, Wang Zhaobing. 2019. Tectonic feature and oil and gas exploration direction of Lenghu 7-Nanbaxian area on north margin of Qaidam basin. Special Oil & Gas Reservoirs, 26(1): 75~79 (in Chinese with English abstract).
参考文献
Chen Ji, Shi Ji'an, Long Guohui, Zhang Jian, Wang Mu, Zhou Fei, Zou Kaizhen, Ma Jinye, Shen Yushan. 2013. Sedimentary facies and models for the Paleogene-Neogene deposite on the northern margin of the Qaidam basin. Sedimentary Geology and Tethyan Geology, 33(3): 16~26 (in Chinese with English abstract).
参考文献
Cornel O, Janok P B. 2006. Terminal distributary channels and delta front architecture of river-dominated delta systems. Journal of Sedimentary Research, 76: 212~233.
参考文献
Donaldson A C. 1974. Pennsylvanian sedimentation of central Appalachians. Geological Society of America, 148: 47~48.
参考文献
Du Zhongming, Shi Ji'an, Sun Guoqiang, Ji Yun, Wu Zhixiong, Tang Xianglu. 2013. The sedimentary characteristics of braided delta of the Upper Xiaganchaigou Formation in Maxian region of Qaidam basin. Natural Gas Geoscience, 24(3): 505~511 (in Chinese with English abstract).
参考文献
Feng Wenjie, Wu Shenghe, Zhang Ke, Zhao Wenkai, Jia Fengjuan. 2017. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition. Acta Geologica Sinica, 91(9): 2047~2064 (in Chinese with English abstract).
参考文献
Fisk H N. 1954. Sedimentary framework of the modern Mississippi delta. Journal of Sedimentary Petrology, 24(2): 76~99.
参考文献
Fu Suotang. 2014. Natural gas exploration in Qaidam basin. China Petroleum Exploration, 19(4): 1~10 (in Chinese with English abstract).
参考文献
He Zhonghua, Liu Zhaojun, Zhang Feng. 2001. Latest progress of heavy mineral research in the basin analysis. Geological Science and Technology Information, 20(4): 29~32 (in Chinese with English abstract).
参考文献
Jia Yanyan, Xing Xuejun, Sun Guoqiang, Shi Jian, Liu Shijie. 2015. The Paleogene-Neogene paleoclimate evolution in western sector of northern margin of Qaidam basin. Earth Science, 40(12): 1955~1967 (in Chinese with English abstract).
参考文献
Li Junwu, Dai Tingyong, Li Fengjie, Yang Chenjin, Yang Yuchuan. 2015. Provenance analysis of the Palaeogene in Eboliang area of Qaidam basin. Acta Sedimentologica Sinica, 33(4): 649~658 (in Chinese with English abstract).
参考文献
Li Linjing, Li Jianming, Li Qing, Wang Xiaolu, Sun Hufa. 2013. Study on sedimentary facies of Xiaganchaigou Formation in Nanbaxian area, northern Qaidam basin. Journal of Oil and Gas Technology, 35(4): 6~10 (in Chinese with English abstract).
参考文献
Li Zengxue, Wei Jiuchuan, Li Shouchun. 1995. The depositional system of fluvial-controlled shallow water delta and coal-accumulation analysis in western Shandong. Coal Geology & Exploration, 23(2): 7~13 (in Chinese with English abstract).
参考文献
Lin Hong, Li Fengjie, Li Lei. 2014. Characteristics of Paleogene heavy mineral and its source in northern margin of Qaidam basin. Natural Gas Geoscience, 25(4): 532~541 (in Chinese with English abstract).
参考文献
Liu Baojun. 1980. Sedimentary. Beijing: Geological Publishing House, 115~126 (in Chinese).
参考文献
Liu Dianhe, Li Fengjie, Zheng Rongcai, Liu Qi, Jiang Bin. 2009. Sedimentary facies feature of Paleogene Lower Ganchaigou Formation in the west segment, north edge of Qaidam basin. Natural Gas Geoscience, 20(6): 847~853 (in Chinese with English abstract).
参考文献
Liu Weiming, Sun Guoqiang, Guo Jiajia, Wang Mu, He Xiang, Sha Peng, Li Hao. 2018. Provenance analysis of the Palaeogene clastic rocks in the western part of northern Qaidam basin. Sedimentary Geology and Tethyan Geology, 38(1): 53~61 (in Chinese with English abstract).
参考文献
Liu Ziliang, Shen Fang, Zhu Xiaomin, Liao Jijia, Zhang Xiuqiang, Meng Hao. 2015. Progress of shallow-water delta research and a case study of continental lake basin. Oil & Gas Geology, 36(4): 596~604 (in Chinese with English abstract).
参考文献
Lou Zhanghua, Lan Xiang, Lu Qingmei, Cai Xiyuan. 1999. Controls of the topography, climate and lake level fluctuation on the depositional environment of a shallow-water delta: A case study of the Cretaceous Putaohua reservoir in the northern part of Songliao basin. Acta Geologica Sinica, 73(1): 83~92 (in Chinese with English abstract).
参考文献
Lou Zhanghua, Yuan Di, Jin Aiming. 2004. Types, characteristics of sandbodies in shallow-water delta front and sedimentary models in northern Songliao basin, China. Journal of Zhejiang University (Science Edition), 31(2): 211~215 (in Chinese with English abstract).
参考文献
Lu Jingfang, Zhang Kexin, Song Bowen, Xu Yadong, Zhang Jianyu, Huang Wei, Zhang Daolai. 2020. Paleogene-Neogene pollen and climate change in Dahonggou region of Qaidam basin. Geoscience, 34(4): 732~744 (in Chinese with English abstract).
参考文献
Pan Shile, Jiang Yun, Kang Jian, Chen Bo, Zhang Shuncun, Sun Guoqiang. 2021a. Analysis of paleoclimate and source of the upper section, Lower Ganchaigou Formation, Lenghu No. 7 region, North Qaidam basin. Acta Sedimentologica Sinica, 39(5): 1292~1304 (in Chinese with English abstract).
参考文献
Pan Shile, Jiang Yun, Zhu Wenjun, Liu Zhenyu, Wang Yetong, Sun Guoqiang, Zhang Shuncun. 2021b. Sedimentary-diagenetic characteristics of the upper section of the Lower Ganchaigou Formation in Lenghu No. 7 region, North Qaidam basin. Natural Gas Geoscience, 32(3): 393~404 (in Chinese with English abstract).
参考文献
Postma G. 1990. An analysis of the variation in delta architecture. Terra Nova, 2(2): 124~130.
参考文献
Shi Hui, Liu Zhen, Zhang Qinxue, Lian Liangda, Mao Yakun. 2015. Shallow delta forming condition and sand body characteristics in Paleogene of southwestern Qaidam basin. Journal of Central South University (Science and Technology), 46(1): 188~198 (in Chinese with English abstract).
参考文献
Song Chunhui. 2006. Tectonic uplift and Cenozoic sedimentary evolution in the northern margin of the Tibetan Plateau. Doctoral dissertation of Lanzhou University, 272~275 (in Chinese with English abstract).
参考文献
Sun Guoqiang, Du Zhongming, Jia Yanyan, Zhou Fei, Hao Xiaomei, Shi Jian. 2012. Sedimentary model since Paleogene in northern margin of Qaidam basin. Lithologic Reservoirs, 24(4): 13~18 (in Chinese with English abstract).
参考文献
The First Team in Bureau of Geology and Mineral Resources of Qinghai Province. 1980. The Geology Survey Report—Mahai. Beijing: Geological Publishing House, 36~59 (in Chinese).
参考文献
The Geology Mechanical Team in Bureau of Geology and Mineral Resources of Gansu Province. 1985. The Geology Survey Report—Yuqia. Beijing: Geological Publishing House, 25~67 (in Chinese).
参考文献
Wang Dahua, Wang Jinduo, Xiao Yongjun, Li Junliang, Chai Xianping, Zhang Junfeng, Ding Lirong. 2016. Structure modeling and evolution of piedmont zone in Dachaidan area, north margin of Qaidam basin. Earth Science Frontiers, 23(5): 1~10 (in Chinese with English abstract).
参考文献
Wang Jiangong, Wang Tianqi, Wei Pingsheng, Liang Sujuan, Han Xiaoqiang. 2007. Sedimentary model of shallow lacustrine delta of large continental basin: An example from Putaohua Formation in northern Songliao basin. Lithologic Reservoirs, 19(2): 28~34 (in Chinese with English abstract).
参考文献
Wu Shenghe, Xu Zhenghua, Liu Zhao. 2019. Depositional architecture of fluvial-dominated shoal water delta. Journal of Palaeogeography (Chinese Edition), 21(2): 202~215 (in Chinese with English abstract).
参考文献
Xu Zhenghua, Wu Shenghe, Liu Zhao, Zhao Junshou, Gen Hongliu, Wu Junchuan, Zhang Tianyou, Liu Zhaowei. 2019. Reservoir architecture of the finger bar within shoal water delta front: Insights from the lower Member of Minghuazhen Formation, Neogene, Bohai BZ25 oilfield, Bohai Bay basin, East China. Petroleum Exploration and Development, 6(2): 1~12 (in Chinese with English abstract).
参考文献
Yi Dinghong, Wang Jiangong, Wang Peng, Li Xiang, Shi Yajun, Zhang Zhengang, Qiao Baihan, Zhang Shiming, Wei Zhifeng, Jia Shenglong. 2020. Study of sedimentary evolution of Neogene and favorable exploration belts in Mangya area, western Qaidam basin. Journal of China University of Mining & Technology, 49(1): 83~93 (in Chinese with English abstract).
参考文献
Yi Dinghong, Shi Yajun, Li Xiang, Long Guohui, Ni Xianglong, Li Jiyong, Wang Zhaobing, Ma Xinmin. 2022. Sedimentary evolution and controlling factors of beach bar sand bodies of the Upper Ganchaigou Formation of Neogene in Zhahaquan area, western Qaidam basin. Journal of Palaeogeography (Chinese Edition), 24(4): 713~727 (in Chinese with English abstract).
参考文献
Yin Taiju, Li Xuanming, Zhang Changmin, Zhu Yongjin, Gong Fuhua. 2012. Sandbody shape of modern shallow lake basin delta sediments: By taking Dongting Lake and Poyang Lake for example. Journal of Oil and Gas Technology, 34(10): 1~7 (in Chinese with English abstract).
参考文献
Yuan Xuanjun, Zhou Hongying, Zhang Zhijie, Wang Ziye, Cheng Dawei, Guo Hao, Zhang Youmiao, Dong Wentong. 2021. Depositional features and growth pattern of large shallow water deltas in depression basin. Lithologic Reservoirs, 33(1): 1~11 (in Chinese with English abstract).
参考文献
Zeng Can, Yin Taiju, Song Yakai. 2017. Experimental on numerical simulation of the impact of lake level plane fluctuation on shallow water delta. Earth Science, 42(11): 2095~2104 (in Chinese with English abstract).
参考文献
Zeng Hongliu, Zhao Xianzheng, Zhu Xiaomin, Jin Fengming, Dong Yanlei, Wang Yuliang, Zhu Mao, Zheng Ronghua. 2015. Seismic sedimentology characteristics of sub-clinoformal shallow-water meandering river delta: A case from the Suning area of Raoyang sag in Jizhong depression, Bohai Bay basin, NE China. Petroleum Exploration and Development, 42(5): 566~576 (in Chinese with English abstract).
参考文献
Zhang Changmin, Yin Taiju, Zhu Yongjing, Ke Lanmei. 2010. Shallow water deltas and models. Acta Sedimentologica Sinica, 28(5): 933~944 (in Chinese with English abstract).
参考文献
Zhang Rui. 2015. Sedimentary features and forming conditions of shallow lacustrine delta in Maxian area, northern margin of Qaidam basin. Unconventional Oil & Gas, 2(3): 8~12 (in Chinese with English abstract).
参考文献
Zhao Hongge, Liu Chiyang. 2003. Approaches and prospects of provenance analysis. Acta Sedimentologica Sinica, 21(3): 409~415 (in Chinese with English abstract).
参考文献
Zhu Xiaomin, Liu Yuan, Fang Qing, Li Yang, Liu Yunyan, Wang Rui, Song Jing, Liu Shiqi, Cao Haitao, Liu Xiangnan. 2012. Formation and sedimentary model of shallow delta in lare-scalelake: Example from Cretaceous Quantou Formation in Sanzhao sag, Songliao basin. Earth Science Frontiers, 19(1): 89~99 (in Chinese with English abstract).
参考文献
Zhu Xiaomin, Zhao Dongna, Zeng Hongliu, Sun Yu, Zhu Rukai, Huang Wei, Zhu Shifa. 2013. Sedimentary characteristics and seismic sedimentologic responses of shallow-water delta of Qingshankou Formation in Qijia area, Songliao basin. Acta Sedimentologica Sinica, 31(5): 889~897 (in Chinese with English abstract).
参考文献
Zhu Xiaomin, Zhong Dakang, Yuan Xuanjun, Zhang Huiliang, Zhu Shifa, Sun Haitao, Gao Zhiyong, Xian Benzhong. 2016. Development of sedimentary geology of petroliferous basins in China. Petroleum Exploration and Development, 43(5): 820~829 (in Chinese with English abstract).
参考文献
Zou Caineng, Zhao Wenzhi, Zhang Xinyang, Luo Ping, Wang Lan, Liu Liuhong, Xue Shuhao, Yuan Xuanjun, Zhu Rukai, Tao Shizhen. 2008. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins. Acta Geologica Sinica, 82(6): 813~825 (in Chinese with English abstract).
参考文献
Zou Niuniu, Zhang Daquan, Long Guohui, Zhang Shuncun, Lu Xinchuan, Jiang Hua, Shi Jian. 2015. Sedimentary system evolution of tertiary reservoirs in northern Qaidam basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 42(2): 149~158 (in Chinese with English abstract).
参考文献
白亚东, 杨巍, 马峰, 石正灏, 王兆兵. 2019. 柴北缘冷湖七号-南八仙地区构造特征及油气勘探方向. 特种油气藏, 26(1): 75~79.
参考文献
陈吉, 史基安, 龙国徽, 张健, 王牧, 周飞, 邹开真, 马进业, 申玉山. 2013. 柴北缘古近系—新近系沉积相特征及沉积模式. 沉积与特提斯地质, 33(3): 16~26.
参考文献
杜忠明, 史基安, 孙国强, 季贇, 吴志雄, 唐相路. 2013. 柴达木盆地马仙地区下干柴沟组上段辫状河三角洲沉积特征. 天然气地球科学, 24(3): 505~511.
参考文献
冯文杰, 吴胜和, 张可, 赵文凯, 贾风娟. 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报, 91(9): 2047~2064.
参考文献
付锁堂. 2014. 柴达木盆地天然气勘探领域. 中国石油勘探, 19(4): 1~10.
参考文献
甘肃省地质局地质力学区域地质调查队. 1985. 区域地质调查报告——鱼卡幅. 北京: 地质出版社, 25~67.
参考文献
和钟铧, 刘招君, 张峰. 2001. 重矿物在盆地分析中的应用研究进展. 地质科技情报, 20(4): 29~32.
参考文献
贾艳艳, 邢学军, 孙国强, 史基安, 刘士杰. 2015. 柴北缘西段古—新近纪古气候演化. 地球科学, 40(12): 1955~1967.
参考文献
李俊武, 代廷勇, 李凤杰, 杨承锦, 杨豫川. 2015. 柴达木盆地鄂博梁地区古近系沉积物源方向分析. 沉积学报, 33(4): 649~658.
参考文献
李琳静, 李建明, 李清, 王小鲁, 孙虎法. 2013. 柴达木盆地北缘南八仙地区下干柴沟组沉积相研究. 石油天然气学报, 35(4): 6~10.
参考文献
李增学, 魏久传, 李守春. 1995. 鲁西河控浅水三角洲沉积体系及煤聚集规律. 煤田地质与勘探, 23(2): 7~13.
参考文献
林洪, 李凤杰, 李磊. 2014. 柴达木盆地北缘古近系重矿物特征及物源分析. 天然气地球科学, 25(4): 532~541.
参考文献
刘宝珺. 1980. 沉积岩石学. 北京: 地质出版社, 115~126.
参考文献
刘殿鹤, 李凤杰, 郑荣才, 刘琪, 蒋斌. 2009. 柴北缘西段古近系下干柴沟组沉积相特征分析. 天然气地球科学, 20(6): 847~853.
参考文献
刘伟明, 孙国强, 郭佳佳, 王牧, 何湘, 沙鹏, 李浩. 2018. 柴北缘西段古近纪物源体系分析. 沉积与特提斯地质, 38(1): 53~61.
参考文献
刘自亮, 沈芳, 朱筱敏, 廖纪佳, 张修强, 孟昊. 2015. 浅水三角洲研究进展与陆相湖盆实例分析. 石油与天然气地质, 36(4): 596~604.
参考文献
楼章华, 兰翔, 卢庆梅, 蔡希源. 1999. 地形、气候与湖面波动对浅水三角洲沉积环境的控制作用: 以松辽盆地北部东区葡萄花油层为例. 地质学报, 73(1): 83~92.
参考文献
楼章华, 袁笛, 金爱民. 2004. 松辽盆地北部浅水三角洲前缘砂体类型、特征与沉积动力学过程分析. 浙江大学学报(理学版), 31(2): 211~215.
参考文献
路晶芳, 张克信, 宋博文, 徐亚东, 张楗钰, 黄威, 张道来. 2020. 柴达木盆地大红沟地区始新世—上新世孢粉记录及气候变化. 现代地质, 34(4): 732~744.
参考文献
潘世乐, 蒋赞, 康健, 陈波, 张顺存, 孙国强. 2021a. 柴北缘冷湖七号下干柴沟组上段古气候及物源分析. 沉积学报, 39(5): 1292~1304.
参考文献
潘世乐, 蒋赞, 朱文军, 刘振宇, 王晔桐, 孙国强, 张顺存. 2021b. 柴达木盆地北缘冷湖七号地区下干柴沟组上段沉积-成岩特征. 天然气地球科学, 32(3): 393~404.
参考文献
青海省地质局第一区调队. 1980. 区域地质调查报告——马海幅. 北京: 地质出版社, 36~59.
参考文献
施辉, 刘震, 张勤学, 连良达, 毛亚昆. 2015. 柴达木盆地西南区古近系浅水三角洲形成条件及砂体特征. 中南大学学报(自然科学版), 46(1): 188~198.
参考文献
宋春晖. 2006. 青藏高原北缘新生代沉积演化与高原构造隆升过程. 兰州大学博士学位论文, 272~275.
参考文献
孙国强, 杜忠明, 贾艳艳, 周飞, 郝小梅, 史基安. 2012. 柴达木盆地北缘西段古近纪以来沉积模式研究. 岩性油气藏, 24(4): 13~18.
参考文献
王大华, 王金铎, 肖永军, 李军亮, 柴先平, 张俊锋, 丁丽荣. 2016. 柴北缘大柴旦地区山前带构造建模及演化研究. 地学前缘, 23(5): 1~10.
参考文献
王建功, 王天琦, 卫平生, 梁苏娟, 韩小强. 2007. 大型坳陷湖盆浅水三角洲沉积模式: 以松辽盆地北部葡萄花油层为例. 岩性油气藏, 19(2): 28~34.
参考文献
吴胜和, 徐振华, 刘钊. 2019. 河控浅水三角洲沉积构型. 古地理学报, 21(2): 202~215.
参考文献
徐振华, 吴胜和, 刘钊, 赵军寿, 耿红柳, 吴峻川, 张天佑, 刘照伟. 2019. 浅水三角洲前缘指状砂坝构型特征: 以渤海湾盆地渤海BZ25油田新近系明化镇组下段为例. 石油勘探与开发, 46(2): 1~12.
参考文献
易定红, 王建功, 王鹏, 李翔, 石亚军, 张正刚, 乔柏翰, 张世铭, 韦志峰, 贾生龙. 2020. 柴西茫崖地区新近纪沉积演化与有利勘探区带. 中国矿业大学学报, 49(1): 83~93.
参考文献
易定红, 石亚军, 李翔, 龙国徽, 倪祥龙, 李积永, 王兆兵, 马新民. 2022. 柴达木盆地西部扎哈泉地区新近系上干柴沟组滩坝砂体沉积演化及其控制因素. 古地理学报, 24(4): 713~727.
参考文献
尹太举, 李宣明, 张昌民, 朱永进, 龚福华. 2012. 现代浅水湖盆三角洲沉积砂体形态特征: 以洞庭湖和鄱阳湖为例. 石油天然气学报, 34(10): 1~7.
参考文献
袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友淼, 董文彤. 2021. 坳陷湖盆大型浅水三角洲沉积特征与生长模式. 岩性油气藏, 33(1): 1~11.
参考文献
曾灿, 尹太举, 宋亚开. 2017. 湖平面升降对浅水三角洲影响的沉积数值模拟实验. 地球科学, 42(11): 2095~2104.
参考文献
曾洪流, 赵贤正, 朱筱敏, 金凤鸣, 董艳蕾, 王余良, 朱茂, 郑荣华. 2015. 隐性前积浅水曲流河三角洲地震沉积学特征: 以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例. 石油勘探与开发, 42(5): 566~576.
参考文献
张昌民, 尹太举, 朱永进, 柯兰梅. 2010. 浅水三角洲沉积模式. 沉积学报, 28(5): 933~944.
参考文献
张锐. 2015. 柴达木盆地北缘马仙地区浅水湖泊三角洲沉积特征及其形成条件. 非常规油气, 2(3): 8~12.
参考文献
赵红格, 刘池阳. 2003. 物源分析方法及研究进展. 沉积学报, 21(3): 409~415.
参考文献
朱筱敏, 刘媛, 方庆, 李洋, 刘云燕, 王瑞, 宋静, 刘诗奇, 曹海涛, 刘相男. 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1): 89~99.
参考文献
朱筱敏, 赵东娜, 曾洪流, 孙玉, 朱如凯, 黄薇, 朱世发. 2013. 松辽盆地齐家地区青山口组浅水三角洲沉积特征及其地震沉积学响应. 沉积学报, 31(5): 889~897.
参考文献
朱筱敏, 钟大康, 袁选俊, 张惠良, 朱世发, 孙海涛, 高志勇, 鲜本忠. 2016. 中国含油气盆地沉积地质学进展. 石油勘探与开发, 43(5): 820~829.
参考文献
邹才能, 赵文智, 张兴阳, 罗平, 王岚, 刘柳红, 薛叔浩, 袁选俊, 朱如凯, 陶士振. 2008. 大型敝流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813~825.
参考文献
邹妞妞, 张大权, 龙国徽, 张顺存, 鲁新川, 姜华, 史基安. 2015. 柴达木盆地北缘第三系沉积体系演化模式. 成都理工大学(自然科学版), 42(2): 149~158.
目录contents

    摘要

    以古近系渐新统下干柴沟组上段(E23)为研究对象,在精细岩芯观察和钻(测)井资料综合分析的基础上,结合重矿物组合、ZTR指数、砂岩碎屑组分、粒度累积概率图和砂地比等参数综合分析结果,对柴达木盆地南八仙地区E23湖盆扩张期弱退积型浅水三角洲物源方向、砂体展布规律和沉积微相发育演化进行了深入研究。结果表明:① 南八仙地区E23沉积时期物源主要来自南祁连山中酸性岩浆岩和中高级变质岩发育区,物源方向为近北东—南西向,稳定重矿物(磁铁矿、石榴子石、白钛矿和锆石)含量高 (质量分数介于81.0%~99.9%)、不稳定重矿物(绿帘石和角闪石)含量低。② 南八仙地区E23沉积时期为浅水三角洲—滨浅湖沉积环境,主要发育水下分流河道砂体,岩性主要为岩屑长石砂岩,其次为长石岩屑砂岩,砂体的成分成熟度一般中等—较差、分选磨圆度中等—较差,粒度概率图以反映河流作用的一跳跃一悬浮式为主;沉积构造类型多样,主要发育块状层理、正粒序层理、平行层理和槽状交错层理。③E23沉积时期,南八仙地区继承性发育3条北东—南西向呈条带状展布的砂体富集带(砂地比值介于35%~65%之间),早期到中期砂体发育程度增强,呈进积式;中期到晚期砂体发育程度有所减弱,呈弱退积式。④ E23沉积时期,南八仙地区处于浅水三角洲前缘亚相沉积环境,持续发育3个呈北东—南西向展布的沉积朵叶体,主要发育水下分流河道微相,其次为水下分流间湾微相,早期到中期浅水三角洲前缘发育规模增大,中期到晚期发育规模减小。

    Abstract

    This paper focuses on studying the upper member of the Xiaganchaigou Formation (E23) in the Late Oligocene of the Paleogene. The research objective is to deeply examine the provenance direction, sand body distribution law, and sedimentary microfacies development and evolution of the weak regressive shallow water delta in the expansion period of the E23 in the Nanbaxian area. To achieve this, a comprehensive analysis was conducted using fine core observation, drilling (logging) data, heavy mineral assemblage, ZTR index, sandstone clastic composition, grain size accumulation probability map, and sand-land ratio. The results show that: ① The provenance of the E23 sedimentary period in the Nanbaxian area mainly comes from the southern Qilian Mountains, which consist of intermediate-acid magmatic rocks and intermediate-high-grade metamorphic rocks. The provenance direction is almost northeast-southwest. The stable heavy minerals (magnetite, garnet, ilmenite, and zircon) have a high content (ranging from 81.0% to 99.9%), while the unstable heavy minerals (epidote and amphibole) show low content. ② The E23 sedimentary period in the Nanbaxian area is characterized by the development of a shallow delta-shallow lake sedimentary environment, primarily featuring underwater distributary channel sand bodies. The predominant lithology is lithic feldspathic sandstone, followed by feldspathic lithic sandstone. The composition maturity and sorting roundness are categorized as medium-poor. The particle size probability curve is mainly one jump and one suspension type, reflecting the influence of river action. Various sedimentary structures are present, including block bedding, normal sequence bedding, parallel bedding, and trough cross-bedding. ③ During the E23 sedimentary period, three NE-SW trending sand body enrichment zones were inherited in the Nanbaxian area (sand to ground ratio ranging from 35% to 65%). The degree of sand body development increased from the early to the middle stage, showing a progradation trend. However, the development of sand bodies weakened from the middle to the late stage, showing signs of weak retrogradation. ④ The shallow water delta front sedimentary subfacies were inherited in the Nanbaxian areaduring the E23 sedimentary period, with the continuous development of three sedimentary lobes. The underwater distributary channel microfacies are mainly developed, followed by the underwater interdistributary bay microfacies. The development scale of the shallow water delta front increases from the early to middle stage and decreases from the middle to late stage.

  • 浅水三角洲蕴含丰富的煤炭和石油天然气资源而备受国内外沉积学家和勘探工程师们的广泛关注,浅水三角洲发育的优质储层分布面积广、规模大、类型多,已经成为中国中新生代陆相湖盆增储上产的重要现实领域(李增学等,1995楼章华等,2004邹才能等,2008)。1954年Fisk在研究美国密西西比河三角洲时第一次提出了浅水三角洲的概念(Fisk,1954),Postma(1990)认为水体深度是控制三角洲发育的重要因素,认为低能盆地浅水三角洲的沉积特征同时受沉积过程和沉积构造背景联合控制。近年来,国外学者对浅水三角洲的研究主要集中于浅水三角洲的发育背景、内部结构及沉积特征等方面,指出浅水三角洲一般形成在水体深度较小、构造相对稳定的陆表海或者地形比较平缓、整体缓慢沉降的大型坳陷盆地或湖盆演化的晚期,分流河道砂体是主要骨架砂体、通常不具备经典吉尔伯特式三层(底积层、前积层和顶积层)结构特征(Donaldson,1974Cornel and Janok,2006)。国内学者一方面以鄱阳湖和洞庭湖发育的浅水三角洲为研究对象,详细研究三角洲砂体的沉积特征和相序变化特征并服务于油气勘探开发(张昌民等,2010尹太举等,2012),另一方面以钻/测井资料为基础,结合现代地球物理技术,主要研究我国中新生代陆相含油气盆地浅水三角洲发育演化特征,在三角洲成因砂体的沉积特征(朱筱敏等,2016袁选俊等,2021)、沉积模式(王建功等,2007朱筱敏等,2012冯文杰等,2017)、砂体形态(吴胜和等,2019徐振华等,2019)、地球物理响应(朱筱敏等,2013曾洪流等,2015)和控制因素(楼章华等,1999施辉等,2015曾灿等,2017)等方面取得了非常丰富的研究成果。由于影响浅水三角洲发育的条件复杂,控制浅水三角洲的沉积相序和相组合方式的因素众多,在浅水三角洲的形成背景与盆地构造演化阶段之间的耦合关系、适合发育浅水三角洲的水体深度范围以及河口坝发育程度的控制因素等方面还存在着争议(刘自亮等,2015)。

  • 前人针对柴达木盆地北缘西段古近纪和新近纪物源和沉积体系方面做了大量富有成效的研究工作,取得了一系列成果认识(孙国强等,2012陈吉等,2013林洪等,2014邹妞妞等,2015刘伟明等,2018)。但是,这些研究工作主要集中在冷湖构造带(潘世乐等,2021a2021b)、鄂博梁构造带(李俊武等,2015)和马北凸起(杜忠明等,2013;张锐等;2015),有关南八仙地区下干柴沟组上段(E23)物源与沉积体系方面的文献很少(李琳静等,2013),且尚未取得普遍共识(刘殿鹤等,2009潘世乐等,2021a)。

  • 本次研究在系统梳理前人研究成果的基础上,基于22口井重矿物数据和10口井碎屑组分数据,分析了南八仙地区及其邻区E23重矿物类型及组合特征、ZTR指数分布、碎屑组分变化特征,明确了E23沉积时期南八仙地区的物源区和物源方向;同时,基于3口重点井110 m岩芯精细观察描述、原生沉积构造描述、51口井砂岩厚度统计以及砂地比计算结果,结合区域古地理背景,分析了南八仙地区E23浅水三角洲前缘砂体的岩性组成,明确了南八仙地区E23沉积时期的沉积体系与沉积相类型,探讨了各砂组沉积微相的发育演化规律,建立了沉积模式。

  • 1 区域地质概况

  • 位于青藏高原东北缘的柴达木盆地是我国中新生代重要的陆相含油气盆地,平面上呈不规则的菱形,面积约12×104 km2,周边被阿尔金山脉、昆仑山脉和祁连山脉所环绕(易定红等,2022),地面海拔2700~3500 m,自然地理条件恶劣。在新生代早期印度板块与欧亚板块碰撞挤压作用下,柴达木盆地北缘(以下简称柴北缘)的祁连山再度活化并缓慢隆升(宋春晖,2006),柴北缘结束断-坳复合发育阶段并进入挤压坳陷发育阶段(王大华等,2016),湖盆沉积中心由柴北缘向西迁移至柴达木盆地西部英雄岭地区。

  • 研究区南八仙地区位于柴北缘西段的马海凸起北西端,是一个被断层复杂化、近东西向展布的三级背斜构造,面积约30 km2,北西紧邻冷湖七号构造,北东以马仙断裂为界与赛昆断陷相邻,东面与马西构造相邻,西面以陵间断裂为界与一里坪坳陷相邻(图1)。区内基底为下古生界上奥陶统滩间山群浅变质碎屑岩,中生代地层发育中侏罗统大煤沟组(J2d),新生代地层发育古近系古、始新统路乐河组(E1+2)和渐新统下干柴沟组(E3),新近系中新统上干柴沟组(N1)、上新统下油砂山组(N12)和上油砂山组(N22)(图2a),目的层渐新统下干柴沟组上段(E23)沉积时,南八仙地区处于三角洲前缘沉积环境(杜忠明等,2013张锐,2015),地层厚度一般为780~870 m,平均厚度为825 m,西厚东薄,分为5个砂组,自上而下依次命名为Ⅳ-1~Ⅳ-5砂组(图2b)。3次资评结果表明柴北缘侏罗系煤型气资源量2000×108 m3,已探明218×108 m3,剩余资源量1782×108 m3付锁堂,2014),剩余资源丰富,勘探潜力巨大。勘探实践表明,南八仙油气田是以一里坪坳陷内下侏罗统小煤沟组为烃源岩,以仙南断裂、仙北断裂和基岩顶面不整合面为主要运移通道,古近系和新近系辫状三角洲前缘水下分流河道砂体和河口坝砂体以及滨浅湖滩坝砂体为储层(白亚东等,2019),南八仙地区油气显示丰富,从基岩至上油砂山组均不同程度地发现了工业油气流和油气显示,上油下气,以气为主(图2a)。

  • 图1 柴达木盆地南八仙地区地理位置图

  • Fig.1 Geographical location of the Nanbaxian area, northern Qaidam basin

  • 2 沉积物源

  • 受限于勘探程度和研究程度,柴北缘西段古近系物源方面的研究主要集中在鄂博梁构造带、冷湖构造带和马海凸起,在古近纪时柴北缘西段主要持续发育三大物源区(祁连山物源区、赛什腾山物源区和阿尔金山物源区),三大物源区进一步分为若干个相互独立的次一级物源区(林洪等,2014刘伟明等,2018)。南八仙地区夹于冷湖七号构造带和马海古凸起之间,地面构造面积较小,长期以来不是物源研究的重点区块,研究程度较低且认识分歧较大(李俊武等,2015潘世乐等,2021a)。鉴于研究区南八仙地区面积小(研究工区范围30 km2)、三维地震资料频带较窄(分布范围13~45 Hz)、主频较低(主频为25 Hz)、E23地层断层非常发育(图1),常规的地球物理方法与手段难以有效地反映砂体展布方向。因此本文基于南八仙地区及其邻区(冷湖七号地区、马海地区、仙东地区和圆顶山地区)的重矿物组合、ZTR指数和碎屑组分的特征研究,认为南八仙地区E23物源主要来自东北的南祁连山,主物源方向为近北东—南西向。

  • 图2 柴达木盆地南八仙地区地层综合柱状图

  • Fig.2 Stratigraphic composite histogram of the Nanbaxian area, northern Qaidam basin

  • 2.1 区域缓坡古地理背景

  • E23沉积时期,柴达木盆地进入坳陷湖盆发育的鼎盛时期,沉积中心位于柴达木盆地西部英雄岭地区,构造相对稳定,湖盆持续下沉,水体加深,沉积范围进一步扩大,研究区及其邻区具备西低东高的缓坡古地貌背景,根据钻井地层厚度之差与井距之比计算古地形坡度:

  • α=180/π×arctan (Δh/L)

  • 式中,α为地表与水平面之间的夹角(°),Δh为2口井E23地层视厚度之差(m);L为2口井之间的水平距离(m),得出古地形坡度平均约为0.64°。

  • 2.2 重矿物分区特征

  • 陆源碎屑岩中密度大于2.86的矿物被称为重矿物,重矿物在碎屑岩的含量一般不超过1%(刘宝珺,1980易定红等,2020)。根据重矿物的稳定性可将其划分为稳定重矿物和不稳定重矿物两大类:不稳定的重矿物低抗风化的能力普遍较差,分布范围相对较窄,因此远离物源区含量相对降低;稳定重矿物因为矿物的稳定性能好,普遍具有很强的低抗风化的能力,分布范围相对较广,而且离物源区越远,随着不稳定重矿物组分的减少,稳定重矿物的百分含量就相对升高。因此通过分析稳定和不稳定重矿物的主要重矿物组合及其相对百分含量的变化趋势,就能大致确定主物源方向,相同的物源控制的地区往往具有相同的主要重矿物组合(和钟铧等,2001; 赵红格等,2003)。

  • 通过对南八仙地区及其邻区仙东地区、马海地区、冷湖七号地区和圆顶山地区共计22口井重矿物分析数据统计表明(表1):研究区及其邻区E23的重矿物类型较多,主要重矿物有磁铁矿、石榴子石、白钛矿和锆石4种,次要重矿物有电气石、赤铁矿、绿帘石、角闪石、榍石、十字石6种,含量很少且不稳定的重矿物有褐铁矿、绿泥石、黝帘石、透闪石、辉石、金红石和黑云母7种,具有以下特征(图3):① 主要重矿物组合为:磁铁矿+石榴子石+白钛矿+锆石,稳定重矿物含量高,介于81.0%~99.9%,不稳定矿物含量低,主要以绿帘石和角闪石为主,含量均小于5%(仙4井和仙5井除外)。② 磁铁矿含量变化较大(5.28%~58.6%,平均26.44%),自西向东大致呈高低间互分布,可分为9个区,其中,冷湖七号地区的磁铁矿平均含量最高(16.73%~56.04%,平均31.77%),其次为仙东地区(30.49%),第三为马海地区(16.96%~58.6%,平均30.03%),南八仙地区的磁铁矿平均含量最低(5.28%~22.75%,平均12.23%)。③ 石榴子石含量整体较高(10.3%~38.13%),自东向西含量逐渐降低,其中,马海地区的石榴子石含量高且稳定(22.05%~38.13%,平均31.04%),南八仙地区石榴子石含量低于马海地区(17.36%~29.33%,平均23.79%),冷湖七号地区石榴子石含量最低(12.82%~13.48%,平均13.21%)。④ 南八仙地区靠东边的仙4井、仙5井、仙6井和仙7井磁铁矿含量低(5.28%~8.4%),而位于西边的仙3井和仙101井磁铁矿含量高(20.79%~22.75%)。

  • 表1 柴达木盆地南八仙地区及其邻区下干柴沟组上段重矿物组成(%)

  • Table1 The heavy mineral combination (%) of the upper member of the Xiaganchaigou Formation in the Nanbaxian area and its adjacent area, northern Qaidam basin

  • 2.3 ZTR指数特征

  • ZTR指数就是指锆石、金红石、电气石在透明重矿物中所占的百分比,ZTR指数通常作为重矿物稳定系数成为衡量重矿物成熟度的重要指标,其值越大成熟度越高,表示离物源区越远(和钟铧等,2001赵红格等,2003)。重矿物的成熟度主要受搬运距离远近和古气候的影响,是反映主物源方向的重要参数之一(刘宝珺,1980赵红格等,2003易定红等,2020)。南八仙及其邻区E23重矿物ZTR指数变化规律明显,由盆地边缘向盆地内部递增,ZTR值变化较大(8.7%~30.06%,平均18.01%),自西向东大致呈高低间互分布,其中,南八仙地区的ZTR指数值(16.76%~25.75%,平均20.14%)高于马海地区(8.7%~21.82%,平均14.96%)(表1,图4)。

  • 2.4 碎屑组分特征

  • 陆源碎屑岩作为母岩风化破碎、搬运和沉积的产物,其岩石的碎屑矿物成分组成可以在一定程度上反映源区的母岩性质,因此经常用于物源分析,是物源分析中最常用的手段之一(刘伟明等,2018)。通过对南八仙地区及其邻区马海地区、冷湖七号地区和圆顶山地区共计10口井碎屑组分统计表明(表2):自东向西,砂岩的岩屑组分含量降低、石英含量增高,砂岩的成分成熟度增高。岩屑主要为变质岩岩屑,火成岩岩屑次之,沉积岩岩屑最少,分为3个区,具有以下特征:① 马海地区的岩屑含量高(37.0%~45.8%,平均40.7%),碎屑组分石英含量较低(体积分数介于14.0%~21.8%,平均18.9%),长石含量中等(体积分数介于23.5%~26.0%,平均24.9%),砂岩成分成熟度指数(Q/(F+R))低(0.2~0.3,平均0.3)。② 冷湖七号地区的岩屑含量低(体积分数介于7%~42.0%,平均26.7%),石英含量高(体积分数介于18.0%~46.0%,平均33.9%),长石含量中等(体积分数介于16.0%~34.0%,平均24.8%),砂岩成分成熟度指数高(0.27~1.24,平均0.72)。③ 南八仙地区的岩屑含量最低,石英和长石含量居中,砂岩成分成熟度指数居中(详见后文)。

  • 图3 柴达木盆地南八仙地区及其邻区下干柴沟组上段重矿物平面分区图

  • Fig.3 The planar zoning map of heavy minerals in the upper member of the Xiaganchaigou Formation in the Nanbaxian area and its adjacent area, northern Qaidam basin

  • 图4 柴达木盆地南八仙地区及其邻区下干柴沟组上段重矿物ZTR指数等值线图

  • Fig.4 ZTR index contour map of heavy minerals in the upper member of the Xiaganchaigou Formation in the Nanbaxian area and its adjacent area, northern Qaidam basin

  • 表2 柴达木盆地南八仙地区及其邻区下干柴沟组上段碎屑矿物含量

  • Table2 The content of detrital mineral in the upper member of the Xiaganchaigou Formation in the Nanbaxian area and its adjacent area, northern Qaidam basin

  • 2.5 物源区及物源方向讨论

  • 南八仙地区及其邻区E23主要重矿物组合(石榴子石+磁铁矿+白钛矿+锆石)一致,以稳定重矿物含量高、不稳定重矿物(绿帘石和角闪石)含量低为特征,碎屑组分中变质岩岩屑含量高,砂岩成分成熟度低,说明了南八仙地区及其邻区主要受同一个大物源控制,同时,轻重矿物组分含量变化特征反映了物源主要来自中酸性岩浆岩和中高级变质岩发育区,少量来自中低级变质岩发育区,经过与1∶20万地质图对比表明(青海省地质局第一区调队,1980甘肃省地质局地质力学区域地质调查队,1985),位于研究区近北东方向的祁连南山大面积出露的古元古界达肯大坂群含石榴子石黑云斜长片麻岩和印支期至加里东期中酸性侵入岩以及小面积出露的上奥陶统滩间山群浅变质碎屑岩发育区应该就是向南八仙地区及其邻区提供物源的主要物源区,鉴于只有南八仙地区的仙4井和仙5井的绿帘石含量高(分别为27.83%和36.27%),这两口井的绿帘石来源可能与其他井不一致,全部来自南祁连浅变质岩的可能性很小,极有可能来自赛什腾山东端大面积出露的上奥陶统滩间山群浅变质碎屑岩。

  • 南八仙地区及其邻区磁铁矿含量在东西方向上呈高低间互的分布特征,与ZTR指数的分布特征相一致,说明了物源方向不是由东向西方向,结合上述物源区位置分析,本次研究认为南八仙地区及其邻区物源区主要为南祁连山,主物源方向为近NE-SW向。

  • 3 浅水三角洲沉积特征

  • E23沉积时期柴达木盆地进入挤压坳陷发育阶段(宋春晖,2006),构造稳定,南八仙地区及其邻区在该时期为西低东高的缓坡背景,发育辫状三角洲-湖泊沉积体系(孙国强等,2012陈吉等,2013张锐,2015),古气候干旱炎热(贾艳艳等,2015路晶芳等,2020潘世乐等,2021b),泥岩颜色以棕褐色和棕红色夹浅灰色为主,未见黑色、深灰色,生物扰动构造发育,反映了研究区处于浅水氧化的沉积环境。在干旱的气候条件下,陆源风化碎屑物质丰富,河流水动力条件较强,常见含泥砾的砂体,湖盆水体能量较弱,粒度累积概率曲线绝大部分是以河流作用为主的“一跳一悬式”。水下分流河道砂体呈条带状展布,厚度较大,连续性好,延伸距离较长,是研究区的骨架砂体,平面上呈鸟足状展布,河口坝砂体发育较差,是典型的河控浅水三角洲沉积特征,与普通的三角洲相比,不发育典型的“三层式”结构。结合前人研究成果,认为南八仙地区在E23沉积时期处于浅水三角洲前缘亚相沉积环境,主要发育水下分流河道微相,其次为水下分流间湾微相。

  • 3.1 沉积学特征

  • 3.1.1 岩石学特征

  • 南八仙地区E23浅水三角洲前缘水下分流河道砂体主要由浅灰色、灰色、棕灰色、棕红色薄—中层细砂岩和粉砂岩等组成,岩石矿物成分统计表明(表2,图5),岩石类型主要为岩屑长石砂岩,其次为长石岩屑砂岩和长石砂岩。砂岩成分成熟度指数(石英/(长石+岩屑))较高(0.4~0.84,平均0.60),其中石英含量较高(体积分数介于18.0%~36.0%,平均30.2%),长石含量中等(体积分数介于20.0%~35.0%,平均27.8%),岩屑含量低(体积分数介于15%~30.0%,平均22.9%),变质岩岩屑含量最多(体积分数平均15.9%),火成岩岩屑居中(体积分数平均4.27%),沉积岩岩屑最少(体积分数普遍小于5%);泥质杂基含量少(体积分数一般介于0%~8.0%,平均为2.41%),方解石胶结物含量少但变化大(体积分数一般介于3.0%~28.0%,平均9.47%)。岩石颗粒普遍呈次棱角状,磨圆度较差,主要为点-线接触,分选性中等—较差,反映研究区E23砂体较高的成分成熟度和较低的结构成熟度。

  • 图5 柴达木盆地南八仙地区下干柴沟组上段砂岩岩石组分三角图(底图据刘宝珺,1980

  • Fig.5 Ternary plot of compositions of sandstone in the upper member of the Xiaganchaigou Formation in the Nanbaxian area, northern Qaidam basin (after Liu Baojun, 1980)

  • Ⅰ—石英砂岩;Ⅱ—长石石英砂岩;Ⅲ—岩屑石英砂岩;Ⅳ—长石砂岩;Ⅴ—岩屑长石砂岩;Ⅵ—长石岩屑砂岩;Ⅶ—岩屑砂岩

  • Ⅰ—silicarenite; Ⅱ—feldspathic quartz sandstone; Ⅲ—lithic quartz sandstone; Ⅳ—feldspathic sandstone; Ⅴ—lithic feldspar sandstone; Ⅵ—feldspar lithic sandstone; Ⅶ—lithic sandstone

  • 3.1.2 沉积构造特征

  • 岩芯观察表明,南八仙地区E23发育多种类型的原生沉积构造(图6)。主要有反映较强河水水动力成因的沉积现象和沉积构造,包括块状层理(图6a)、正粒序层理(图6b)、平行层理(图6b~d)、逆粒序层理(图6d)、槽状交错层理(图6e、f)和板状交错层理(图6g、h);其次为反映较弱波浪作用形成的沉积构造,如微波状层理(图6i)和呈“人”字形排列的泥砾(图6d);还可见反映浅水氧化背景条件下的其他沉积现象和沉积构造,如棕红色泥岩与浅灰色泥岩的突变接触面(图6j)、透镜状层理(图6k)以及垂直型生物潜穴(图6l)。

  • 3.1.3 粒度分布特征

  • 粒度分析结果表明,研究区E23水下分流河道砂体和河口坝砂体的粒度概率图中跳跃次总体发育最好,悬浮次总体居中,滚动次总体最差,跳跃次总体的个数变化大,主要发育1个跳跃次总体,其次为2个跳跃次总体,偶见3个跳跃次总体,表明河水和湖水水动力条件较强且复杂,水下分流河道砂体和河口坝砂体受河水与湖水水动力作用的共同影响粒度概率图有4种样式(常见为第1种样式,后3种样式较少见):第1种是一跳一悬式,主要特点是无滚动次总体,跳跃次总体含量高(48%~79%),跳跃次总体斜率大(55°~75°),悬浮次总体含量变化大(21%~52%),说明水动力条件较强且变化大,砂体分选普遍较好,主要见于水下分流河道砂体(图7a);第2种是两跳一悬式,主要特点是无滚动次总体,跳跃次总体含量高变化大(46%~94%),由2个跳跃次总体组成,其中粗跳跃次总体斜率大(65°~71°),细跳跃次总体斜率稍小(39°~49°),悬浮次总体含量较低(17%~25%),说明河水的水动力强于湖水的水动力,砂体分选性差异大,主要见于河口坝砂体(图7b);第3种是典型的三段式结构,粒度曲线包括滚动次总体、跳跃次总体和悬浮次总体3个部分,滚动总体含量低于5%,斜率低,跳跃次总体含量高(62%~75%),跳跃总体斜率大(60°~77°),悬浮总体含量介于24%~39%,说明河水的水动力条件较强,砂体分选性普遍较好,该样式主要见于水下分流河道砂体(图7c);第4种是多跳一悬式,该样式无滚动次总体,跳跃次总体由3个次总体组成,跳跃次总体含量高(75%~80%),跳跃总体斜率较大(55°~61°),悬浮总体含量较低(20%~25%),说明水动力条件较强且复杂,砂体分选较好,主要见于河口坝砂体(图7d)。

  • 图6 柴达木盆地南八仙地区下干柴沟组上段典型岩芯照片

  • Fig.6 Typical core photographs of the upper member of the Xiaganchaigou Formation in the Nanbaxian area, northern Qaidam basin

  • (a)—浅灰色含泥砾细砂岩,块状层理,仙中26井,2128.52 m;(b)—棕红色细砂岩,平行层理、正粒序层理,仙3井,2906.85 m;(c)—浅灰色细砂岩,平行层理,仙101井,2244.21 m;(d)—棕红色细砂岩,平行层理、人字形排列泥砾,仙3井,2908.56 m;(e)—浅灰色细砂岩,交错层理,仙中26井,2125.02 m;(f)—灰色细砂岩,槽状交错层理,仙101井,2245.20 m;(g)—浅灰色细砂岩,板状交错层理,仙101井,2236.20 m;(h)—棕红色细砂岩,板状交错层理,仙3井,2909.22 m;(i)—浅灰色粉砂岩,微波状层理、水平层理,仙中26井,2124.82 m;(j)—浅灰色泥岩(左)与棕红色泥岩(右)颜色突变面,仙中26井,2104.20 m;(k)—浅灰色泥质粉砂岩与棕红色泥岩互层,透镜状层理,仙中26井,2110.62 m;(l)—棕红色泥岩,生物扰动构造、虫孔,仙中26井,2163.51 m

  • (a) —light gray pebbly fine sandstone, massive bedding, well Xianzhong 26, 2128.52 m; (b) —brownish red fine sandstone, parallel bedding, normal graded bedding, well Xian 3, 2906.85 m; (c) —light gray fine sandstone, parallel bedding, well Xian 101, 2244.21 m; (d) —brownish red fine sandstone, parallel bedding, herringbone gravel arrangement, well Xian 3, 2908.56 m; (e) —light gray fine sandstone, cross bedding, well Xianzhong 26, 2125.02 m; (f) —grey fine sandstone, trough cross bedding, well Xian 101, 2245.20 m; (g) —light gray fine sandstone, tabular cross bedding, well Xian 101, 2236.20 m; (h) —brownish red fine sandstone, tabular cross bedding, well Xian 3, 2909.22 m; (i) —light gray siltstone, microwave bedding, horizontal bedding, well Xianzhong 26, 2124.82 m; (j) —light gray mudstone (left) and brownish red mudstone (right) color mutation surface, well Xianzhong 26, 2104.20 m; (k) —light gray argillaceous siltstone and brownish red mudstone interbedded, lenticular bedding, well Xianzhong 26, 2110.62 m; (l) —brownish red mudstone, bioturbation structure, wormhole, well Xianzhong 26, 2163.51 m

  • 图7 柴达木盆地南八仙地区下干柴沟组上段砂体典型粒度概率图

  • Fig.7 Typical grain size probability diagram of the sand body in the upper member of the Xiaganchaigou Formation in the Nanbaxian area, northern Qaidam basin

  • (a)—一跳一悬式;(b)—二跳一悬式;(c)—三段式;(d)—多跳一悬式

  • (a) —one jump one suspension type; (b) —two jump one suspension type; (c) —three step type; (d) —mult-jump one suspension type

  • 3.1.4 砂体沉积序列特征

  • (1)水下分流河道砂体沉积序列特征:水下分流河道砂体是南八仙地区E23沉积时期主要的砂体类型,岩芯观察表明南八仙地区水下分流河道砂体岩性以浅灰色细砂岩为主,常见大小不一、略呈定向排列的灰色或红色泥砾,偶见泥质夹层。对应测井曲线形态有中高幅齿状箱型和钟型两种(图8a、b)。箱型曲线反映水下分流河道砂体厚度一般介于5~8 m,由多个分流河道砂体叠加形成,顶底均为突变接触,一般发育块状层理和槽状交错层理细砂岩,表明水动力条件突然消失或者物源供给突然中断;钟型曲线反映水下分流河道砂体厚度一般介于3~6 m,自下而上一般表现为具有正粒序层理的含泥砾细砂岩、小型槽状交错层理或平行层理细砂岩、水平层理粉砂岩等,整体表现为向上变细的正粒序或间断性正粒序,表明物源供给逐渐减少或者水动力条件逐渐减弱。

  • 图8 柴达木盆地南八仙地区下干柴沟组上段砂体沉积微相组合

  • Fig.8 Sedimentary microfacies combination of the sand body in the upper member of the Xiaganchaigou Formation in the Nanbaxian area, northern Qaidam basin

  • (a)—水下分流河道砂体,仙12井;(b)—水下分流河道砂体,仙5井;(c)—水下分流河道-河口坝复合砂体,河口坝砂体,仙5井

  • (a) —underwater distributary channel sandbody, well Xian 12; (b) —underwater distributary channel sandbody, well Xian 5; (c) —underwater distributary channel-mouth bar composite sand body, mouth bar sand body, well Xian 5

  • (2)河口坝砂体沉积序列特征:岩芯观察表明南八仙地区河口坝砂体岩性以浅灰色细砂岩和粉砂岩为主,内部常见泥质条带和泥砾,主要发育块状层理、平行层理、变形层理等。砂体单层厚度一般介于2~4 m。对应测井曲线主要为中一高幅齿化漏斗型,顶部与上覆地层呈突变接触,底部与下伏地层呈渐变接触,表现为向上粒度变粗的逆粒序,表明物源供给逐渐增强或者水动力条件逐渐增强(图8c)。

  • (3)水下分流河道-河口坝(坝上河)复合砂体沉积序列特征:湖平面下降过程中,浅水辫状三角洲发育规模不断增大,分流水道不断向盆地内部延伸,在此过程中,分流河道水体不断冲刷并侵蚀早期的河口坝砂体,造成早期河口坝的上部或大部被侵蚀破坏,新沉积的分流河道砂体与残留下来的早期河口坝砂体一起被称为“分流河道-河口坝(坝上河)”复合砂体,对应测井曲线形态通常表现为上部箱型(钟型)与下部漏斗型组合,普遍发育“先逆粒序后正粒序”复合粒序,即上部呈块状或正粒序的分流河道砂体叠加在反粒序的河口坝砂体之上,坝上河复合砂体厚度一般介于3~11 m(图8c)。

  • 3.2 平面展布及演化特征

  • 3.2.1 砂体平面展布及发育演化特征

  • 砂地比(砂岩厚度/地层厚度×100%)作为砂体发育程度的基本参数得到越来越广泛的应用,由于研究区三维地震资料品质较差而且断层非常发育,导致地球物理反演结果难以反映砂体发育演化特征,因此本文通过对研究区目的层51口井5个砂组砂岩厚度统计和砂地比计算,得到Ⅳ-1~Ⅳ-5砂组砂地比平面分布等值线图(图9),具有以下3个基本特征:① 整体上继承性发育3条北东—南西向、宽窄不一、呈条带状展布的砂体富集带(自西向东依次命名为1~3号富集带);② 砂地比值分布相对比较集中,砂体富集带中间部位砂地比值高于两侧,主要介于35%~65%;③ 每一条砂体富集带经历不同的发育演化过程,Ⅳ-5至Ⅳ-1砂组,砂体发育程度总趋势是先增强后减弱,其中,Ⅳ-5~Ⅳ-4砂组,砂地比值普遍增大,砂体发育程度增强,平面分布范围增大,呈进积式; Ⅳ-4~Ⅳ-1砂组,高砂地比值分布范围减小,砂体发育程度减弱,平面分布范围减小,呈退积式(图9)。

  • 图9 柴达木盆地南八仙地区下干柴沟组上段Ⅳ-1~Ⅳ-5砂组砂地比等值线与沉积微相平面分布叠合图

  • Fig.9 The composite map of sand ratio contour and sedimentary microfacies plane distribution of the sand group Ⅳ-1~Ⅳ-5 of the upper member of the Xiaganchaigou Formation in the Nanbaxian area, northern Qaidam basin

  • 1 号富集带砂体平面展布及发育演化特征:1号富集带即过仙3井区砂体富集带,北东—南西向呈条带状展布,Ⅳ-5~Ⅳ-2砂组富集区一直位于仙3井区,Ⅳ-1砂组富集区向东南方向扩展至仙3井—仙中1井区,砂体发育程度经历2次先增强(Ⅳ-5~Ⅳ-4砂组和Ⅳ-3~Ⅳ-2砂组)再减弱(Ⅳ-4~Ⅳ-3砂组和Ⅳ-2~Ⅳ-1砂组)的发育演化过程,砂体发育程度最好的是Ⅳ-4砂组,富集区砂地比值介于60%~65%;发育程度最差的是Ⅳ-5砂组,砂地比值介于40%~45%。

  • 2 号富集带砂体平面展布及发育演化特征:2号富集带即过仙10井—仙15井—仙7井区富集带,北东—南西向呈条带状展布,Ⅳ-5~Ⅳ-2砂组富集区一直位于仙10井—仙15井—仙7井区,砂体在仙12井—仙16井区之间分叉;Ⅳ-1砂组发育仙中1-2井和仙12井区2个富集区,在仙16井区附近砂体富集带由北东—南西向展布变为近东西向展布;砂体发育程度经历2次增强(Ⅳ-5~Ⅳ-4砂组和Ⅳ-2~Ⅳ-1砂组)和1次减弱(Ⅳ-4~Ⅳ-2砂组)的发育演化过程,砂体发育程度最好的是Ⅳ-4砂组,富集区砂地比值介于60%~65%,发育程度最差的是Ⅳ-2砂组,砂地比值介于45%~50%。

  • 3 号富集带砂体平面展布及发育演化特征:3号富集带即过仙4井—仙24井—仙17井区富集带,北东—南西向呈条带状展布,在仙102井区或其以北区域分岔,富集区稳定性较差,分布范围变化较大,Ⅳ-5~Ⅳ-2砂组富集区一直在仙4井—仙6井—仙22井—仙17井一线附近往返迁移摆动,其中,Ⅳ-5砂组富集区位于仙24井—仙22井区,Ⅳ-4砂组向北西方向扩展至仙22井—仙中5井区,Ⅳ-3砂组富集区向西南方向迁移至仙5井区,同时在仙4井区出现1个新的富集区,Ⅳ-2砂组富集区向北东方向迁移至仙30井区,Ⅳ-1砂组富集区再向东迁移至仙中22井—仙29井区;砂体发育程度经历先增强(Ⅳ-5~Ⅳ-4砂组)和后减弱(Ⅳ-4~Ⅳ-1砂组)的发育演化过程,砂体发育程度最好的是Ⅳ-4砂组,富集区砂地比值介于60%~65%,发育程度最差的是Ⅳ-2砂组,砂地比值介于50%~55%,砂体平面分布面积最大的是Ⅳ-3砂组,最小的是Ⅳ-5砂组。

  • 3.2.2 沉积微相平面展布及演化特征

  • 依据3口重点井110 m岩芯观察、51口钻/测井资料统计,在砂组划分对比的基础上,以重矿物分区图、ZTR指数等值线图、3口井岩芯相图、24口单井沉积相图以及5个砂组砂地比等值线平面图等基础图件的编制为基础,结合古地貌背景与前人区域地质认识(刘殿鹤等,2009李琳静等,2013杜忠明等,2013张锐,2015),绘制了研究区目的层5个砂组沉积微相平面分布图(图9)。研究认为E23沉积时期是柴达木盆地北缘区域湖侵的中期阶段,湖平面升降变化频繁,研究区发育进积型—退积型浅水三角洲-滨浅湖沉积体系,沉积物源区为南祁连山和赛什腾山东端,沉积微相平面展布及发育演化具有以下3个基本特征:① 南八仙地区E23沉积时期主要处于浅水三角洲前缘沉积环境,其次为滨浅湖沉积环境,3条水下分流河道整体上沿北东—南西向进入研究区,持续发育3个前缘沉积朵叶体(自西向东依次命名为仙1、仙2、仙3号朵叶体);② 研究区主要发育水下分流河道微相,其次为水下分流间湾微相;③ 受湖平面升降变化的控制,Ⅳ-5~Ⅳ-1砂组,浅水三角洲前缘发育规模整体上呈先增大后减小的趋势,其中,Ⅳ-5~Ⅳ-4砂组,浅水三角洲前缘发育规模增大,呈进积式;Ⅳ-4~Ⅳ-1砂组,浅水三角洲前缘发育规模整体上有所减小,呈弱退积式(图9)。

  • 仙1号朵叶体沉积微相平面分布及演化特征:仙1号朵叶体由北东—南西方向流经仙3井区的水下分流河道所携带的陆源碎屑物质沉积形成,Ⅳ-5~Ⅳ-3砂组沉积时期该水下分流河道向西南方向流动达仙3井西南,而Ⅳ-2~Ⅳ-1砂组沉积时期该水下分流河道在仙3井北东分为2支,主流线方向均为南西向,一支流经仙3井以北达仙中18井区西北,另一支流经仙中23井区达仙中18井区以南。朵叶体发育的规模直接受水下分流河道的规模控制,E23沉积时期,该朵叶体发育规模经历2次先增强(Ⅳ-5~Ⅳ-4砂组和Ⅳ-3~Ⅳ-2砂组)再减弱(Ⅳ-4~Ⅳ-3砂组和Ⅳ-2~Ⅳ-1砂组)的发育演化过程,平面展布面积最大的是Ⅳ-4砂组(约3.9 km2),面积最小的是Ⅳ-5砂组(约1.6 km2)。

  • 仙2号朵叶体沉积微相平面分布及演化特征:仙2号朵叶体由北东—南西方向流经仙10井区的水下分流河道所携带的陆源碎屑物质沉积形成,该水下分流河道在仙10井区分为2支,一支向西南方向沿仙12井达仙101井以东地区,另一支南偏西方向沿仙16井达仙7井以南地区;朵叶体发育的规模直接受水下分流河道的规模控制,E23沉积时期,该朵叶体发育规模经历2次增强(Ⅳ-5~Ⅳ-4砂组和Ⅳ-2~Ⅳ-1砂组)和1次减弱(Ⅳ-4~Ⅳ-2砂组)的发育演化过程,平面展布面积最大的是Ⅳ-4砂组(约7.6 km2),面积最小的是Ⅳ-2砂组(约4.7 km2)。

  • 仙3号朵叶体沉积微相平面分布及演化特征:仙3号朵叶体由北东—南西方向流经仙4井区的水下分流河道所携带的陆源碎屑物质沉积形成,该水下分流河道在仙4井区以南分为2支,一支向西南方向经仙6井—仙21井达仙5井—仙7井区以南,该支分流河道规模变化较大、稳定性较差,主流线向西迁移明显;另一支向南偏东方向经仙14井,达仙14井以南地区,该支分流河道规模变化较大、稳定性较差,主流线迁移摆动明显,其中,Ⅳ-2砂组主流线向西迁移至仙中1-17井区,而Ⅳ-1砂组主流线向东迁移至仙中22井区。朵叶体发育的规模直接受水下分流河道的规模控制,E23沉积时期,该朵叶体发育规模经历先增强(Ⅳ-5~Ⅳ-4砂组)后减弱(Ⅳ-4~Ⅳ-1砂组)的发育演化过程,平面展布面积最大的是Ⅳ-3砂组(约7.8 km2),面积最小的是Ⅳ-5砂组(约4.5 km2)。

  • 3.3 沉积模式

  • 在综合分析研究区晚渐新世E23沉积时期物源方向、古地理背景以及水下分流河道微相和河口坝微相平面分布规律和发育演化特征的基础上,建立了南八仙地区晚渐新世浅水三角洲沉积模式(图10)。南八仙地区晚渐新世E23沉积时期地形较缓,位于浅水三角洲前缘沉积环境,主要发育水下分流河道砂体,平面上呈鸟足状,规模较大,河水的水动力能量较强而湖水能量较弱。在干旱温暖的气候背景条件下辫状河携带的大量的陆源碎屑进入湖盆,由于湖水的水动力相对较弱,辫状河进入湖盆后仍能在水下流动相当长的一段距离,有利于形成水下分流河道砂体,而河口坝砂体发育程度相对较差,规模较小。基准面旋回下降时,湖水变浅,水下分流河道向湖盆沉积中心迁移并不断发生分岔,在河道的分岔处一般发育河口坝,水下分流河道向沉积中心迁移的过程中不断侵蚀前期的河口坝砂体,局部地区发育“坝上河”复合砂体,水下分流河道砂体呈进积叠加样式;基准面旋回上升时,湖水变深,湖盆发生扩张,水下分流河道向湖岸线方向迁移,水动力条件相对变弱,水下分流河道砂体向湖岸线方向迁移,呈退积叠加样式。

  • 南八仙地区晚渐新世E23沉积时期浅水三角洲前缘水下分流河道砂体发育,呈条带状展布,连续性好,是油气勘探的有利目标。一里坪地区侏罗系小煤沟组生成的油气通过仙南断裂以及不整合面运移到水下分流河道砂体中,易于形成岩性油气藏和具有构造背景的构造-岩性油气藏,研究成果可为相似的地质背景下浅水三角洲前缘砂体成因的岩性圈闭预测提供参考。

  • 图10 柴达木盆地南八仙地区下干柴沟组上段浅水三角洲沉积发育模式图

  • Fig.10 Sedimentary model of shallow water delta in the upper member of the Xiaganchaigou Formation in the Nanbaxian area, northern Qaidam basin

  • 4 结论

  • (1)晚渐新世E23沉积时期,南八仙地区主要重矿物组合为磁铁矿、石榴子石、白钛矿和锆石,以稳定重矿物含量高为特征,砂岩碎屑组分主要为石英和长石,岩屑组分主要为变质岩岩屑,物源主要来自祁连南山中酸性岩浆岩和中高级变质岩发育区,物源方向为近北东—南西向。

  • (2)南八仙地区钻(测)井及取芯资料显示,晚渐新世E23沉积时期主要发育水下分流河道砂体,砂体岩性偏细、结构成熟度较差,分选性较差,主要发育槽状交错层理、板状交错层理和正粒序层理等较强水动力条件下牵引流成因的浅水原生沉积构造,粒度概率曲线主要为一跳跃一悬浮式。

  • (3)南八仙地区晚渐新世E23沉积时期继承性发育3条北东—南西向呈条带状展布的砂体富集带,从早期到晚期,砂体发育程度总趋势是先增强后减弱,其中,Ⅳ-5~Ⅳ-4砂组,砂地比值普遍增大,砂体发育程度增强;Ⅳ-4~Ⅳ-1砂组,高砂地比值分布范围减小,砂体发育程度减弱。

  • (4)晚渐新世E23沉积时期南八仙地区为浅水三角洲前缘亚相沉积环境,持续发育3个前缘朵叶体,可识别出水下分流河道微相和水下分流间湾微相,受湖平面升降变化的控制,从早期到晚期,浅水三角洲前缘发育规模整体上呈先增大后减小的趋势,其中,Ⅳ-5~Ⅳ-4砂组,浅水三角洲前缘发育规模增大;Ⅳ-4~Ⅳ-1砂组,浅水三角洲前缘发育规模减小。

  • 参考文献

    • Bai Yadong, Yang Wei, Ma Feng, Shi Zhenhao, Wang Zhaobing. 2019. Tectonic feature and oil and gas exploration direction of Lenghu 7-Nanbaxian area on north margin of Qaidam basin. Special Oil & Gas Reservoirs, 26(1): 75~79 (in Chinese with English abstract).

    • Chen Ji, Shi Ji'an, Long Guohui, Zhang Jian, Wang Mu, Zhou Fei, Zou Kaizhen, Ma Jinye, Shen Yushan. 2013. Sedimentary facies and models for the Paleogene-Neogene deposite on the northern margin of the Qaidam basin. Sedimentary Geology and Tethyan Geology, 33(3): 16~26 (in Chinese with English abstract).

    • Cornel O, Janok P B. 2006. Terminal distributary channels and delta front architecture of river-dominated delta systems. Journal of Sedimentary Research, 76: 212~233.

    • Donaldson A C. 1974. Pennsylvanian sedimentation of central Appalachians. Geological Society of America, 148: 47~48.

    • Du Zhongming, Shi Ji'an, Sun Guoqiang, Ji Yun, Wu Zhixiong, Tang Xianglu. 2013. The sedimentary characteristics of braided delta of the Upper Xiaganchaigou Formation in Maxian region of Qaidam basin. Natural Gas Geoscience, 24(3): 505~511 (in Chinese with English abstract).

    • Feng Wenjie, Wu Shenghe, Zhang Ke, Zhao Wenkai, Jia Fengjuan. 2017. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition. Acta Geologica Sinica, 91(9): 2047~2064 (in Chinese with English abstract).

    • Fisk H N. 1954. Sedimentary framework of the modern Mississippi delta. Journal of Sedimentary Petrology, 24(2): 76~99.

    • Fu Suotang. 2014. Natural gas exploration in Qaidam basin. China Petroleum Exploration, 19(4): 1~10 (in Chinese with English abstract).

    • He Zhonghua, Liu Zhaojun, Zhang Feng. 2001. Latest progress of heavy mineral research in the basin analysis. Geological Science and Technology Information, 20(4): 29~32 (in Chinese with English abstract).

    • Jia Yanyan, Xing Xuejun, Sun Guoqiang, Shi Jian, Liu Shijie. 2015. The Paleogene-Neogene paleoclimate evolution in western sector of northern margin of Qaidam basin. Earth Science, 40(12): 1955~1967 (in Chinese with English abstract).

    • Li Junwu, Dai Tingyong, Li Fengjie, Yang Chenjin, Yang Yuchuan. 2015. Provenance analysis of the Palaeogene in Eboliang area of Qaidam basin. Acta Sedimentologica Sinica, 33(4): 649~658 (in Chinese with English abstract).

    • Li Linjing, Li Jianming, Li Qing, Wang Xiaolu, Sun Hufa. 2013. Study on sedimentary facies of Xiaganchaigou Formation in Nanbaxian area, northern Qaidam basin. Journal of Oil and Gas Technology, 35(4): 6~10 (in Chinese with English abstract).

    • Li Zengxue, Wei Jiuchuan, Li Shouchun. 1995. The depositional system of fluvial-controlled shallow water delta and coal-accumulation analysis in western Shandong. Coal Geology & Exploration, 23(2): 7~13 (in Chinese with English abstract).

    • Lin Hong, Li Fengjie, Li Lei. 2014. Characteristics of Paleogene heavy mineral and its source in northern margin of Qaidam basin. Natural Gas Geoscience, 25(4): 532~541 (in Chinese with English abstract).

    • Liu Baojun. 1980. Sedimentary. Beijing: Geological Publishing House, 115~126 (in Chinese).

    • Liu Dianhe, Li Fengjie, Zheng Rongcai, Liu Qi, Jiang Bin. 2009. Sedimentary facies feature of Paleogene Lower Ganchaigou Formation in the west segment, north edge of Qaidam basin. Natural Gas Geoscience, 20(6): 847~853 (in Chinese with English abstract).

    • Liu Weiming, Sun Guoqiang, Guo Jiajia, Wang Mu, He Xiang, Sha Peng, Li Hao. 2018. Provenance analysis of the Palaeogene clastic rocks in the western part of northern Qaidam basin. Sedimentary Geology and Tethyan Geology, 38(1): 53~61 (in Chinese with English abstract).

    • Liu Ziliang, Shen Fang, Zhu Xiaomin, Liao Jijia, Zhang Xiuqiang, Meng Hao. 2015. Progress of shallow-water delta research and a case study of continental lake basin. Oil & Gas Geology, 36(4): 596~604 (in Chinese with English abstract).

    • Lou Zhanghua, Lan Xiang, Lu Qingmei, Cai Xiyuan. 1999. Controls of the topography, climate and lake level fluctuation on the depositional environment of a shallow-water delta: A case study of the Cretaceous Putaohua reservoir in the northern part of Songliao basin. Acta Geologica Sinica, 73(1): 83~92 (in Chinese with English abstract).

    • Lou Zhanghua, Yuan Di, Jin Aiming. 2004. Types, characteristics of sandbodies in shallow-water delta front and sedimentary models in northern Songliao basin, China. Journal of Zhejiang University (Science Edition), 31(2): 211~215 (in Chinese with English abstract).

    • Lu Jingfang, Zhang Kexin, Song Bowen, Xu Yadong, Zhang Jianyu, Huang Wei, Zhang Daolai. 2020. Paleogene-Neogene pollen and climate change in Dahonggou region of Qaidam basin. Geoscience, 34(4): 732~744 (in Chinese with English abstract).

    • Pan Shile, Jiang Yun, Kang Jian, Chen Bo, Zhang Shuncun, Sun Guoqiang. 2021a. Analysis of paleoclimate and source of the upper section, Lower Ganchaigou Formation, Lenghu No. 7 region, North Qaidam basin. Acta Sedimentologica Sinica, 39(5): 1292~1304 (in Chinese with English abstract).

    • Pan Shile, Jiang Yun, Zhu Wenjun, Liu Zhenyu, Wang Yetong, Sun Guoqiang, Zhang Shuncun. 2021b. Sedimentary-diagenetic characteristics of the upper section of the Lower Ganchaigou Formation in Lenghu No. 7 region, North Qaidam basin. Natural Gas Geoscience, 32(3): 393~404 (in Chinese with English abstract).

    • Postma G. 1990. An analysis of the variation in delta architecture. Terra Nova, 2(2): 124~130.

    • Shi Hui, Liu Zhen, Zhang Qinxue, Lian Liangda, Mao Yakun. 2015. Shallow delta forming condition and sand body characteristics in Paleogene of southwestern Qaidam basin. Journal of Central South University (Science and Technology), 46(1): 188~198 (in Chinese with English abstract).

    • Song Chunhui. 2006. Tectonic uplift and Cenozoic sedimentary evolution in the northern margin of the Tibetan Plateau. Doctoral dissertation of Lanzhou University, 272~275 (in Chinese with English abstract).

    • Sun Guoqiang, Du Zhongming, Jia Yanyan, Zhou Fei, Hao Xiaomei, Shi Jian. 2012. Sedimentary model since Paleogene in northern margin of Qaidam basin. Lithologic Reservoirs, 24(4): 13~18 (in Chinese with English abstract).

    • The First Team in Bureau of Geology and Mineral Resources of Qinghai Province. 1980. The Geology Survey Report—Mahai. Beijing: Geological Publishing House, 36~59 (in Chinese).

    • The Geology Mechanical Team in Bureau of Geology and Mineral Resources of Gansu Province. 1985. The Geology Survey Report—Yuqia. Beijing: Geological Publishing House, 25~67 (in Chinese).

    • Wang Dahua, Wang Jinduo, Xiao Yongjun, Li Junliang, Chai Xianping, Zhang Junfeng, Ding Lirong. 2016. Structure modeling and evolution of piedmont zone in Dachaidan area, north margin of Qaidam basin. Earth Science Frontiers, 23(5): 1~10 (in Chinese with English abstract).

    • Wang Jiangong, Wang Tianqi, Wei Pingsheng, Liang Sujuan, Han Xiaoqiang. 2007. Sedimentary model of shallow lacustrine delta of large continental basin: An example from Putaohua Formation in northern Songliao basin. Lithologic Reservoirs, 19(2): 28~34 (in Chinese with English abstract).

    • Wu Shenghe, Xu Zhenghua, Liu Zhao. 2019. Depositional architecture of fluvial-dominated shoal water delta. Journal of Palaeogeography (Chinese Edition), 21(2): 202~215 (in Chinese with English abstract).

    • Xu Zhenghua, Wu Shenghe, Liu Zhao, Zhao Junshou, Gen Hongliu, Wu Junchuan, Zhang Tianyou, Liu Zhaowei. 2019. Reservoir architecture of the finger bar within shoal water delta front: Insights from the lower Member of Minghuazhen Formation, Neogene, Bohai BZ25 oilfield, Bohai Bay basin, East China. Petroleum Exploration and Development, 6(2): 1~12 (in Chinese with English abstract).

    • Yi Dinghong, Wang Jiangong, Wang Peng, Li Xiang, Shi Yajun, Zhang Zhengang, Qiao Baihan, Zhang Shiming, Wei Zhifeng, Jia Shenglong. 2020. Study of sedimentary evolution of Neogene and favorable exploration belts in Mangya area, western Qaidam basin. Journal of China University of Mining & Technology, 49(1): 83~93 (in Chinese with English abstract).

    • Yi Dinghong, Shi Yajun, Li Xiang, Long Guohui, Ni Xianglong, Li Jiyong, Wang Zhaobing, Ma Xinmin. 2022. Sedimentary evolution and controlling factors of beach bar sand bodies of the Upper Ganchaigou Formation of Neogene in Zhahaquan area, western Qaidam basin. Journal of Palaeogeography (Chinese Edition), 24(4): 713~727 (in Chinese with English abstract).

    • Yin Taiju, Li Xuanming, Zhang Changmin, Zhu Yongjin, Gong Fuhua. 2012. Sandbody shape of modern shallow lake basin delta sediments: By taking Dongting Lake and Poyang Lake for example. Journal of Oil and Gas Technology, 34(10): 1~7 (in Chinese with English abstract).

    • Yuan Xuanjun, Zhou Hongying, Zhang Zhijie, Wang Ziye, Cheng Dawei, Guo Hao, Zhang Youmiao, Dong Wentong. 2021. Depositional features and growth pattern of large shallow water deltas in depression basin. Lithologic Reservoirs, 33(1): 1~11 (in Chinese with English abstract).

    • Zeng Can, Yin Taiju, Song Yakai. 2017. Experimental on numerical simulation of the impact of lake level plane fluctuation on shallow water delta. Earth Science, 42(11): 2095~2104 (in Chinese with English abstract).

    • Zeng Hongliu, Zhao Xianzheng, Zhu Xiaomin, Jin Fengming, Dong Yanlei, Wang Yuliang, Zhu Mao, Zheng Ronghua. 2015. Seismic sedimentology characteristics of sub-clinoformal shallow-water meandering river delta: A case from the Suning area of Raoyang sag in Jizhong depression, Bohai Bay basin, NE China. Petroleum Exploration and Development, 42(5): 566~576 (in Chinese with English abstract).

    • Zhang Changmin, Yin Taiju, Zhu Yongjing, Ke Lanmei. 2010. Shallow water deltas and models. Acta Sedimentologica Sinica, 28(5): 933~944 (in Chinese with English abstract).

    • Zhang Rui. 2015. Sedimentary features and forming conditions of shallow lacustrine delta in Maxian area, northern margin of Qaidam basin. Unconventional Oil & Gas, 2(3): 8~12 (in Chinese with English abstract).

    • Zhao Hongge, Liu Chiyang. 2003. Approaches and prospects of provenance analysis. Acta Sedimentologica Sinica, 21(3): 409~415 (in Chinese with English abstract).

    • Zhu Xiaomin, Liu Yuan, Fang Qing, Li Yang, Liu Yunyan, Wang Rui, Song Jing, Liu Shiqi, Cao Haitao, Liu Xiangnan. 2012. Formation and sedimentary model of shallow delta in lare-scalelake: Example from Cretaceous Quantou Formation in Sanzhao sag, Songliao basin. Earth Science Frontiers, 19(1): 89~99 (in Chinese with English abstract).

    • Zhu Xiaomin, Zhao Dongna, Zeng Hongliu, Sun Yu, Zhu Rukai, Huang Wei, Zhu Shifa. 2013. Sedimentary characteristics and seismic sedimentologic responses of shallow-water delta of Qingshankou Formation in Qijia area, Songliao basin. Acta Sedimentologica Sinica, 31(5): 889~897 (in Chinese with English abstract).

    • Zhu Xiaomin, Zhong Dakang, Yuan Xuanjun, Zhang Huiliang, Zhu Shifa, Sun Haitao, Gao Zhiyong, Xian Benzhong. 2016. Development of sedimentary geology of petroliferous basins in China. Petroleum Exploration and Development, 43(5): 820~829 (in Chinese with English abstract).

    • Zou Caineng, Zhao Wenzhi, Zhang Xinyang, Luo Ping, Wang Lan, Liu Liuhong, Xue Shuhao, Yuan Xuanjun, Zhu Rukai, Tao Shizhen. 2008. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins. Acta Geologica Sinica, 82(6): 813~825 (in Chinese with English abstract).

    • Zou Niuniu, Zhang Daquan, Long Guohui, Zhang Shuncun, Lu Xinchuan, Jiang Hua, Shi Jian. 2015. Sedimentary system evolution of tertiary reservoirs in northern Qaidam basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 42(2): 149~158 (in Chinese with English abstract).

    • 白亚东, 杨巍, 马峰, 石正灏, 王兆兵. 2019. 柴北缘冷湖七号-南八仙地区构造特征及油气勘探方向. 特种油气藏, 26(1): 75~79.

    • 陈吉, 史基安, 龙国徽, 张健, 王牧, 周飞, 邹开真, 马进业, 申玉山. 2013. 柴北缘古近系—新近系沉积相特征及沉积模式. 沉积与特提斯地质, 33(3): 16~26.

    • 杜忠明, 史基安, 孙国强, 季贇, 吴志雄, 唐相路. 2013. 柴达木盆地马仙地区下干柴沟组上段辫状河三角洲沉积特征. 天然气地球科学, 24(3): 505~511.

    • 冯文杰, 吴胜和, 张可, 赵文凯, 贾风娟. 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报, 91(9): 2047~2064.

    • 付锁堂. 2014. 柴达木盆地天然气勘探领域. 中国石油勘探, 19(4): 1~10.

    • 甘肃省地质局地质力学区域地质调查队. 1985. 区域地质调查报告——鱼卡幅. 北京: 地质出版社, 25~67.

    • 和钟铧, 刘招君, 张峰. 2001. 重矿物在盆地分析中的应用研究进展. 地质科技情报, 20(4): 29~32.

    • 贾艳艳, 邢学军, 孙国强, 史基安, 刘士杰. 2015. 柴北缘西段古—新近纪古气候演化. 地球科学, 40(12): 1955~1967.

    • 李俊武, 代廷勇, 李凤杰, 杨承锦, 杨豫川. 2015. 柴达木盆地鄂博梁地区古近系沉积物源方向分析. 沉积学报, 33(4): 649~658.

    • 李琳静, 李建明, 李清, 王小鲁, 孙虎法. 2013. 柴达木盆地北缘南八仙地区下干柴沟组沉积相研究. 石油天然气学报, 35(4): 6~10.

    • 李增学, 魏久传, 李守春. 1995. 鲁西河控浅水三角洲沉积体系及煤聚集规律. 煤田地质与勘探, 23(2): 7~13.

    • 林洪, 李凤杰, 李磊. 2014. 柴达木盆地北缘古近系重矿物特征及物源分析. 天然气地球科学, 25(4): 532~541.

    • 刘宝珺. 1980. 沉积岩石学. 北京: 地质出版社, 115~126.

    • 刘殿鹤, 李凤杰, 郑荣才, 刘琪, 蒋斌. 2009. 柴北缘西段古近系下干柴沟组沉积相特征分析. 天然气地球科学, 20(6): 847~853.

    • 刘伟明, 孙国强, 郭佳佳, 王牧, 何湘, 沙鹏, 李浩. 2018. 柴北缘西段古近纪物源体系分析. 沉积与特提斯地质, 38(1): 53~61.

    • 刘自亮, 沈芳, 朱筱敏, 廖纪佳, 张修强, 孟昊. 2015. 浅水三角洲研究进展与陆相湖盆实例分析. 石油与天然气地质, 36(4): 596~604.

    • 楼章华, 兰翔, 卢庆梅, 蔡希源. 1999. 地形、气候与湖面波动对浅水三角洲沉积环境的控制作用: 以松辽盆地北部东区葡萄花油层为例. 地质学报, 73(1): 83~92.

    • 楼章华, 袁笛, 金爱民. 2004. 松辽盆地北部浅水三角洲前缘砂体类型、特征与沉积动力学过程分析. 浙江大学学报(理学版), 31(2): 211~215.

    • 路晶芳, 张克信, 宋博文, 徐亚东, 张楗钰, 黄威, 张道来. 2020. 柴达木盆地大红沟地区始新世—上新世孢粉记录及气候变化. 现代地质, 34(4): 732~744.

    • 潘世乐, 蒋赞, 康健, 陈波, 张顺存, 孙国强. 2021a. 柴北缘冷湖七号下干柴沟组上段古气候及物源分析. 沉积学报, 39(5): 1292~1304.

    • 潘世乐, 蒋赞, 朱文军, 刘振宇, 王晔桐, 孙国强, 张顺存. 2021b. 柴达木盆地北缘冷湖七号地区下干柴沟组上段沉积-成岩特征. 天然气地球科学, 32(3): 393~404.

    • 青海省地质局第一区调队. 1980. 区域地质调查报告——马海幅. 北京: 地质出版社, 36~59.

    • 施辉, 刘震, 张勤学, 连良达, 毛亚昆. 2015. 柴达木盆地西南区古近系浅水三角洲形成条件及砂体特征. 中南大学学报(自然科学版), 46(1): 188~198.

    • 宋春晖. 2006. 青藏高原北缘新生代沉积演化与高原构造隆升过程. 兰州大学博士学位论文, 272~275.

    • 孙国强, 杜忠明, 贾艳艳, 周飞, 郝小梅, 史基安. 2012. 柴达木盆地北缘西段古近纪以来沉积模式研究. 岩性油气藏, 24(4): 13~18.

    • 王大华, 王金铎, 肖永军, 李军亮, 柴先平, 张俊锋, 丁丽荣. 2016. 柴北缘大柴旦地区山前带构造建模及演化研究. 地学前缘, 23(5): 1~10.

    • 王建功, 王天琦, 卫平生, 梁苏娟, 韩小强. 2007. 大型坳陷湖盆浅水三角洲沉积模式: 以松辽盆地北部葡萄花油层为例. 岩性油气藏, 19(2): 28~34.

    • 吴胜和, 徐振华, 刘钊. 2019. 河控浅水三角洲沉积构型. 古地理学报, 21(2): 202~215.

    • 徐振华, 吴胜和, 刘钊, 赵军寿, 耿红柳, 吴峻川, 张天佑, 刘照伟. 2019. 浅水三角洲前缘指状砂坝构型特征: 以渤海湾盆地渤海BZ25油田新近系明化镇组下段为例. 石油勘探与开发, 46(2): 1~12.

    • 易定红, 王建功, 王鹏, 李翔, 石亚军, 张正刚, 乔柏翰, 张世铭, 韦志峰, 贾生龙. 2020. 柴西茫崖地区新近纪沉积演化与有利勘探区带. 中国矿业大学学报, 49(1): 83~93.

    • 易定红, 石亚军, 李翔, 龙国徽, 倪祥龙, 李积永, 王兆兵, 马新民. 2022. 柴达木盆地西部扎哈泉地区新近系上干柴沟组滩坝砂体沉积演化及其控制因素. 古地理学报, 24(4): 713~727.

    • 尹太举, 李宣明, 张昌民, 朱永进, 龚福华. 2012. 现代浅水湖盆三角洲沉积砂体形态特征: 以洞庭湖和鄱阳湖为例. 石油天然气学报, 34(10): 1~7.

    • 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友淼, 董文彤. 2021. 坳陷湖盆大型浅水三角洲沉积特征与生长模式. 岩性油气藏, 33(1): 1~11.

    • 曾灿, 尹太举, 宋亚开. 2017. 湖平面升降对浅水三角洲影响的沉积数值模拟实验. 地球科学, 42(11): 2095~2104.

    • 曾洪流, 赵贤正, 朱筱敏, 金凤鸣, 董艳蕾, 王余良, 朱茂, 郑荣华. 2015. 隐性前积浅水曲流河三角洲地震沉积学特征: 以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例. 石油勘探与开发, 42(5): 566~576.

    • 张昌民, 尹太举, 朱永进, 柯兰梅. 2010. 浅水三角洲沉积模式. 沉积学报, 28(5): 933~944.

    • 张锐. 2015. 柴达木盆地北缘马仙地区浅水湖泊三角洲沉积特征及其形成条件. 非常规油气, 2(3): 8~12.

    • 赵红格, 刘池阳. 2003. 物源分析方法及研究进展. 沉积学报, 21(3): 409~415.

    • 朱筱敏, 刘媛, 方庆, 李洋, 刘云燕, 王瑞, 宋静, 刘诗奇, 曹海涛, 刘相男. 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1): 89~99.

    • 朱筱敏, 赵东娜, 曾洪流, 孙玉, 朱如凯, 黄薇, 朱世发. 2013. 松辽盆地齐家地区青山口组浅水三角洲沉积特征及其地震沉积学响应. 沉积学报, 31(5): 889~897.

    • 朱筱敏, 钟大康, 袁选俊, 张惠良, 朱世发, 孙海涛, 高志勇, 鲜本忠. 2016. 中国含油气盆地沉积地质学进展. 石油勘探与开发, 43(5): 820~829.

    • 邹才能, 赵文智, 张兴阳, 罗平, 王岚, 刘柳红, 薛叔浩, 袁选俊, 朱如凯, 陶士振. 2008. 大型敝流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813~825.

    • 邹妞妞, 张大权, 龙国徽, 张顺存, 鲁新川, 姜华, 史基安. 2015. 柴达木盆地北缘第三系沉积体系演化模式. 成都理工大学(自然科学版), 42(2): 149~158.

  • 参考文献

    • Bai Yadong, Yang Wei, Ma Feng, Shi Zhenhao, Wang Zhaobing. 2019. Tectonic feature and oil and gas exploration direction of Lenghu 7-Nanbaxian area on north margin of Qaidam basin. Special Oil & Gas Reservoirs, 26(1): 75~79 (in Chinese with English abstract).

    • Chen Ji, Shi Ji'an, Long Guohui, Zhang Jian, Wang Mu, Zhou Fei, Zou Kaizhen, Ma Jinye, Shen Yushan. 2013. Sedimentary facies and models for the Paleogene-Neogene deposite on the northern margin of the Qaidam basin. Sedimentary Geology and Tethyan Geology, 33(3): 16~26 (in Chinese with English abstract).

    • Cornel O, Janok P B. 2006. Terminal distributary channels and delta front architecture of river-dominated delta systems. Journal of Sedimentary Research, 76: 212~233.

    • Donaldson A C. 1974. Pennsylvanian sedimentation of central Appalachians. Geological Society of America, 148: 47~48.

    • Du Zhongming, Shi Ji'an, Sun Guoqiang, Ji Yun, Wu Zhixiong, Tang Xianglu. 2013. The sedimentary characteristics of braided delta of the Upper Xiaganchaigou Formation in Maxian region of Qaidam basin. Natural Gas Geoscience, 24(3): 505~511 (in Chinese with English abstract).

    • Feng Wenjie, Wu Shenghe, Zhang Ke, Zhao Wenkai, Jia Fengjuan. 2017. Depositional process and sedimentary model of meandering-river shallow delta: Insights from numerical simulation and modern deposition. Acta Geologica Sinica, 91(9): 2047~2064 (in Chinese with English abstract).

    • Fisk H N. 1954. Sedimentary framework of the modern Mississippi delta. Journal of Sedimentary Petrology, 24(2): 76~99.

    • Fu Suotang. 2014. Natural gas exploration in Qaidam basin. China Petroleum Exploration, 19(4): 1~10 (in Chinese with English abstract).

    • He Zhonghua, Liu Zhaojun, Zhang Feng. 2001. Latest progress of heavy mineral research in the basin analysis. Geological Science and Technology Information, 20(4): 29~32 (in Chinese with English abstract).

    • Jia Yanyan, Xing Xuejun, Sun Guoqiang, Shi Jian, Liu Shijie. 2015. The Paleogene-Neogene paleoclimate evolution in western sector of northern margin of Qaidam basin. Earth Science, 40(12): 1955~1967 (in Chinese with English abstract).

    • Li Junwu, Dai Tingyong, Li Fengjie, Yang Chenjin, Yang Yuchuan. 2015. Provenance analysis of the Palaeogene in Eboliang area of Qaidam basin. Acta Sedimentologica Sinica, 33(4): 649~658 (in Chinese with English abstract).

    • Li Linjing, Li Jianming, Li Qing, Wang Xiaolu, Sun Hufa. 2013. Study on sedimentary facies of Xiaganchaigou Formation in Nanbaxian area, northern Qaidam basin. Journal of Oil and Gas Technology, 35(4): 6~10 (in Chinese with English abstract).

    • Li Zengxue, Wei Jiuchuan, Li Shouchun. 1995. The depositional system of fluvial-controlled shallow water delta and coal-accumulation analysis in western Shandong. Coal Geology & Exploration, 23(2): 7~13 (in Chinese with English abstract).

    • Lin Hong, Li Fengjie, Li Lei. 2014. Characteristics of Paleogene heavy mineral and its source in northern margin of Qaidam basin. Natural Gas Geoscience, 25(4): 532~541 (in Chinese with English abstract).

    • Liu Baojun. 1980. Sedimentary. Beijing: Geological Publishing House, 115~126 (in Chinese).

    • Liu Dianhe, Li Fengjie, Zheng Rongcai, Liu Qi, Jiang Bin. 2009. Sedimentary facies feature of Paleogene Lower Ganchaigou Formation in the west segment, north edge of Qaidam basin. Natural Gas Geoscience, 20(6): 847~853 (in Chinese with English abstract).

    • Liu Weiming, Sun Guoqiang, Guo Jiajia, Wang Mu, He Xiang, Sha Peng, Li Hao. 2018. Provenance analysis of the Palaeogene clastic rocks in the western part of northern Qaidam basin. Sedimentary Geology and Tethyan Geology, 38(1): 53~61 (in Chinese with English abstract).

    • Liu Ziliang, Shen Fang, Zhu Xiaomin, Liao Jijia, Zhang Xiuqiang, Meng Hao. 2015. Progress of shallow-water delta research and a case study of continental lake basin. Oil & Gas Geology, 36(4): 596~604 (in Chinese with English abstract).

    • Lou Zhanghua, Lan Xiang, Lu Qingmei, Cai Xiyuan. 1999. Controls of the topography, climate and lake level fluctuation on the depositional environment of a shallow-water delta: A case study of the Cretaceous Putaohua reservoir in the northern part of Songliao basin. Acta Geologica Sinica, 73(1): 83~92 (in Chinese with English abstract).

    • Lou Zhanghua, Yuan Di, Jin Aiming. 2004. Types, characteristics of sandbodies in shallow-water delta front and sedimentary models in northern Songliao basin, China. Journal of Zhejiang University (Science Edition), 31(2): 211~215 (in Chinese with English abstract).

    • Lu Jingfang, Zhang Kexin, Song Bowen, Xu Yadong, Zhang Jianyu, Huang Wei, Zhang Daolai. 2020. Paleogene-Neogene pollen and climate change in Dahonggou region of Qaidam basin. Geoscience, 34(4): 732~744 (in Chinese with English abstract).

    • Pan Shile, Jiang Yun, Kang Jian, Chen Bo, Zhang Shuncun, Sun Guoqiang. 2021a. Analysis of paleoclimate and source of the upper section, Lower Ganchaigou Formation, Lenghu No. 7 region, North Qaidam basin. Acta Sedimentologica Sinica, 39(5): 1292~1304 (in Chinese with English abstract).

    • Pan Shile, Jiang Yun, Zhu Wenjun, Liu Zhenyu, Wang Yetong, Sun Guoqiang, Zhang Shuncun. 2021b. Sedimentary-diagenetic characteristics of the upper section of the Lower Ganchaigou Formation in Lenghu No. 7 region, North Qaidam basin. Natural Gas Geoscience, 32(3): 393~404 (in Chinese with English abstract).

    • Postma G. 1990. An analysis of the variation in delta architecture. Terra Nova, 2(2): 124~130.

    • Shi Hui, Liu Zhen, Zhang Qinxue, Lian Liangda, Mao Yakun. 2015. Shallow delta forming condition and sand body characteristics in Paleogene of southwestern Qaidam basin. Journal of Central South University (Science and Technology), 46(1): 188~198 (in Chinese with English abstract).

    • Song Chunhui. 2006. Tectonic uplift and Cenozoic sedimentary evolution in the northern margin of the Tibetan Plateau. Doctoral dissertation of Lanzhou University, 272~275 (in Chinese with English abstract).

    • Sun Guoqiang, Du Zhongming, Jia Yanyan, Zhou Fei, Hao Xiaomei, Shi Jian. 2012. Sedimentary model since Paleogene in northern margin of Qaidam basin. Lithologic Reservoirs, 24(4): 13~18 (in Chinese with English abstract).

    • The First Team in Bureau of Geology and Mineral Resources of Qinghai Province. 1980. The Geology Survey Report—Mahai. Beijing: Geological Publishing House, 36~59 (in Chinese).

    • The Geology Mechanical Team in Bureau of Geology and Mineral Resources of Gansu Province. 1985. The Geology Survey Report—Yuqia. Beijing: Geological Publishing House, 25~67 (in Chinese).

    • Wang Dahua, Wang Jinduo, Xiao Yongjun, Li Junliang, Chai Xianping, Zhang Junfeng, Ding Lirong. 2016. Structure modeling and evolution of piedmont zone in Dachaidan area, north margin of Qaidam basin. Earth Science Frontiers, 23(5): 1~10 (in Chinese with English abstract).

    • Wang Jiangong, Wang Tianqi, Wei Pingsheng, Liang Sujuan, Han Xiaoqiang. 2007. Sedimentary model of shallow lacustrine delta of large continental basin: An example from Putaohua Formation in northern Songliao basin. Lithologic Reservoirs, 19(2): 28~34 (in Chinese with English abstract).

    • Wu Shenghe, Xu Zhenghua, Liu Zhao. 2019. Depositional architecture of fluvial-dominated shoal water delta. Journal of Palaeogeography (Chinese Edition), 21(2): 202~215 (in Chinese with English abstract).

    • Xu Zhenghua, Wu Shenghe, Liu Zhao, Zhao Junshou, Gen Hongliu, Wu Junchuan, Zhang Tianyou, Liu Zhaowei. 2019. Reservoir architecture of the finger bar within shoal water delta front: Insights from the lower Member of Minghuazhen Formation, Neogene, Bohai BZ25 oilfield, Bohai Bay basin, East China. Petroleum Exploration and Development, 6(2): 1~12 (in Chinese with English abstract).

    • Yi Dinghong, Wang Jiangong, Wang Peng, Li Xiang, Shi Yajun, Zhang Zhengang, Qiao Baihan, Zhang Shiming, Wei Zhifeng, Jia Shenglong. 2020. Study of sedimentary evolution of Neogene and favorable exploration belts in Mangya area, western Qaidam basin. Journal of China University of Mining & Technology, 49(1): 83~93 (in Chinese with English abstract).

    • Yi Dinghong, Shi Yajun, Li Xiang, Long Guohui, Ni Xianglong, Li Jiyong, Wang Zhaobing, Ma Xinmin. 2022. Sedimentary evolution and controlling factors of beach bar sand bodies of the Upper Ganchaigou Formation of Neogene in Zhahaquan area, western Qaidam basin. Journal of Palaeogeography (Chinese Edition), 24(4): 713~727 (in Chinese with English abstract).

    • Yin Taiju, Li Xuanming, Zhang Changmin, Zhu Yongjin, Gong Fuhua. 2012. Sandbody shape of modern shallow lake basin delta sediments: By taking Dongting Lake and Poyang Lake for example. Journal of Oil and Gas Technology, 34(10): 1~7 (in Chinese with English abstract).

    • Yuan Xuanjun, Zhou Hongying, Zhang Zhijie, Wang Ziye, Cheng Dawei, Guo Hao, Zhang Youmiao, Dong Wentong. 2021. Depositional features and growth pattern of large shallow water deltas in depression basin. Lithologic Reservoirs, 33(1): 1~11 (in Chinese with English abstract).

    • Zeng Can, Yin Taiju, Song Yakai. 2017. Experimental on numerical simulation of the impact of lake level plane fluctuation on shallow water delta. Earth Science, 42(11): 2095~2104 (in Chinese with English abstract).

    • Zeng Hongliu, Zhao Xianzheng, Zhu Xiaomin, Jin Fengming, Dong Yanlei, Wang Yuliang, Zhu Mao, Zheng Ronghua. 2015. Seismic sedimentology characteristics of sub-clinoformal shallow-water meandering river delta: A case from the Suning area of Raoyang sag in Jizhong depression, Bohai Bay basin, NE China. Petroleum Exploration and Development, 42(5): 566~576 (in Chinese with English abstract).

    • Zhang Changmin, Yin Taiju, Zhu Yongjing, Ke Lanmei. 2010. Shallow water deltas and models. Acta Sedimentologica Sinica, 28(5): 933~944 (in Chinese with English abstract).

    • Zhang Rui. 2015. Sedimentary features and forming conditions of shallow lacustrine delta in Maxian area, northern margin of Qaidam basin. Unconventional Oil & Gas, 2(3): 8~12 (in Chinese with English abstract).

    • Zhao Hongge, Liu Chiyang. 2003. Approaches and prospects of provenance analysis. Acta Sedimentologica Sinica, 21(3): 409~415 (in Chinese with English abstract).

    • Zhu Xiaomin, Liu Yuan, Fang Qing, Li Yang, Liu Yunyan, Wang Rui, Song Jing, Liu Shiqi, Cao Haitao, Liu Xiangnan. 2012. Formation and sedimentary model of shallow delta in lare-scalelake: Example from Cretaceous Quantou Formation in Sanzhao sag, Songliao basin. Earth Science Frontiers, 19(1): 89~99 (in Chinese with English abstract).

    • Zhu Xiaomin, Zhao Dongna, Zeng Hongliu, Sun Yu, Zhu Rukai, Huang Wei, Zhu Shifa. 2013. Sedimentary characteristics and seismic sedimentologic responses of shallow-water delta of Qingshankou Formation in Qijia area, Songliao basin. Acta Sedimentologica Sinica, 31(5): 889~897 (in Chinese with English abstract).

    • Zhu Xiaomin, Zhong Dakang, Yuan Xuanjun, Zhang Huiliang, Zhu Shifa, Sun Haitao, Gao Zhiyong, Xian Benzhong. 2016. Development of sedimentary geology of petroliferous basins in China. Petroleum Exploration and Development, 43(5): 820~829 (in Chinese with English abstract).

    • Zou Caineng, Zhao Wenzhi, Zhang Xinyang, Luo Ping, Wang Lan, Liu Liuhong, Xue Shuhao, Yuan Xuanjun, Zhu Rukai, Tao Shizhen. 2008. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake basins. Acta Geologica Sinica, 82(6): 813~825 (in Chinese with English abstract).

    • Zou Niuniu, Zhang Daquan, Long Guohui, Zhang Shuncun, Lu Xinchuan, Jiang Hua, Shi Jian. 2015. Sedimentary system evolution of tertiary reservoirs in northern Qaidam basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 42(2): 149~158 (in Chinese with English abstract).

    • 白亚东, 杨巍, 马峰, 石正灏, 王兆兵. 2019. 柴北缘冷湖七号-南八仙地区构造特征及油气勘探方向. 特种油气藏, 26(1): 75~79.

    • 陈吉, 史基安, 龙国徽, 张健, 王牧, 周飞, 邹开真, 马进业, 申玉山. 2013. 柴北缘古近系—新近系沉积相特征及沉积模式. 沉积与特提斯地质, 33(3): 16~26.

    • 杜忠明, 史基安, 孙国强, 季贇, 吴志雄, 唐相路. 2013. 柴达木盆地马仙地区下干柴沟组上段辫状河三角洲沉积特征. 天然气地球科学, 24(3): 505~511.

    • 冯文杰, 吴胜和, 张可, 赵文凯, 贾风娟. 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报, 91(9): 2047~2064.

    • 付锁堂. 2014. 柴达木盆地天然气勘探领域. 中国石油勘探, 19(4): 1~10.

    • 甘肃省地质局地质力学区域地质调查队. 1985. 区域地质调查报告——鱼卡幅. 北京: 地质出版社, 25~67.

    • 和钟铧, 刘招君, 张峰. 2001. 重矿物在盆地分析中的应用研究进展. 地质科技情报, 20(4): 29~32.

    • 贾艳艳, 邢学军, 孙国强, 史基安, 刘士杰. 2015. 柴北缘西段古—新近纪古气候演化. 地球科学, 40(12): 1955~1967.

    • 李俊武, 代廷勇, 李凤杰, 杨承锦, 杨豫川. 2015. 柴达木盆地鄂博梁地区古近系沉积物源方向分析. 沉积学报, 33(4): 649~658.

    • 李琳静, 李建明, 李清, 王小鲁, 孙虎法. 2013. 柴达木盆地北缘南八仙地区下干柴沟组沉积相研究. 石油天然气学报, 35(4): 6~10.

    • 李增学, 魏久传, 李守春. 1995. 鲁西河控浅水三角洲沉积体系及煤聚集规律. 煤田地质与勘探, 23(2): 7~13.

    • 林洪, 李凤杰, 李磊. 2014. 柴达木盆地北缘古近系重矿物特征及物源分析. 天然气地球科学, 25(4): 532~541.

    • 刘宝珺. 1980. 沉积岩石学. 北京: 地质出版社, 115~126.

    • 刘殿鹤, 李凤杰, 郑荣才, 刘琪, 蒋斌. 2009. 柴北缘西段古近系下干柴沟组沉积相特征分析. 天然气地球科学, 20(6): 847~853.

    • 刘伟明, 孙国强, 郭佳佳, 王牧, 何湘, 沙鹏, 李浩. 2018. 柴北缘西段古近纪物源体系分析. 沉积与特提斯地质, 38(1): 53~61.

    • 刘自亮, 沈芳, 朱筱敏, 廖纪佳, 张修强, 孟昊. 2015. 浅水三角洲研究进展与陆相湖盆实例分析. 石油与天然气地质, 36(4): 596~604.

    • 楼章华, 兰翔, 卢庆梅, 蔡希源. 1999. 地形、气候与湖面波动对浅水三角洲沉积环境的控制作用: 以松辽盆地北部东区葡萄花油层为例. 地质学报, 73(1): 83~92.

    • 楼章华, 袁笛, 金爱民. 2004. 松辽盆地北部浅水三角洲前缘砂体类型、特征与沉积动力学过程分析. 浙江大学学报(理学版), 31(2): 211~215.

    • 路晶芳, 张克信, 宋博文, 徐亚东, 张楗钰, 黄威, 张道来. 2020. 柴达木盆地大红沟地区始新世—上新世孢粉记录及气候变化. 现代地质, 34(4): 732~744.

    • 潘世乐, 蒋赞, 康健, 陈波, 张顺存, 孙国强. 2021a. 柴北缘冷湖七号下干柴沟组上段古气候及物源分析. 沉积学报, 39(5): 1292~1304.

    • 潘世乐, 蒋赞, 朱文军, 刘振宇, 王晔桐, 孙国强, 张顺存. 2021b. 柴达木盆地北缘冷湖七号地区下干柴沟组上段沉积-成岩特征. 天然气地球科学, 32(3): 393~404.

    • 青海省地质局第一区调队. 1980. 区域地质调查报告——马海幅. 北京: 地质出版社, 36~59.

    • 施辉, 刘震, 张勤学, 连良达, 毛亚昆. 2015. 柴达木盆地西南区古近系浅水三角洲形成条件及砂体特征. 中南大学学报(自然科学版), 46(1): 188~198.

    • 宋春晖. 2006. 青藏高原北缘新生代沉积演化与高原构造隆升过程. 兰州大学博士学位论文, 272~275.

    • 孙国强, 杜忠明, 贾艳艳, 周飞, 郝小梅, 史基安. 2012. 柴达木盆地北缘西段古近纪以来沉积模式研究. 岩性油气藏, 24(4): 13~18.

    • 王大华, 王金铎, 肖永军, 李军亮, 柴先平, 张俊锋, 丁丽荣. 2016. 柴北缘大柴旦地区山前带构造建模及演化研究. 地学前缘, 23(5): 1~10.

    • 王建功, 王天琦, 卫平生, 梁苏娟, 韩小强. 2007. 大型坳陷湖盆浅水三角洲沉积模式: 以松辽盆地北部葡萄花油层为例. 岩性油气藏, 19(2): 28~34.

    • 吴胜和, 徐振华, 刘钊. 2019. 河控浅水三角洲沉积构型. 古地理学报, 21(2): 202~215.

    • 徐振华, 吴胜和, 刘钊, 赵军寿, 耿红柳, 吴峻川, 张天佑, 刘照伟. 2019. 浅水三角洲前缘指状砂坝构型特征: 以渤海湾盆地渤海BZ25油田新近系明化镇组下段为例. 石油勘探与开发, 46(2): 1~12.

    • 易定红, 王建功, 王鹏, 李翔, 石亚军, 张正刚, 乔柏翰, 张世铭, 韦志峰, 贾生龙. 2020. 柴西茫崖地区新近纪沉积演化与有利勘探区带. 中国矿业大学学报, 49(1): 83~93.

    • 易定红, 石亚军, 李翔, 龙国徽, 倪祥龙, 李积永, 王兆兵, 马新民. 2022. 柴达木盆地西部扎哈泉地区新近系上干柴沟组滩坝砂体沉积演化及其控制因素. 古地理学报, 24(4): 713~727.

    • 尹太举, 李宣明, 张昌民, 朱永进, 龚福华. 2012. 现代浅水湖盆三角洲沉积砂体形态特征: 以洞庭湖和鄱阳湖为例. 石油天然气学报, 34(10): 1~7.

    • 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友淼, 董文彤. 2021. 坳陷湖盆大型浅水三角洲沉积特征与生长模式. 岩性油气藏, 33(1): 1~11.

    • 曾灿, 尹太举, 宋亚开. 2017. 湖平面升降对浅水三角洲影响的沉积数值模拟实验. 地球科学, 42(11): 2095~2104.

    • 曾洪流, 赵贤正, 朱筱敏, 金凤鸣, 董艳蕾, 王余良, 朱茂, 郑荣华. 2015. 隐性前积浅水曲流河三角洲地震沉积学特征: 以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例. 石油勘探与开发, 42(5): 566~576.

    • 张昌民, 尹太举, 朱永进, 柯兰梅. 2010. 浅水三角洲沉积模式. 沉积学报, 28(5): 933~944.

    • 张锐. 2015. 柴达木盆地北缘马仙地区浅水湖泊三角洲沉积特征及其形成条件. 非常规油气, 2(3): 8~12.

    • 赵红格, 刘池阳. 2003. 物源分析方法及研究进展. 沉积学报, 21(3): 409~415.

    • 朱筱敏, 刘媛, 方庆, 李洋, 刘云燕, 王瑞, 宋静, 刘诗奇, 曹海涛, 刘相男. 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1): 89~99.

    • 朱筱敏, 赵东娜, 曾洪流, 孙玉, 朱如凯, 黄薇, 朱世发. 2013. 松辽盆地齐家地区青山口组浅水三角洲沉积特征及其地震沉积学响应. 沉积学报, 31(5): 889~897.

    • 朱筱敏, 钟大康, 袁选俊, 张惠良, 朱世发, 孙海涛, 高志勇, 鲜本忠. 2016. 中国含油气盆地沉积地质学进展. 石油勘探与开发, 43(5): 820~829.

    • 邹才能, 赵文智, 张兴阳, 罗平, 王岚, 刘柳红, 薛叔浩, 袁选俊, 朱如凯, 陶士振. 2008. 大型敝流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布. 地质学报, 82(6): 813~825.

    • 邹妞妞, 张大权, 龙国徽, 张顺存, 鲁新川, 姜华, 史基安. 2015. 柴达木盆地北缘第三系沉积体系演化模式. 成都理工大学(自然科学版), 42(2): 149~158.