en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

尹宏伟,男,1971年生。教授,博士生导师,主要从事盆地构造解析、建模与模拟、构造变形特征与变形机理的研究。E-mail:hwyin@nju.edu.cn。

参考文献
Bauville A, Schmalholz S M. 2015. Transition from thin- to thick-skinned tectonics and consequences for nappe formation: Numerical simulations and applications to the Helvetic nappe system, Switzerland. Tectonophysics, 665: 101~117.
参考文献
Benesh N, Plesch A, Shaw J, Frost E. 2007. Investigation of growth fault bend folding using discrete element modeling: Implications for signatures of active folding above blind thrust faults. Journal of Geophysical Research: Solid Earth, 112: B3S04.
参考文献
Cai Shenyang, Yin Hongwei, Li Changsheng, Jia Dong, Wang Wei, Chen Zhuxin, Wei Dongtao. 2016. Technology of strain analysis and fracture prediction based on DEM numerical simulation. Geological Journal of China Universities, 22(1): 183~193 (in Chinese with English abstract).
参考文献
Chen Jiajun, He Dengfa, Tian Fanglei, Huang Cheng, Ma Debo, Zhang Weikang. 2022. Control of mechanical stratigraphy on the stratified style of strike-slip faults in the central Tarim craton, NW China. Tectonophysics, 830: 229307.
参考文献
Couzens-Schultz B A, Vendeville B C, Wiltschko D V. 2003. Duplex style and triangle zone formation: Insights from physical modeling. Journal of Structural Geology, 25(10): 1623~1644.
参考文献
Cruz L, Malinski J, Wilson A, Take W A, Hilley G. 2010. Erosional control of the kinematics and geometry of fold-and-thrust belts imaged in a physical and numerical sandbox. Journal of Geophysical Research, 115(B9): 2169~9313.
参考文献
Cundall P A, Strack O D. 1979. A discrete numerical model for granular assemblies. Geotechnique, 29(1): 47~65.
参考文献
Dahlen F. 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18(1): 55~99.
参考文献
Davis D, Suppe J, Dahlen F A. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88(B2): 1153~1172.
参考文献
Dean S, Morgan J K, Brandenburg J P. 2015. Influence of mobile shale on thrust faults: Insights from discrete element simulations. AAPG Bulletin, 99(3): 403~432.
参考文献
Deng Chao, Gawthorpe R L, Finch E, Fossen H. 2017. Influence of a pre-existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling. Journal of Structural Geology, 105: 44~61.
参考文献
Dong Min, Song Wei, Wang Zhihai, Lei Yongliang, Zeng Xu, Zhang Bo, Zhou Yanxi. 2019. An analysis of polyphasic evolution and the main controlling factors of basement faults in the Ordos basin based on structural physical simulation experiments. Acta Geoscientica Sinica, 40(6): 847~852 (in Chinese with English abstract).
参考文献
Dou Baosong, Chen Xiujun. 2013. Boundary element method and its application to geotechnical engineering. Water Resources and Hydropower Engineering, 44(10): 49~51 (in Chinese with English abstract).
参考文献
Duan Yunjiang, Huang Shaoying, Li Weibo, Zhang Huifang, Ma Xiaodan, Liao Feiran. 2017. Using discrete element numerical simulation method to study salt tectonic deformation mechanism of Kelasu structural belt. Xinjiang Petroleum Geology, 38(4): 414~419 (in Chinese with English abstract).
参考文献
Duan Yunjiang, Luo Haoyu, Xie Huiwen, Xu Zhenping, Zhang Xueqi, Zhang Jingzhou, Shi Lei, Yuan Rui. 2021. Salt-related structural characteristics and deformation mechanism of the Zhongqiu-Dongqiu section of the Qiulitag structural belt, Tarim basin. Natural Gas Geoscience, 32(7): 993~1008 (in Chinese with English abstract).
参考文献
Feng Jianwei, Wang Zhikun, Shang Lin. 2017. Genetic mechanisms of superimposed fault systems in Block 3 of Nanpu Sag, Bohai Bay basin. Oil & Gas Geology, 38(6): 1032~1042 (in Chinese with English abstract).
参考文献
Finch E, Hardy S, Gawthorpe R. 2004. Discrete-element modelling of extensional fault-propagation folding above rigid basement fault blocks. Basin Research, 16(4): 467~488.
参考文献
Fu Rongshan, Huang Jianhua. 2004. Geodynamics. Beijing: Higher Education Press (in Chinese).
参考文献
Gemmer L, Ings S J, Medvedev S, Beaumont C. 2004. Salt tectonics driven by differential sediment loading: Stability analysis and finite-element experiments. Basin Research, 16(2): 199~218.
参考文献
Gemmer L, Beaumont C, Ings S J. 2005. Dynamic modelling of passive margin salt tectonics: Effects of water loading, sediment properties and sedimentation patterns. Basin Research, 17(3): 383~402.
参考文献
Guo Tingting, Xu Xiwei. 2011. Application and progress of the finite-element method in structural stress field and earthquake prediction. Journal of Seismological Research, 34(2): 246~253 (in Chinese with English abstract).
参考文献
Hamdani I, Aharonov E, Olive J, Parez S, Gvirtzman Z. 2021. Initiating salt tectonics by tilting: Viscous coupling between a tilted salt layer and overlying brittle sediment. Journal of Geophysical Research: Solid Earth, 126(7): e2020JB021503.
参考文献
Hardy S, McClay K, Anton Muñoz J. 2009. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges. Marine and Petroleum Geology, 26: 232~248.
参考文献
Huang Fang, Liu Qiongying, He Lijuan. 2012. Tectono-thermal modeling of the Sichuan basin since the late Himalayan period. Chinese Journal of Geophysics, 55(11): 3742~3753 (in Chinese with English abstract).
参考文献
Huang Guangming, Wang Yuejun, Zhao Yonggang, Huangfu pengpeng. 2016. Numerical simulation of structural styles and evolution of the Daba Shan foreland thrust belt. Acta Geologica Sinica, 90(4): 653~668 (in Chinese with English abstract).
参考文献
Huang Guangming, Li Zhonghai, Li Shubo, Shu Kedong. 2017. Effect of rheology and thickness variation of basal detachment on fold-and-thrust belts: Numerical simulation. Geotectonica et Metallogenia, 41(3): 466~480 (in Chinese with English abstract).
参考文献
Huang Guangming, Zhang Zhen, Zhang Huai, Huangfu Pengpeng, Li Zhonghai. 2020. Development of contrasting folding styles in the western Yangtze block, South China: Insights from numerical modeling. Tectonophysics, 792: 228579.
参考文献
Jia Chengzao. 2009. The structures of basin and range system around the Tibetan plateau and the distribution of oil and gas in the Tarim basin. Geotectonica et Metallogenia, 33(1): 1~9 (in Chinese with English abstract).
参考文献
Jiao Liqing, Klinger Y, Scholtès L. 2021. Fault segmentation pattern controlled by thickness of brittle crust. Geophysical Research Letters, 48: e2021GL093390.
参考文献
Ju Wei, Hou Guiting, Huang Shaoying, Ren Kangxu. 2013. Structural fracture distribution and prediction of the Lower Jurassic Ahe Formation sandstone in the Yinan-Tuzi area, Kuqa Depression. Geotectonica et Metallogenia, 37(4): 592~602 (in Chinese with English abstract).
参考文献
Li Changsheng. 2019. Quantitative analysis and simulation of structural deformation in the fold and thrust belt based ondiscrete element method. PhD degree dissertation of Nanjing University (in Chinese with English abstract).
参考文献
Li Changsheng, Yin Hongwei, Jia Dong, Zhang Jiaxing. 2018. Validation tests for discrete element codes using single-contact systems. International Journal of Geomechanics, 18: 06018011. 7.
参考文献
Li Changsheng, Yin Hongwei, Wu Chuang, Zhang Yingchun, Zhang Jiaxing, Wu Zhenyun, Wang Wei, Jia Dong, Guan Shuwei, Ren Rong. 2021a. Calibration of the discrete element method and modelling of shortening experiments. Frontiers in Earth Science, 9: 636512.
参考文献
Li Changsheng, Yin Hongwei, Wu Zhenyun, Zhou Peng, Wang Wei, Ren Rong, Guan Shuwei, Li Xiangyun, Luo Haoyu, Jia Dong. 2021b. Effects of salt thickness on the structural deformation of foreland fold-and-thrust belt in the KuqaDepression, Tarim basin: Insights from discrete element models. Frontiers in Earth Science, 9: 655173.
参考文献
Li Changsheng, Yin Hongwei, Xu Wenqiao, Wu Zhenyun, Guan Shuwei, Jia Dong, Ren Rong. 2022. Quantitative analysis and simulation of compressive tectonics based ondiscrete element method. Geotectonica et Metallogenia, 46(4): 645~661 (in Chinese with English abstract).
参考文献
Li Desheng. 1982. Tectonic types of oil and gas basins in China. Acta Petrolei Sinica, (3): 1~12 (in Chinese with English abstract).
参考文献
Li Jianghai, Zhang Yu, Wang Honghao, Wang Dianju. 2020. Three-dimensional discrete element numerical simulation of Paleogene salt structures in the western Kuqa foreland thrust belt. Petroleum Exploration and Development, 47(1): 65~76 (in Chinese with English abstract).
参考文献
Li Weibo, Li Jianghai, Wang Honghao, Huang Shaoying, Neng Yuan. 2017. Deformation mechanisms of Kelasu tectonic belt in Kuqa foreland thrust belt: Insight from discrete element numerical simulation. Geotectonica et Metallogenia, 41(6): 1001~1010 (in Chinese with English abstract).
参考文献
Liu Luxiao. 2022. Influence of basement structure on salt tectonic deformation—A case study of the Kuqa fold and thrust belt. PhD degree dissertation of Hebei GEO University (in Chinese with English abstract).
参考文献
Ma Baojun, Qi Jiafu, Niu Shuyin, Sun Aiqun, Cao Aifeng, Sun Zhixin. 2009. The influence of basement fault on the deformation of complex cover blocks in a uniform stress field-enlightenment from sandbox experiment. Earth Science Frontiers, 16(4): 105~116 (in Chinese with English abstract).
参考文献
Maerten L, Gillespie P, Pollard D D. 2002. Effects of local stress perturbation on secondary fault development. Journal of Structural Geology, 24(1): 145~153.
参考文献
Meng Lingsen, Yin Hongwei, Zhang Jie, Xu Shijin. 2007. Influence of rock strength and strain rate on horizontally compressive deformation: Insights from discrete element modeling. Acta Petrologica Sinica, 23(11): 2918~2926 (in Chinese with English abstract).
参考文献
Meng Qingfeng, Hodgetts D. 2019a. Structural styles and decoupling in stratigraphic sequences with double décollements during thin-skinned contractional tectonics: Insights from numerical modelling. Journal of Structural Geology, 127: 103862.
参考文献
Meng Qingfeng, Hodgetts D. 2019b. Combined control of décollement layer thickness and cover rock cohesion on structural styles and evolution of fold belts: A discrete element modelling study. Tectonophysics, 757: 58~67.
参考文献
Morgan J K. 2015. Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: Discrete element simulations. Journal of Geophysical Research: Solid Earth, 120: 3870~3896.
参考文献
Morgan J K, Bangs N L. 2017. Recognizing seamount-forearc collisions at accretionary margins: Insights from discrete numerical simulations. Geology, 45(7): 635~638.
参考文献
Qu Mengxue, Cheng Xiaogan, Tian Hefeng, Chen Hanlin, Yu Hongzhou, Chen Changjin, Sun Siyao. 2023. Effect of double-detachments strength on structure deformation in the northern Bogda Mountain using discrete element numerical simulation. Earth Science, 48(4): 1366~1378 (in Chinese with English abstract).
参考文献
Ruh J B, Kaus B J P, Burg J. 2012. Numerical investigation of deformation mechanics in fold-and-thrust belts: Influence of rheology of single and multiple décollements. Tectonics, 31: TC3005.
参考文献
Schöpfer M P J, Childs C, Walsh J J. 2007. Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 2. Impact of confining pressure and strength contrast on fault zone geometry and growth. Journal of Geophysical Research, 112(B10).
参考文献
Shen Zhuoyi, Yu Fusheng, Wang Qianjun, Zhang Jingqi, Xue Yan. 2022. Discrete element method simulation of the fold-and-thrust belts along strike various compression in the southern margin of the Junggarbasin. Marine and Petroleum Geology, 145: 105849.
参考文献
Simpson G. 2009. Mechanical modelling of folding versus faulting in brittle-ductile wedges. Journal of Structural Geology, 31: 369~381.
参考文献
Simpson G. 2011. Mechanics of non-critical fold-thrust belts based on finite element models. Tectonophysics, 499: 142~155.
参考文献
Spitz R, Bauville A, Epard, J L, Kaus B J P, Popov A A, Schmalholz S M. 2020. Control of 3-D tectonic inheritance on fold-and-thrust belts: Insights from 3-D numerical models and application to the Helvetic nappe system. Solid Earth, 11(3): 999~1026.
参考文献
Sun Qianqian, Liu Zhina, Yu Yixin, Tang Xianjun, Chen Shi, Peng Hao. 2022. Discrete element modelling of the impacts of attitudes and geometric parameters of pre-existing faults on inversion structures. Geotectonica et Metallogenia, 46(1): 22~35 (in Chinese with English abstract).
参考文献
Sun Shuai, Hou Guiting, Zheng Chunfang. 2017. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa depression. Journal of Structural Geology, 104: 112~124.
参考文献
Suppe J. 1983. Geometry and kinematics of fault-bend folding. American Journal of Science, 283(7): 684~721.
参考文献
Suppe J. 2007. Absolute fault and crustal strength from wedge tapers. Geology, 35(12): 1127~1130.
参考文献
Suppe J, Medwedeff D A. 1990. Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae, 83(3): 409~454.
参考文献
Tan Xiaohui, Song Chuanzhong, Cha Fusheng, Li Jiahao, Zhang Yan. 2010. Application of numerical simulation in tectonic deformation research. Journal of Hefei University of Technology (Natural Science), 33(12): 1851~1857 (in Chinese with English abstract).
参考文献
Tscharner M, Schmalholz S M, Epard J L. 2016. 3-D numerical models of viscous flow applied to fold nappes and the Rawil depression in the Helvetic nappe system (western Switzerland). Journal of Structural Geology, 86: 32~46.
参考文献
Wang Maomao, Wang Ming, Feng Wang, Yan Bing, Jia Dong. 2022. Influence of surface processes on strain localization and seismic activity in the Longmen Shan fold-and-thrust belt: Insights from discrete-element modeling. Tectonics, 41: e2022TC007515.
参考文献
Wu Chao, Xu Wenqiao, Li Qing, Wang Wei, Chen Weili, Yin Hongwei, Qu Yuanji. 2023. Numerical simulation of compressional deformation of pre-existing passive salt diapir in Keshen area of Kuqa Depression. Geological Journal of China Universities, 29(2): 240~250 (in Chinese with English abstract).
参考文献
Wu Zhenyun, Yin Hongwei, Li Changsheng, Yang Xiulei, Wang Li, Wang Fuyuan, Dong Shaochun, Jia Dong. 2021. Influence of regional erosion and sedimentary loading on fault activities in active fold-thrust belts: Insights from discrete element simulation and the southern and central Longmen Shan fold-thrust belt. Frontiers in Earth Science, 9: 636512.
参考文献
Xiang Yongfa, Lu Xi, Xu Yuhao, Fan Qizhi. 2019. Basic principle of finite element numerical simulation method andits application to study of tectonic deformation. Acta Geologica Sichuan, 39(4): 581~588 (in Chinese with English abstract).
参考文献
Xiao Fangfeng, Hou Guiting, Li Jianghai. 2010. Controlling of Cenozoic structural stress to the development of fractures in Carboniferous volcanic rocks, Junggar basin. Acta Petrologica Sinica, 26(1): 255~262 (in Chinese with English abstract).
参考文献
Xin Wen, Chen Hanlin, An Kaixuan, Zhang Yuqing, Yang Shufeng, Cheng Xiaogan, Li Xiubin. 2020. Analyzing the influence of factors that control the structural deformation of fold-thrust belts in the southwestern Tianshan using discrete element simulations. Acta Geologica Sinica, 94(6): 1704~1715 (in Chinese with English abstract).
参考文献
Xu Wenqiao, Wang Wei, Yin Hongwei, Jia Dong, Li Changsheng, Yang Gengxiong, Li Gang. 2020. Numerical simulation of different subsalt structural features and their evolution in the eastern and western segments of the Kuqa Depression. Acta Geologica Sinica, 94(6): 1740~1751 (in Chinese with English abstract).
参考文献
Xu Wenqiao, Yin Hongwei, Jia Dong, Li Changsheng, Wang Wei, Yang Gengxiong, He Wanhui, Chen Zhuxin, Ren Rong. 2021. Structural features and evolution of the northwestern Sichuan basin: Insights from discrete numerical simulations. Frontiers in Earth Science, 9: 653395.
参考文献
Yang Keji, Qi Jiafu, Liu Aoran, Zhang Weigang, Ma Baojun, Li Dong. 2022. Characteristics of basement faults in the middle section of Kuqa depression and their influence on salt tectonic deformation. Chinese Journal of Geology, 57(4): 991~1008 (in Chinese with English abstract).
参考文献
Yang Shufeng, Jia Chengzao, Chen Hanlin, Jia Dong, Wei Guoqi, Xiao Ancheng, Guo Zhaojie, Cheng Xiaogan, Wu Lei, Yin Hongwei, Zhang Fengqi, Lin Xiubin. 2022. Core theories of sedimentary basin structure and the related key research techniques: Frontiers and development direction. Earth Science Frontiers, 29(6): 10~23 (in Chinese with English abstract).
参考文献
Yang Xiaodong, Peel F J, Sanderson D J, McNeill L C. 2017. Episodic growth of fold-thrust belts: Insights from finite element modelling. Journal of Structural Geology, 102: 113~129.
参考文献
Yin Hongwei, Zhang Jie, Meng Lingsen, Liu Yuping, Xu Shijing. 2009. Discrete element modeling of the faulting in the sedimentary cover above an active salt diapir. Journal of Structural Geology, 31(9): 989~995.
参考文献
Zhang Bilong, Zhu Guang, Jiang Dazhi, Hu Shaoqi, Xiang Biwei, Zhang Li, Chen Yin. 2009. Numerical modeling and formation mechanism of the eastern Sichuan Jura-typefolds. Geological Review, 55(5): 701~711 (in Chinese with English abstract).
参考文献
Zhang Jie, Yin Hongwei, Meng Lingsen, Xu Shijin. 2008a. Simulation of active salt domes using 2D discrete element method. Progress in Geophysics, 23(6): 1924~1930 (in Chinese with English abstract).
参考文献
Zhang Jie, Yin Hongwei, Xu Shijin. 2008b. Influence of rock strength on fault patterns above active salt domes: Insights from 2D discrete element simulations. Journal of Nanjing University (Natural Science), 44(6): 642~652 (in Chinese with English abstract).
参考文献
Zhang Lisheng, Yan Yi, Shan Yehua, Chen Wenhuang. 2017. Numerical simulation of thrust structural inversion for Taiwan fore-arc basin. Marine Geology Frontiers, 33(6): 24~33 (in Chinese with English abstract).
参考文献
Zhang Yinzhao, Li Changsheng, Zhu Jitian, Yin Hongwei, Xiong Xiaofeng, Wu Zhenyun. 2019. Discrete element numerical simulation of extensional tectonics-examples of Qiongdongnan basin. Research and Exploration in Laboratory, 38(11): 78~82 (in Chinese with English abstract).
参考文献
Zhang Yu, Li Jianghai, Lei Yuting, Yang Menglian, Cheng Peng. 2020. 3D simulations of salt tectonics in the Kwanza Basin: Insights from analogue and discrete-element numerical modeling. Marine and Petroleum Geology, 122: 104666.
参考文献
Zhu Xia. 1983. Approaches to the research of petroliferous basins. Petroleum Geology & Experiment, (2): 116~123 (in Chinese with English abstract).
参考文献
Zou Wei, Yu Yixin, Liu Jinshui, Jiang Yiming, Tang Xianjun, Chen Shi, Yu Lang. 2021. Main controlling factors of the central inversional structure belt and the development of Ningbo anticline in Xihu sag, East China Sea basin. Acta Petrolei Sinica, 42(2): 176~185 (in Chinese with English abstract).
参考文献
蔡申阳, 尹宏伟, 李长圣, 贾东, 汪伟, 陈竹新, 魏东涛. 2016. 基于离散元数值模拟的应变分析和裂缝预测技术. 高校地质学报, 22(1): 183~193.
参考文献
董敏, 宋微, 王志海, 雷永良, 曾旭, 张博, 周彦希. 2019. 鄂尔多斯盆地基底断裂多期演化及其主控因素分析——基于构造物理模拟实验. 地球学报, 40(6): 847~852.
参考文献
窦宝松, 陈秀军. 2013. 边界元法及其在岩土工程中的应用. 水利水电技术, 44(10): 49~51.
参考文献
段云江, 黄少英, 李维波, 张慧芳, 马小丹, 廖斐然. 2017. 用离散元数值模拟法研究克拉苏构造带盐构造变形机理. 新疆石油地质, 38(4): 414~419.
参考文献
段云江, 罗浩渝, 谢会文, 徐振平, 章学岐, 张敬洲, 石磊, 袁瑞. 2021. 塔里木盆地库车坳陷秋里塔格构造带中秋—东秋段盐相关构造特征及变形机理. 天然气地球科学, 32(7): 993~1008.
参考文献
冯建伟, 王志坤, 商琳. 2017. 渤海湾盆地南堡凹陷3区多期叠加断裂体系形成机制. 石油与天然气地质, 38(6): 1032~1042.
参考文献
傅容珊, 黄建华. 2004. 地球动力学. 北京: 高等教育出版社
参考文献
郭婷婷, 徐锡伟. 2011. 有限元法在构造应力场与地震预测研究中的应用与发展. 地震研究, 34(2): 246~253.
参考文献
黄方, 刘琼颖, 何丽娟. 2012. 晚喜山期以来四川盆地构造-热演化模拟. 地球物理学报, 55(11): 3742~3753
参考文献
黄光明, 李忠海, 李庶波, 舒克栋. 2017. 底部滑脱层流变性和厚度变化对褶皱冲断带影响的数值模拟. 大地构造与成矿学, 41(3): 466~480.
参考文献
黄光明, 王岳军, 赵勇刚, 皇甫鹏鹏. 2016. 大巴山前陆冲断带构造样式和演化过程的数值模拟. 地质学报, 90(4): 653~668.
参考文献
贾承造. 2009. 环青藏高原巨型盆山体系构造与塔里木盆地油气分布规律. 大地构造与成矿学, 33(1): 1~9.
参考文献
鞠玮, 侯贵廷, 黄少英, 任康绪. 2013. 库车坳陷依南-吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测. 大地构造与成矿学, 37(4): 592~602.
参考文献
李德生. 1982. 中国含油气盆地的构造类型. 石油学报, (3): 1~12.
参考文献
李长圣. 2019. 基于离散元的褶皱冲断带构造变形定量分析与模拟. 南京大学博士学位论文.
参考文献
李长圣, 尹宏伟, 徐雯峤, 吴珍云, 管树巍, 贾东, 任荣. 2022. 基于离散元的挤压构造定量分析与模拟. 大地构造与成矿学, 46(4): 645~661.
参考文献
李江海, 章雨, 王洪浩, 王殿举. 2020. 库车前陆冲断带西部古近系盐构造三维离散元数值模拟. 石油勘探与开发, 47(1): 65~76.
参考文献
李维波, 李江海, 王洪浩, 黄少英, 能源. 2017. 库车前陆冲断带克拉苏构造带变形影响因素分析——基于离散元数值模拟研究. 大地构造与成矿学, 41(6): 1001~1010.
参考文献
刘璐霄. 2022. 基底构造对盐构造变形的影响分析. 河北地质大学博士学位论文.
参考文献
马宝军, 漆家福, 牛树银, 孙爱群, 曹爱峰, 孙志信. 2009. 统一应力场中基底断裂对盖层复杂断块变形的影响——来自砂箱实验的启示. 地学前缘, 16(4): 105~116.
参考文献
孟令森, 尹宏伟, 张洁, 徐士进. 2007. 岩石强度和应变速率对水平挤压变形影响的离散元模拟. 岩石学报, 23(11): 2918~2926.
参考文献
屈梦雪, 程晓敢, 田禾丰, 陈汉林, 于洪洲, 陈昌锦, 孙思瑶. 2023. 双滑脱层强度对博格达山北缘构造变形的影响: 基于离散元数值模拟. 地球科学, 48(4): 1366~1378.
参考文献
孙倩倩, 刘志娜, 余一欣, 唐贤君, 陈石, 彭浩. 2022. 先存断层产状及其组合关系对反转构造变形影响的离散元数值模拟研究. 大地构造与成矿学, 46(1): 22~35.
参考文献
谭晓慧, 宋传中, 查甫生, 李加好, 张妍. 2010. 数值模拟方法在构造变形研究中的应用. 合肥工业大学学报(自然科学版), 33(12): 1851~1857.
参考文献
吴超, 徐雯峤, 李青, 汪伟, 陈维力, 尹宏伟, 屈元基. 2023. 库车坳陷克深地区先存被动盐底辟挤压变形数值模拟. 高校地质学报, 29(2): 240~250.
参考文献
向用发, 卢玺, 徐宇浩, 樊其志. 2019. 有限元数值模拟法基本原理及其在地质构造变形研究中的应用综述. 四川地质学报, 39(4): 581~588.
参考文献
肖芳锋, 侯贵廷, 李江海. 2010. 准噶尔盆地新生代构造应力对石炭纪火山岩构造裂缝发育的控制. 岩石学报, 26(1): 255~262.
参考文献
辛文, 陈汉林, 安凯旋, 张欲清, 杨树锋, 程晓敢, 林秀斌. 2020. 基于离散元数值模拟的西南天山山前冲断带构造变形控制因素研究. 地质学报, 94(6): 1704~1715.
参考文献
徐雯峤, 汪伟, 尹宏伟, 贾东, 李长圣, 杨庚兄, 李刚. 2020. 库车坳陷东西段盐下构造变形差异演化数值模拟分析. 地质学报, 94(6): 1740~1751.
参考文献
杨克基, 漆家福, 刘傲然, 张卫刚, 马宝军, 李冬. 2022. 库车坳陷中段基底断裂特征及其对盐构造变形的影响. 地质科学, 57(4): 991~1008.
参考文献
杨树锋, 贾承造, 陈汉林, 贾东, 魏国齐, 肖安成, 郭召杰, 程晓敢, 吴磊, 尹宏伟, 章凤奇, 林秀斌. 2022. 沉积盆地构造核心理论和关键技术方法: 前沿与发展方向. 地学前缘, 29(6): 10~23.
参考文献
张必龙, 朱光, 胡召齐, 向必伟, 张力, 陈印. 2009. 川东“侏罗山式”褶皱的数值模拟及成因探讨. 地质论评, 55(5): 701~711.
参考文献
张洁, 尹宏伟, 孟令森, 徐士进. 2008a. 主动底辟盐构造的二维离散元模拟. 地球物理学进展, 23(6): 1924~1930.
参考文献
张洁, 尹宏伟, 徐士进. 2008b. 用离散元方法讨论岩石强度对主动底辟盐构造断层分布模式的影响. 南京大学学报(自然科学版), 44(6): 642~652.
参考文献
张立升, 闫义, 单业华, 陈文煌. 2017. 台湾弧前盆地构造反转的数值模拟. 海洋地质前沿, 33(6): 24~33.
参考文献
张迎朝, 李长圣, 朱继田, 尹宏伟, 熊小峰, 吴珍云. 2019. 伸展构造离散元数值模拟——以琼东南盆地为例. 实验室研究与探索, 38(11): 78~82.
参考文献
朱夏. 1983. 含油气盆地研究方向的探讨. 石油实验地质, (2): 116~123.
参考文献
邹玮, 余一欣, 刘金水, 蒋一鸣, 唐贤君, 陈石, 余浪. 2021. 东海盆地西湖凹陷中央反转构造带发育主控因素及宁波背斜形成过程. 石油学报, 42(2): 176~185.
目录contents

    摘要

    数值模拟是一种利用电子计算机,通过数值计算和图像显示的方法,研究工程问题、物理问题乃至自然界各类问题的方法。随着高性能计算的不断发展,数值模拟方法在沉积盆地构造变形研究中的应用不断扩大,学术界和工业界将数值模拟方法广泛应用于盆地构造变形特征与变形机制的定量研究,取得了丰硕的成果。本文在系统分析前人数值模拟成果的基础上,阐述了有限元、有限差分、边界元和离散元四种常用数值模拟实验方法的特征和应用。同时,本文对近年来数值模拟方法在沉积盆地褶皱冲断构造变形中的研究进展进行了分类总结,重点介绍这一方法在构造特征与变形机制研究中取得的成果,为数值模拟方法在盆地构造变形领域应用的不断扩大和深入提供参考。最后,本文对数值模拟技术在目前应用中面临的问题和未来的发展方向提出了一些看法和建议。

    Abstract

    Numerical simulation is a method that uses computers to solve engineering, physical, and even natural problems by numerical calculation and graphical display. With the development of high-performance computing, numerical simulation has been widely used in structural deformation research of sedimentary basins and has achieved fruitful results. Based on a review of previous studies, four main numerical simulation methods are introduced: finite element method, finite difference method, boundary element method, and discrete element method. Then, the results of previous studies have been summarized to conclude the effects of several first-order parameters on the geometry and evolution of fold-and-thrust belts in basin deformation. This paper aims to provide a comprehensive understanding of numerical simulation and to guide future researchers to apply this method in basin deformation. Finally, the limitations and future perspectives have been discussed.

  • 沉积盆地作为地球表层的基本构造单元,一直以来都是地质学研究的经典领域。沉积盆地占我国国土面积的近一半,并且都具有丰富的油气勘探潜力,因此备受我国学界和工业界的关注(李德生,1982; 朱夏,1983; 贾承造,2009)。沉积盆地构造变形是盆地研究的主要内容之一,主要研究沉积岩在成盆过程和后期改造作用中所发生的变形作用(杨树锋等,2022)。早期的构造变形分析主要基于野外地质观测等手段获得的浅层构造信息来推测深部构造特征,以定性分析为主并且存在构造多解性和不确定性。20世纪后期,断层相关褶皱理论(Suppe,1983; Suppe and Medwedeff,1990)的提出开启了沉积盆地构造变形特征定量化研究的大门,为之后几十年构造变形运动学的定量研究注入了巨大活力。然而以断层相关褶皱理论为基础的单纯几何学定量分析在应用于复杂构造时具有一定的局限性。符合运动学约束的构造形态解释存在多解性,因为自然界的构造变形受岩层力学性质、应力状态和应变速率、断层形态、构造与地表过程的相互作用等多种因素的影响。20世纪80年代以来普林斯顿团队建立的逆冲构造临界角模型(Davis et al.,1983; Dahlen,1990; Suppe,2007)定量解释了褶皱岩层中滑脱层力学性质与构造楔形态的关系。临界角模型是构造变形机制定量研究的一大突破,然而该模型只考虑构造楔的整体形态(楔体顶、底坡度),无法刻画楔体内部断层及相关褶皱的形态,在应用于褶皱冲断带定量研究中具有一定的不确定性。因此,综合考虑地质构造的几何形态与变形机制,根据具体的研究对象建立合适的地质模型,开展物理及数值模拟是研究沉积盆地构造变形的有效方法。

  • 以物理模拟和数值模拟为代表的模拟研究方法主要用于探究构造变形的演化过程,分析构造变形过程中不同因素对构造特征的影响,揭示构造变形的成因机制。相比于物理模拟在材料选择上遇到的挑战,数值模拟的优点在于可以更加自由地设置不同地层的力学性质,有利于定量分析地层性质等内在差异对构造变形的影响。随着高性能计算算力的提高与普及,数值模拟方法在沉积盆地构造变形研究中得到广泛应用并取得了众多的成果。本文在分析前人众多研究的基础上,对沉积盆地构造变形数值模拟技术的常用方法进行了系统的介绍,阐述了不同方法之间的主要差异及其应用领域。同时,我们梳理了近年来数值模拟方法在沉积盆地褶皱冲断构造变形研究中取得的认识,为数值模拟技术在构造变形领域应用的不断扩大和深入提供参考。同时本文对数值模拟技术在目前应用中面临的问题和未来的发展方向也提出了一些看法和建议。

  • 1 沉积盆地构造变形数值模拟主要方法简介

  • 数值模拟是一项综合了数学、物理、化学等学科理论的综合性方法,主要手段有数值计算和图像显示等,是研究工程问题、物理问题等各种自然问题的有力定量化工具。数值模拟技术仍处于蓬勃发展中,在广泛应用中不断出现新的分支,形成了多种互补又具有鲜明特征的模拟方法。地质体可以被看成连续介质或者不连续介质,因此,相应的数值模拟方法也可以分为连续介质方法(如有限元法、有限差分法及边界元法)和非连续介质方法(如离散元法)。连续介质方法中最基本的假设是“连续介质”,该假设认为真实的流体或固体可以近似地看作是由连续的无空隙的“质点”组成,而物质的宏观性质服从牛顿力学定律。有限元法(finite element method)、有限差分法(finite difference method)、边界元法(boundary element method)属于连续介质力学方法,而离散元法(discrete element method)属于非连续介质力学方法。离散元法可适用于模拟具有不连续性、不均匀性和各向异性的结构或材料。盆地构造因其不同的时间和空间尺度,其所历经的地质演化过程也有巨大差异,因此在建立力学模型时应该根据具体的研究对象选择合适的模拟方法。

  • 1.1 有限元法

  • 有限元法(finite element method,FEM)的主要原理是将连续体结构的求解域看成是由若干个称为有限元的小的互连子域组成,对每一单元假定一个合适的近似函数,然后推导求解这个域总的满足条件,从而得到问题的解。该方法将抽象的力学模型转化为具体的方程并进行简化求解,将连续的无限自由度问题离散成以未知场函数的结点值为未知量的有限自由度问题,以此建立一个符合实际的二维或三维有限元模型(郭婷婷和徐锡伟,2011; 向用发等,2019)。由于处理步骤少,模拟效率高,不同材料适用性强,有限元法在构造模拟研究中的应用最为广泛,可用于构造变形研究的有限元软件已经较为成熟(图1a),如ANSYS、ABAQUS、MARC、ADINA、NASTRAN、GEOFEM等。

  • 有限元法模拟的过程大致如下。首先简化目标区的地质模型,根据实际地质情况,考虑弹性、黏性、黏弹性、弹塑性等不同介质,选取合适的物性参数(傅容珊和黄建华,2004),如一般采用马克斯韦尔(Maxwell)黏弹性模型模拟流变性强的盐底辟和盐席(Couzens-Schultz et al.,2003; Gemmer et al.,20042005)。然后,在满足质量、动量、能量守恒的基础上,建立平衡方程和本构模型,将连续的求解域分解为尽可能精细的有限个单元的组合体,通过引入合理的模型边界条件(位移与应力等求解高阶代数方程组),计算每个单元内假设的近似值来表示工区内所有的未知场函数(例如目标区的应力应变场,并在此基础上进一步处理获取位移、应力场结果)。最后,实现结果可视化,对数值模拟计算结果进行综合研究分析。

  • 1.2 有限差分法

  • 有限差分法(finite difference method,FDM)与有限元法类似,通过将模型分成有限个单元并得到一组代数方程组来进行求解。但在求解过程中,对每一单元应用经离散化得到的差分方程而不是近似函数。将导数的求解由有限差分近似公式替代,从而将问题转化为求解代数方程组问题。求解过程中,从初始值出发,微分方程的近似解是随着差分格式沿时间方向的增加而逐渐得到的。

  • 有限元程序常将单元矩阵合并为一个大的总刚度矩阵,并通过隐式的方法来求解。而有限差分法常通过显式的时程方法在每个计算时步重新生成有限差分方程,避免了在运算过程中形成如有限元程序那样的整体刚度矩阵(谭晓慧等,2010)。在某个微小的时段内,作用于该节点的荷载只对周围的若干节点(例如相邻的节点)有影响。因其在每一时步中变形很小,采用小变形的本构关系,将各时步的小变形叠加而得到大变形,故而被广泛应用于求解非线性问题、大变形问题以及物理不稳定性问题(图1b)。在构造变形研究中常见的有限差分软件是FLAC2D和FLAC3D。

  • 图1 四种常用数值模拟方法

  • Fig.1 Four numerical simulation methods

  • (a)—褶皱冲断带的有限元模型(据Yang Xiaodong et al.,2017);(b)—走滑断层间的应力分布有限差分模拟(据Jiao Liqing et al.,2021); R—走滑断层间的长宽比; M—中点; C—挤压; T—拉伸;(c)—边界元模型,只在断层上划分单元(据Maerten et al.,2002);(d)—离散元双轴剪切实验(据李长圣,2019

  • (a) —finite element model of fold-thrust belt (after Yang Xiaodong et al., 2017) ; (b) —finite difference simulation of stress distribution between strike-slip faults (after Jiao Liqing et al., 2021) ; R—length-width ratio between strike-slip faults; M—middle point; C—compression; T—tensile; (c) —boundary element model, units divided by faults (after Maerten et al., 2002) ; (d) —discrete element model of the biaxial shear experiment (after Li Changsheng, 2019)

  • 1.3 边界元法

  • 边界元法(boundary element method,BEM)是继有限元法之后发展起来的一种独具特色的边界类型数值模拟方法(图1c)。边界元法只在定义域的边界上划分单元,这与有限元法在连续体域内划分单元的思路不同。通过对边界单元进行插值离散,再利用解析公式把求解的边界值与域内函数值联系起来,从而用满足控制方程的函数去逼近边界条件。与有限元相比,边界元法具有单元个数少,数据准备简单等优点,可用较简单的单元准确地模拟边界形状,最终得到阶数较低的线性代数方程组。在研究边界变量变化梯度较大的问题,如应力集中问题,或边界变量出现奇异性的裂缝问题,边界元法被公认为比有限元法更加精确和高效。但是边界元法在解决非线性问题时,会遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。

  • 边界元法可分为直接法和间接法两种基本类型,直接法采用具有明确物理意义的变量来建立边界积分方程; 间接法采用不甚明确的变量,边界一般被加上按一定规律分布的虚拟力和虚拟位移作为基本未知数,建立离散化的方程,待求出这些变量后再计算边界及域内的位移和应力(窦宝松和陈秀军,2013)。

  • 1.4 离散元法

  • 离散元方法(discrete element method,DEM)由Cundall and Strack(1979)在研究岩土体变形时提出,基本思想是将材料视为由若干个离散单元组成的初始弹性颗粒系统,通过给定合适的微观参数,利用时间-位移有限差分方法,模拟计算颗粒在牛顿定律下的运动学和力学行为,从微观角度解释物质相互作用的内在机制。DEM采用颗粒相互作用来模拟系统的动力学机制,有利于对运动演化进行系统的模拟和观测。DEM方法可以定量分析作用在每个颗粒上的力和位移,这在模拟各向异性系统上具有突出优势。此外,DEM的离散性质使其可以有效模拟断层及节理高度发育的不连续系统。DEM方法的另一个优势是对于材料力学性质的模拟,通过剪切实验来标定宏观力学参数和细观颗粒间的关系(图1d),从而模拟多种材料性质的相互变形关系。

  • 离散元的求解实际上是迭代计算颗粒位移和受力,可以概括为两部分。① 检索颗粒之间的接触关系,应用接触力学模型(即力-位移法则)并得出初始时刻各个颗粒的合力和合力矩。② 求解牛顿力学方程并更新颗粒位置。反复循环上述两个步骤直至结束计算。DEM将地质体视为离散的单元,允许颗粒间进行较大的相对位移,可以更好地模拟高度变形,适用于模拟沉积地层中出现的断层及断层相关褶皱等脆性变形的非连续力学行为的研究。与构造物理模拟实验具有一定的相似性,但是在一定程度上突破了物理模拟存在的流变学和比例化问题。当前,较为成熟的离散元软件有PFC2D/3D、YADE、RICEBAL、ZDEM。

  • 2 数值模拟方法在沉积盆地褶皱冲断构造变形中的应用

  • 近年来数值模拟方法在盆地构造变形研究中得到越来越多的重视,国内外地质学家将数值模拟方法应用于全球典型盆地的构造特征与变形机制的研究中。本文针对沉积盆地中广泛发育的褶皱冲断构造,从先存构造、滑脱层、地层性质、基底形态和地表过程五个方面,系统总结数值模拟方法在构造特征与变形机制研究中的应用及取得的认识。应力方向也是影响沉积盆地褶皱冲断构造变形的重要因素,应力方向差异造成的正向或斜向挤压对沉积盆地演化的影响需要开展三维的数值模拟研究。现有褶皱冲断构造变形数值模拟成果主要是基于二维分析,三维模拟研究仍处于初步发展阶段(Spitz et al.,2020; Shen Zhuoyi et al.,2022),相关成果较少,因此本篇文章没有针对这一因素进行系统的总结分析。

  • 2.1 滑脱层

  • 滑脱层,作为沉积盆地内的非能干性岩层,具有较低的力学性质和较高的应变强度,往往使上下两套岩层中呈现不同的构造样式,是影响沉积盆地内部构造变形及其与周缘造山带耦合变形的重要因素。数值模拟通过构建不同的力学模型,来模拟不同性质、厚度和层数的滑脱层,有助于提高我们对沉积盆地挤压构造变形的理解。在挤压条件下,从造山带向盆地方向,沉积盆地褶皱冲断变形模式从基底卷入的厚皮构造变形向薄皮滑脱变形转变。数值模拟研究显示构造样式的转换主要受到多种因素的影响,有沉积盖层和基底的地层强度比、沉积盖层内部滑脱层的性质和控制基底变形的深部流变层的性质(Bauville and Schmalholz,2015)。Wang Maomao et al.(2022)通过数值模拟显示了川西冲断构造变形的两种样式,靠近山前带的龙门山发育基底卷入的厚皮构造变形,而靠近克拉通区的龙泉山发育薄皮构造变形。

  • 由于滑脱层力学性质的差异(脆性、塑性和黏性),薄皮滑脱构造中会发育多样的构造类型,多套滑脱层控制的多层滑脱变形体系具有更加丰富的内部变形模式和构造组合。因此,近年来针对滑脱层对沉积盆地褶皱冲断构造变形的影响,开展了大量的研究并取得了诸多进展。首先,针对薄皮滑脱体系中的基底滑脱层,通过数值模拟定量的探讨了其对上覆地层的褶皱冲断变形的影响(Simpson,20092011; Hardy et al.,2009; 蔡申阳等,2016; Li Changsheng et al.,20182021a; 李长圣等,2022; Shen Zhuoyi et al.,2022)。Ruh Jonas(2012)通过二维有限元方法模拟了由脆性、线性黏性和非线性黏性类型滑脱层所控制的褶皱冲断带的变形过程,脆性滑脱基底上通常发育前冲式的逆冲叠瓦构造,形成高陡的地表形态;类比盐岩的黏性滑脱基底表现为连续的箱状褶皱,构造变形远距离传播,形成的低缓的地表形态。Meng Qingfeng and Hodgetts(2019a,2019b)通过离散元方法模拟了基底滑脱层厚度对褶皱带的影响,认为地表的抬升和褶皱的幅度正比于滑脱层的厚度。Huang Guangming et al.(2020)得出基底滑脱层的厚度是川东褶皱带隔档式和隔槽式褶皱差异的主控因素(图2)。Li Changsheng et al.(2021b)认为滑脱层厚度会影响解耦变形的程度以及应力应变的分布。

  • 此外,薄皮滑脱体系内部往往发育多套非能干层,对多层滑脱构造的模拟有助于我们认识复杂构造的垂向叠置。大量数值模拟研究揭示不同构造层的构造样式主要受到其直接接触的滑脱层性质和滑脱层组合模式的控制(Dean et al.,2015; 辛文等,2020; 徐雯峤等,2020; 屈梦雪等,2023)。双层滑脱构造是多层滑脱体系中最为常见的构造类型,通常包含基底滑脱层和上部滑脱层。在脆性基底滑脱层的控制下一般发育紧密排列的冲断楔构造,而塑性上部滑脱层之上主要发育远距离滑脱褶皱构造。当双滑脱层力学性质均为塑性或黏性时,构造变形以基底滑脱层为主,上滑脱层通常表现为局部构造调节作用。当双滑脱层内聚力强度不同时,应力会优先沿力学性质弱的滑脱层传递。上滑脱层的深度同样也控制着解耦的程度,上滑脱层越浅,解耦越显著。此外,多层滑脱体系中在不同滑脱层之间会发育隐伏构造变形,通过数值模拟可以清晰地刻画滑脱层层间隐伏构造的变形过程。如Xu Wenqiao et al.(2021)对四川盆地双鱼石区域多层滑脱体系的数值模拟揭示了其深部发育的隐伏膝折构造。

  • 图2 基底滑脱层厚度横向变化的有限元数值模拟(据Huang Guangming et al.,2020

  • Fig.2 Finite element numerical simulation revealing effects of basal detachment thickness on structural deformation (after Huang Guangming et al., 2020)

  • 2.2 先存构造

  • 先存构造一般是指在构造变形过程中存在的应力薄弱点,常见的先存构造类型有先存断裂、古隆起、盐底辟等。先存构造作为应力的薄弱点,在后期的挤压或拉张环境中会优先发生变形,从而影响构造变形的样式和传播顺序。先存断裂是受到广泛关注的一种先存构造,它对上覆盖层断裂体系的展布和构造样式等均有较强的控制作用(Finch et al.,2004; Benesh et al.,2007; 马宝军等,2009; 董敏等,2019; 张迎朝等,2019; 辛文等,2020; 徐雯峤等,2020)。冯建伟等(2017)针对渤海湾盆地多期叠加断裂体系的形成机制和演化过程,结合有限元数值模拟,认为先存断裂影响着局部应力场的重新分布以及后期断裂的演化。库车坳陷构造演化的数值模拟显示先存断裂主要控制构造的变形范围、应力的释放以及挤压端垂向隆升的幅度(李维波等,2017; 段云江等,20172021; 李江海等,2019; 徐雯峤等,2020; 杨克基等,2022)。Deng Chao et al.(2017)模拟了恩平凹陷基底先存逆冲断裂在后期伸展环境下的活化机制和演化模式,揭示了基底逆冲断裂对断裂发育和盆地演化的影响。孙倩倩等(2022)模拟研究了先存正断层的陡缓程度、倾向组合关系和距离挤压端的远近等因素对断层的反转构造发育及其反转量的影响。古隆起是另一种常见的先存构造类型,古隆起的存在不仅会导致其上方断裂活动性的明显增强,同时靠近古隆起的断裂间隔也会增大(图3)(Morgan and Bangs,2017)。例如,李维波等(2017)采用离散元数值模拟的方式对库车坳陷克拉苏构造带中基底隆起对构造演化的影响进行了探索,结果表明基底隆起前沿会形成应力的集中带。而后,刘璐霄 (2022)采用离散元的方法对库车基底构造进行了进一步地探索,认为古隆起与盐构造之间存在密切的关系,对油气分布也起着重要的控制作用。盐底辟是含盐盆地中常见的先存构造类型,盐底辟的存在不仅会改变盐上断裂活动顺序,同时也会影响盐下断裂的演化(张洁等,2008a; Yin Hongwei et al.,2009; 吴超等,2023)。例如,吴超等(2023)采用离散元模拟了盐底辟对库车坳陷大北-克深区域的影响,结果显示盐底辟的位置控制了盐上背斜构造的形成,也增强了盐下断裂的活动。

  • 2.3 地层性质

  • 地层的性质差异一般由不同沉积地层组合控制,由于传统的研究方法难以反映地层性质的变化,因此地层性质对构造变形的影响是构造变形研究中较为薄弱的一环。在数值模拟中,可以通过改变地层的内聚力来调整地层的性质,实现从脆性地层向塑性地层的逐渐变化。数值模拟结果显示随着地层性质整体由弱变强,构造变形过程中形成的断裂会由松散的裂隙向明显集中的断层转变,断层的间距和位移量与黏结参数相关(孟令森等,2007; 张洁等,2008b; Morgan et al.,2015),同时对区域地层应力方向和裂缝分布有较好的拟合(肖芳锋等,2010; 鞠玮等,2013; Sun Shuai et al.,2017)。但是不同地层性质的组合对构造变形的影响更加复杂。Schöpfer et al.(2007)采用离散元数值模拟的方法研究了围压和地层强度比对断层几何形态和发育的影响,模型结果表明断裂带的复杂性是地层强度比和围压的函数。张必龙等(2009)通过采用有限差分法(FLAC)对“侏罗山式”褶皱进行了模拟分析,结果显示地层间黏聚力差异和上覆压力是控制隔档式和隔槽式褶皱的主要因素。Hamdani et al.(2021)对黏性盐层和上覆黏塑性沉积层的耦合进行了分析和模拟,结果表明沉积覆盖层和盐层的黏度与厚度控制着耦合层的变形,并据此定量地解释了黎凡特盆地边缘断裂的位置和脆性变形的时间。此外,地层性质对走滑断裂体系的空间展布也具有直接的影响。Jiao Liqing et al.(2021)通过离散元模拟方法提出走滑断裂体系中内部断裂的长度与脆性地层的厚度呈正相关。Chen Jiajun et al.(2022)通过数值模拟方法对走滑断裂形成过程中的应力应变开展精细分析,揭示了地层性质对走滑断裂垂向发育的影响(图4)。

  • 图3 先存海山对增生楔中构造变形的影响(据Morgan and Bangs,2017

  • Fig.3 Influence of pre-existing seamount on structural deformation in accretionary wedges (after Morgan and Bangs, 2017)

  • 2.4 基底形态

  • 基底形态对上覆地层的沉积范围,构造薄弱带的形成,甚至对于断裂的分布都有较强的控制作用。由于基底形态的复杂性,其对上覆构造变形的控制作用也具有明显的差异。Tscharner et al.(2016)通过三维数值模拟,定量研究了基底斜地堑在缩短和正交伸展过程中对基底隆起的影响。研究结果表明,半地堑可引起横向变化的基底隆起,在半地堑上方形成凹陷(图5)。凹陷的振幅取决于地堑的初始走向以及基底和沉积物的幂律应力指数。张立升等(2017)利用数值模拟再现了台湾弧前盆地逆冲构造反转的演化过程。模拟结果显示岛弧基底的坡角控制了弧前盆地中褶皱发育的次序。黄光明等(2017)在对塔西南地区进行研究时,采用有限差分法对顶板双重构造和背驮盆地两种明显不同构造类型的成因进行了探索,研究指出基底的弯曲凸起使后陆沉降更大,从而接受了更厚的沉积物堆积,更易于形成背驮盆地。Zhang Yu et al.(2020)通过三维离散元数值模拟,分析了含盐盆地中盐构造的分带性特征及其主要的控制因素。模拟结果显示,盆地尺度的盐构造变形的主要控制因素是基底构造活动,基底高度与形态的差异导致了与基底接触的盐体形成不同的垂向速度分量,从而导致构造样式的差异。邹玮等(2021)利用地震资料解释结果和离散元数值模拟方法,分析了西湖凹陷中央反转构造带的发育特征及其主控因素,研究表明,西湖凹陷基底的不均一性和边界断层产状的变化对反转构造的发育具有重要的控制作用。基底刚性异常体的位置影响了中央反转构造带的背斜分布。总而言之,基底形态是影响沉积盆地构造变形的重要因素,并且与沉积盆地的形成演化历史息息相关。

  • 2.5 地表过程

  • 地表过程和构造变形之间存在着复杂的相互作用关系,其中剥蚀和沉积过程是常见的地表过程。剥蚀和沉积会促进或者抑制区域的构造演化过程,从而引起整个构造变形样式和过程的变化(图6)(Xu Wenqiao et al.,2021; Wu Zhenyun et al.,2021; Wang Maomao et al.,2022)。Cruz et al.(2010)通过有限元数值模拟对不同剥蚀强度下的前陆冲断带进行了模拟,发现前陆冲断带内的剪切带数量与剥蚀强度存在反比关系,同时剪切带内的累积应变量会随着剥蚀强度的增加而增大。前陆冲断带内的运动学信息可以在一定程度上揭示造山楔的剥蚀历史。黄方等(2012)采用有限元数值模拟方法,基于热演化相关知识,对晚喜山期以来四川盆地的构造-热演化特征进行了研究。结果表明抬升剥蚀作用会降低地表热流和基底热流,且剥蚀速率越大,这种降低作用越明显。黄光明等(2016)通过有限差分方法,利用平面应变的二维弹塑性本构模型,对大巴山前陆冲断带开展了一系列数值模拟研究。结果表明,同构造沉积以及滑脱层的分布限定了主前缘逆冲断裂的位置。而后黄光明等(2017)在对塔西南地区进行研究时,采用有限差分软件对不同的基底沉降、同构造剥蚀和沉积速率下的褶皱冲断带进行了模拟。模拟结果表明同构造沉积位置对褶皱冲断带构造样式的影响巨大。

  • 图4 地层性质对走滑断层的影响(据Chen Jiajun et al.,2022

  • Fig.4 Influence of stratigraphic properties on evolution of strike-slip faults (after Chen Jiajun et al., 2022)

  • 图5 半地堑三维有限应变椭球体(据Tscharner et al.,2016

  • Fig.5 Three-dimensional finite strain ellipsoid of half-graben (after Tscharner et al., 2016)

  • 图6 剥蚀作用对双层滑脱体系构造变形的影响(据Xu Wenqiao et al.,2021

  • Fig.6 Influence of denudation on structural deformation of double-layer decollement system (after Xu Wenqiao et al., 2021)

  • 3 机遇与挑战

  • 数值模拟是研究小到几米、大到数百千米构造的有力工具。过去40年里,在构造变形研究领域,数值模拟经历了萌芽、雏形与成长期,目前正迎来加速发展期。除在盆地褶皱冲断构造变形研究中广泛运用,国内外研究人员还在微构造、盆山耦合和板块运动等多尺度的构造变形领域,针对构造变形特征、演化过程、成因机制和次生灾害等方面开展了大量的研究并取得了丰富的成果。前人的研究充分证明了数值模拟方法在盆地构造变形研究中的先进性和有效性,在不同领域取得的丰富成果也进一步展现这一方法在盆地构造变形研究中应用的巨大潜力。但是,作为一种与多学科具有交叉属性的方法,数值模拟方法在盆地构造变形中的应用也面临着各种挑战,主要有以下3个方面:

  • (1)实验设计基于地质模型,分析结果反馈地质模型。数值模拟是建立在地质模型基础上的正演分析,基于实际地质资料建立合理的实验模型,分析控制构造变形过程的影响因素,探究构造变形特征和形成机制。在上述基础上,如何利用实验结果来反馈检验盆地模型的合理性也是数值模拟研究需要重点关注的问题。例如构造变形过程中的多场耦合问题。构造变形过程不仅仅是简单的脆性变形和韧性变形,同时也与构造流体的运动、温度和压力等因素密切相关。上述地质过程十分复杂,并且由于发生在地下,难以直接观测。利用数值模拟来研究构造变形与流体和温压等条件的相互关系和耦合过程,有望取得较大突破,深化对于构造变形机制的认识,并且这一研究对油气等资源的勘探也具有重要的推动作用。当然,实现模拟构造变形过程中多因素作用下的变形过程,需要巨大的计算量、算法改进等条件,目前仍然存在很多的工作要做。

  • (2)发展高性能三维数值软件。当前,基于二维数值模拟的构造变形分析已经相对成熟,有了一定的工程应用价值,在今后的一段时间内,二维数值模拟仍是构造变形研究重要方法之一。但是,盐构造的侧向运移、走滑断裂的三维展布以及应力方向的差异等相关问题研究必须采用三维数值模拟方法。基于数值模拟的三维构造变形研究,尤其离散元数值模拟所需的计算量较大。近些年,GPU(图形处理器)开始用于科学计算,单GPU的加速效果已经十分可观。基于GPU并行计算显著提高了数值模拟软件的计算效率,是进行大规模数值计算的重要研究方向。开发适用于超级计算机的高性能三维数值模拟软件,才能真正实现三维构造数值模拟。

  • (3)建立构造数值模拟数据库,深化模拟实验与真实自然界的关系。计算机科学的发展,促进了数值模拟技术和数值算法的发展,为现代构造数值模拟实验室的建立提供了可能。通过数值模拟技术模拟材料的组成和结构,制备“数字沙箱模型”;以数值分析软件实现“试验”和数据的记录以及输出;借由相关软件进行数据处理,获得体系应力应变及构造演化过程。模拟实验的最终目的仍然是对真实变形的分析与预测,例如,如何建立数值模拟变形过程中的应力应变和自然界构造变形过程中应力应变的关系,了解自然界构造变形过程中应力应变对资源勘探和地质灾害预测都具有重要的意义。而精确建立实验与真实数据对应关系的关键是海量的实验数据。通过建立构造模拟数据库,收集所有的数值模拟结果,集合人工智能和大数据分析方法,可以显著提升数值模拟实验方法的科学性和准确性。

  • 4 结论

  • 数值模拟方法是一种有效的探究盆地构造变形研究中面临的各种问题的定量方法。本文总结了有限元、有限差分、边界元和离散元这四种数值模拟方法的主要特征和应用。并且,针对沉积盆地中广泛发育的褶皱冲断构造,系统地分析了数值模拟方法在这一类型构造研究中所取得的进展,分别阐述了滑脱层、先存构造、地层性质、基底形态和地表过程五个关键因素对沉积盆地褶皱冲断构造特征与变形机制的影响。在构造特征分析,变形过程模拟和应力应变预测等多个方面,展示了数值模拟在沉积盆地构造变形研究中有效性以及研究范围进一步扩大的潜力。

  • 然而,数值模拟在沉积盆地构造变形研究中也存在限制和不足。数值模拟作为一种方法,是为盆地构造变形研究服务,受制于计算能力,目前盆地构造变形研究主要采用二维数值模拟。但是,盐构造的侧向运移、走滑断裂的三维展布以及应力方向差异的影响等相关问题研究仍有赖于三维数值模拟方法的应用。并且现有数值模拟研究主要关注盆地构造变形中的脆性变形和韧性变形,而构造变形过程中构造流体的运动、温度和压力等因素的影响仍没有考虑,这有待数值模拟方法在多场耦合条件下的改进和升级。最后,通过大量的实验数值,精确建立实验与自然界真实变形的对应关系,将进一步显著提升数值模拟实验方法的科学性和准确性。

  • 致谢: 感谢审稿人的细心审阅与宝贵意见。

  • 参考文献

    • Bauville A, Schmalholz S M. 2015. Transition from thin- to thick-skinned tectonics and consequences for nappe formation: Numerical simulations and applications to the Helvetic nappe system, Switzerland. Tectonophysics, 665: 101~117.

    • Benesh N, Plesch A, Shaw J, Frost E. 2007. Investigation of growth fault bend folding using discrete element modeling: Implications for signatures of active folding above blind thrust faults. Journal of Geophysical Research: Solid Earth, 112: B3S04.

    • Cai Shenyang, Yin Hongwei, Li Changsheng, Jia Dong, Wang Wei, Chen Zhuxin, Wei Dongtao. 2016. Technology of strain analysis and fracture prediction based on DEM numerical simulation. Geological Journal of China Universities, 22(1): 183~193 (in Chinese with English abstract).

    • Chen Jiajun, He Dengfa, Tian Fanglei, Huang Cheng, Ma Debo, Zhang Weikang. 2022. Control of mechanical stratigraphy on the stratified style of strike-slip faults in the central Tarim craton, NW China. Tectonophysics, 830: 229307.

    • Couzens-Schultz B A, Vendeville B C, Wiltschko D V. 2003. Duplex style and triangle zone formation: Insights from physical modeling. Journal of Structural Geology, 25(10): 1623~1644.

    • Cruz L, Malinski J, Wilson A, Take W A, Hilley G. 2010. Erosional control of the kinematics and geometry of fold-and-thrust belts imaged in a physical and numerical sandbox. Journal of Geophysical Research, 115(B9): 2169~9313.

    • Cundall P A, Strack O D. 1979. A discrete numerical model for granular assemblies. Geotechnique, 29(1): 47~65.

    • Dahlen F. 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18(1): 55~99.

    • Davis D, Suppe J, Dahlen F A. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88(B2): 1153~1172.

    • Dean S, Morgan J K, Brandenburg J P. 2015. Influence of mobile shale on thrust faults: Insights from discrete element simulations. AAPG Bulletin, 99(3): 403~432.

    • Deng Chao, Gawthorpe R L, Finch E, Fossen H. 2017. Influence of a pre-existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling. Journal of Structural Geology, 105: 44~61.

    • Dong Min, Song Wei, Wang Zhihai, Lei Yongliang, Zeng Xu, Zhang Bo, Zhou Yanxi. 2019. An analysis of polyphasic evolution and the main controlling factors of basement faults in the Ordos basin based on structural physical simulation experiments. Acta Geoscientica Sinica, 40(6): 847~852 (in Chinese with English abstract).

    • Dou Baosong, Chen Xiujun. 2013. Boundary element method and its application to geotechnical engineering. Water Resources and Hydropower Engineering, 44(10): 49~51 (in Chinese with English abstract).

    • Duan Yunjiang, Huang Shaoying, Li Weibo, Zhang Huifang, Ma Xiaodan, Liao Feiran. 2017. Using discrete element numerical simulation method to study salt tectonic deformation mechanism of Kelasu structural belt. Xinjiang Petroleum Geology, 38(4): 414~419 (in Chinese with English abstract).

    • Duan Yunjiang, Luo Haoyu, Xie Huiwen, Xu Zhenping, Zhang Xueqi, Zhang Jingzhou, Shi Lei, Yuan Rui. 2021. Salt-related structural characteristics and deformation mechanism of the Zhongqiu-Dongqiu section of the Qiulitag structural belt, Tarim basin. Natural Gas Geoscience, 32(7): 993~1008 (in Chinese with English abstract).

    • Feng Jianwei, Wang Zhikun, Shang Lin. 2017. Genetic mechanisms of superimposed fault systems in Block 3 of Nanpu Sag, Bohai Bay basin. Oil & Gas Geology, 38(6): 1032~1042 (in Chinese with English abstract).

    • Finch E, Hardy S, Gawthorpe R. 2004. Discrete-element modelling of extensional fault-propagation folding above rigid basement fault blocks. Basin Research, 16(4): 467~488.

    • Fu Rongshan, Huang Jianhua. 2004. Geodynamics. Beijing: Higher Education Press (in Chinese).

    • Gemmer L, Ings S J, Medvedev S, Beaumont C. 2004. Salt tectonics driven by differential sediment loading: Stability analysis and finite-element experiments. Basin Research, 16(2): 199~218.

    • Gemmer L, Beaumont C, Ings S J. 2005. Dynamic modelling of passive margin salt tectonics: Effects of water loading, sediment properties and sedimentation patterns. Basin Research, 17(3): 383~402.

    • Guo Tingting, Xu Xiwei. 2011. Application and progress of the finite-element method in structural stress field and earthquake prediction. Journal of Seismological Research, 34(2): 246~253 (in Chinese with English abstract).

    • Hamdani I, Aharonov E, Olive J, Parez S, Gvirtzman Z. 2021. Initiating salt tectonics by tilting: Viscous coupling between a tilted salt layer and overlying brittle sediment. Journal of Geophysical Research: Solid Earth, 126(7): e2020JB021503.

    • Hardy S, McClay K, Anton Muñoz J. 2009. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges. Marine and Petroleum Geology, 26: 232~248.

    • Huang Fang, Liu Qiongying, He Lijuan. 2012. Tectono-thermal modeling of the Sichuan basin since the late Himalayan period. Chinese Journal of Geophysics, 55(11): 3742~3753 (in Chinese with English abstract).

    • Huang Guangming, Wang Yuejun, Zhao Yonggang, Huangfu pengpeng. 2016. Numerical simulation of structural styles and evolution of the Daba Shan foreland thrust belt. Acta Geologica Sinica, 90(4): 653~668 (in Chinese with English abstract).

    • Huang Guangming, Li Zhonghai, Li Shubo, Shu Kedong. 2017. Effect of rheology and thickness variation of basal detachment on fold-and-thrust belts: Numerical simulation. Geotectonica et Metallogenia, 41(3): 466~480 (in Chinese with English abstract).

    • Huang Guangming, Zhang Zhen, Zhang Huai, Huangfu Pengpeng, Li Zhonghai. 2020. Development of contrasting folding styles in the western Yangtze block, South China: Insights from numerical modeling. Tectonophysics, 792: 228579.

    • Jia Chengzao. 2009. The structures of basin and range system around the Tibetan plateau and the distribution of oil and gas in the Tarim basin. Geotectonica et Metallogenia, 33(1): 1~9 (in Chinese with English abstract).

    • Jiao Liqing, Klinger Y, Scholtès L. 2021. Fault segmentation pattern controlled by thickness of brittle crust. Geophysical Research Letters, 48: e2021GL093390.

    • Ju Wei, Hou Guiting, Huang Shaoying, Ren Kangxu. 2013. Structural fracture distribution and prediction of the Lower Jurassic Ahe Formation sandstone in the Yinan-Tuzi area, Kuqa Depression. Geotectonica et Metallogenia, 37(4): 592~602 (in Chinese with English abstract).

    • Li Changsheng. 2019. Quantitative analysis and simulation of structural deformation in the fold and thrust belt based ondiscrete element method. PhD degree dissertation of Nanjing University (in Chinese with English abstract).

    • Li Changsheng, Yin Hongwei, Jia Dong, Zhang Jiaxing. 2018. Validation tests for discrete element codes using single-contact systems. International Journal of Geomechanics, 18: 06018011. 7.

    • Li Changsheng, Yin Hongwei, Wu Chuang, Zhang Yingchun, Zhang Jiaxing, Wu Zhenyun, Wang Wei, Jia Dong, Guan Shuwei, Ren Rong. 2021a. Calibration of the discrete element method and modelling of shortening experiments. Frontiers in Earth Science, 9: 636512.

    • Li Changsheng, Yin Hongwei, Wu Zhenyun, Zhou Peng, Wang Wei, Ren Rong, Guan Shuwei, Li Xiangyun, Luo Haoyu, Jia Dong. 2021b. Effects of salt thickness on the structural deformation of foreland fold-and-thrust belt in the KuqaDepression, Tarim basin: Insights from discrete element models. Frontiers in Earth Science, 9: 655173.

    • Li Changsheng, Yin Hongwei, Xu Wenqiao, Wu Zhenyun, Guan Shuwei, Jia Dong, Ren Rong. 2022. Quantitative analysis and simulation of compressive tectonics based ondiscrete element method. Geotectonica et Metallogenia, 46(4): 645~661 (in Chinese with English abstract).

    • Li Desheng. 1982. Tectonic types of oil and gas basins in China. Acta Petrolei Sinica, (3): 1~12 (in Chinese with English abstract).

    • Li Jianghai, Zhang Yu, Wang Honghao, Wang Dianju. 2020. Three-dimensional discrete element numerical simulation of Paleogene salt structures in the western Kuqa foreland thrust belt. Petroleum Exploration and Development, 47(1): 65~76 (in Chinese with English abstract).

    • Li Weibo, Li Jianghai, Wang Honghao, Huang Shaoying, Neng Yuan. 2017. Deformation mechanisms of Kelasu tectonic belt in Kuqa foreland thrust belt: Insight from discrete element numerical simulation. Geotectonica et Metallogenia, 41(6): 1001~1010 (in Chinese with English abstract).

    • Liu Luxiao. 2022. Influence of basement structure on salt tectonic deformation—A case study of the Kuqa fold and thrust belt. PhD degree dissertation of Hebei GEO University (in Chinese with English abstract).

    • Ma Baojun, Qi Jiafu, Niu Shuyin, Sun Aiqun, Cao Aifeng, Sun Zhixin. 2009. The influence of basement fault on the deformation of complex cover blocks in a uniform stress field-enlightenment from sandbox experiment. Earth Science Frontiers, 16(4): 105~116 (in Chinese with English abstract).

    • Maerten L, Gillespie P, Pollard D D. 2002. Effects of local stress perturbation on secondary fault development. Journal of Structural Geology, 24(1): 145~153.

    • Meng Lingsen, Yin Hongwei, Zhang Jie, Xu Shijin. 2007. Influence of rock strength and strain rate on horizontally compressive deformation: Insights from discrete element modeling. Acta Petrologica Sinica, 23(11): 2918~2926 (in Chinese with English abstract).

    • Meng Qingfeng, Hodgetts D. 2019a. Structural styles and decoupling in stratigraphic sequences with double décollements during thin-skinned contractional tectonics: Insights from numerical modelling. Journal of Structural Geology, 127: 103862.

    • Meng Qingfeng, Hodgetts D. 2019b. Combined control of décollement layer thickness and cover rock cohesion on structural styles and evolution of fold belts: A discrete element modelling study. Tectonophysics, 757: 58~67.

    • Morgan J K. 2015. Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: Discrete element simulations. Journal of Geophysical Research: Solid Earth, 120: 3870~3896.

    • Morgan J K, Bangs N L. 2017. Recognizing seamount-forearc collisions at accretionary margins: Insights from discrete numerical simulations. Geology, 45(7): 635~638.

    • Qu Mengxue, Cheng Xiaogan, Tian Hefeng, Chen Hanlin, Yu Hongzhou, Chen Changjin, Sun Siyao. 2023. Effect of double-detachments strength on structure deformation in the northern Bogda Mountain using discrete element numerical simulation. Earth Science, 48(4): 1366~1378 (in Chinese with English abstract).

    • Ruh J B, Kaus B J P, Burg J. 2012. Numerical investigation of deformation mechanics in fold-and-thrust belts: Influence of rheology of single and multiple décollements. Tectonics, 31: TC3005.

    • Schöpfer M P J, Childs C, Walsh J J. 2007. Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 2. Impact of confining pressure and strength contrast on fault zone geometry and growth. Journal of Geophysical Research, 112(B10).

    • Shen Zhuoyi, Yu Fusheng, Wang Qianjun, Zhang Jingqi, Xue Yan. 2022. Discrete element method simulation of the fold-and-thrust belts along strike various compression in the southern margin of the Junggarbasin. Marine and Petroleum Geology, 145: 105849.

    • Simpson G. 2009. Mechanical modelling of folding versus faulting in brittle-ductile wedges. Journal of Structural Geology, 31: 369~381.

    • Simpson G. 2011. Mechanics of non-critical fold-thrust belts based on finite element models. Tectonophysics, 499: 142~155.

    • Spitz R, Bauville A, Epard, J L, Kaus B J P, Popov A A, Schmalholz S M. 2020. Control of 3-D tectonic inheritance on fold-and-thrust belts: Insights from 3-D numerical models and application to the Helvetic nappe system. Solid Earth, 11(3): 999~1026.

    • Sun Qianqian, Liu Zhina, Yu Yixin, Tang Xianjun, Chen Shi, Peng Hao. 2022. Discrete element modelling of the impacts of attitudes and geometric parameters of pre-existing faults on inversion structures. Geotectonica et Metallogenia, 46(1): 22~35 (in Chinese with English abstract).

    • Sun Shuai, Hou Guiting, Zheng Chunfang. 2017. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa depression. Journal of Structural Geology, 104: 112~124.

    • Suppe J. 1983. Geometry and kinematics of fault-bend folding. American Journal of Science, 283(7): 684~721.

    • Suppe J. 2007. Absolute fault and crustal strength from wedge tapers. Geology, 35(12): 1127~1130.

    • Suppe J, Medwedeff D A. 1990. Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae, 83(3): 409~454.

    • Tan Xiaohui, Song Chuanzhong, Cha Fusheng, Li Jiahao, Zhang Yan. 2010. Application of numerical simulation in tectonic deformation research. Journal of Hefei University of Technology (Natural Science), 33(12): 1851~1857 (in Chinese with English abstract).

    • Tscharner M, Schmalholz S M, Epard J L. 2016. 3-D numerical models of viscous flow applied to fold nappes and the Rawil depression in the Helvetic nappe system (western Switzerland). Journal of Structural Geology, 86: 32~46.

    • Wang Maomao, Wang Ming, Feng Wang, Yan Bing, Jia Dong. 2022. Influence of surface processes on strain localization and seismic activity in the Longmen Shan fold-and-thrust belt: Insights from discrete-element modeling. Tectonics, 41: e2022TC007515.

    • Wu Chao, Xu Wenqiao, Li Qing, Wang Wei, Chen Weili, Yin Hongwei, Qu Yuanji. 2023. Numerical simulation of compressional deformation of pre-existing passive salt diapir in Keshen area of Kuqa Depression. Geological Journal of China Universities, 29(2): 240~250 (in Chinese with English abstract).

    • Wu Zhenyun, Yin Hongwei, Li Changsheng, Yang Xiulei, Wang Li, Wang Fuyuan, Dong Shaochun, Jia Dong. 2021. Influence of regional erosion and sedimentary loading on fault activities in active fold-thrust belts: Insights from discrete element simulation and the southern and central Longmen Shan fold-thrust belt. Frontiers in Earth Science, 9: 636512.

    • Xiang Yongfa, Lu Xi, Xu Yuhao, Fan Qizhi. 2019. Basic principle of finite element numerical simulation method andits application to study of tectonic deformation. Acta Geologica Sichuan, 39(4): 581~588 (in Chinese with English abstract).

    • Xiao Fangfeng, Hou Guiting, Li Jianghai. 2010. Controlling of Cenozoic structural stress to the development of fractures in Carboniferous volcanic rocks, Junggar basin. Acta Petrologica Sinica, 26(1): 255~262 (in Chinese with English abstract).

    • Xin Wen, Chen Hanlin, An Kaixuan, Zhang Yuqing, Yang Shufeng, Cheng Xiaogan, Li Xiubin. 2020. Analyzing the influence of factors that control the structural deformation of fold-thrust belts in the southwestern Tianshan using discrete element simulations. Acta Geologica Sinica, 94(6): 1704~1715 (in Chinese with English abstract).

    • Xu Wenqiao, Wang Wei, Yin Hongwei, Jia Dong, Li Changsheng, Yang Gengxiong, Li Gang. 2020. Numerical simulation of different subsalt structural features and their evolution in the eastern and western segments of the Kuqa Depression. Acta Geologica Sinica, 94(6): 1740~1751 (in Chinese with English abstract).

    • Xu Wenqiao, Yin Hongwei, Jia Dong, Li Changsheng, Wang Wei, Yang Gengxiong, He Wanhui, Chen Zhuxin, Ren Rong. 2021. Structural features and evolution of the northwestern Sichuan basin: Insights from discrete numerical simulations. Frontiers in Earth Science, 9: 653395.

    • Yang Keji, Qi Jiafu, Liu Aoran, Zhang Weigang, Ma Baojun, Li Dong. 2022. Characteristics of basement faults in the middle section of Kuqa depression and their influence on salt tectonic deformation. Chinese Journal of Geology, 57(4): 991~1008 (in Chinese with English abstract).

    • Yang Shufeng, Jia Chengzao, Chen Hanlin, Jia Dong, Wei Guoqi, Xiao Ancheng, Guo Zhaojie, Cheng Xiaogan, Wu Lei, Yin Hongwei, Zhang Fengqi, Lin Xiubin. 2022. Core theories of sedimentary basin structure and the related key research techniques: Frontiers and development direction. Earth Science Frontiers, 29(6): 10~23 (in Chinese with English abstract).

    • Yang Xiaodong, Peel F J, Sanderson D J, McNeill L C. 2017. Episodic growth of fold-thrust belts: Insights from finite element modelling. Journal of Structural Geology, 102: 113~129.

    • Yin Hongwei, Zhang Jie, Meng Lingsen, Liu Yuping, Xu Shijing. 2009. Discrete element modeling of the faulting in the sedimentary cover above an active salt diapir. Journal of Structural Geology, 31(9): 989~995.

    • Zhang Bilong, Zhu Guang, Jiang Dazhi, Hu Shaoqi, Xiang Biwei, Zhang Li, Chen Yin. 2009. Numerical modeling and formation mechanism of the eastern Sichuan Jura-typefolds. Geological Review, 55(5): 701~711 (in Chinese with English abstract).

    • Zhang Jie, Yin Hongwei, Meng Lingsen, Xu Shijin. 2008a. Simulation of active salt domes using 2D discrete element method. Progress in Geophysics, 23(6): 1924~1930 (in Chinese with English abstract).

    • Zhang Jie, Yin Hongwei, Xu Shijin. 2008b. Influence of rock strength on fault patterns above active salt domes: Insights from 2D discrete element simulations. Journal of Nanjing University (Natural Science), 44(6): 642~652 (in Chinese with English abstract).

    • Zhang Lisheng, Yan Yi, Shan Yehua, Chen Wenhuang. 2017. Numerical simulation of thrust structural inversion for Taiwan fore-arc basin. Marine Geology Frontiers, 33(6): 24~33 (in Chinese with English abstract).

    • Zhang Yinzhao, Li Changsheng, Zhu Jitian, Yin Hongwei, Xiong Xiaofeng, Wu Zhenyun. 2019. Discrete element numerical simulation of extensional tectonics-examples of Qiongdongnan basin. Research and Exploration in Laboratory, 38(11): 78~82 (in Chinese with English abstract).

    • Zhang Yu, Li Jianghai, Lei Yuting, Yang Menglian, Cheng Peng. 2020. 3D simulations of salt tectonics in the Kwanza Basin: Insights from analogue and discrete-element numerical modeling. Marine and Petroleum Geology, 122: 104666.

    • Zhu Xia. 1983. Approaches to the research of petroliferous basins. Petroleum Geology & Experiment, (2): 116~123 (in Chinese with English abstract).

    • Zou Wei, Yu Yixin, Liu Jinshui, Jiang Yiming, Tang Xianjun, Chen Shi, Yu Lang. 2021. Main controlling factors of the central inversional structure belt and the development of Ningbo anticline in Xihu sag, East China Sea basin. Acta Petrolei Sinica, 42(2): 176~185 (in Chinese with English abstract).

    • 蔡申阳, 尹宏伟, 李长圣, 贾东, 汪伟, 陈竹新, 魏东涛. 2016. 基于离散元数值模拟的应变分析和裂缝预测技术. 高校地质学报, 22(1): 183~193.

    • 董敏, 宋微, 王志海, 雷永良, 曾旭, 张博, 周彦希. 2019. 鄂尔多斯盆地基底断裂多期演化及其主控因素分析——基于构造物理模拟实验. 地球学报, 40(6): 847~852.

    • 窦宝松, 陈秀军. 2013. 边界元法及其在岩土工程中的应用. 水利水电技术, 44(10): 49~51.

    • 段云江, 黄少英, 李维波, 张慧芳, 马小丹, 廖斐然. 2017. 用离散元数值模拟法研究克拉苏构造带盐构造变形机理. 新疆石油地质, 38(4): 414~419.

    • 段云江, 罗浩渝, 谢会文, 徐振平, 章学岐, 张敬洲, 石磊, 袁瑞. 2021. 塔里木盆地库车坳陷秋里塔格构造带中秋—东秋段盐相关构造特征及变形机理. 天然气地球科学, 32(7): 993~1008.

    • 冯建伟, 王志坤, 商琳. 2017. 渤海湾盆地南堡凹陷3区多期叠加断裂体系形成机制. 石油与天然气地质, 38(6): 1032~1042.

    • 傅容珊, 黄建华. 2004. 地球动力学. 北京: 高等教育出版社

    • 郭婷婷, 徐锡伟. 2011. 有限元法在构造应力场与地震预测研究中的应用与发展. 地震研究, 34(2): 246~253.

    • 黄方, 刘琼颖, 何丽娟. 2012. 晚喜山期以来四川盆地构造-热演化模拟. 地球物理学报, 55(11): 3742~3753

    • 黄光明, 李忠海, 李庶波, 舒克栋. 2017. 底部滑脱层流变性和厚度变化对褶皱冲断带影响的数值模拟. 大地构造与成矿学, 41(3): 466~480.

    • 黄光明, 王岳军, 赵勇刚, 皇甫鹏鹏. 2016. 大巴山前陆冲断带构造样式和演化过程的数值模拟. 地质学报, 90(4): 653~668.

    • 贾承造. 2009. 环青藏高原巨型盆山体系构造与塔里木盆地油气分布规律. 大地构造与成矿学, 33(1): 1~9.

    • 鞠玮, 侯贵廷, 黄少英, 任康绪. 2013. 库车坳陷依南-吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测. 大地构造与成矿学, 37(4): 592~602.

    • 李德生. 1982. 中国含油气盆地的构造类型. 石油学报, (3): 1~12.

    • 李长圣. 2019. 基于离散元的褶皱冲断带构造变形定量分析与模拟. 南京大学博士学位论文.

    • 李长圣, 尹宏伟, 徐雯峤, 吴珍云, 管树巍, 贾东, 任荣. 2022. 基于离散元的挤压构造定量分析与模拟. 大地构造与成矿学, 46(4): 645~661.

    • 李江海, 章雨, 王洪浩, 王殿举. 2020. 库车前陆冲断带西部古近系盐构造三维离散元数值模拟. 石油勘探与开发, 47(1): 65~76.

    • 李维波, 李江海, 王洪浩, 黄少英, 能源. 2017. 库车前陆冲断带克拉苏构造带变形影响因素分析——基于离散元数值模拟研究. 大地构造与成矿学, 41(6): 1001~1010.

    • 刘璐霄. 2022. 基底构造对盐构造变形的影响分析. 河北地质大学博士学位论文.

    • 马宝军, 漆家福, 牛树银, 孙爱群, 曹爱峰, 孙志信. 2009. 统一应力场中基底断裂对盖层复杂断块变形的影响——来自砂箱实验的启示. 地学前缘, 16(4): 105~116.

    • 孟令森, 尹宏伟, 张洁, 徐士进. 2007. 岩石强度和应变速率对水平挤压变形影响的离散元模拟. 岩石学报, 23(11): 2918~2926.

    • 屈梦雪, 程晓敢, 田禾丰, 陈汉林, 于洪洲, 陈昌锦, 孙思瑶. 2023. 双滑脱层强度对博格达山北缘构造变形的影响: 基于离散元数值模拟. 地球科学, 48(4): 1366~1378.

    • 孙倩倩, 刘志娜, 余一欣, 唐贤君, 陈石, 彭浩. 2022. 先存断层产状及其组合关系对反转构造变形影响的离散元数值模拟研究. 大地构造与成矿学, 46(1): 22~35.

    • 谭晓慧, 宋传中, 查甫生, 李加好, 张妍. 2010. 数值模拟方法在构造变形研究中的应用. 合肥工业大学学报(自然科学版), 33(12): 1851~1857.

    • 吴超, 徐雯峤, 李青, 汪伟, 陈维力, 尹宏伟, 屈元基. 2023. 库车坳陷克深地区先存被动盐底辟挤压变形数值模拟. 高校地质学报, 29(2): 240~250.

    • 向用发, 卢玺, 徐宇浩, 樊其志. 2019. 有限元数值模拟法基本原理及其在地质构造变形研究中的应用综述. 四川地质学报, 39(4): 581~588.

    • 肖芳锋, 侯贵廷, 李江海. 2010. 准噶尔盆地新生代构造应力对石炭纪火山岩构造裂缝发育的控制. 岩石学报, 26(1): 255~262.

    • 辛文, 陈汉林, 安凯旋, 张欲清, 杨树锋, 程晓敢, 林秀斌. 2020. 基于离散元数值模拟的西南天山山前冲断带构造变形控制因素研究. 地质学报, 94(6): 1704~1715.

    • 徐雯峤, 汪伟, 尹宏伟, 贾东, 李长圣, 杨庚兄, 李刚. 2020. 库车坳陷东西段盐下构造变形差异演化数值模拟分析. 地质学报, 94(6): 1740~1751.

    • 杨克基, 漆家福, 刘傲然, 张卫刚, 马宝军, 李冬. 2022. 库车坳陷中段基底断裂特征及其对盐构造变形的影响. 地质科学, 57(4): 991~1008.

    • 杨树锋, 贾承造, 陈汉林, 贾东, 魏国齐, 肖安成, 郭召杰, 程晓敢, 吴磊, 尹宏伟, 章凤奇, 林秀斌. 2022. 沉积盆地构造核心理论和关键技术方法: 前沿与发展方向. 地学前缘, 29(6): 10~23.

    • 张必龙, 朱光, 胡召齐, 向必伟, 张力, 陈印. 2009. 川东“侏罗山式”褶皱的数值模拟及成因探讨. 地质论评, 55(5): 701~711.

    • 张洁, 尹宏伟, 孟令森, 徐士进. 2008a. 主动底辟盐构造的二维离散元模拟. 地球物理学进展, 23(6): 1924~1930.

    • 张洁, 尹宏伟, 徐士进. 2008b. 用离散元方法讨论岩石强度对主动底辟盐构造断层分布模式的影响. 南京大学学报(自然科学版), 44(6): 642~652.

    • 张立升, 闫义, 单业华, 陈文煌. 2017. 台湾弧前盆地构造反转的数值模拟. 海洋地质前沿, 33(6): 24~33.

    • 张迎朝, 李长圣, 朱继田, 尹宏伟, 熊小峰, 吴珍云. 2019. 伸展构造离散元数值模拟——以琼东南盆地为例. 实验室研究与探索, 38(11): 78~82.

    • 朱夏. 1983. 含油气盆地研究方向的探讨. 石油实验地质, (2): 116~123.

    • 邹玮, 余一欣, 刘金水, 蒋一鸣, 唐贤君, 陈石, 余浪. 2021. 东海盆地西湖凹陷中央反转构造带发育主控因素及宁波背斜形成过程. 石油学报, 42(2): 176~185.

  • 参考文献

    • Bauville A, Schmalholz S M. 2015. Transition from thin- to thick-skinned tectonics and consequences for nappe formation: Numerical simulations and applications to the Helvetic nappe system, Switzerland. Tectonophysics, 665: 101~117.

    • Benesh N, Plesch A, Shaw J, Frost E. 2007. Investigation of growth fault bend folding using discrete element modeling: Implications for signatures of active folding above blind thrust faults. Journal of Geophysical Research: Solid Earth, 112: B3S04.

    • Cai Shenyang, Yin Hongwei, Li Changsheng, Jia Dong, Wang Wei, Chen Zhuxin, Wei Dongtao. 2016. Technology of strain analysis and fracture prediction based on DEM numerical simulation. Geological Journal of China Universities, 22(1): 183~193 (in Chinese with English abstract).

    • Chen Jiajun, He Dengfa, Tian Fanglei, Huang Cheng, Ma Debo, Zhang Weikang. 2022. Control of mechanical stratigraphy on the stratified style of strike-slip faults in the central Tarim craton, NW China. Tectonophysics, 830: 229307.

    • Couzens-Schultz B A, Vendeville B C, Wiltschko D V. 2003. Duplex style and triangle zone formation: Insights from physical modeling. Journal of Structural Geology, 25(10): 1623~1644.

    • Cruz L, Malinski J, Wilson A, Take W A, Hilley G. 2010. Erosional control of the kinematics and geometry of fold-and-thrust belts imaged in a physical and numerical sandbox. Journal of Geophysical Research, 115(B9): 2169~9313.

    • Cundall P A, Strack O D. 1979. A discrete numerical model for granular assemblies. Geotechnique, 29(1): 47~65.

    • Dahlen F. 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18(1): 55~99.

    • Davis D, Suppe J, Dahlen F A. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88(B2): 1153~1172.

    • Dean S, Morgan J K, Brandenburg J P. 2015. Influence of mobile shale on thrust faults: Insights from discrete element simulations. AAPG Bulletin, 99(3): 403~432.

    • Deng Chao, Gawthorpe R L, Finch E, Fossen H. 2017. Influence of a pre-existing basement weakness on normal fault growth during oblique extension: Insights from discrete element modeling. Journal of Structural Geology, 105: 44~61.

    • Dong Min, Song Wei, Wang Zhihai, Lei Yongliang, Zeng Xu, Zhang Bo, Zhou Yanxi. 2019. An analysis of polyphasic evolution and the main controlling factors of basement faults in the Ordos basin based on structural physical simulation experiments. Acta Geoscientica Sinica, 40(6): 847~852 (in Chinese with English abstract).

    • Dou Baosong, Chen Xiujun. 2013. Boundary element method and its application to geotechnical engineering. Water Resources and Hydropower Engineering, 44(10): 49~51 (in Chinese with English abstract).

    • Duan Yunjiang, Huang Shaoying, Li Weibo, Zhang Huifang, Ma Xiaodan, Liao Feiran. 2017. Using discrete element numerical simulation method to study salt tectonic deformation mechanism of Kelasu structural belt. Xinjiang Petroleum Geology, 38(4): 414~419 (in Chinese with English abstract).

    • Duan Yunjiang, Luo Haoyu, Xie Huiwen, Xu Zhenping, Zhang Xueqi, Zhang Jingzhou, Shi Lei, Yuan Rui. 2021. Salt-related structural characteristics and deformation mechanism of the Zhongqiu-Dongqiu section of the Qiulitag structural belt, Tarim basin. Natural Gas Geoscience, 32(7): 993~1008 (in Chinese with English abstract).

    • Feng Jianwei, Wang Zhikun, Shang Lin. 2017. Genetic mechanisms of superimposed fault systems in Block 3 of Nanpu Sag, Bohai Bay basin. Oil & Gas Geology, 38(6): 1032~1042 (in Chinese with English abstract).

    • Finch E, Hardy S, Gawthorpe R. 2004. Discrete-element modelling of extensional fault-propagation folding above rigid basement fault blocks. Basin Research, 16(4): 467~488.

    • Fu Rongshan, Huang Jianhua. 2004. Geodynamics. Beijing: Higher Education Press (in Chinese).

    • Gemmer L, Ings S J, Medvedev S, Beaumont C. 2004. Salt tectonics driven by differential sediment loading: Stability analysis and finite-element experiments. Basin Research, 16(2): 199~218.

    • Gemmer L, Beaumont C, Ings S J. 2005. Dynamic modelling of passive margin salt tectonics: Effects of water loading, sediment properties and sedimentation patterns. Basin Research, 17(3): 383~402.

    • Guo Tingting, Xu Xiwei. 2011. Application and progress of the finite-element method in structural stress field and earthquake prediction. Journal of Seismological Research, 34(2): 246~253 (in Chinese with English abstract).

    • Hamdani I, Aharonov E, Olive J, Parez S, Gvirtzman Z. 2021. Initiating salt tectonics by tilting: Viscous coupling between a tilted salt layer and overlying brittle sediment. Journal of Geophysical Research: Solid Earth, 126(7): e2020JB021503.

    • Hardy S, McClay K, Anton Muñoz J. 2009. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges. Marine and Petroleum Geology, 26: 232~248.

    • Huang Fang, Liu Qiongying, He Lijuan. 2012. Tectono-thermal modeling of the Sichuan basin since the late Himalayan period. Chinese Journal of Geophysics, 55(11): 3742~3753 (in Chinese with English abstract).

    • Huang Guangming, Wang Yuejun, Zhao Yonggang, Huangfu pengpeng. 2016. Numerical simulation of structural styles and evolution of the Daba Shan foreland thrust belt. Acta Geologica Sinica, 90(4): 653~668 (in Chinese with English abstract).

    • Huang Guangming, Li Zhonghai, Li Shubo, Shu Kedong. 2017. Effect of rheology and thickness variation of basal detachment on fold-and-thrust belts: Numerical simulation. Geotectonica et Metallogenia, 41(3): 466~480 (in Chinese with English abstract).

    • Huang Guangming, Zhang Zhen, Zhang Huai, Huangfu Pengpeng, Li Zhonghai. 2020. Development of contrasting folding styles in the western Yangtze block, South China: Insights from numerical modeling. Tectonophysics, 792: 228579.

    • Jia Chengzao. 2009. The structures of basin and range system around the Tibetan plateau and the distribution of oil and gas in the Tarim basin. Geotectonica et Metallogenia, 33(1): 1~9 (in Chinese with English abstract).

    • Jiao Liqing, Klinger Y, Scholtès L. 2021. Fault segmentation pattern controlled by thickness of brittle crust. Geophysical Research Letters, 48: e2021GL093390.

    • Ju Wei, Hou Guiting, Huang Shaoying, Ren Kangxu. 2013. Structural fracture distribution and prediction of the Lower Jurassic Ahe Formation sandstone in the Yinan-Tuzi area, Kuqa Depression. Geotectonica et Metallogenia, 37(4): 592~602 (in Chinese with English abstract).

    • Li Changsheng. 2019. Quantitative analysis and simulation of structural deformation in the fold and thrust belt based ondiscrete element method. PhD degree dissertation of Nanjing University (in Chinese with English abstract).

    • Li Changsheng, Yin Hongwei, Jia Dong, Zhang Jiaxing. 2018. Validation tests for discrete element codes using single-contact systems. International Journal of Geomechanics, 18: 06018011. 7.

    • Li Changsheng, Yin Hongwei, Wu Chuang, Zhang Yingchun, Zhang Jiaxing, Wu Zhenyun, Wang Wei, Jia Dong, Guan Shuwei, Ren Rong. 2021a. Calibration of the discrete element method and modelling of shortening experiments. Frontiers in Earth Science, 9: 636512.

    • Li Changsheng, Yin Hongwei, Wu Zhenyun, Zhou Peng, Wang Wei, Ren Rong, Guan Shuwei, Li Xiangyun, Luo Haoyu, Jia Dong. 2021b. Effects of salt thickness on the structural deformation of foreland fold-and-thrust belt in the KuqaDepression, Tarim basin: Insights from discrete element models. Frontiers in Earth Science, 9: 655173.

    • Li Changsheng, Yin Hongwei, Xu Wenqiao, Wu Zhenyun, Guan Shuwei, Jia Dong, Ren Rong. 2022. Quantitative analysis and simulation of compressive tectonics based ondiscrete element method. Geotectonica et Metallogenia, 46(4): 645~661 (in Chinese with English abstract).

    • Li Desheng. 1982. Tectonic types of oil and gas basins in China. Acta Petrolei Sinica, (3): 1~12 (in Chinese with English abstract).

    • Li Jianghai, Zhang Yu, Wang Honghao, Wang Dianju. 2020. Three-dimensional discrete element numerical simulation of Paleogene salt structures in the western Kuqa foreland thrust belt. Petroleum Exploration and Development, 47(1): 65~76 (in Chinese with English abstract).

    • Li Weibo, Li Jianghai, Wang Honghao, Huang Shaoying, Neng Yuan. 2017. Deformation mechanisms of Kelasu tectonic belt in Kuqa foreland thrust belt: Insight from discrete element numerical simulation. Geotectonica et Metallogenia, 41(6): 1001~1010 (in Chinese with English abstract).

    • Liu Luxiao. 2022. Influence of basement structure on salt tectonic deformation—A case study of the Kuqa fold and thrust belt. PhD degree dissertation of Hebei GEO University (in Chinese with English abstract).

    • Ma Baojun, Qi Jiafu, Niu Shuyin, Sun Aiqun, Cao Aifeng, Sun Zhixin. 2009. The influence of basement fault on the deformation of complex cover blocks in a uniform stress field-enlightenment from sandbox experiment. Earth Science Frontiers, 16(4): 105~116 (in Chinese with English abstract).

    • Maerten L, Gillespie P, Pollard D D. 2002. Effects of local stress perturbation on secondary fault development. Journal of Structural Geology, 24(1): 145~153.

    • Meng Lingsen, Yin Hongwei, Zhang Jie, Xu Shijin. 2007. Influence of rock strength and strain rate on horizontally compressive deformation: Insights from discrete element modeling. Acta Petrologica Sinica, 23(11): 2918~2926 (in Chinese with English abstract).

    • Meng Qingfeng, Hodgetts D. 2019a. Structural styles and decoupling in stratigraphic sequences with double décollements during thin-skinned contractional tectonics: Insights from numerical modelling. Journal of Structural Geology, 127: 103862.

    • Meng Qingfeng, Hodgetts D. 2019b. Combined control of décollement layer thickness and cover rock cohesion on structural styles and evolution of fold belts: A discrete element modelling study. Tectonophysics, 757: 58~67.

    • Morgan J K. 2015. Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: Discrete element simulations. Journal of Geophysical Research: Solid Earth, 120: 3870~3896.

    • Morgan J K, Bangs N L. 2017. Recognizing seamount-forearc collisions at accretionary margins: Insights from discrete numerical simulations. Geology, 45(7): 635~638.

    • Qu Mengxue, Cheng Xiaogan, Tian Hefeng, Chen Hanlin, Yu Hongzhou, Chen Changjin, Sun Siyao. 2023. Effect of double-detachments strength on structure deformation in the northern Bogda Mountain using discrete element numerical simulation. Earth Science, 48(4): 1366~1378 (in Chinese with English abstract).

    • Ruh J B, Kaus B J P, Burg J. 2012. Numerical investigation of deformation mechanics in fold-and-thrust belts: Influence of rheology of single and multiple décollements. Tectonics, 31: TC3005.

    • Schöpfer M P J, Childs C, Walsh J J. 2007. Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 2. Impact of confining pressure and strength contrast on fault zone geometry and growth. Journal of Geophysical Research, 112(B10).

    • Shen Zhuoyi, Yu Fusheng, Wang Qianjun, Zhang Jingqi, Xue Yan. 2022. Discrete element method simulation of the fold-and-thrust belts along strike various compression in the southern margin of the Junggarbasin. Marine and Petroleum Geology, 145: 105849.

    • Simpson G. 2009. Mechanical modelling of folding versus faulting in brittle-ductile wedges. Journal of Structural Geology, 31: 369~381.

    • Simpson G. 2011. Mechanics of non-critical fold-thrust belts based on finite element models. Tectonophysics, 499: 142~155.

    • Spitz R, Bauville A, Epard, J L, Kaus B J P, Popov A A, Schmalholz S M. 2020. Control of 3-D tectonic inheritance on fold-and-thrust belts: Insights from 3-D numerical models and application to the Helvetic nappe system. Solid Earth, 11(3): 999~1026.

    • Sun Qianqian, Liu Zhina, Yu Yixin, Tang Xianjun, Chen Shi, Peng Hao. 2022. Discrete element modelling of the impacts of attitudes and geometric parameters of pre-existing faults on inversion structures. Geotectonica et Metallogenia, 46(1): 22~35 (in Chinese with English abstract).

    • Sun Shuai, Hou Guiting, Zheng Chunfang. 2017. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa depression. Journal of Structural Geology, 104: 112~124.

    • Suppe J. 1983. Geometry and kinematics of fault-bend folding. American Journal of Science, 283(7): 684~721.

    • Suppe J. 2007. Absolute fault and crustal strength from wedge tapers. Geology, 35(12): 1127~1130.

    • Suppe J, Medwedeff D A. 1990. Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae, 83(3): 409~454.

    • Tan Xiaohui, Song Chuanzhong, Cha Fusheng, Li Jiahao, Zhang Yan. 2010. Application of numerical simulation in tectonic deformation research. Journal of Hefei University of Technology (Natural Science), 33(12): 1851~1857 (in Chinese with English abstract).

    • Tscharner M, Schmalholz S M, Epard J L. 2016. 3-D numerical models of viscous flow applied to fold nappes and the Rawil depression in the Helvetic nappe system (western Switzerland). Journal of Structural Geology, 86: 32~46.

    • Wang Maomao, Wang Ming, Feng Wang, Yan Bing, Jia Dong. 2022. Influence of surface processes on strain localization and seismic activity in the Longmen Shan fold-and-thrust belt: Insights from discrete-element modeling. Tectonics, 41: e2022TC007515.

    • Wu Chao, Xu Wenqiao, Li Qing, Wang Wei, Chen Weili, Yin Hongwei, Qu Yuanji. 2023. Numerical simulation of compressional deformation of pre-existing passive salt diapir in Keshen area of Kuqa Depression. Geological Journal of China Universities, 29(2): 240~250 (in Chinese with English abstract).

    • Wu Zhenyun, Yin Hongwei, Li Changsheng, Yang Xiulei, Wang Li, Wang Fuyuan, Dong Shaochun, Jia Dong. 2021. Influence of regional erosion and sedimentary loading on fault activities in active fold-thrust belts: Insights from discrete element simulation and the southern and central Longmen Shan fold-thrust belt. Frontiers in Earth Science, 9: 636512.

    • Xiang Yongfa, Lu Xi, Xu Yuhao, Fan Qizhi. 2019. Basic principle of finite element numerical simulation method andits application to study of tectonic deformation. Acta Geologica Sichuan, 39(4): 581~588 (in Chinese with English abstract).

    • Xiao Fangfeng, Hou Guiting, Li Jianghai. 2010. Controlling of Cenozoic structural stress to the development of fractures in Carboniferous volcanic rocks, Junggar basin. Acta Petrologica Sinica, 26(1): 255~262 (in Chinese with English abstract).

    • Xin Wen, Chen Hanlin, An Kaixuan, Zhang Yuqing, Yang Shufeng, Cheng Xiaogan, Li Xiubin. 2020. Analyzing the influence of factors that control the structural deformation of fold-thrust belts in the southwestern Tianshan using discrete element simulations. Acta Geologica Sinica, 94(6): 1704~1715 (in Chinese with English abstract).

    • Xu Wenqiao, Wang Wei, Yin Hongwei, Jia Dong, Li Changsheng, Yang Gengxiong, Li Gang. 2020. Numerical simulation of different subsalt structural features and their evolution in the eastern and western segments of the Kuqa Depression. Acta Geologica Sinica, 94(6): 1740~1751 (in Chinese with English abstract).

    • Xu Wenqiao, Yin Hongwei, Jia Dong, Li Changsheng, Wang Wei, Yang Gengxiong, He Wanhui, Chen Zhuxin, Ren Rong. 2021. Structural features and evolution of the northwestern Sichuan basin: Insights from discrete numerical simulations. Frontiers in Earth Science, 9: 653395.

    • Yang Keji, Qi Jiafu, Liu Aoran, Zhang Weigang, Ma Baojun, Li Dong. 2022. Characteristics of basement faults in the middle section of Kuqa depression and their influence on salt tectonic deformation. Chinese Journal of Geology, 57(4): 991~1008 (in Chinese with English abstract).

    • Yang Shufeng, Jia Chengzao, Chen Hanlin, Jia Dong, Wei Guoqi, Xiao Ancheng, Guo Zhaojie, Cheng Xiaogan, Wu Lei, Yin Hongwei, Zhang Fengqi, Lin Xiubin. 2022. Core theories of sedimentary basin structure and the related key research techniques: Frontiers and development direction. Earth Science Frontiers, 29(6): 10~23 (in Chinese with English abstract).

    • Yang Xiaodong, Peel F J, Sanderson D J, McNeill L C. 2017. Episodic growth of fold-thrust belts: Insights from finite element modelling. Journal of Structural Geology, 102: 113~129.

    • Yin Hongwei, Zhang Jie, Meng Lingsen, Liu Yuping, Xu Shijing. 2009. Discrete element modeling of the faulting in the sedimentary cover above an active salt diapir. Journal of Structural Geology, 31(9): 989~995.

    • Zhang Bilong, Zhu Guang, Jiang Dazhi, Hu Shaoqi, Xiang Biwei, Zhang Li, Chen Yin. 2009. Numerical modeling and formation mechanism of the eastern Sichuan Jura-typefolds. Geological Review, 55(5): 701~711 (in Chinese with English abstract).

    • Zhang Jie, Yin Hongwei, Meng Lingsen, Xu Shijin. 2008a. Simulation of active salt domes using 2D discrete element method. Progress in Geophysics, 23(6): 1924~1930 (in Chinese with English abstract).

    • Zhang Jie, Yin Hongwei, Xu Shijin. 2008b. Influence of rock strength on fault patterns above active salt domes: Insights from 2D discrete element simulations. Journal of Nanjing University (Natural Science), 44(6): 642~652 (in Chinese with English abstract).

    • Zhang Lisheng, Yan Yi, Shan Yehua, Chen Wenhuang. 2017. Numerical simulation of thrust structural inversion for Taiwan fore-arc basin. Marine Geology Frontiers, 33(6): 24~33 (in Chinese with English abstract).

    • Zhang Yinzhao, Li Changsheng, Zhu Jitian, Yin Hongwei, Xiong Xiaofeng, Wu Zhenyun. 2019. Discrete element numerical simulation of extensional tectonics-examples of Qiongdongnan basin. Research and Exploration in Laboratory, 38(11): 78~82 (in Chinese with English abstract).

    • Zhang Yu, Li Jianghai, Lei Yuting, Yang Menglian, Cheng Peng. 2020. 3D simulations of salt tectonics in the Kwanza Basin: Insights from analogue and discrete-element numerical modeling. Marine and Petroleum Geology, 122: 104666.

    • Zhu Xia. 1983. Approaches to the research of petroliferous basins. Petroleum Geology & Experiment, (2): 116~123 (in Chinese with English abstract).

    • Zou Wei, Yu Yixin, Liu Jinshui, Jiang Yiming, Tang Xianjun, Chen Shi, Yu Lang. 2021. Main controlling factors of the central inversional structure belt and the development of Ningbo anticline in Xihu sag, East China Sea basin. Acta Petrolei Sinica, 42(2): 176~185 (in Chinese with English abstract).

    • 蔡申阳, 尹宏伟, 李长圣, 贾东, 汪伟, 陈竹新, 魏东涛. 2016. 基于离散元数值模拟的应变分析和裂缝预测技术. 高校地质学报, 22(1): 183~193.

    • 董敏, 宋微, 王志海, 雷永良, 曾旭, 张博, 周彦希. 2019. 鄂尔多斯盆地基底断裂多期演化及其主控因素分析——基于构造物理模拟实验. 地球学报, 40(6): 847~852.

    • 窦宝松, 陈秀军. 2013. 边界元法及其在岩土工程中的应用. 水利水电技术, 44(10): 49~51.

    • 段云江, 黄少英, 李维波, 张慧芳, 马小丹, 廖斐然. 2017. 用离散元数值模拟法研究克拉苏构造带盐构造变形机理. 新疆石油地质, 38(4): 414~419.

    • 段云江, 罗浩渝, 谢会文, 徐振平, 章学岐, 张敬洲, 石磊, 袁瑞. 2021. 塔里木盆地库车坳陷秋里塔格构造带中秋—东秋段盐相关构造特征及变形机理. 天然气地球科学, 32(7): 993~1008.

    • 冯建伟, 王志坤, 商琳. 2017. 渤海湾盆地南堡凹陷3区多期叠加断裂体系形成机制. 石油与天然气地质, 38(6): 1032~1042.

    • 傅容珊, 黄建华. 2004. 地球动力学. 北京: 高等教育出版社

    • 郭婷婷, 徐锡伟. 2011. 有限元法在构造应力场与地震预测研究中的应用与发展. 地震研究, 34(2): 246~253.

    • 黄方, 刘琼颖, 何丽娟. 2012. 晚喜山期以来四川盆地构造-热演化模拟. 地球物理学报, 55(11): 3742~3753

    • 黄光明, 李忠海, 李庶波, 舒克栋. 2017. 底部滑脱层流变性和厚度变化对褶皱冲断带影响的数值模拟. 大地构造与成矿学, 41(3): 466~480.

    • 黄光明, 王岳军, 赵勇刚, 皇甫鹏鹏. 2016. 大巴山前陆冲断带构造样式和演化过程的数值模拟. 地质学报, 90(4): 653~668.

    • 贾承造. 2009. 环青藏高原巨型盆山体系构造与塔里木盆地油气分布规律. 大地构造与成矿学, 33(1): 1~9.

    • 鞠玮, 侯贵廷, 黄少英, 任康绪. 2013. 库车坳陷依南-吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测. 大地构造与成矿学, 37(4): 592~602.

    • 李德生. 1982. 中国含油气盆地的构造类型. 石油学报, (3): 1~12.

    • 李长圣. 2019. 基于离散元的褶皱冲断带构造变形定量分析与模拟. 南京大学博士学位论文.

    • 李长圣, 尹宏伟, 徐雯峤, 吴珍云, 管树巍, 贾东, 任荣. 2022. 基于离散元的挤压构造定量分析与模拟. 大地构造与成矿学, 46(4): 645~661.

    • 李江海, 章雨, 王洪浩, 王殿举. 2020. 库车前陆冲断带西部古近系盐构造三维离散元数值模拟. 石油勘探与开发, 47(1): 65~76.

    • 李维波, 李江海, 王洪浩, 黄少英, 能源. 2017. 库车前陆冲断带克拉苏构造带变形影响因素分析——基于离散元数值模拟研究. 大地构造与成矿学, 41(6): 1001~1010.

    • 刘璐霄. 2022. 基底构造对盐构造变形的影响分析. 河北地质大学博士学位论文.

    • 马宝军, 漆家福, 牛树银, 孙爱群, 曹爱峰, 孙志信. 2009. 统一应力场中基底断裂对盖层复杂断块变形的影响——来自砂箱实验的启示. 地学前缘, 16(4): 105~116.

    • 孟令森, 尹宏伟, 张洁, 徐士进. 2007. 岩石强度和应变速率对水平挤压变形影响的离散元模拟. 岩石学报, 23(11): 2918~2926.

    • 屈梦雪, 程晓敢, 田禾丰, 陈汉林, 于洪洲, 陈昌锦, 孙思瑶. 2023. 双滑脱层强度对博格达山北缘构造变形的影响: 基于离散元数值模拟. 地球科学, 48(4): 1366~1378.

    • 孙倩倩, 刘志娜, 余一欣, 唐贤君, 陈石, 彭浩. 2022. 先存断层产状及其组合关系对反转构造变形影响的离散元数值模拟研究. 大地构造与成矿学, 46(1): 22~35.

    • 谭晓慧, 宋传中, 查甫生, 李加好, 张妍. 2010. 数值模拟方法在构造变形研究中的应用. 合肥工业大学学报(自然科学版), 33(12): 1851~1857.

    • 吴超, 徐雯峤, 李青, 汪伟, 陈维力, 尹宏伟, 屈元基. 2023. 库车坳陷克深地区先存被动盐底辟挤压变形数值模拟. 高校地质学报, 29(2): 240~250.

    • 向用发, 卢玺, 徐宇浩, 樊其志. 2019. 有限元数值模拟法基本原理及其在地质构造变形研究中的应用综述. 四川地质学报, 39(4): 581~588.

    • 肖芳锋, 侯贵廷, 李江海. 2010. 准噶尔盆地新生代构造应力对石炭纪火山岩构造裂缝发育的控制. 岩石学报, 26(1): 255~262.

    • 辛文, 陈汉林, 安凯旋, 张欲清, 杨树锋, 程晓敢, 林秀斌. 2020. 基于离散元数值模拟的西南天山山前冲断带构造变形控制因素研究. 地质学报, 94(6): 1704~1715.

    • 徐雯峤, 汪伟, 尹宏伟, 贾东, 李长圣, 杨庚兄, 李刚. 2020. 库车坳陷东西段盐下构造变形差异演化数值模拟分析. 地质学报, 94(6): 1740~1751.

    • 杨克基, 漆家福, 刘傲然, 张卫刚, 马宝军, 李冬. 2022. 库车坳陷中段基底断裂特征及其对盐构造变形的影响. 地质科学, 57(4): 991~1008.

    • 杨树锋, 贾承造, 陈汉林, 贾东, 魏国齐, 肖安成, 郭召杰, 程晓敢, 吴磊, 尹宏伟, 章凤奇, 林秀斌. 2022. 沉积盆地构造核心理论和关键技术方法: 前沿与发展方向. 地学前缘, 29(6): 10~23.

    • 张必龙, 朱光, 胡召齐, 向必伟, 张力, 陈印. 2009. 川东“侏罗山式”褶皱的数值模拟及成因探讨. 地质论评, 55(5): 701~711.

    • 张洁, 尹宏伟, 孟令森, 徐士进. 2008a. 主动底辟盐构造的二维离散元模拟. 地球物理学进展, 23(6): 1924~1930.

    • 张洁, 尹宏伟, 徐士进. 2008b. 用离散元方法讨论岩石强度对主动底辟盐构造断层分布模式的影响. 南京大学学报(自然科学版), 44(6): 642~652.

    • 张立升, 闫义, 单业华, 陈文煌. 2017. 台湾弧前盆地构造反转的数值模拟. 海洋地质前沿, 33(6): 24~33.

    • 张迎朝, 李长圣, 朱继田, 尹宏伟, 熊小峰, 吴珍云. 2019. 伸展构造离散元数值模拟——以琼东南盆地为例. 实验室研究与探索, 38(11): 78~82.

    • 朱夏. 1983. 含油气盆地研究方向的探讨. 石油实验地质, (2): 116~123.

    • 邹玮, 余一欣, 刘金水, 蒋一鸣, 唐贤君, 陈石, 余浪. 2021. 东海盆地西湖凹陷中央反转构造带发育主控因素及宁波背斜形成过程. 石油学报, 42(2): 176~185.