en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵健楠,男,1990年生。副研究员,从事行星地质与资源研究。E-mail:jnzhao@cug.edu.cn。

参考文献
Adams G, Banks J, Frazier C, Toodi U, Lagoudas M. 2018. Utilization of solar cell umbrellas to provide long-term photovoltaic power on Mars. 2018 NASA BIG Idea Challenge. College Station: Texas A & M University.
参考文献
Adcock C T, Hausrath E M, Rampe E B, Panduro-Allanson R D, Steinberg S M. 2020. Resources from water-rock interactions for future human exploration of Mars. Lunar and Planetary Science Conference Abstract, 2020000180.
参考文献
Anderson S L, Sansom E K, Shober P M, Hartig B A D, Devillepoix H A R, Towner M C. 2021. The proposed silicate-sulfuric acid process: Mineral processing for in situ resource utilization (ISRU). Acta Astronautica, 188: 57~63.
参考文献
An Zhenhua. 2019. Review on the application of montmorillonite in drug carrier. China Powder Industry, (5): 1~3 (in Chinese with English abstract).
参考文献
Appelbaum J, Landis G A, Sherman I. 1993. Solar radiation on Mars-update 1991. Solar Energy, 50(1): 35~51.
参考文献
Ash R L, Dowler W, Varsi G. 1978. Feasibility of rocket propellant production on Mars. Acta Astronautica, 5(9): 705~724.
参考文献
Badescu V. 2009. Mars: Prospective energy and material resources. Springer Science & Business Media, 563~565.
参考文献
Baker V R. 2006. Geomorphological evidence for water on Mars. Elements, 2(3): 139~143.
参考文献
Barker D, Chamitoff G, James G. 1998. Resource utilization and site selection for a self-sufficient martian outpost. NASA/TM-98-206538, 2: 139~143.
参考文献
Berggren M, Zubrin R, Wilson C, Rose H, Carrera S. 2009. Mars aqueous processing system. In: Badescu V, ed. Mars: Prospective Energy and Material Resources. Berlin: Springer Berlin Heidelberg, 563~586.
参考文献
Bibring J P, Langevin Y, Poulet F, Gendrin A, Gondet B, Berthé M, Soufflot A, Drossart P, Combes M, Bellucci G, Moroz V, Mangold N, Schmitt B, the OMEGA Team. 2004. Perennial water ice identified in the south polar cap of Mars. Nature, 428(6983): 627~630.
参考文献
Bristow T F, Rampe E B, Achilles C N, Blake D F, Chipera S J, Craig P, Crisp J A, Des Marais D J, Downs R T, Gellert R, Grotzinger J P, Gupta S, Hazen R M, Horgan B, Hogancamp J V, Mangold N, Mahaffy P R, McAdam A C, Ming D W, Morookian J M, Morris R V, Morrison S M, Treiman A H, Vaniman D T, Vasavada A R, Yen A S. 2018. Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars. Science Advances, 4(6): eaar3330.
参考文献
Byrne S. 2009. The polar deposits of Mars. Annual Review of Earth and Planetary Sciences, 37(1): 535~560.
参考文献
Cai Tao, Sun Hongbing, Qiao Jing, Zhu Leilei, Zhang Fan, Zhang Jie, Tang Zijing, Wei Xinlei, Yang Jiangang, Yuan Qianqian, Wang Wangyin, Yang Xue, Chu Huanyu, Wang Qian, You Chun, Ma Hongwu, Sun Yuanxia, Li Yun, Li Can, Jiang Huifeng, Wang Qinhong, Ma Yanhe. 2021. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 373(6562): 1523~1527.
参考文献
Carter J, Poulet F. 2012. Orbital identification of clays and carbonates in Gusev crater. Icarus, 219(1): 250~253.
参考文献
Carter J, Poulet F, Bibring J P, Mangold N, Murchie S. 2013. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research: Planets, 118(4): 831~858.
参考文献
Chamberlain M A, Boynton W V. 2007. Response of martian ground ice to orbit-induced climate change. Journal of Geophysical Research, 112(E6): 1~20.
参考文献
Chamitoff G, James G, Barker D, Dershowitz A. 2005. Martian resource locations: Identification and optimization. Acta Astronautica, 56(8): 756~769.
参考文献
Clark C S. 2005. The martian watershed, geology, dichotomy and paleohydrology on two world maps with constant scale natural boundaries. Procedings of 36th Annual Lunar and Planetary Science Conference, 2189.
参考文献
De Pater I, Lissauer J J. 2015. Planetary Sciences. Cambridge: Cambridge University Press.
参考文献
Dundas C M, Byrne S, Mcewen A S, Mellon M T, Kennedy M R, Daubar I J, Saper L. 2014. HiRISE observations of new impact craters exposing martian ground ice. Journal of Geophysical Research: Planets, 119(1): 109~127.
参考文献
Dundas C M, Bramson A M, Ojha L, Wray J J, Mellon M T, Byrne S, Mcewen A S, Putzig N E, Viola D, Sutton S, Clark E, Holt J W. 2018. Exposed subsurface ice sheets in the martian mid-latitudes. Science, 359(6372): 199~201.
参考文献
Ehlmann B L, Mustard J F, Murchie S L. 2010. Geologic setting of serpentine deposits on Mars. Geophysical Research Letters, 37(6): L06201.
参考文献
Ehricke K A. 1981. A socio-economic evaluation of the lunar environment and resources: I. Principles and overall system strategy. Acta Astronautica, 8(11-12): 1389~1405.
参考文献
Eichler A, Hadland N, Pickett D, Masaitis D, Handy D, Perez A, Batcheldor D, Wheeler B, Palmer A. 2021. Challenging the agricultural viability of martian regolith simulants. Icarus, 354: 114022.
参考文献
Feldman W C, Boynton W V, Tokar R L, Prettyman T H, Gasnault O, Squyres S W, Elphic R C, Lawrence D J, Lawson S L, Maurice S, Mckinney G W, Moore K R, Reedy R C. 2002. Global distribution of neutrons from Mars: Results from Mars odyssey. Science, 297(5578): 75~78.
参考文献
Freund F, Dickinson J T, Cash M. 2002. Hydrogen in rocks: An energy source for deep microbial communities. Astrobiology, 2(1): 83~92.
参考文献
Gao Nan, Xu Yingkui, Luo Taiyi, Ling Zongcheng, Zhu Dan, Li Yang, Li Xiongyao, Liu Jianzhong. 2022. Recent advance and prospect of the lunar mineral resources exploration. Acta Mineralogica Sinica, 42(2): 222~230 (in Chinese with English abstract).
参考文献
Gao Zhaohui, Tong Kewei, Shi Jianbo, Shen Lin. 2015. Analysis of the manned Mars and asteroid missions. Journal of Deep Space Exploration, 2(1): 10~19 (in Chinese with English abstract).
参考文献
Gayen P, Sankarasubramanian S, Ramani V K. 2020. Fuel and oxygen harvesting from martian regolithic brine. Proceedings of the National Academy of Sciences, 117(50): 31685~31689.
参考文献
Glascock N, Huber B, Cantrall C, Evonosky W, Robinson E, Dharmadasa Y, Baker K. 2018. MAFSA: Mars autonomous and foldable solar array. New Space, 6(4): 308~319.
参考文献
Gu Caixin, Long Wenjun, Yue Yongming. 2018. Solar energy distribution and photovoltaic power generation calculation on Mars. Solar Energy, (11): 35~39 (in Chinese with English abstract).
参考文献
Hanley J, Chevrier V F, Berget D J, Adams R D. 2012. Chlorate salts and solutions on Mars. Geophysical Research Letters, 39(8): L08201.
参考文献
Hao Jian, Li Danming, Dang Wenqiang, Li Juping, Wang Shifa. 2018. Progress in in-situ resource utilization of atmospheric on Mars. Vacuum & Cryogenics, 24(5): 289~296 (in Chinese with English abstract).
参考文献
Haslach H. 1989. Wind energy: A resource for a human mission to Mars. British Interplanetary Society, 42: 171~178.
参考文献
Hecht M H, Kounaves S P, Quinn R C, West S J, Young S M M, Ming D W, Catling D C, Clark B C, Boynton W V, Hoffman J, DeFlores L P, Gospodinova K, Kapit J, Smith P H. 2009. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science, 325(5936): 64~67.
参考文献
Ho K, De Weck O L, Hoffman J A, Shishko R. 2014. Dynamic modeling and optimization for space logistics using time-expanded networks. Acta Astronautica, 105(2): 428~443.
参考文献
Hoefen T M, Clark R N, Bandfield J L, Smith M D, Pearl J C, Christensen P R. 2003. Discovery of olivine in the Nili Fossae region of Mars. Science, 302(5645): 627~630.
参考文献
Hoffman J A, Hecht M H, Rapp D, Hartvigsen J J, Soohoo J G, Aboobaker A M, Mcclean J B, Liu A M, Hinterman E D, Nasr M. 2022. Mars Oxygen ISRU Experiment (MOXIE)-preparing for human Mars exploration. Science Advances, 8(35): eabp8636.
参考文献
Holstein R C, Thomas P E, Merrison J, Iversen J J. 2018. Wind turbine power production under current martian atmospheric conditions. Mars Workshop on Amazonian and Present Day Climate, 2086: 4004.
参考文献
Holt J W, Safaeinili A, Plaut J J, Head J W, Phillips R J, Seu R, Kempf S D, Choudhary P, Young D A, Putzig N E, Biccari D, Gim Y. 2008. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science, 322(5905): 1235~1238.
参考文献
Ishimatsu T, De Weck O L, Hoffman J A, Ohkami Y, Shishko R. 2016. Generalized multicommodity network flow model for the Earth-Moon-Mars logistics system. Journal of Spacecraft Rockets, 53(1): 25~38.
参考文献
Jakosky B M, Farmer C B. 1982. The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment. Journal of Geophysical Research: Solid Earth, 87(B4): 2999~3019.
参考文献
Ji Jie. 2013. Developing and study of low-temperature solar thermal energy conversion applications. Advances in New and Renewed Energy, 1(1): 7~31 (in Chinese with English abstract).
参考文献
Jin Yu, Shu Wenxiang, Zhang Weiwei, Jiang Shengyuan, Cui Qingxin, Bai Jingying, Lai Xiaoming. 2020. Development status and tentative plan of Mars water ice collection technology. Manned Spaceflight, 26(1): 128~134 (in Chinese with English abstract).
参考文献
Karl D, Duminy T, Lima P, Kamutzki F, Gili A, Zocca A, Günster J, Gurlo A. 2020. Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies. Acta Astronautica, 174: 241~253.
参考文献
Kleinböhl A, Schofield J T, Kass D M, Abdou W A, Backus C R, Sen B, Shirley J H, Lawson W G, Richardson M I, Taylor F W, Teanby N A, McCleese D J. 2009. Mars climate sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. Journal of Geophysical Research: Planets, 114(E10): E10006.
参考文献
Koeppen W C, Hamilton V E. 2008. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. Journal of Geophysical Research: Planets, 113(E5): E05001.
参考文献
Leovy C. 2001. Weather and climate on Mars. Nature, 412(6843): 245~249.
参考文献
Li Ping, Liu Wenlei, Yang Shuangchun, Cui Shuang, Zhang Wei. 2013. Application research progresses of talc in domestics and overseas. Bulletin of the Chinese Ceramic Society, 32(4): 668~671 (in Chinese with English abstract).
参考文献
Lomax B A, Just G H, Mchugh P J, Broadley P K, Hutchings G C, Burke P A, Roy M J, Smith K L, Symes M D. 2022. Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars. Nature Cmmunications, 13(1): 1~11.
参考文献
Lowman J P. 1966. Lunar resources-their value in lunar and planetary exploration. NASA TMX, 55673.
参考文献
Maurice S, Feldman W, Diez B, Gasnault O, Lawrence D J, Pathare A, Prettyman T. 2011. Mars Odyssey neutron data: 1. Data processing and models of water-equivalent-hydrogen distribution. Journal of Geophysical Research, 116(E11): E11008.
参考文献
Mayhew L E, Ellison E T, Mccollom T M, Trainor T P, Templeton A S. 2013. Hydrogen generation from low-temperature water-rock reactions. Nature Geoscience, 6(6): 478~484.
参考文献
Mellon M T, Feldman W C, Prettyman T H. 2004. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169(2): 324~340.
参考文献
Mellon M T, Arvidson R E, Sizemore H G, Searls M L, Blaney D L, Cull S, Hecht M H, Heet T L, Keller H U, Lemmon M T, Markiewicz W J, Ming D W, Morris R V, Pike W T, Zent A P. 2009. Ground ice at the Phoenix landing site: Stability state and origin. Journal of Geophysical Research: Planets, 114(E1): E00E07.
参考文献
Meyen F E, Hecht M H, Hoffman J A, the MOXIE Team. 2016. Thermodynamic model of Mars Oxygen ISRU Experiment (MOXIE). Acta Astronautica, 129: 82~87.
参考文献
Montes C, Broussard K, Gongre M, Simicevic N, Mejia J, Tham J, Allouche E, Davis G. 2015. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Advances in Space Research, 56(6): 1212~1221.
参考文献
Morris R V, Golden D C, Bell Iii J F, Shelfer T D, Scheinost A C, Hinman N W, Furniss G, Mertzman S A, Bishop J L, Ming D W, Allen C C, Britt D T. 2000. Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of Geophysical Research: Planets, 105(E1): 1757~1817.
参考文献
Muscatello A C, Santiago-Maldonado E. 2012. Mars in situ resource utilization technology evaluation. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 360.
参考文献
Mustard J F, Poulet F, Gendrin A, Bibring J P, Langevin Y, Gondet B, Mangold N, Bellucci G, Altieri F. 2005. Olivine and pyroxene diversity in the crust of Mars. Science, 307(5715): 1594~1597.
参考文献
Naser M Z. 2019. Space-native construction materials for earth-independent and sustainable infrastructure. Acta Astronautica, 155: 264~273.
参考文献
Ody A, Poulet F, Bibring J P, Loizeau D, Carter J, Gondet B, Langevin Y. 2013. Global investigation of olivine on Mars: Insights into crust and mantle compositions. Journal of Geophysical Research: Planets, 118(2): 234~262.
参考文献
Orosei R, Lauro S E, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R. 2018. Radar evidence of subglacial liquid water on Mars. Science, 361(6401): 490~493.
参考文献
Pankine A A, Tamppari L K, Smith M D. 2010. MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer. Icarus, 210(1): 58~71.
参考文献
Pestova O N, Myund L A, Khripun M K, Prigaro A V. 2005. Polythermal study of the systems M (ClO4)2-H2O. Russian Journal of Applied Chemistry, 78: 409~413.
参考文献
Plaut J J, Picardi G, Safaeinili A, Ivanov A B, Milkovich S M, Cicchetti A, Kofman W, Mouginot J, Farrell W M, Phillips R J, Clifford S M, Frigeri A, Orosei R, Federico C, Williams I P, Gurnett D A, Nielsen E, Hagfors T, Heggy E, Stofan E R, Plettemeier D, Watters T R, Leuschen G J, Edenhofer P. 2007. Subsurface radar sounding of the south polar layered deposits of Mars. Science, 316(5821): 92~95.
参考文献
Putzig N E, Morgan G A, the Mars SWIM Team. 2022. Subsurface Water Ice Mapping (SWIM) to support the International Mars Ice Mapper (I-MIM) Mission. LPI Contributions, 2678: 2443.
参考文献
Rahim A, Gulzar A, Khan A, Rehman Z. 2021. Mars in situ resource utilization and sulfur concrete. In: van Susante P, Roberts A, eds. Earth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments. Reston, Virginia: American Society of Civil Engineers, 1231~1241.
参考文献
Ralphs M, Franz B, Baker T, Howe S. 2015. Water extraction on Mars for an expanding human colony. Life Sciences in Space Research, 7: 57~60.
参考文献
Rapp D. 2013. Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars. Chichester: Springer, 65~108.
参考文献
Rieder R, Gellert R, Anderson R C, Bruckner J, Clark B C, Dreibus G, Economou T, Klingelhofer G, Lugmair G W, Ming D W, Squyres S W, D' Uston C, Wänke H, Yen A, Zipfel J. 2004. Chemistry of rocks and soils at Meridiani planum from the Alpha particle X-ray spectrometer. Science, 306: 1746~1749.
参考文献
Rogers A D, Christensen P R. 2007. Surface mineralogy of martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. Journal of Geophysical Research, 112(E1): E01003.
参考文献
Sanders G B. 2018. Advancing in situ resource utilization capabilities to achieve a new paradigm in space exploration. 2018 AIAA SPACE and Astronautics Forum and Exposition, 5124.
参考文献
Savijärvi H, Martinez G, Harri A, Paton M. 2020. Curiosity observations and column model integrations for amartian global dust event. Icarus, 337: 113515.
参考文献
Scott A N, Oze C. 2018. Constructing Mars: Concrete and energy production from serpentinization Products. Earth Space Science Reviews, 5(8): 364~370.
参考文献
Selvans M M, Plaut J J, Aharonson O, Safaeinili A. 2010. Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data. Journal of Geophysical Research: Planets, 115(E9): E09003.
参考文献
Shi Yutong, Zhao Jiannan, Xiao Long, Yang Yong, Wang Jiang. 2022. An arid-semiarid climate during the Noachian-Hesperian transition in the Huygens region, Mars: Evidence from morphological studies of valley networks. Icarus, 373: 114789.
参考文献
Smith M, Craig D, Herrmann N, Mahoney E, Krezel J, Mcintyre N, Goodliff K. 2020. The Artemis program: An overview of NASA's activities to return humans to the Moon. Proceedings of 2020 IEEE Aerospace Conference, 1~10.
参考文献
Sridhar K R. 1995. Mars sample return mission with in-situ resource utilization. Journal of Propulsion, 11(6): 1356~1362.
参考文献
Van Ellen L, Peck D. 2018. Use of in situ ice to build a sustainable radiation shielding habitat on Mars. 69th International Astronautical Congress, IAC-18-E2. 2. 7.
参考文献
Van Susante P J, Allen J S T, Eisele T C, Medici E F, Foetisch M S, Zacny K A, Fitzgerald Z. 2021. Water extraction from rock gypsum on Mars. In: van Susante P, Roberts A, eds. Earth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments. Reston, Virginia: American Society of Civil Engineers, 653~659.
参考文献
Viviano C E, Moersch J E, Mcsween H Y. 2013. Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. Journal of Geophysical Research: Planets, 118(9): 1858~1872.
参考文献
Wan Lin, Wendner R, Cusatis G. 2016. A novel material for in situ construction on Mars: Experiments and numerical simulations. Construction Building Materials, 120: 222~231.
参考文献
Whiteway J A, Komguem L, Dickinson C, Cook C, Illnicki M, Seabrook J, Popovici V, Duck T J, Davy R, Taylor P A, Pathak J, Fisher D, Carswell A I, Daly M, Hipkin V, Zent A P, Hecht M H, Wood S E, Tamppari L K, Renno N, Moores J E, Lemmon M T, Daerden F, Simth P H. 2009. Mars water-ice clouds and precipitation. Science, 325(5936): 68~70.
参考文献
Wittenberg L J, Santarius J F, Kulcinski G L. 1986. Lunar source of 3He for commercial fusion power. Fusion Technology, 10(2): 167~178.
参考文献
Wu Weiren, Yu Dengyun, Liu Jizhong, Hu Chaobin, Tang Yuhua, Wang Dayi, Hou Yukui, Zhang Zhe, Li Ming, Wang Jilian, Wang Tong, Wu Ke, Du Hui, Shen Zhiqiang, Huang Xiaofeng. 2021. Key issues of modernization of space governance. Chinese Science Bulletin, 66(15): 1795~1801 (in Chinese with English abstract).
参考文献
Xiao Long. 2013. Planetary Science. Beijing: Geology Press, 217 (in Chinese with English abstract).
参考文献
Xiao Long, Yan Chenfeng, Huang Jun, Zhao Jiannan, Wang Jiang, Liu Hansheng. 2021. Exploration of Mars. Wuhan: China University of Geosciences Press, 190~206 (in Chinese with English abstract).
参考文献
Xu Lin, Pei Zhaoyu, Zou Yongliao, Wang Chi. 2020. China’s lunar and deep space exploration program for the next decade (2020-2030). Chinese Journal of Space Science, 40(5): 615~617.
参考文献
Yang Liuqing, Zhang Ce, Yu Xiwen, Yao Yingfang, Li Zhaosheng, Wu Congping, Yao Wei, Zou Zhigang. 2021. Extraterrestrial artificial photosynthetic materials for in-situ resource utilization. National Science Review, 8(8): nwab104.
参考文献
Zhang Ning, Lu Xi, Zhao Jiannan, Wang Jiang, Peng Yuming, Liu Hansheng, Xiao Long. 2020. Research status and utilization approach of martian wind resources. Manned Spaceflight, 26(3): 381~388 (in Chinese with English abstract).
参考文献
Zhao Jiannan, Xiao Long. 2016. Achievement, issues and prospects in study of martian palelakes. Earth Science, 41(9): 1572~1582 (in Chinese with English abstract).
参考文献
Zhao Jiannan, Xiao Long, Glotch T D. 2020. Paleolakes in the northwest Hellas region, Mars: Implications for the regional geologic history and paleoclimate. Journal of Geophysical Research: Planets, 125(3): e2019JE006196.
参考文献
Zhao Jiannan, Shi Yutong, Zhang Mingjie, Yang Yong, Huang Ting, Wang Jiang, Hang Jun, Xiao Long. 2021. Advances in martian water-related landform. Acta Geologica Sinica, 95(9): 2755~2768 (in Chinese with English abstract).
参考文献
Zhao Yunpu, Cheng Hongfei, Cao Zhou, Jia Yuefa. 2022. Research progress of kaolinite-based composites in photocatalysis application. Journal of Synthetic Crystals, 51(1): 170~184 (in Chinese with English abstract).
参考文献
Zheng Mianping, Kong Weigang, Chen Wenxi, Kong Fanjing, Zhang Xuefei. 2014. A comparative analysis of evaporite deposition on Earth and Mars. Geological Journal of China Universities, 20(2): 169~176 (in Chinese with English abstract).
参考文献
Zheng Tingting, Zhang Menglu, Wu Lianghuan, Guo Shuyuan, Liu Xiangjian, Zhao Jiankang, Xue Weiqing, Li Jiawei, Liu Chunxiao, Li Xu, Jiang Qiu, Bao Jun, Yu Tao, Xia Chuan. 2022. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis, 5: 388~396.
参考文献
Zuber M T, Phillips R J, Andrews-Hanna J C, Asmar S W, Konopliv A S, Lemoine F G, Plaut J J, Smith D E, Smrekar S E. 2007. Density of Mars' south polar layered deposits. Science, 317(5845): 1718~1719.
参考文献
Zubrin R, Frankie B, Kito T. 1997. Mars in-situ resource utilization based on the Reverse Water Gas Shift: Experiments and mission applications. 33rd Joint Propulsion Conference and Exhibit, AIAA 97-2767.
参考文献
Zubrin R, Kito T, Frankie B. 1998. Report on the construction and operation of a Mars in situ propellant production unit utilizing the Reverse Water Gas Shift. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 3303.
参考文献
Zubrin R M, Muscatello A C, Berggren M. 2013. Integrated Mars in situ propellant production system. Journal of Aerospace Engineering, 26(1): 43~56.
参考文献
安振华. 2019. 蒙脱石在药物载体中的应用研究综述. 中国粉体工业, (5): 1~3.
参考文献
高朝辉, 童科伟, 时剑波, 申麟. 2015. 载人火星和小行星探测任务初步分析. 深空探测学报, 2(1): 10~19.
参考文献
高楠, 许英奎, 罗泰义, 凌宗成, 朱丹, 李阳, 李雄耀, 刘建忠. 2022. 月球矿产资源勘查进展及展望. 矿物学报, 42(2): 222~230.
参考文献
顾才鑫, 龙文俊, 岳永铭. 2018. 火星太阳能分布及光伏发电计算. 太阳能, (11): 35~39.
参考文献
郝剑, 李丹明, 党文强, 李居平, 王仕发. 2018. 火星二氧化碳及水资源利用的研究进展. 真空与低温, 24(5): 289~296.
参考文献
季杰. 2013. 太阳能光热低温利用发展与研究. 新能源进展, 1(1): 7~31.
参考文献
靳宇, 舒文祥, 张伟伟, 姜生元, 崔庆新, 白晶莹, 赖晓明. 2020. 火星水冰采集技术发展现状及方案设想. 载人航天, 26(1): 128~134.
参考文献
李萍, 刘文磊, 杨双春, 崔爽, 张维. 2013. 国内外滑石的应用研究进展. 硅酸盐通报, 32(4): 668~671.
参考文献
吴伟仁, 于登云, 刘继忠, 胡朝斌, 唐玉华, 王大轶, 侯宇葵, 张哲, 李明, 王冀莲, 王彤, 吴克, 杜辉, 申志强, 黄晓峰. 2021. 我国太空活动现代化治理中的若干重大问题. 科学通报, 66(15): 1795~1801.
参考文献
肖龙. 2013. 行星地质学. 北京: 地质出版社, 217.
参考文献
肖龙, 严晨风, 黄俊, 赵健楠, 王江, 刘汉生. 2021. 探秘火星. 武汉: 中国地质大学出版社, 190~206.
参考文献
张宁, 陆希, 赵健楠, 王江, 彭玉明, 刘汉生, 肖龙. 2020. 火星风力资源的研究现状及利用途径. 载人航天, 26(3): 381~388.
参考文献
赵健楠, 史语桐, 张明杰, 杨勇, 黄婷, 王江, 黄俊, 肖龙. 2021. 火星水成地貌研究进展. 地质学报, 95(9): 2755~2768.
参考文献
赵蕴璞, 程宏飞, 曹洲, 贾悦发. 2022. 高岭石基复合材料在光催化领域应用的研究进展. 人工晶体学报, 51(1): 170~184.
参考文献
郑绵平, 孔维刚, 陈文西, 孔凡晶, 张雪飞. 2014. 地球同火星蒸发岩沉积的对比. 高校地质学报, 20(2): 169~176.
目录contents

    摘要

    太空资源的勘探及利用是深空探测的重要目的之一。火星是人类最容易到达和资源利用最为迫切的行星,对火星资源进行勘查和原位利用是未来火星载人探测及基地建设需要解决的重要问题。本文对火星大气资源、水资源、土壤与岩石矿物资源、风能与太阳能资源等可利用资源的类型及赋存状况进行了分析,制作了火星资源的全球分布图,并从资源分布的角度提出了未来火星资源探测及火星基地建设的首选区域。同时,本文也总结了火星原位资源利用技术的研究进展及问题,认为未来需要从以下几个方面开展进一步研究:加强火星资源的针对性勘查与评估;开发新的资源利用模式与技术;建立资源利用成本的综合评估模型;完善资源开发与利用相关的法律法规。

    Abstract

    The exploration and utilization of space resources is one of the important purposes of deep space exploration. Mars, being the most accessible planet with pressing resource utilization demands, necessitates the exploration and in-situ utilization of its resources. These activities are vital for the future of manned exploration and base construction on Mars. In this paper, we conduct an analysis of the various types of Martian resources, including atmospheric resources, water resources, soil and rock mineral resources, as well as wind and solar energy resources. We also create a global distribution map of Martian resources and propose the potential areas for future Mars base construction based on resource distribution. In addition, this paper provides a comprehensive summary of the research progress and issues surrounding in-situ resource utilization technology on Mars. It also highlights the need for further research in the following aspects: enhancing targeted surveys and evaluations of Martian resources, developing new resource utilization models and technologies, establishing comprehensive evaluation models for resource utilization costs, and improving laws and regulations pertaining to resource development and utilization.

  • 深空探测主要围绕空间科学、空间技术和空间应用三大目标开展。随着火箭、遥感与测控技术的发展,人类探索深空的步伐越走越远,与此同时,为探测任务提供补给的成本和风险大幅增加(Eichler et al.,2021)。另一方面,月球和火星载人探测及基地建设也已被提上日程(高朝辉等,2015; Smith et al.,2020; Xu Lin et al.,2020),资源和能源是保障这些活动顺利开展的关键,而开发利用太空资源也是这些任务的重要目标。在这一背景下,太空资源勘探及原位利用技术成为当前研究的热点。

  • 原位资源利用(in-situ resource utilization,ISRU)是指利用原位资源为无人或有人探测任务提供产品或服务的硬件及技术(Sanders,2018)。ISRU可以提供水、火箭推进剂和建筑材料等资源(Naser,2019),将使人类能够长期驻留于近地轨道之外,也使封闭的地球经济圈拓展到地球之外。

  • 原位资源利用技术的发展与人类太空探测活动的进程紧密相连。在二十世纪六七十年代的美苏太空竞赛中,美国就启动了太空资源利用的概念性研究,但此时的研究对象以月球为主(Lowman,1966; Ehricke,1981; Wittenberg et al.,1986)。自二十世纪末至今,一系列探测任务获得了关于火星、小行星、彗星等星体更为丰富、详尽的探测数据,原位资源利用研究的目标天体也随之拓展。其中,火星以其丰富的资源类型、储量以及在深空探测中的重要地位,成为太空资源研究的热点,相关研究内容的出版物数量及被引频次快速增长(图1;据Web of Science: https://webofscience.clarivate.cn)。同时,“天问一号”任务的实施,也标志着我国火星探测已经成功迈出第一步,未来将开展采样返回、载人探测及火星基地建设(高朝辉等,2015; 肖龙等,2021)。因此,有必要对当前火星资源赋存状况及原位利用技术的研究进展进行总结,分析存在的问题并展望火星ISRU研究的发展方向,为我国未来火星探测任务的规划和太空资源的开发利用提供参考。

  • 图1 1988~2022年火星资源相关出版物数量及被引频次统计图 (数据来源:Web of Science: https://webofscience.clarivate.cn)

  • Fig.1 Statistical chart of the number and citation frequency of publications related to Mars resources from 1988 to 2022 (data source: Web of Science: https://webofscience.clarivate.cn)

  • 1 火星资源的类型及其赋存状况

  • 1.1 大气与风力资源

  • 火星具有稀薄的大气,平均大气压约为630 Pa(De Pater et al.,2015)。火星大气中可利用的资源主要集中于低层大气(从火星表面至45 km高度之间),其主要成分为二氧化碳(95.3%)、氮气(2.7%)和少量氩气(1.6%)。由于火星极冠会随季节变化释放和凝华二氧化碳,因此在一个火星年内二氧化碳的体积分数会发生变化,最高变化幅度达20%(Leovy,2001)。在ISRU中,主要可利用火星大气中的二氧化碳制备氧气、甲烷等气体,以供生命体呼吸或作为火箭推进剂。由于火星表面的大气压主要受到海拔及季节的影响,因此具有较高大气压的低海拔区域是开展气体制备的理想区域(Jakosky et al.,1982; Chamitoff et al.,2005)。

  • 火星具有复杂的大气环流,可形成沙尘暴等天气现象。同时,较大的昼夜温差导致火星的大气运动十分剧烈,平均风速约4.3 m/s,最高可达50~100 m/s,且风向多变(Badescu,2009; Savijärvi et al.,2020)。一般而言,低海拔的斜坡区域具有较为充足的可利用风力资源(Chamitoff et al.,2005)。同时,根据对可利用风能极限的推算方法,张宁等(2020)认为火星全球近地表可利用风能的总量约为5.45×1010 W。

  • 1.2 水(冰)资源

  • 多源遥感探测数据表明,火星地质历史早期曾有大量地表水活动,并保留有形态各异的沟谷、古湖泊、三角洲等水活动遗迹(Baker,2006; Zhao Jiannan et al.,2020; 赵健楠等,2021; Shi Yutong et al.,2022)。随后火星气候变得寒冷干燥,地表水逐渐消失。当前,火星可利用的水资源主要以水冰的形式赋存于两极区域(Bibring et al.,2004; Byrne,2009)及中高纬度表土之下的冰层中(Mellon et al.,2004; Dundas et al.,2014; 靳宇等,2020)。

  • 火星极地水冰主要包括残留冰盖和极地层状沉积物中的水冰。极区冰盖由季节性冰盖和永久性冰盖(残留冰盖)组成(Pankine et al.,2010)。冬季半球大气中的CO2凝结,形成成分为干冰的季节性冰盖。在夏季,季节性冰盖消减,即可显露出下伏的残留冰盖。北极残留冰盖由厚度均一的水冰组成,而南极残留冰盖则主要由数米厚的干冰组成。在两极冰盖之下为极地层状沉积物,它们主要由大气沉降尘埃和水冰组成。Selvans et al.(2010)利用火星快车探测器搭载的“火星次表层和电离层探测先进雷达(Mars advanced radar for subsurface and ionosphere sounding,MARSIS)”的数据估算出北极层状沉积单元中水冰的体积约为(7.8±1.2)×105 km3Zuber et al.(2007)利用雷达、重力及高程数据,计算得到南极层状沉积的密度约为1.220 kg/m3,与含15%灰尘的水冰密度一致,进一步证实了南极层状沉积的组成主要为相对纯净的水冰,其总水量相当于可覆盖火星表面11±1.4 m的水层(Plaut et al.,2007; Zuber et al.,2007)。此外,基于MARSIS的最新研究成果发现在火星南极冰盖下方约1.5 km深处可能存在直径约20 km的液态卤水湖泊(Orosei et al.,2018)。

  • 火星地下冰层一般在南北纬40°以上的中高纬地区地表以下数厘米至数米深度处存在(Chamberlain et al.,2007),这与火星奥德赛探测器伽马射线谱仪(gamma ray spectrometer,GRS)的探测结果相吻合(Feldman et al.,2002; Maurice et al.,2011)。此外,通过雷达遥感探测、新撞击坑及断崖暴露的水冰观测以及着陆器探测,都证明了火星中高纬度地下水冰的存在:Holt et al.(2008)利用火星浅层雷达(shallow subsurface radar,SHARAD)数据发现火星南部中纬度地区的冰川地貌内存在约2.8×104 km3的水冰;Dundas et al.(2018)利用火星高分辨率成像科学设备(high resolution imaging science experiment,HiRISE)影像发现中纬度地表之下约1~2 m处存在水冰;Byrne et al.(2009)Dundas et al.(2014)在火星中高纬度发现数十处新鲜撞击坑挖掘出地下水冰;着陆于火星北极附近的凤凰号着陆器也在火星浅表层(约4.6 cm深处)发现水冰(Mellon et al.,2009)。

  • 1.3 岩石、土壤与矿物资源

  • 火星表面的岩石、土壤及矿物资源是ISRU的主要研究对象。目前,一系列火星遥感和原位探测任务已经获得了大量关于火星表面成分的数据,为岩石与矿物资源的评估提供了基础。

  • 火星表面的主要岩石类型包括岩浆岩和沉积岩。其中,岩浆岩以玄武岩为主,并可分为四类(Rogers et al.,2007; 肖龙,2013):① 富含高硅玻璃的二辉玄武岩(主要分布于北部平原的北侧);② 含橄榄石的方辉玄武岩(分布于Nili火山高地);③ 含橄榄石二辉玄武岩(广泛分布于南部高原);④ 二辉玄武岩(南极附近的高地区域)。岩浆岩的主要造岩矿物为硅酸盐,包括橄榄石、辉石、长石;副矿物主要有铬铁矿、钛铁矿、石英、锆石等。沉积岩包括风成沉积岩和水成沉积岩,多发育于低纬度地区的撞击坑坑壁及底部、水手大峡谷边缘,其物质来源主要为玄武岩遭受化学风化产生的碎屑物质。除了常见的硅酸盐矿物,硫酸盐、碳酸盐、氯盐、层状硅酸盐、赤铁矿、针铁矿等表生矿物在火星表面也广泛分布,例如“海盗号”着陆器在火星土壤中探测到硫酸盐的含量约8%~15%,氯化物含量约0.5%~1.5%(郑绵平等,2014);“机遇号”着陆区子午线平原附近的岩石露头中硫酸盐矿物的含量可达25%(Rieder et al.,2004; Clark et al.,2005);“勇气号”火星车获得Comanche露头处碳酸盐含量高达16%~34%(Morris et al.,2000; Carter and Poulet,2012);“好奇号”在盖尔撞击坑的泥岩中探测到高达28%的黏土矿物(Bristow et al.,2018)。

  • 1.4 太阳能资源

  • 太阳能是深空探测任务中较为直接、丰富且清洁的能源类型。太阳辐射具有分散性强,能流密度低等特点,Appelbaum et al.(1993)结合美国海盗号着陆器探测数据,计算得到火星获得的平均辐照度为590 W/m2。这些辐射中,部分被火星大气吸收或反射回太空,只有很少部分的辐射到达火星表面。但是,这些到达表面的辐射如果能被充分高效地利用起来,其能量相当可观。

  • 火星表面可利用的太阳能随季节和纬度而变化(Chamitoff et al.,2005)。火星南极夏至时,南极极地区域比北极接收更多的日照。由于南半球的冬季处于火星轨道的远日点,所以南半球比北半球冬季寒冷且持续时间长。另一方面,火星表面赤道附近的太阳能能量最大,随着纬度的升高,能量逐渐减少。前人对火星大气层外太阳能的分布做了比较精确的计算,得出火星同步卫星每平方米太阳能板在每个火星年内可获得的太阳能为5.17×109 J,考虑到大气层内散射、透射及沙尘暴等诸多因素,通过模型近似计算了火星表面每个火星公转周期内在不同纬度太阳能的分布,发现赤道附近的能量最大,每个火星公转周期可以获得约2.953×109 J的能量(顾才鑫等,2018)。

  • 1.5 火星资源的综合分布

  • 根据上述研究成果,本文对火星表面各类可利用资源的全球分布进行了综合分析,并制作了资源分布图(图2)。其中,大气资源由于在低海拔处(<-2 km; Chamitoff et al.,2005; Kleinböhl et al.,2009)较为丰富,因而其可利用区域主要位于火星北部平原及南部高原内的大型撞击盆地(如阿吉尔(Argyre)和海拉斯(Hellas)盆地)。风力资源主要分布于火星表面的斜坡区(Barker,1998),即火星南北二分性边界附近以及南部高原大型撞击盆地的边缘区。水资源依据火星奥德赛探测器GRS的探测结果(Feldman et al.,2002),主要分布于火星中高纬度。含水矿物与橄榄石的分布基于火星快车“可见光及红外矿物制图光谱仪(observatoire pour la Minéralogie,l’Eau,les Glace et l’Activité,OMEGA)”和火星勘测轨道飞行器“紧凑型侦察成像光谱仪(compact reconnaissance imaging spectrometer for Mars,CRISM)”的探测结果(Koeppen et al.,2008; Carter et al.,2013),主要出露于南部高原。太阳能则主要分布于火星赤道附近,特别是南北纬40°之间的区域(Chamitoff et al.,2005)。因此,从资源分布的角度而言,在火星阿拉伯(Arabia)高地至克律塞(Chryse)平原的过渡区(如麦克劳林撞击坑(McLaughlin Crater))、伊希斯(Isidis)盆地周边(如尼罗堑沟群(Nili Fossae))以及海拉斯盆地北部(如特尔比撞击坑(Terby Crater))富集多种可利用资源(图2),可为人类在火星表面的生产生活提供支持,因此可作为未来火星载人探测、火星基地选址的优先备选区域。

  • 图2 火星各类资源全球分布图

  • Fig.2 Global distribution map of various resources on Mars

  • 底图为火星轨道器激光高度计(Mars orbiter laser altimeter,MOLA)获得的高程图;各图层基础数据来源:含水矿物(Carter et al.,2013);橄榄石(Koeppen et al.,2008);大气和太阳能资源(Chamitoff et al.,2005; Kleinböhl et al.,2009);风力资源(Barker,1998);水资源(Feldman et al.,2002

  • The background image is an elevation map obtained by the Mars orbiter laser altimeter (MOLA) ; source of basic data for each map layer: hydrated mineral (Carter et al., 2013) ; olivine (Koeppen et al., 2008) ; atmosphere and solar energy (Chamitoff et al., 2005; Kleinböhl et al., 2009) ; wind resource (Barker, 1998) ; water resource (Feldman et al., 2002)

  • 2 火星资源的原位利用途径与技术

  • 2.1 大气资源原位利用

  • 火星大气可用于生产多种燃料、氧化剂、液体和有用气体等,以支持运输、农业、科学研究以及人类生存等多方面的需求。相比其他资源,大气资源的利用具有独特的优势。首先,开发大气资源不需要进行资源勘探、挖掘以及物料处理。其次,大气的可用性和火星大气成分已经被很好的了解。此外,利用大气进行物质提取和合成的技术也较为发达,多数基于现代工业中常见的化学过程,且大气处理设备的部署和操作也相对简单,可以自动化进行。当前,火星大气ISRU的研究多集中于利用二氧化碳制备氧气、氢气、甲烷等气体,而近期利用二氧化碳合成淀粉、乙酸等的研究成果为火星大气ISRU提供了新的方向。

  • 2.1.1 利用二氧化碳制备气体

  • 在火星上原位利用二氧化碳制备气体主要通过固态氧化物电解、逆水-气变换反应(reverse water gas shift,RWGS)、萨巴蒂尔(Sabatier)反应等技术(表1),这些技术都已经相对成熟并有开发完成的设备(Rapp,2013; 郝剑等,2018)。

  • 其中,固态氧化物电解技术将压缩和加热后的二氧化碳利用电解装置电解生成氧气和一氧化碳(Sridhar,1995; Meyen et al.,2016)。该技术具有制氧效率高、装置轻便、耗能较少、气体可循环利用等优点。“毅力号”火星车所搭载的火星氧气原位资源利用实验设备(Mars oxygen in-situ resource utilization experiment,MOXIE)已成功利用该技术在火星上制氧,首次实验制取了5.4 g氧气,证明了该原理及设备的可行性,为ISRU的实地应用奠定了良好的基础(Hoffman et al.,2022)。RWGS反应利用氢气将二氧化碳还原为水和一氧化碳,再电解所获得的水,回收产生的氧气和氢气(Zubrin et al.,1997)。上述过程简单易操作,主要用于火星原位推进剂的生产,但实际应用中该反应进行得并不充分,在推动反应完成方面尚存问题(Zubrin,1998; Muscatello et al.,2012)。最早由Ash et al.(1978)提出的萨巴蒂尔反应利用火星大气中的CO2和从地球携带的H2制造甲烷燃料,反应产生的甲烷被液化储存,产生的水被电解,电解生成的H2循环利用制造甲烷,而生成的O2也被液化储存(Zubrin et al.,2013)。上述装置简单、反应温和、技术成熟,因此是理想的推进剂原位制备方案。同时,近年来也将萨巴蒂尔反应和RWGS反应结合以产生更多的氧气,并可最大限度地减少冷凝器、循环泵等辅助设备(Zubrin et al.,2013)。

  • 表1 火星原位利用二氧化碳制备气体的主要技术路径

  • Table1 Main approaches for in-situ gas production from CO2

  • 2.1.2 利用二氧化碳提供食物来源

  • 利用二氧化碳制备淀粉、乙酸等有机物可为人类在火星表面长期驻留提供重要的食物来源。淀粉是人类饮食中能量的主要来源,也是重要的工业原料。Cai Tao et al.(2021)提出了一种在无细胞体系中由CO2和H2人工合成淀粉的化学-生化混合途径。该途径由11个核心反应组成,其淀粉合成速率可达自然环境中玉米合成淀粉速率的8.5倍。由于在火星表面实现土壤种植极具挑战性,因此若能将该技术应用于火星,利用大气中的CO2制备淀粉,将有效满足人类在火星表面生存和生活的食物及能量需求。

  • 乙酸及乙酸盐经生物发酵可合成葡萄糖和脂肪酸等碳水化合物,也可作为人类所需能量的重要来源。Zheng Tingting et al.(2022)提出了通过电催化结合生物合成的方式将二氧化碳和水高效还原合成高浓度乙酸的方法,为人工和半人工合成食物提供了新的途径。火星大气中充足的二氧化碳资源、次表层丰富的水冰资源为该技术提供了原料,同时,此项技术人工可控,不受火星恶劣自然环境的影响,并可进一步与电催化及生物发酵结合而实现淀粉、色素、药物等重要物资的生产,有望成为火星ISRU技术新的突破点。

  • 2.2 风力资源原位利用

  • 风力资源是火星ISRU中可靠的能源保障,其供给充足,成本可控。火星风力资源的原位利用主要是将大气粒子运动的动能通过风能转换系统转化为电能、热能或机械能(张宁等,2020)。其中,火星风力发电是最受关注的研究领域。Haslach(1989)较早开展了火星风力资源利用的研究,并提出了一种可移动的轻型垂直轴风力涡轮机的设计方案。Barker et al.(1998)在基于原位资源利用的火星前哨站建设研究中进一步确认了开发风能的可行性。Holstein et al.(2018)提出了一种轻型水平轴风力涡轮机,并在模拟火星大气环境的风洞中进行了测试,验证了火星表面风力发电的适用性。

  • 但是,风力资源的供给存在一定的不稳定性,受风速变化、季节更替及天气条件的影响,而火星上大范围的尘暴则可能对风力发电机组产生破坏。若能采取新的技术,避免火星上的恶劣环境条件对风能利用的影响,风力资源将在未来火星探测中扮演更重要的角色。

  • 2.3 水资源原位利用

  • 水是维持人类生命的关键物质,是一种几乎通用的化学溶剂,也是推进、控制、动力、热储存和辐射保护系统的重要资源。在火星任务中,水资源可直接用于农业灌溉、过滤饮用、工业用水等,也可以水冰的形式用于火星基地的建造。例如,Van Ellen et al.(2018)认为可开采火星次表层水冰,并加入氯化钠改善其力学性质以作为火星建筑材料,该材料具有较好的防辐射性能及较高的整体强度。

  • 此外,水也用于制备氧气、氢气、甲烷等气体。这些气体在火星探测活动中具有重要作用,如它们均可作为火箭推进剂,或用于生产燃料电池,也可用于火星原位资源利用的其他技术环节中。电解水是最为简单的由水制备氢气和氧气的方式,但其能耗较高,且在火星低重力条件下,氧气的产率比地球表面降低约11%(Lomax et al.,2022)。相比之下,电解高氯酸盐卤水是更好地制备氢气和氧气的方式。凤凰号着陆器发现了火星表面存在活跃的水循环以及可溶性高氯酸盐的证据(Hecht et al.,2009; Whiteway et al.,2009)。由于高氯酸盐大大降低了水的冰点,溶解有高氯酸盐的火星卤水能够以液相存在(Pestova et al.,2005; Hanley et al.,2012)。Gayen et al.(2020)提出在-36℃的温度下电解高氯酸盐卤水制备超纯H2和O2的方案,其采用了由Pb2Ru2O7-δ焦绿石析氧电催化剂和Pt/CH2析氢电催化剂制备的盐水电解槽,此装置与直接电解水相比产氧率显著提升,在相同的输入功率下,该装置的产氧率是毅力号火星车所开展的火星氧气原位资源利用实验的25倍以上。

  • 液态水与富铁矿物表面的相互作用也可用来制备氢气。在地表自然条件下,氧化亚铁经过水的蚀变,可生成氧化铁并释放氢气(Freund et al.,2002; Mayhew et al.,2013)。火星表面比地球更富铁,因而有望通过该反应降低氢气的生产成本。Adcock et al.(2020)将MGS-1模拟火星土壤与酸性水溶液混合,成功制备了浓度超过了2%的氢气,证明了利用该方法在火星表面获取氢气的可行性。

  • 2.4 火星岩石、土壤及矿物资源的利用

  • 火星表面的岩石、土壤及矿物资源可为火星基地的建设提供丰富的物质来源。其中,多种岩石可直接利用,如致密的玄武岩可被切割为建筑材料,而气孔状玄武岩可用来制造隔音材料。火星土壤可被用于制造混凝土或开展植物种植。各类矿物可广泛应用于火星工业生产中,具有重要的价值。

  • 2.4.1 火星土壤的原位利用

  • 制造混凝土是火壤重要的利用途径。在火星环境下制造混凝土,需要考虑黏结剂、水、骨料等原材料的来源。其中,水可以直接通过开采水冰获得,而火壤则可以用作骨料,黏结剂则存在多种选择。Montes et al.(2015)提出可以从月壤中制备聚合物黏结剂(主要成分为42.95%的SiO2,14.53%的Al2O3以及11.50%的Fe2O3)作为建筑材料,而火星土壤中具备该聚合物黏结剂的主要成分,具有一定的可行性。Wan Lin et al.(2016)利用模拟火壤和熔融硫黏结剂开发了火星混凝土,该混凝土具有较高的强度,可适用于火星大气压力和温度范围内的建筑施工。此外,由火壤、硫和氧化镁/氯化镁结合制成的硫磺混凝土具有凝固快速、强度高、修复和改造方便等特点,适用于超干旱的火星环境(Rahim,2021)。

  • 火壤也可被应用于植物种植。在火壤中种植食物需要满足:存在硝酸盐、磷酸盐和硫酸盐,适当的pH值,以及通过高氯酸盐修复去除毒素(Eichler et al.,2021)。Eichler et al.(2021)系统地评估了JSC-Mars1A、MMS和MGS-1三种模拟火壤中植物的生长情况,发现JSC-Mars1A和MMS需额外补充营养剂方可支持植物生长,而高碱性(pH>9.0)的MGS-1模拟火壤即使添加营养剂也不能支持生长。但值得注意的是,若将与火星表面浓度相当的高氯酸钙添加到各模拟火壤中,无论是否补充营养都不能支持植物生长。

  • 2.4.2 火星矿物的原位利用

  • 在火星矿物的原位利用研究中,目前关注度较高的矿物主要有橄榄石、蒸发盐类矿物和层状硅酸盐类矿物。

  • 橄榄石[(Mg,Fe)2SiO4]是火星上一种区域性富集的矿物(Hoefen et al.,2003; Mustard et al.,2005; Ody et al.,2013),可经历低温(<300℃)蚀变(即蛇纹石化)形成蛇纹石并释放氢气(Ehlmann et al.,2010; Viviano et al.,2013)。Scott et al.(2018)对蛇纹岩化释放氢气的速率进行了评估,发现氢气的浓度随温度的升高(20~50℃)和橄榄石粒径的减小而增大,最大日产氢速率可达4.73 μmol/g。此外,利用蛇纹石化的产物,可以在火星上获得建筑材料和能源。

  • 火星表面蒸发盐类矿物中,碳酸盐可用来生产石灰和水泥,氯盐可生产食盐、盐酸和消毒水,硫酸盐以石膏(CaSO4·2H2O)为主,可用于水泥缓凝剂、石膏建筑制品、模型制作、硫酸生产、防火隔热材料等。此外,由于石膏中含有结晶水,因此可通过加热石膏获取水资源(Ralphs et al.,2015; van Susante et al.,2021)。

  • 火星表面的层状硅酸盐类矿物包含蒙脱石、高岭石和滑石等,这些矿物可广泛应用于医药、材料、环境等领域,具有重要的工业价值。例如,蒙脱石微粒具有很强的定位能力,可在医药领域应用于固定和抑制细菌 (安振华,2019);高岭石是陶瓷原料、化工填料、耐火材料的重要组成成分(赵蕴璞等,2022);滑石在污水处理、金属冶炼、建筑材料改性、造纸等方面都有广泛应用(李萍等,2013)。当前的研究已经论证了利用火壤中的蒙脱石与硫酸镁来制备陶瓷的可行性,并成功基于模拟火壤生产出高强度生坯,结合增材制造技术能够生产出抗压强度与标准混凝土相似或更高的生坯(Karl et al.,2020),为未来火星基地的建设提供了重要支撑。

  • 2.4.3 火星土壤和矿物资源的综合利用

  • 为了更充分更高效地开展火星土壤和矿物资源的原位利用,研究者已经提出了多种综合利用方案,其中主流方案包括硅酸盐-硫酸过程(silicate-sulfuric acid process,SSAP)和火星湿法加工过程(Mars aqueous processing system,MAPS)。SSAP是从天然硫化矿物中提取硫、就地制造硫酸以及利用产生的酸溶解天然硅酸盐矿物而生成金属铁、二氧化硅、氧气和金属氧化物的物理和化学途径(Anderson et al.,2021)。SSAP过程的进行主要依赖于水和硫,而它们在火星表面的丰度相对较高,为反应的长期进行奠定了基础,因此SSAP是一种较为适合火星的原位资源利用方式。但是,该方案目前仍处于理论研究阶段,尚未开展实验验证。MAPS是一种从火星土壤中生产铁、高级金属氧化物和氧气的技术(Berggren et al.,2009)。该过程首先从土壤中提取硫酸,然后通过结晶或使用氢氧化镁调整pH值后沉淀的方式选择性地回收成分(图3)。在此过程中,金属铁通过氢气还原氧化铁产生,氧气则通过电解还原产生的水作为副产品回收。氧化铝、氧化镁和方解石产品(纯度大于94%)可作为耐火材料,用于制造绝缘材料、炉衬、铸造模具和结构部件。MAPS产物也是进一步提炼生产钢铁、陶瓷、玻璃和轻金属的极佳原料。MAPS提取残余物的硅含量较高,适合于制备热熔材料和玻璃以及水基结构材料,如镁质混凝土。由此可见,MAPS将有力保障人类在火星上自给自足,为火星基地的建设发挥重要作用。同时,相比于SSAP,虽然MAPS反应过程中的初始试剂需从地球携带,但其能够获得种类更为丰富的产物,且已经过初步的实验验证,相关技术及设备更为成熟。

  • 2.5 火星太阳能资源的利用

  • 在现代技术条件下,太阳能的利用途径主要有三个方面:光热转换利用、光电转换利用以及光化学转换利用。光热转换利用的基本原理是通过各种集热装置吸收太阳辐照并转化为热能加以利用;光电转换利用则是利用各种光伏电池材料的光生伏特效应,将相应波长的太阳光转化为电能输出利用;光化学转化可通过光化学反应将太阳能转化为化学能,主要指太阳光分解水制氢技术(季杰,2013)。在火星太阳能资源利用方面,目前的研究集中于太阳能发电技术,而光化学技术的应用也取得了一定的进展。

  • 太阳能发电技术主要依靠太阳能电池板进行光电转换。Glascock et al.(2018)提出了一种低质量、可自主展开的太阳能电池板的设计——火星自主折叠式太阳能电池阵列 (Mars autonomous and foldable solar array,MAFSA)。该阵列在展开前仅需10 m3的体积,质量小于1500 kg,而展开后可部署覆盖1000 m2的区域,且机械设计简单、结构稳定、易于拓展。Adams et al.(2018)则提出了伞状部署的太阳能电池阵列——应用光伏电源阵列(applied photovoltaic power array,APPA)。APPA包括四个安装在矩形着陆器上的伞状结构,它们均覆盖有柔性薄膜太阳能电池并可在着陆后自动部署。APPA是能量、空间效率和可持续性的完美结合,能够在载人火星探测的初期有效提供所需电能。

  • 图3 火星湿法加工系统示意图

  • Fig.3 Schematic diagram of Mars aqueous processing system

  • 地外人工光合作用(extraterrestrial artificial photosynthetic,EAP)是火星太阳能资源利用的新方向。EAP通过模拟地球上绿色植物的自然光合作用,利用太阳辐射将CO2/H2O转化为燃料和O2Yang Liuqing et al.,2021)。EAP可以应用于在密闭空间内原位转换二氧化碳废物,从而有效地减少人类空间站和深空探测器的供应需求。与传统的CO2/H2O转化技术(如热化学法或电化学法)相比,EAP技术只使用太阳能和半导体材料,通常在不消耗辅助能源输入的情况下进行,因而该技术的发展前景十分广阔。但是,仍需要进一步考虑火星表面的环境条件对EAP技术的影响,如低浓度的CO2/H2O、相对较弱的太阳辐射强度、强烈的宇宙辐射、低重力、极端温度和极端压力等。

  • 3 存在的问题与展望

  • 3.1 火星资源的针对性勘查与评估有待加强

  • 火星是深空探测的重要对象,目前人类已经实施了47次火星探测。但是,这些探测计划多以获取火星表面影像、地形等数据为主要任务,缺乏针对火星资源的专项勘查。当前,对火星各类资源的储量、分布、开采和利用难度的认识依然不足,对在火星表面开展ISRU的技术成熟度缺乏实地评估,因而有必要加强针对性的资源勘查与技术评估。近年来,美国航空航天局正在联合意大利航天局、加拿大航天局和日本宇宙航空研究开发机构推进一项国际火星冰层测绘任务(international Mars ice mapper mission,I-MIM; Putzig et al.,2022),以针对性地探测近地表冰层的位置、深度、空间范围和丰度,有望提供火星全球水冰资源图,为未来火星基地的选址提供支撑。

  • 3.2 新的资源利用模式与技术尚需开发

  • 火星资源原位利用早期的技术路径相对单一且理想化,部分技术方法已面临淘汰。因此,有必要追踪各相关领域的技术发展动态,充分结合火星环境特点,开发新的资源利用模式,增强火星ISRU技术的可靠性和实用性。一方面,需要加强新技术的融合与应用。例如,Adams et al.(2018)在对APPA的有效性进行评估的过程中,将生成的尘埃模型集成到航天器虚拟现实(Virtual Reality,VR)设备中,可粗略估计一个火星年期间太阳能电池阵列的发电量,显示了VR技术能够为未来火星探索中太阳能发电阵列的应用提供重要支持。另一方面,有必要探索多种原位资源的联用技术。单一类型的原位资源利用通常存在较大的局限性,例如稳定性差、效率低、成本高等问题。以火星能源供给为例,太阳能和风能可为人类在火星表面生存提供重要的能量来源。但是,太阳能的供给易受到尘暴的干扰,而风能则存在一定的不稳定性。因此,可通过开展太阳能与风能的联合利用研究,克服火星上可持续能源发电的季节性、月度和每日波动,实现资源互补,提供更为可靠、稳定的能源供给。

  • 3.3 火星资源利用成本的综合评估模型有待建立

  • 开展ISRU的重要目的之一是降低地球与火星之间的资源运输成本。同时,火星单一种类资源的生产通常也存在多种成本不同的技术路径,虽然有学者开展了火星ISRU中技术成本、物流成本等的针对性研究(Ho et al.,2014; Ishimatsu et al.,2016),但是当前尚未从ISRU全链条的角度综合考虑运输成本、基础设施建设成本、人力资源成本等各项成本。因此有必要通过多学科交叉融合,结合数学建模、经济学、空间物流等领域的相关技术方法,综合评估资源利用成本。例如,可通过建立模型来寻找深空探测中的最佳物流策略,确定太空活动的每个阶段使用的最佳技术组合和运输结构,以促进ISRU子系统层面的互动和优化,增强各项进程的共享程度,使基础设施设计和部署更高效,直接提升ISRU系统的综合运行效能。

  • 3.4 资源开发与利用相关的法律法规亟需完善

  • 太空资产是国家战略资产,在开发和利用太空资源前,有必要解决其基本的法律法规问题。美国在1958年就颁布了全球首部《国家航空航天法》,又于2015年颁布《美国商业太空发射竞争法》,成为人类太空采矿领域的先锋,降低了获取太空资源的门槛,规定了“先勘探,先拥有”的太空资源商业开发原则(高楠等,2022)。相比之下,我国的航天事业蒸蒸日上,对太空资源的开发和利用统筹力度有些不足,法律法规制定滞后,尚未有 “航天法”及太空资源领域的专门法律,影响了我国在本领域的国际话语权(吴伟仁等,2021)。

  • 针对这一现状,我国应着力建立健全太空法律体系,制定长期规划,全面统筹太空态势感、载人探测、商业航天等诸多方面发展。同时,太空资源相关的法律法规具有超越常规立法的特殊性,需要掌握大量航天知识、太空资源相关知识并具有专业法律背景的人才团队进行起草,这一较高的要求导致我国航天立法人才匮乏,因而有必要重视相关领域的人才培养,发展航天、太空资源、法律的交叉学科,在相关高校、相关专业间联合培养人才。

  • 4 结语

  • 本文综合分析了火星资源的类型及其赋存状况,编制了火星大气与风力资源、水(冰)资源、土壤与岩石矿物资源以及太阳能资源的全球分布图,为未来火星载人探测及基地建设提供支持。同时,着重对上述资源的原位利用途径与技术的研究进展进行了分析,提出了火星ISRU中存在的问题并初步探讨了对策。总体而言,尽管当前对火星资源的研究较为初步,相关技术在火星表面实施也面临巨大挑战,但中国“天问一号”、美国“毅力号”等火星探测任务的开展,将为深入了解火星资源、开发资源利用技术提供重要支撑,有望为解决地球所面临的资源环境问题提供新的出路,为人类的生存和社会的发展开拓新的空间。

  • 参考文献

    • Adams G, Banks J, Frazier C, Toodi U, Lagoudas M. 2018. Utilization of solar cell umbrellas to provide long-term photovoltaic power on Mars. 2018 NASA BIG Idea Challenge. College Station: Texas A & M University.

    • Adcock C T, Hausrath E M, Rampe E B, Panduro-Allanson R D, Steinberg S M. 2020. Resources from water-rock interactions for future human exploration of Mars. Lunar and Planetary Science Conference Abstract, 2020000180.

    • Anderson S L, Sansom E K, Shober P M, Hartig B A D, Devillepoix H A R, Towner M C. 2021. The proposed silicate-sulfuric acid process: Mineral processing for in situ resource utilization (ISRU). Acta Astronautica, 188: 57~63.

    • An Zhenhua. 2019. Review on the application of montmorillonite in drug carrier. China Powder Industry, (5): 1~3 (in Chinese with English abstract).

    • Appelbaum J, Landis G A, Sherman I. 1993. Solar radiation on Mars-update 1991. Solar Energy, 50(1): 35~51.

    • Ash R L, Dowler W, Varsi G. 1978. Feasibility of rocket propellant production on Mars. Acta Astronautica, 5(9): 705~724.

    • Badescu V. 2009. Mars: Prospective energy and material resources. Springer Science & Business Media, 563~565.

    • Baker V R. 2006. Geomorphological evidence for water on Mars. Elements, 2(3): 139~143.

    • Barker D, Chamitoff G, James G. 1998. Resource utilization and site selection for a self-sufficient martian outpost. NASA/TM-98-206538, 2: 139~143.

    • Berggren M, Zubrin R, Wilson C, Rose H, Carrera S. 2009. Mars aqueous processing system. In: Badescu V, ed. Mars: Prospective Energy and Material Resources. Berlin: Springer Berlin Heidelberg, 563~586.

    • Bibring J P, Langevin Y, Poulet F, Gendrin A, Gondet B, Berthé M, Soufflot A, Drossart P, Combes M, Bellucci G, Moroz V, Mangold N, Schmitt B, the OMEGA Team. 2004. Perennial water ice identified in the south polar cap of Mars. Nature, 428(6983): 627~630.

    • Bristow T F, Rampe E B, Achilles C N, Blake D F, Chipera S J, Craig P, Crisp J A, Des Marais D J, Downs R T, Gellert R, Grotzinger J P, Gupta S, Hazen R M, Horgan B, Hogancamp J V, Mangold N, Mahaffy P R, McAdam A C, Ming D W, Morookian J M, Morris R V, Morrison S M, Treiman A H, Vaniman D T, Vasavada A R, Yen A S. 2018. Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars. Science Advances, 4(6): eaar3330.

    • Byrne S. 2009. The polar deposits of Mars. Annual Review of Earth and Planetary Sciences, 37(1): 535~560.

    • Cai Tao, Sun Hongbing, Qiao Jing, Zhu Leilei, Zhang Fan, Zhang Jie, Tang Zijing, Wei Xinlei, Yang Jiangang, Yuan Qianqian, Wang Wangyin, Yang Xue, Chu Huanyu, Wang Qian, You Chun, Ma Hongwu, Sun Yuanxia, Li Yun, Li Can, Jiang Huifeng, Wang Qinhong, Ma Yanhe. 2021. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 373(6562): 1523~1527.

    • Carter J, Poulet F. 2012. Orbital identification of clays and carbonates in Gusev crater. Icarus, 219(1): 250~253.

    • Carter J, Poulet F, Bibring J P, Mangold N, Murchie S. 2013. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research: Planets, 118(4): 831~858.

    • Chamberlain M A, Boynton W V. 2007. Response of martian ground ice to orbit-induced climate change. Journal of Geophysical Research, 112(E6): 1~20.

    • Chamitoff G, James G, Barker D, Dershowitz A. 2005. Martian resource locations: Identification and optimization. Acta Astronautica, 56(8): 756~769.

    • Clark C S. 2005. The martian watershed, geology, dichotomy and paleohydrology on two world maps with constant scale natural boundaries. Procedings of 36th Annual Lunar and Planetary Science Conference, 2189.

    • De Pater I, Lissauer J J. 2015. Planetary Sciences. Cambridge: Cambridge University Press.

    • Dundas C M, Byrne S, Mcewen A S, Mellon M T, Kennedy M R, Daubar I J, Saper L. 2014. HiRISE observations of new impact craters exposing martian ground ice. Journal of Geophysical Research: Planets, 119(1): 109~127.

    • Dundas C M, Bramson A M, Ojha L, Wray J J, Mellon M T, Byrne S, Mcewen A S, Putzig N E, Viola D, Sutton S, Clark E, Holt J W. 2018. Exposed subsurface ice sheets in the martian mid-latitudes. Science, 359(6372): 199~201.

    • Ehlmann B L, Mustard J F, Murchie S L. 2010. Geologic setting of serpentine deposits on Mars. Geophysical Research Letters, 37(6): L06201.

    • Ehricke K A. 1981. A socio-economic evaluation of the lunar environment and resources: I. Principles and overall system strategy. Acta Astronautica, 8(11-12): 1389~1405.

    • Eichler A, Hadland N, Pickett D, Masaitis D, Handy D, Perez A, Batcheldor D, Wheeler B, Palmer A. 2021. Challenging the agricultural viability of martian regolith simulants. Icarus, 354: 114022.

    • Feldman W C, Boynton W V, Tokar R L, Prettyman T H, Gasnault O, Squyres S W, Elphic R C, Lawrence D J, Lawson S L, Maurice S, Mckinney G W, Moore K R, Reedy R C. 2002. Global distribution of neutrons from Mars: Results from Mars odyssey. Science, 297(5578): 75~78.

    • Freund F, Dickinson J T, Cash M. 2002. Hydrogen in rocks: An energy source for deep microbial communities. Astrobiology, 2(1): 83~92.

    • Gao Nan, Xu Yingkui, Luo Taiyi, Ling Zongcheng, Zhu Dan, Li Yang, Li Xiongyao, Liu Jianzhong. 2022. Recent advance and prospect of the lunar mineral resources exploration. Acta Mineralogica Sinica, 42(2): 222~230 (in Chinese with English abstract).

    • Gao Zhaohui, Tong Kewei, Shi Jianbo, Shen Lin. 2015. Analysis of the manned Mars and asteroid missions. Journal of Deep Space Exploration, 2(1): 10~19 (in Chinese with English abstract).

    • Gayen P, Sankarasubramanian S, Ramani V K. 2020. Fuel and oxygen harvesting from martian regolithic brine. Proceedings of the National Academy of Sciences, 117(50): 31685~31689.

    • Glascock N, Huber B, Cantrall C, Evonosky W, Robinson E, Dharmadasa Y, Baker K. 2018. MAFSA: Mars autonomous and foldable solar array. New Space, 6(4): 308~319.

    • Gu Caixin, Long Wenjun, Yue Yongming. 2018. Solar energy distribution and photovoltaic power generation calculation on Mars. Solar Energy, (11): 35~39 (in Chinese with English abstract).

    • Hanley J, Chevrier V F, Berget D J, Adams R D. 2012. Chlorate salts and solutions on Mars. Geophysical Research Letters, 39(8): L08201.

    • Hao Jian, Li Danming, Dang Wenqiang, Li Juping, Wang Shifa. 2018. Progress in in-situ resource utilization of atmospheric on Mars. Vacuum & Cryogenics, 24(5): 289~296 (in Chinese with English abstract).

    • Haslach H. 1989. Wind energy: A resource for a human mission to Mars. British Interplanetary Society, 42: 171~178.

    • Hecht M H, Kounaves S P, Quinn R C, West S J, Young S M M, Ming D W, Catling D C, Clark B C, Boynton W V, Hoffman J, DeFlores L P, Gospodinova K, Kapit J, Smith P H. 2009. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science, 325(5936): 64~67.

    • Ho K, De Weck O L, Hoffman J A, Shishko R. 2014. Dynamic modeling and optimization for space logistics using time-expanded networks. Acta Astronautica, 105(2): 428~443.

    • Hoefen T M, Clark R N, Bandfield J L, Smith M D, Pearl J C, Christensen P R. 2003. Discovery of olivine in the Nili Fossae region of Mars. Science, 302(5645): 627~630.

    • Hoffman J A, Hecht M H, Rapp D, Hartvigsen J J, Soohoo J G, Aboobaker A M, Mcclean J B, Liu A M, Hinterman E D, Nasr M. 2022. Mars Oxygen ISRU Experiment (MOXIE)-preparing for human Mars exploration. Science Advances, 8(35): eabp8636.

    • Holstein R C, Thomas P E, Merrison J, Iversen J J. 2018. Wind turbine power production under current martian atmospheric conditions. Mars Workshop on Amazonian and Present Day Climate, 2086: 4004.

    • Holt J W, Safaeinili A, Plaut J J, Head J W, Phillips R J, Seu R, Kempf S D, Choudhary P, Young D A, Putzig N E, Biccari D, Gim Y. 2008. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science, 322(5905): 1235~1238.

    • Ishimatsu T, De Weck O L, Hoffman J A, Ohkami Y, Shishko R. 2016. Generalized multicommodity network flow model for the Earth-Moon-Mars logistics system. Journal of Spacecraft Rockets, 53(1): 25~38.

    • Jakosky B M, Farmer C B. 1982. The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment. Journal of Geophysical Research: Solid Earth, 87(B4): 2999~3019.

    • Ji Jie. 2013. Developing and study of low-temperature solar thermal energy conversion applications. Advances in New and Renewed Energy, 1(1): 7~31 (in Chinese with English abstract).

    • Jin Yu, Shu Wenxiang, Zhang Weiwei, Jiang Shengyuan, Cui Qingxin, Bai Jingying, Lai Xiaoming. 2020. Development status and tentative plan of Mars water ice collection technology. Manned Spaceflight, 26(1): 128~134 (in Chinese with English abstract).

    • Karl D, Duminy T, Lima P, Kamutzki F, Gili A, Zocca A, Günster J, Gurlo A. 2020. Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies. Acta Astronautica, 174: 241~253.

    • Kleinböhl A, Schofield J T, Kass D M, Abdou W A, Backus C R, Sen B, Shirley J H, Lawson W G, Richardson M I, Taylor F W, Teanby N A, McCleese D J. 2009. Mars climate sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. Journal of Geophysical Research: Planets, 114(E10): E10006.

    • Koeppen W C, Hamilton V E. 2008. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. Journal of Geophysical Research: Planets, 113(E5): E05001.

    • Leovy C. 2001. Weather and climate on Mars. Nature, 412(6843): 245~249.

    • Li Ping, Liu Wenlei, Yang Shuangchun, Cui Shuang, Zhang Wei. 2013. Application research progresses of talc in domestics and overseas. Bulletin of the Chinese Ceramic Society, 32(4): 668~671 (in Chinese with English abstract).

    • Lomax B A, Just G H, Mchugh P J, Broadley P K, Hutchings G C, Burke P A, Roy M J, Smith K L, Symes M D. 2022. Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars. Nature Cmmunications, 13(1): 1~11.

    • Lowman J P. 1966. Lunar resources-their value in lunar and planetary exploration. NASA TMX, 55673.

    • Maurice S, Feldman W, Diez B, Gasnault O, Lawrence D J, Pathare A, Prettyman T. 2011. Mars Odyssey neutron data: 1. Data processing and models of water-equivalent-hydrogen distribution. Journal of Geophysical Research, 116(E11): E11008.

    • Mayhew L E, Ellison E T, Mccollom T M, Trainor T P, Templeton A S. 2013. Hydrogen generation from low-temperature water-rock reactions. Nature Geoscience, 6(6): 478~484.

    • Mellon M T, Feldman W C, Prettyman T H. 2004. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169(2): 324~340.

    • Mellon M T, Arvidson R E, Sizemore H G, Searls M L, Blaney D L, Cull S, Hecht M H, Heet T L, Keller H U, Lemmon M T, Markiewicz W J, Ming D W, Morris R V, Pike W T, Zent A P. 2009. Ground ice at the Phoenix landing site: Stability state and origin. Journal of Geophysical Research: Planets, 114(E1): E00E07.

    • Meyen F E, Hecht M H, Hoffman J A, the MOXIE Team. 2016. Thermodynamic model of Mars Oxygen ISRU Experiment (MOXIE). Acta Astronautica, 129: 82~87.

    • Montes C, Broussard K, Gongre M, Simicevic N, Mejia J, Tham J, Allouche E, Davis G. 2015. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Advances in Space Research, 56(6): 1212~1221.

    • Morris R V, Golden D C, Bell Iii J F, Shelfer T D, Scheinost A C, Hinman N W, Furniss G, Mertzman S A, Bishop J L, Ming D W, Allen C C, Britt D T. 2000. Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of Geophysical Research: Planets, 105(E1): 1757~1817.

    • Muscatello A C, Santiago-Maldonado E. 2012. Mars in situ resource utilization technology evaluation. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 360.

    • Mustard J F, Poulet F, Gendrin A, Bibring J P, Langevin Y, Gondet B, Mangold N, Bellucci G, Altieri F. 2005. Olivine and pyroxene diversity in the crust of Mars. Science, 307(5715): 1594~1597.

    • Naser M Z. 2019. Space-native construction materials for earth-independent and sustainable infrastructure. Acta Astronautica, 155: 264~273.

    • Ody A, Poulet F, Bibring J P, Loizeau D, Carter J, Gondet B, Langevin Y. 2013. Global investigation of olivine on Mars: Insights into crust and mantle compositions. Journal of Geophysical Research: Planets, 118(2): 234~262.

    • Orosei R, Lauro S E, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R. 2018. Radar evidence of subglacial liquid water on Mars. Science, 361(6401): 490~493.

    • Pankine A A, Tamppari L K, Smith M D. 2010. MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer. Icarus, 210(1): 58~71.

    • Pestova O N, Myund L A, Khripun M K, Prigaro A V. 2005. Polythermal study of the systems M (ClO4)2-H2O. Russian Journal of Applied Chemistry, 78: 409~413.

    • Plaut J J, Picardi G, Safaeinili A, Ivanov A B, Milkovich S M, Cicchetti A, Kofman W, Mouginot J, Farrell W M, Phillips R J, Clifford S M, Frigeri A, Orosei R, Federico C, Williams I P, Gurnett D A, Nielsen E, Hagfors T, Heggy E, Stofan E R, Plettemeier D, Watters T R, Leuschen G J, Edenhofer P. 2007. Subsurface radar sounding of the south polar layered deposits of Mars. Science, 316(5821): 92~95.

    • Putzig N E, Morgan G A, the Mars SWIM Team. 2022. Subsurface Water Ice Mapping (SWIM) to support the International Mars Ice Mapper (I-MIM) Mission. LPI Contributions, 2678: 2443.

    • Rahim A, Gulzar A, Khan A, Rehman Z. 2021. Mars in situ resource utilization and sulfur concrete. In: van Susante P, Roberts A, eds. Earth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments. Reston, Virginia: American Society of Civil Engineers, 1231~1241.

    • Ralphs M, Franz B, Baker T, Howe S. 2015. Water extraction on Mars for an expanding human colony. Life Sciences in Space Research, 7: 57~60.

    • Rapp D. 2013. Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars. Chichester: Springer, 65~108.

    • Rieder R, Gellert R, Anderson R C, Bruckner J, Clark B C, Dreibus G, Economou T, Klingelhofer G, Lugmair G W, Ming D W, Squyres S W, D' Uston C, Wänke H, Yen A, Zipfel J. 2004. Chemistry of rocks and soils at Meridiani planum from the Alpha particle X-ray spectrometer. Science, 306: 1746~1749.

    • Rogers A D, Christensen P R. 2007. Surface mineralogy of martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. Journal of Geophysical Research, 112(E1): E01003.

    • Sanders G B. 2018. Advancing in situ resource utilization capabilities to achieve a new paradigm in space exploration. 2018 AIAA SPACE and Astronautics Forum and Exposition, 5124.

    • Savijärvi H, Martinez G, Harri A, Paton M. 2020. Curiosity observations and column model integrations for amartian global dust event. Icarus, 337: 113515.

    • Scott A N, Oze C. 2018. Constructing Mars: Concrete and energy production from serpentinization Products. Earth Space Science Reviews, 5(8): 364~370.

    • Selvans M M, Plaut J J, Aharonson O, Safaeinili A. 2010. Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data. Journal of Geophysical Research: Planets, 115(E9): E09003.

    • Shi Yutong, Zhao Jiannan, Xiao Long, Yang Yong, Wang Jiang. 2022. An arid-semiarid climate during the Noachian-Hesperian transition in the Huygens region, Mars: Evidence from morphological studies of valley networks. Icarus, 373: 114789.

    • Smith M, Craig D, Herrmann N, Mahoney E, Krezel J, Mcintyre N, Goodliff K. 2020. The Artemis program: An overview of NASA's activities to return humans to the Moon. Proceedings of 2020 IEEE Aerospace Conference, 1~10.

    • Sridhar K R. 1995. Mars sample return mission with in-situ resource utilization. Journal of Propulsion, 11(6): 1356~1362.

    • Van Ellen L, Peck D. 2018. Use of in situ ice to build a sustainable radiation shielding habitat on Mars. 69th International Astronautical Congress, IAC-18-E2. 2. 7.

    • Van Susante P J, Allen J S T, Eisele T C, Medici E F, Foetisch M S, Zacny K A, Fitzgerald Z. 2021. Water extraction from rock gypsum on Mars. In: van Susante P, Roberts A, eds. Earth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments. Reston, Virginia: American Society of Civil Engineers, 653~659.

    • Viviano C E, Moersch J E, Mcsween H Y. 2013. Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. Journal of Geophysical Research: Planets, 118(9): 1858~1872.

    • Wan Lin, Wendner R, Cusatis G. 2016. A novel material for in situ construction on Mars: Experiments and numerical simulations. Construction Building Materials, 120: 222~231.

    • Whiteway J A, Komguem L, Dickinson C, Cook C, Illnicki M, Seabrook J, Popovici V, Duck T J, Davy R, Taylor P A, Pathak J, Fisher D, Carswell A I, Daly M, Hipkin V, Zent A P, Hecht M H, Wood S E, Tamppari L K, Renno N, Moores J E, Lemmon M T, Daerden F, Simth P H. 2009. Mars water-ice clouds and precipitation. Science, 325(5936): 68~70.

    • Wittenberg L J, Santarius J F, Kulcinski G L. 1986. Lunar source of 3He for commercial fusion power. Fusion Technology, 10(2): 167~178.

    • Wu Weiren, Yu Dengyun, Liu Jizhong, Hu Chaobin, Tang Yuhua, Wang Dayi, Hou Yukui, Zhang Zhe, Li Ming, Wang Jilian, Wang Tong, Wu Ke, Du Hui, Shen Zhiqiang, Huang Xiaofeng. 2021. Key issues of modernization of space governance. Chinese Science Bulletin, 66(15): 1795~1801 (in Chinese with English abstract).

    • Xiao Long. 2013. Planetary Science. Beijing: Geology Press, 217 (in Chinese with English abstract).

    • Xiao Long, Yan Chenfeng, Huang Jun, Zhao Jiannan, Wang Jiang, Liu Hansheng. 2021. Exploration of Mars. Wuhan: China University of Geosciences Press, 190~206 (in Chinese with English abstract).

    • Xu Lin, Pei Zhaoyu, Zou Yongliao, Wang Chi. 2020. China’s lunar and deep space exploration program for the next decade (2020-2030). Chinese Journal of Space Science, 40(5): 615~617.

    • Yang Liuqing, Zhang Ce, Yu Xiwen, Yao Yingfang, Li Zhaosheng, Wu Congping, Yao Wei, Zou Zhigang. 2021. Extraterrestrial artificial photosynthetic materials for in-situ resource utilization. National Science Review, 8(8): nwab104.

    • Zhang Ning, Lu Xi, Zhao Jiannan, Wang Jiang, Peng Yuming, Liu Hansheng, Xiao Long. 2020. Research status and utilization approach of martian wind resources. Manned Spaceflight, 26(3): 381~388 (in Chinese with English abstract).

    • Zhao Jiannan, Xiao Long. 2016. Achievement, issues and prospects in study of martian palelakes. Earth Science, 41(9): 1572~1582 (in Chinese with English abstract).

    • Zhao Jiannan, Xiao Long, Glotch T D. 2020. Paleolakes in the northwest Hellas region, Mars: Implications for the regional geologic history and paleoclimate. Journal of Geophysical Research: Planets, 125(3): e2019JE006196.

    • Zhao Jiannan, Shi Yutong, Zhang Mingjie, Yang Yong, Huang Ting, Wang Jiang, Hang Jun, Xiao Long. 2021. Advances in martian water-related landform. Acta Geologica Sinica, 95(9): 2755~2768 (in Chinese with English abstract).

    • Zhao Yunpu, Cheng Hongfei, Cao Zhou, Jia Yuefa. 2022. Research progress of kaolinite-based composites in photocatalysis application. Journal of Synthetic Crystals, 51(1): 170~184 (in Chinese with English abstract).

    • Zheng Mianping, Kong Weigang, Chen Wenxi, Kong Fanjing, Zhang Xuefei. 2014. A comparative analysis of evaporite deposition on Earth and Mars. Geological Journal of China Universities, 20(2): 169~176 (in Chinese with English abstract).

    • Zheng Tingting, Zhang Menglu, Wu Lianghuan, Guo Shuyuan, Liu Xiangjian, Zhao Jiankang, Xue Weiqing, Li Jiawei, Liu Chunxiao, Li Xu, Jiang Qiu, Bao Jun, Yu Tao, Xia Chuan. 2022. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis, 5: 388~396.

    • Zuber M T, Phillips R J, Andrews-Hanna J C, Asmar S W, Konopliv A S, Lemoine F G, Plaut J J, Smith D E, Smrekar S E. 2007. Density of Mars' south polar layered deposits. Science, 317(5845): 1718~1719.

    • Zubrin R, Frankie B, Kito T. 1997. Mars in-situ resource utilization based on the Reverse Water Gas Shift: Experiments and mission applications. 33rd Joint Propulsion Conference and Exhibit, AIAA 97-2767.

    • Zubrin R, Kito T, Frankie B. 1998. Report on the construction and operation of a Mars in situ propellant production unit utilizing the Reverse Water Gas Shift. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 3303.

    • Zubrin R M, Muscatello A C, Berggren M. 2013. Integrated Mars in situ propellant production system. Journal of Aerospace Engineering, 26(1): 43~56.

    • 安振华. 2019. 蒙脱石在药物载体中的应用研究综述. 中国粉体工业, (5): 1~3.

    • 高朝辉, 童科伟, 时剑波, 申麟. 2015. 载人火星和小行星探测任务初步分析. 深空探测学报, 2(1): 10~19.

    • 高楠, 许英奎, 罗泰义, 凌宗成, 朱丹, 李阳, 李雄耀, 刘建忠. 2022. 月球矿产资源勘查进展及展望. 矿物学报, 42(2): 222~230.

    • 顾才鑫, 龙文俊, 岳永铭. 2018. 火星太阳能分布及光伏发电计算. 太阳能, (11): 35~39.

    • 郝剑, 李丹明, 党文强, 李居平, 王仕发. 2018. 火星二氧化碳及水资源利用的研究进展. 真空与低温, 24(5): 289~296.

    • 季杰. 2013. 太阳能光热低温利用发展与研究. 新能源进展, 1(1): 7~31.

    • 靳宇, 舒文祥, 张伟伟, 姜生元, 崔庆新, 白晶莹, 赖晓明. 2020. 火星水冰采集技术发展现状及方案设想. 载人航天, 26(1): 128~134.

    • 李萍, 刘文磊, 杨双春, 崔爽, 张维. 2013. 国内外滑石的应用研究进展. 硅酸盐通报, 32(4): 668~671.

    • 吴伟仁, 于登云, 刘继忠, 胡朝斌, 唐玉华, 王大轶, 侯宇葵, 张哲, 李明, 王冀莲, 王彤, 吴克, 杜辉, 申志强, 黄晓峰. 2021. 我国太空活动现代化治理中的若干重大问题. 科学通报, 66(15): 1795~1801.

    • 肖龙. 2013. 行星地质学. 北京: 地质出版社, 217.

    • 肖龙, 严晨风, 黄俊, 赵健楠, 王江, 刘汉生. 2021. 探秘火星. 武汉: 中国地质大学出版社, 190~206.

    • 张宁, 陆希, 赵健楠, 王江, 彭玉明, 刘汉生, 肖龙. 2020. 火星风力资源的研究现状及利用途径. 载人航天, 26(3): 381~388.

    • 赵健楠, 史语桐, 张明杰, 杨勇, 黄婷, 王江, 黄俊, 肖龙. 2021. 火星水成地貌研究进展. 地质学报, 95(9): 2755~2768.

    • 赵蕴璞, 程宏飞, 曹洲, 贾悦发. 2022. 高岭石基复合材料在光催化领域应用的研究进展. 人工晶体学报, 51(1): 170~184.

    • 郑绵平, 孔维刚, 陈文西, 孔凡晶, 张雪飞. 2014. 地球同火星蒸发岩沉积的对比. 高校地质学报, 20(2): 169~176.

  • 参考文献

    • Adams G, Banks J, Frazier C, Toodi U, Lagoudas M. 2018. Utilization of solar cell umbrellas to provide long-term photovoltaic power on Mars. 2018 NASA BIG Idea Challenge. College Station: Texas A & M University.

    • Adcock C T, Hausrath E M, Rampe E B, Panduro-Allanson R D, Steinberg S M. 2020. Resources from water-rock interactions for future human exploration of Mars. Lunar and Planetary Science Conference Abstract, 2020000180.

    • Anderson S L, Sansom E K, Shober P M, Hartig B A D, Devillepoix H A R, Towner M C. 2021. The proposed silicate-sulfuric acid process: Mineral processing for in situ resource utilization (ISRU). Acta Astronautica, 188: 57~63.

    • An Zhenhua. 2019. Review on the application of montmorillonite in drug carrier. China Powder Industry, (5): 1~3 (in Chinese with English abstract).

    • Appelbaum J, Landis G A, Sherman I. 1993. Solar radiation on Mars-update 1991. Solar Energy, 50(1): 35~51.

    • Ash R L, Dowler W, Varsi G. 1978. Feasibility of rocket propellant production on Mars. Acta Astronautica, 5(9): 705~724.

    • Badescu V. 2009. Mars: Prospective energy and material resources. Springer Science & Business Media, 563~565.

    • Baker V R. 2006. Geomorphological evidence for water on Mars. Elements, 2(3): 139~143.

    • Barker D, Chamitoff G, James G. 1998. Resource utilization and site selection for a self-sufficient martian outpost. NASA/TM-98-206538, 2: 139~143.

    • Berggren M, Zubrin R, Wilson C, Rose H, Carrera S. 2009. Mars aqueous processing system. In: Badescu V, ed. Mars: Prospective Energy and Material Resources. Berlin: Springer Berlin Heidelberg, 563~586.

    • Bibring J P, Langevin Y, Poulet F, Gendrin A, Gondet B, Berthé M, Soufflot A, Drossart P, Combes M, Bellucci G, Moroz V, Mangold N, Schmitt B, the OMEGA Team. 2004. Perennial water ice identified in the south polar cap of Mars. Nature, 428(6983): 627~630.

    • Bristow T F, Rampe E B, Achilles C N, Blake D F, Chipera S J, Craig P, Crisp J A, Des Marais D J, Downs R T, Gellert R, Grotzinger J P, Gupta S, Hazen R M, Horgan B, Hogancamp J V, Mangold N, Mahaffy P R, McAdam A C, Ming D W, Morookian J M, Morris R V, Morrison S M, Treiman A H, Vaniman D T, Vasavada A R, Yen A S. 2018. Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars. Science Advances, 4(6): eaar3330.

    • Byrne S. 2009. The polar deposits of Mars. Annual Review of Earth and Planetary Sciences, 37(1): 535~560.

    • Cai Tao, Sun Hongbing, Qiao Jing, Zhu Leilei, Zhang Fan, Zhang Jie, Tang Zijing, Wei Xinlei, Yang Jiangang, Yuan Qianqian, Wang Wangyin, Yang Xue, Chu Huanyu, Wang Qian, You Chun, Ma Hongwu, Sun Yuanxia, Li Yun, Li Can, Jiang Huifeng, Wang Qinhong, Ma Yanhe. 2021. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 373(6562): 1523~1527.

    • Carter J, Poulet F. 2012. Orbital identification of clays and carbonates in Gusev crater. Icarus, 219(1): 250~253.

    • Carter J, Poulet F, Bibring J P, Mangold N, Murchie S. 2013. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research: Planets, 118(4): 831~858.

    • Chamberlain M A, Boynton W V. 2007. Response of martian ground ice to orbit-induced climate change. Journal of Geophysical Research, 112(E6): 1~20.

    • Chamitoff G, James G, Barker D, Dershowitz A. 2005. Martian resource locations: Identification and optimization. Acta Astronautica, 56(8): 756~769.

    • Clark C S. 2005. The martian watershed, geology, dichotomy and paleohydrology on two world maps with constant scale natural boundaries. Procedings of 36th Annual Lunar and Planetary Science Conference, 2189.

    • De Pater I, Lissauer J J. 2015. Planetary Sciences. Cambridge: Cambridge University Press.

    • Dundas C M, Byrne S, Mcewen A S, Mellon M T, Kennedy M R, Daubar I J, Saper L. 2014. HiRISE observations of new impact craters exposing martian ground ice. Journal of Geophysical Research: Planets, 119(1): 109~127.

    • Dundas C M, Bramson A M, Ojha L, Wray J J, Mellon M T, Byrne S, Mcewen A S, Putzig N E, Viola D, Sutton S, Clark E, Holt J W. 2018. Exposed subsurface ice sheets in the martian mid-latitudes. Science, 359(6372): 199~201.

    • Ehlmann B L, Mustard J F, Murchie S L. 2010. Geologic setting of serpentine deposits on Mars. Geophysical Research Letters, 37(6): L06201.

    • Ehricke K A. 1981. A socio-economic evaluation of the lunar environment and resources: I. Principles and overall system strategy. Acta Astronautica, 8(11-12): 1389~1405.

    • Eichler A, Hadland N, Pickett D, Masaitis D, Handy D, Perez A, Batcheldor D, Wheeler B, Palmer A. 2021. Challenging the agricultural viability of martian regolith simulants. Icarus, 354: 114022.

    • Feldman W C, Boynton W V, Tokar R L, Prettyman T H, Gasnault O, Squyres S W, Elphic R C, Lawrence D J, Lawson S L, Maurice S, Mckinney G W, Moore K R, Reedy R C. 2002. Global distribution of neutrons from Mars: Results from Mars odyssey. Science, 297(5578): 75~78.

    • Freund F, Dickinson J T, Cash M. 2002. Hydrogen in rocks: An energy source for deep microbial communities. Astrobiology, 2(1): 83~92.

    • Gao Nan, Xu Yingkui, Luo Taiyi, Ling Zongcheng, Zhu Dan, Li Yang, Li Xiongyao, Liu Jianzhong. 2022. Recent advance and prospect of the lunar mineral resources exploration. Acta Mineralogica Sinica, 42(2): 222~230 (in Chinese with English abstract).

    • Gao Zhaohui, Tong Kewei, Shi Jianbo, Shen Lin. 2015. Analysis of the manned Mars and asteroid missions. Journal of Deep Space Exploration, 2(1): 10~19 (in Chinese with English abstract).

    • Gayen P, Sankarasubramanian S, Ramani V K. 2020. Fuel and oxygen harvesting from martian regolithic brine. Proceedings of the National Academy of Sciences, 117(50): 31685~31689.

    • Glascock N, Huber B, Cantrall C, Evonosky W, Robinson E, Dharmadasa Y, Baker K. 2018. MAFSA: Mars autonomous and foldable solar array. New Space, 6(4): 308~319.

    • Gu Caixin, Long Wenjun, Yue Yongming. 2018. Solar energy distribution and photovoltaic power generation calculation on Mars. Solar Energy, (11): 35~39 (in Chinese with English abstract).

    • Hanley J, Chevrier V F, Berget D J, Adams R D. 2012. Chlorate salts and solutions on Mars. Geophysical Research Letters, 39(8): L08201.

    • Hao Jian, Li Danming, Dang Wenqiang, Li Juping, Wang Shifa. 2018. Progress in in-situ resource utilization of atmospheric on Mars. Vacuum & Cryogenics, 24(5): 289~296 (in Chinese with English abstract).

    • Haslach H. 1989. Wind energy: A resource for a human mission to Mars. British Interplanetary Society, 42: 171~178.

    • Hecht M H, Kounaves S P, Quinn R C, West S J, Young S M M, Ming D W, Catling D C, Clark B C, Boynton W V, Hoffman J, DeFlores L P, Gospodinova K, Kapit J, Smith P H. 2009. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science, 325(5936): 64~67.

    • Ho K, De Weck O L, Hoffman J A, Shishko R. 2014. Dynamic modeling and optimization for space logistics using time-expanded networks. Acta Astronautica, 105(2): 428~443.

    • Hoefen T M, Clark R N, Bandfield J L, Smith M D, Pearl J C, Christensen P R. 2003. Discovery of olivine in the Nili Fossae region of Mars. Science, 302(5645): 627~630.

    • Hoffman J A, Hecht M H, Rapp D, Hartvigsen J J, Soohoo J G, Aboobaker A M, Mcclean J B, Liu A M, Hinterman E D, Nasr M. 2022. Mars Oxygen ISRU Experiment (MOXIE)-preparing for human Mars exploration. Science Advances, 8(35): eabp8636.

    • Holstein R C, Thomas P E, Merrison J, Iversen J J. 2018. Wind turbine power production under current martian atmospheric conditions. Mars Workshop on Amazonian and Present Day Climate, 2086: 4004.

    • Holt J W, Safaeinili A, Plaut J J, Head J W, Phillips R J, Seu R, Kempf S D, Choudhary P, Young D A, Putzig N E, Biccari D, Gim Y. 2008. Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science, 322(5905): 1235~1238.

    • Ishimatsu T, De Weck O L, Hoffman J A, Ohkami Y, Shishko R. 2016. Generalized multicommodity network flow model for the Earth-Moon-Mars logistics system. Journal of Spacecraft Rockets, 53(1): 25~38.

    • Jakosky B M, Farmer C B. 1982. The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment. Journal of Geophysical Research: Solid Earth, 87(B4): 2999~3019.

    • Ji Jie. 2013. Developing and study of low-temperature solar thermal energy conversion applications. Advances in New and Renewed Energy, 1(1): 7~31 (in Chinese with English abstract).

    • Jin Yu, Shu Wenxiang, Zhang Weiwei, Jiang Shengyuan, Cui Qingxin, Bai Jingying, Lai Xiaoming. 2020. Development status and tentative plan of Mars water ice collection technology. Manned Spaceflight, 26(1): 128~134 (in Chinese with English abstract).

    • Karl D, Duminy T, Lima P, Kamutzki F, Gili A, Zocca A, Günster J, Gurlo A. 2020. Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies. Acta Astronautica, 174: 241~253.

    • Kleinböhl A, Schofield J T, Kass D M, Abdou W A, Backus C R, Sen B, Shirley J H, Lawson W G, Richardson M I, Taylor F W, Teanby N A, McCleese D J. 2009. Mars climate sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. Journal of Geophysical Research: Planets, 114(E10): E10006.

    • Koeppen W C, Hamilton V E. 2008. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. Journal of Geophysical Research: Planets, 113(E5): E05001.

    • Leovy C. 2001. Weather and climate on Mars. Nature, 412(6843): 245~249.

    • Li Ping, Liu Wenlei, Yang Shuangchun, Cui Shuang, Zhang Wei. 2013. Application research progresses of talc in domestics and overseas. Bulletin of the Chinese Ceramic Society, 32(4): 668~671 (in Chinese with English abstract).

    • Lomax B A, Just G H, Mchugh P J, Broadley P K, Hutchings G C, Burke P A, Roy M J, Smith K L, Symes M D. 2022. Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars. Nature Cmmunications, 13(1): 1~11.

    • Lowman J P. 1966. Lunar resources-their value in lunar and planetary exploration. NASA TMX, 55673.

    • Maurice S, Feldman W, Diez B, Gasnault O, Lawrence D J, Pathare A, Prettyman T. 2011. Mars Odyssey neutron data: 1. Data processing and models of water-equivalent-hydrogen distribution. Journal of Geophysical Research, 116(E11): E11008.

    • Mayhew L E, Ellison E T, Mccollom T M, Trainor T P, Templeton A S. 2013. Hydrogen generation from low-temperature water-rock reactions. Nature Geoscience, 6(6): 478~484.

    • Mellon M T, Feldman W C, Prettyman T H. 2004. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169(2): 324~340.

    • Mellon M T, Arvidson R E, Sizemore H G, Searls M L, Blaney D L, Cull S, Hecht M H, Heet T L, Keller H U, Lemmon M T, Markiewicz W J, Ming D W, Morris R V, Pike W T, Zent A P. 2009. Ground ice at the Phoenix landing site: Stability state and origin. Journal of Geophysical Research: Planets, 114(E1): E00E07.

    • Meyen F E, Hecht M H, Hoffman J A, the MOXIE Team. 2016. Thermodynamic model of Mars Oxygen ISRU Experiment (MOXIE). Acta Astronautica, 129: 82~87.

    • Montes C, Broussard K, Gongre M, Simicevic N, Mejia J, Tham J, Allouche E, Davis G. 2015. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Advances in Space Research, 56(6): 1212~1221.

    • Morris R V, Golden D C, Bell Iii J F, Shelfer T D, Scheinost A C, Hinman N W, Furniss G, Mertzman S A, Bishop J L, Ming D W, Allen C C, Britt D T. 2000. Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of Geophysical Research: Planets, 105(E1): 1757~1817.

    • Muscatello A C, Santiago-Maldonado E. 2012. Mars in situ resource utilization technology evaluation. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 360.

    • Mustard J F, Poulet F, Gendrin A, Bibring J P, Langevin Y, Gondet B, Mangold N, Bellucci G, Altieri F. 2005. Olivine and pyroxene diversity in the crust of Mars. Science, 307(5715): 1594~1597.

    • Naser M Z. 2019. Space-native construction materials for earth-independent and sustainable infrastructure. Acta Astronautica, 155: 264~273.

    • Ody A, Poulet F, Bibring J P, Loizeau D, Carter J, Gondet B, Langevin Y. 2013. Global investigation of olivine on Mars: Insights into crust and mantle compositions. Journal of Geophysical Research: Planets, 118(2): 234~262.

    • Orosei R, Lauro S E, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R. 2018. Radar evidence of subglacial liquid water on Mars. Science, 361(6401): 490~493.

    • Pankine A A, Tamppari L K, Smith M D. 2010. MGS TES observations of the water vapor above the seasonal and perennial ice caps during northern spring and summer. Icarus, 210(1): 58~71.

    • Pestova O N, Myund L A, Khripun M K, Prigaro A V. 2005. Polythermal study of the systems M (ClO4)2-H2O. Russian Journal of Applied Chemistry, 78: 409~413.

    • Plaut J J, Picardi G, Safaeinili A, Ivanov A B, Milkovich S M, Cicchetti A, Kofman W, Mouginot J, Farrell W M, Phillips R J, Clifford S M, Frigeri A, Orosei R, Federico C, Williams I P, Gurnett D A, Nielsen E, Hagfors T, Heggy E, Stofan E R, Plettemeier D, Watters T R, Leuschen G J, Edenhofer P. 2007. Subsurface radar sounding of the south polar layered deposits of Mars. Science, 316(5821): 92~95.

    • Putzig N E, Morgan G A, the Mars SWIM Team. 2022. Subsurface Water Ice Mapping (SWIM) to support the International Mars Ice Mapper (I-MIM) Mission. LPI Contributions, 2678: 2443.

    • Rahim A, Gulzar A, Khan A, Rehman Z. 2021. Mars in situ resource utilization and sulfur concrete. In: van Susante P, Roberts A, eds. Earth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments. Reston, Virginia: American Society of Civil Engineers, 1231~1241.

    • Ralphs M, Franz B, Baker T, Howe S. 2015. Water extraction on Mars for an expanding human colony. Life Sciences in Space Research, 7: 57~60.

    • Rapp D. 2013. Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars. Chichester: Springer, 65~108.

    • Rieder R, Gellert R, Anderson R C, Bruckner J, Clark B C, Dreibus G, Economou T, Klingelhofer G, Lugmair G W, Ming D W, Squyres S W, D' Uston C, Wänke H, Yen A, Zipfel J. 2004. Chemistry of rocks and soils at Meridiani planum from the Alpha particle X-ray spectrometer. Science, 306: 1746~1749.

    • Rogers A D, Christensen P R. 2007. Surface mineralogy of martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. Journal of Geophysical Research, 112(E1): E01003.

    • Sanders G B. 2018. Advancing in situ resource utilization capabilities to achieve a new paradigm in space exploration. 2018 AIAA SPACE and Astronautics Forum and Exposition, 5124.

    • Savijärvi H, Martinez G, Harri A, Paton M. 2020. Curiosity observations and column model integrations for amartian global dust event. Icarus, 337: 113515.

    • Scott A N, Oze C. 2018. Constructing Mars: Concrete and energy production from serpentinization Products. Earth Space Science Reviews, 5(8): 364~370.

    • Selvans M M, Plaut J J, Aharonson O, Safaeinili A. 2010. Internal structure of Planum Boreum, from Mars advanced radar for subsurface and ionospheric sounding data. Journal of Geophysical Research: Planets, 115(E9): E09003.

    • Shi Yutong, Zhao Jiannan, Xiao Long, Yang Yong, Wang Jiang. 2022. An arid-semiarid climate during the Noachian-Hesperian transition in the Huygens region, Mars: Evidence from morphological studies of valley networks. Icarus, 373: 114789.

    • Smith M, Craig D, Herrmann N, Mahoney E, Krezel J, Mcintyre N, Goodliff K. 2020. The Artemis program: An overview of NASA's activities to return humans to the Moon. Proceedings of 2020 IEEE Aerospace Conference, 1~10.

    • Sridhar K R. 1995. Mars sample return mission with in-situ resource utilization. Journal of Propulsion, 11(6): 1356~1362.

    • Van Ellen L, Peck D. 2018. Use of in situ ice to build a sustainable radiation shielding habitat on Mars. 69th International Astronautical Congress, IAC-18-E2. 2. 7.

    • Van Susante P J, Allen J S T, Eisele T C, Medici E F, Foetisch M S, Zacny K A, Fitzgerald Z. 2021. Water extraction from rock gypsum on Mars. In: van Susante P, Roberts A, eds. Earth and Space 2021: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments. Reston, Virginia: American Society of Civil Engineers, 653~659.

    • Viviano C E, Moersch J E, Mcsween H Y. 2013. Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. Journal of Geophysical Research: Planets, 118(9): 1858~1872.

    • Wan Lin, Wendner R, Cusatis G. 2016. A novel material for in situ construction on Mars: Experiments and numerical simulations. Construction Building Materials, 120: 222~231.

    • Whiteway J A, Komguem L, Dickinson C, Cook C, Illnicki M, Seabrook J, Popovici V, Duck T J, Davy R, Taylor P A, Pathak J, Fisher D, Carswell A I, Daly M, Hipkin V, Zent A P, Hecht M H, Wood S E, Tamppari L K, Renno N, Moores J E, Lemmon M T, Daerden F, Simth P H. 2009. Mars water-ice clouds and precipitation. Science, 325(5936): 68~70.

    • Wittenberg L J, Santarius J F, Kulcinski G L. 1986. Lunar source of 3He for commercial fusion power. Fusion Technology, 10(2): 167~178.

    • Wu Weiren, Yu Dengyun, Liu Jizhong, Hu Chaobin, Tang Yuhua, Wang Dayi, Hou Yukui, Zhang Zhe, Li Ming, Wang Jilian, Wang Tong, Wu Ke, Du Hui, Shen Zhiqiang, Huang Xiaofeng. 2021. Key issues of modernization of space governance. Chinese Science Bulletin, 66(15): 1795~1801 (in Chinese with English abstract).

    • Xiao Long. 2013. Planetary Science. Beijing: Geology Press, 217 (in Chinese with English abstract).

    • Xiao Long, Yan Chenfeng, Huang Jun, Zhao Jiannan, Wang Jiang, Liu Hansheng. 2021. Exploration of Mars. Wuhan: China University of Geosciences Press, 190~206 (in Chinese with English abstract).

    • Xu Lin, Pei Zhaoyu, Zou Yongliao, Wang Chi. 2020. China’s lunar and deep space exploration program for the next decade (2020-2030). Chinese Journal of Space Science, 40(5): 615~617.

    • Yang Liuqing, Zhang Ce, Yu Xiwen, Yao Yingfang, Li Zhaosheng, Wu Congping, Yao Wei, Zou Zhigang. 2021. Extraterrestrial artificial photosynthetic materials for in-situ resource utilization. National Science Review, 8(8): nwab104.

    • Zhang Ning, Lu Xi, Zhao Jiannan, Wang Jiang, Peng Yuming, Liu Hansheng, Xiao Long. 2020. Research status and utilization approach of martian wind resources. Manned Spaceflight, 26(3): 381~388 (in Chinese with English abstract).

    • Zhao Jiannan, Xiao Long. 2016. Achievement, issues and prospects in study of martian palelakes. Earth Science, 41(9): 1572~1582 (in Chinese with English abstract).

    • Zhao Jiannan, Xiao Long, Glotch T D. 2020. Paleolakes in the northwest Hellas region, Mars: Implications for the regional geologic history and paleoclimate. Journal of Geophysical Research: Planets, 125(3): e2019JE006196.

    • Zhao Jiannan, Shi Yutong, Zhang Mingjie, Yang Yong, Huang Ting, Wang Jiang, Hang Jun, Xiao Long. 2021. Advances in martian water-related landform. Acta Geologica Sinica, 95(9): 2755~2768 (in Chinese with English abstract).

    • Zhao Yunpu, Cheng Hongfei, Cao Zhou, Jia Yuefa. 2022. Research progress of kaolinite-based composites in photocatalysis application. Journal of Synthetic Crystals, 51(1): 170~184 (in Chinese with English abstract).

    • Zheng Mianping, Kong Weigang, Chen Wenxi, Kong Fanjing, Zhang Xuefei. 2014. A comparative analysis of evaporite deposition on Earth and Mars. Geological Journal of China Universities, 20(2): 169~176 (in Chinese with English abstract).

    • Zheng Tingting, Zhang Menglu, Wu Lianghuan, Guo Shuyuan, Liu Xiangjian, Zhao Jiankang, Xue Weiqing, Li Jiawei, Liu Chunxiao, Li Xu, Jiang Qiu, Bao Jun, Yu Tao, Xia Chuan. 2022. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis, 5: 388~396.

    • Zuber M T, Phillips R J, Andrews-Hanna J C, Asmar S W, Konopliv A S, Lemoine F G, Plaut J J, Smith D E, Smrekar S E. 2007. Density of Mars' south polar layered deposits. Science, 317(5845): 1718~1719.

    • Zubrin R, Frankie B, Kito T. 1997. Mars in-situ resource utilization based on the Reverse Water Gas Shift: Experiments and mission applications. 33rd Joint Propulsion Conference and Exhibit, AIAA 97-2767.

    • Zubrin R, Kito T, Frankie B. 1998. Report on the construction and operation of a Mars in situ propellant production unit utilizing the Reverse Water Gas Shift. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 3303.

    • Zubrin R M, Muscatello A C, Berggren M. 2013. Integrated Mars in situ propellant production system. Journal of Aerospace Engineering, 26(1): 43~56.

    • 安振华. 2019. 蒙脱石在药物载体中的应用研究综述. 中国粉体工业, (5): 1~3.

    • 高朝辉, 童科伟, 时剑波, 申麟. 2015. 载人火星和小行星探测任务初步分析. 深空探测学报, 2(1): 10~19.

    • 高楠, 许英奎, 罗泰义, 凌宗成, 朱丹, 李阳, 李雄耀, 刘建忠. 2022. 月球矿产资源勘查进展及展望. 矿物学报, 42(2): 222~230.

    • 顾才鑫, 龙文俊, 岳永铭. 2018. 火星太阳能分布及光伏发电计算. 太阳能, (11): 35~39.

    • 郝剑, 李丹明, 党文强, 李居平, 王仕发. 2018. 火星二氧化碳及水资源利用的研究进展. 真空与低温, 24(5): 289~296.

    • 季杰. 2013. 太阳能光热低温利用发展与研究. 新能源进展, 1(1): 7~31.

    • 靳宇, 舒文祥, 张伟伟, 姜生元, 崔庆新, 白晶莹, 赖晓明. 2020. 火星水冰采集技术发展现状及方案设想. 载人航天, 26(1): 128~134.

    • 李萍, 刘文磊, 杨双春, 崔爽, 张维. 2013. 国内外滑石的应用研究进展. 硅酸盐通报, 32(4): 668~671.

    • 吴伟仁, 于登云, 刘继忠, 胡朝斌, 唐玉华, 王大轶, 侯宇葵, 张哲, 李明, 王冀莲, 王彤, 吴克, 杜辉, 申志强, 黄晓峰. 2021. 我国太空活动现代化治理中的若干重大问题. 科学通报, 66(15): 1795~1801.

    • 肖龙. 2013. 行星地质学. 北京: 地质出版社, 217.

    • 肖龙, 严晨风, 黄俊, 赵健楠, 王江, 刘汉生. 2021. 探秘火星. 武汉: 中国地质大学出版社, 190~206.

    • 张宁, 陆希, 赵健楠, 王江, 彭玉明, 刘汉生, 肖龙. 2020. 火星风力资源的研究现状及利用途径. 载人航天, 26(3): 381~388.

    • 赵健楠, 史语桐, 张明杰, 杨勇, 黄婷, 王江, 黄俊, 肖龙. 2021. 火星水成地貌研究进展. 地质学报, 95(9): 2755~2768.

    • 赵蕴璞, 程宏飞, 曹洲, 贾悦发. 2022. 高岭石基复合材料在光催化领域应用的研究进展. 人工晶体学报, 51(1): 170~184.

    • 郑绵平, 孔维刚, 陈文西, 孔凡晶, 张雪飞. 2014. 地球同火星蒸发岩沉积的对比. 高校地质学报, 20(2): 169~176.