en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张科,男,1982年生。博士,高级工程师,现主要从事烃源岩评价与油气成藏方面的研究工作。E-mail:zhangke-tlm@petrochina.com.cn。

通讯作者:

苏劲,男,1982年生。博士,高级工程师,长期从事石油地质与地球化学研究。E-mail:sj41@petrochina.com.cn。

参考文献
Algeo T J, Lyons, T W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleo hydro graphic conditions. Paleoceanography, 21(1): 1~23.
参考文献
Andrusevich V E, Engel M H, Zumberge J E, Brothers L A. 1998. Secular, episodic changes in stable carbon isotope composition of crude oils. Chemical Geology, 152: 59~72.
参考文献
Cai C F, Hu W S, Worden R H. 2001. Thermochemical sulfate reduction in Cambrian-Ordovician carbonates in Central Tarim. Marine and Petroleum Geology, 18: 729~741.
参考文献
Cai C F, Zhang C M, Cai L L, Wu G H, Jiang L, Xu Z M, Li K K, Ma A L, Chen L X. 2009. Origins of Palaeozoic oils in the Tarim basin: Evidence from sulfur isotopes and biomarkers. Chemical Geology, 268: 197~210.
参考文献
Cai C F, Zhang C M, Worden R H, Wang T K, Li H X, Jiang L, Huang S Y, Zhang B S. 2015. Application of sulfur and carbon isotopes to oil-source rock correlation: A case study from the Tazhong area, Tarim basin, China. Organic Geochemistry, 83-84: 140~152.
参考文献
Glumac B, Walker K R. 1998. A Late Cambrian positive carbon-isotope excursion in the southern Appalachians: Relation to biostratigraphy, sequence stratigraphy, environments of deposition and diagenesis. Journal of Sedimentary Research, 68: 1212~1222.
参考文献
Hanson A D, Zhang S C, Moldowan J M, Liang D G, Zhang B M. 2000. Molecularorganic geochemistry of the Tarim basin, northwest China. American Association of Petroleum Geologists Bulletin, 84: 1109~1128.
参考文献
Jia W L, Xiao Z Y, Yu C L, Peng P A. 2010. Molecular and isotopic compositions of bitumens in Silurian oil sands from the Tarim basin, NW China: Characterizing biodegradation and hydrocarbon charging in an old composite basin. Marine and Petroleum Geology, 27: 13~25.
参考文献
Jia W L, Wang Q L, Peng P A, Xiao Z Y, Li B H. 2013. Isotopic compositions and biomarkers in crude oils from the Tarim basin: Oil maturity and oil mixing. Organic Geochemistry, 57: 95~106.
参考文献
Jiang G Q, Wang X Q, Shi X Y, Xiao S H, Zhang S H, Dong J. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze platform. Earth and Planetary Science Letters, 317-318: 96~110.
参考文献
Jiao W W, Yang H J, Zhao Y, Zhang H Z, Zhou Y Y, Zhang J, Xe Q L. 2010. Application of trace elements in the study of oil-source correlation and hydrocarbon migration in the Tarim basin, China. Energy Exploration & Exploitation, 28: 451~466.
参考文献
Kang Yuzhu. 2003. Geological characteristics of the formation of the large Tahe oilfield in the Tarim basin and its prospects. Geology in China, 30(3): 315~319 (in Chinese with English abstract).
参考文献
Li S, Pang X, Jin Z, Yang H, Xiao Z, Gu Q, Zhang B. 2010. Petroleum source in the Tazhong uplift, Tarim basin: New insights from geochemical and fluid inclusion data. Organic Geochemistry, 41: 531~553.
参考文献
Li S M, Shi Q, Pang X Q, Zhang B S, Zhang H Z. 2012. Origin of the unusually high dibenzothiophene oils in Tazhong-4 oilfield of Tarim basin and its implication in deep petroleum exploration. Organic Geochemistry, 48: 56~80.
参考文献
Li S M, Amrani A, Pang X Q, Yang H J, Said-Ahmad W, Zhang B S, Pang Q J. 2015. Origin and quantitative source assessment of deep oils in the Tazhong uplift, Tarim basin. Organic Geochemistry, 78: 1~22.
参考文献
Liu Guangxiang. 2008. Thermal simulation study of crude oil from well S74 in the Tarim basin (I)—Geochemical characteristics of the simulation products. Petroleum Geology & Experiment, 30(2): 179~185 (in Chinese with English abstract).
参考文献
Pan C C, Liu D Y. 2009. Molecular correlation of free oil, adsorbed oil and inclusion oil of reservoir rocks in the Tazhong uplift of the Tarim basin, China. Organic Geochemistry, 40: 387~399.
参考文献
Schwab V, Spangenberg J E, Grimalt J O. 2005. Chemical and carbon isotopic evolution of hydrocarbons during prograde metamorphism from 100℃ to 550℃: Case study in the Liassic black shale formation of Central Swiss Alps. Geochimica et Cosmochimica Acta, 69: 1825~1840.
参考文献
Schwark L, Empt P. 2006. Sterane biomarkers as indicators of Palaeozoic algal evolution and extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 225~236.
参考文献
Song Daofu, Wang Tieguan, Li Meijun. 2016. Geochemistry and possible origin of the hydrocarbons from wells Zhongshen 1 and Zhongshen 1C, Tazhong uplift. Science China Earth Science, 46(1): 107~117 (in Chinese with English abstract).
参考文献
Stahl W J. 1977. Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chemical Geology, 20(2): 121~149.
参考文献
Tian Y K, Yang C P, Liao Z W, Zhang H Z. 2012. Geochemical quantification of mixed marine oils from Tazhong area of Tarim basin, NW China. Journal of Petroleum Science and Engineering, 90-91: 96~106.
参考文献
Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence, second ed. Berlin: Springer.
参考文献
Wang Darui, Song Lisheng. 2002. A thesis about forming conditions of marine Middle-Upper Ordovician source rocks in China. Acta Petrolei Sinica, 23(1): 31~34 (in Chinese with English abstract).
参考文献
Wang Z M, Xiao Z Y. 2004. A comprehensive review concerning the problem of marine crudes sources in Tarim basin. Chinese Science Bulletin, 49: 1~9.
参考文献
Xiao S, Narbonne G M, Zhou C, Laflamme M, Grazhdankin D V, Moczydłowska-Vidal M, Cui H. 2016. Toward an Ediacaran Time Scale: Problems, Protocols, and Prospects. Episodes, 39(4): 540~555.
参考文献
Yang Haijun, Chen Yongquan, Tian Jun, Du Jinhua, Zhu Yongfeng, Li Honghui, Pan Wenqing, Yang Pengfei, Li Yong, An Haiting. 2020. An important discovery in well Luntan-1 of the Tarim basin, China, and its significance for ultra-deep oil and gas exploration. China Petroleum Exploration, 25(2): 62~72 (in Chinese with English abstract).
参考文献
Yu S, Pan C C, Wang J J, Jin X D, Jiang L L, Liu D Y, Lu X X, Qin J Z, Qian Y X, Ding Y, Chen H H. 2011. Molecular correlation of crude oils and oil components from reservoir rocks in the Tazhong and Tabei uplift of the Tarim basin, China. Organic Geochemistry, 42: 1241~1262. Zhang S C. 2000. The migration fractionation: An important mechanism in the formation of condensate and waxy oil. Chinese Science Bulletin, 45: 1341~1344.
参考文献
Zhang S C, Hanson A D, Moldowan J M, Graham S A, Liang D G, Chang E, Fago F. 2000. Paleozoic oil-source rock correlations in the Tarim basin, NW China. Organic Geochemistry, 31: 273~286.
参考文献
Zhang S C, Liang D G, Li M W, Xiao Z Y, He Z H. 2002. Molecular fossils and oil-source rock correlations in Tarim basin, NW China. Chinese Science Bulletin, 47: 20~27.
参考文献
Zhang S C, Liang D G, Zhang B M, Wang F Y, Bian L Z, Zhao M J. 2004. Generation of Marine Oil and Gas in Tarim Basin. Beijing: Petroleum Industry Press.
参考文献
Zhang S C, Huang H P. 2005. Geochemistry of Palaeozoic marine petroleum from the Tarim basin, NW China. Part 1. Oil family classification. Organic Geochemistry, 36: 1204~1214.
参考文献
Zhang S C, Huang H P, Xiao Z Y, Liang D G. 2005. Geochemistry of Palaeozoic marine petroleum from the Tarim basin, NW China. Part 2: Maturity assessment. Organic Geochemistry, 36: 1215~1225.
参考文献
Zhang S C, Su J, Wang X M, Zhu G Y, Yang H J, Liu K Y, Li Z X. 2011. Geochemistry of Palaeozoic marine petroleum from the Tarim basin, NW China: Part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations. Organic Geochemistry, 42: 1394~1410.
参考文献
Zhang S C, Huang H P, Su J, Zhu G Y, Wang X M, Larter S. 2014. Geochemistry of Palaeozoic marine oils from the Tarim basin, NW China. Part 4: Paleobiodegradation and oil charge mixing. Organic Geochemistry, 67: 41~57.
参考文献
Zhao Mengjun, Huang Difan. 1996. Carbon isotopic distributive characteriscs of crude oil monomers produced in different sedimentary environments. Petroleum Geology & Experiment, 17(2): 171~179 (in Chinese with English abstract).
参考文献
Zhao W Z, Zhang S C, Wang F Y, Chen J P, Xiao Z Y, Song F Q. 2005. Gas accumulation from oil cracking in the eastern Tarim basin: A case study of the YN2 gas field. Organic Geochemistry, 36: 1602~1616.
参考文献
Zhu Chuanling, Yan Hua, Yun Lu, Han Qiang, Ma Huiming. 2014. Characteristics of Cambrian source rocks in well XH1, Shaya uplift, Tarim basin. Petroleum Geology & Experiment, 36(2): 626~632 (in Chinese with English abstract).
参考文献
康玉柱. 2003. 塔里木盆地塔河大油田形成的地质条件及前景展望. 中国地质, 30(3) : 315~319.
参考文献
刘光祥. 2008. 塔里木盆地S74井稠油热模拟实验研究(一)——模拟产物地球化学特征. 石油实验地质, 30(2): 179~185.
参考文献
宋到福, 王铁冠, 李美俊. 2016. 塔中地区中深1和中深1C井盐下寒武系油气地球化学特征及其油气源判识. 中国科学: 地球科学, 46(1): 107~117.
参考文献
王大锐, 宋力生. 2002. 论我国海相中上奥陶统烃源岩的形成条件——以塔里木盆地为例. 石油学报, 23(1): 31~34+39-5.
参考文献
杨海军, 陈永权, 田军, 杜金虎, 朱永峰, 李洪辉, 潘文庆, 杨鹏飞, 李勇, 安海亭. 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62~72.
参考文献
赵孟军, 黄第藩. 1996. 不同沉积环境生成的原油单体烃碳同位素分布特征. 石油实验地质, 17(2): 171~179.
参考文献
朱传玲, 闫华, 云露, 韩强, 马慧明. 2014. 塔里木盆地沙雅隆起星火1 井寒武系烃源岩特征. 石油实验地质, 36(5): 626~632.
目录contents

    摘要

    塔里木盆地寒武系—奥陶系烃源岩的生源特征及其对超深层油气贡献是塔里木盆地超深层海相油气勘探面临的关键地质问题。根据分子与同位素地球化学分析和生烃热模拟实验研究,系统梳理油源对比的地球化学参数,认为原油中C26~C30甾烷的分布、伽马蜡烷指数、三环萜烷与五环萜烷比值和正构烷烃同位素等油源示踪指标,易受热演化程度、生物降解和水岩氧化还原作用影响,掩盖母源输入和沉积环境的差异。正构烷烃奇偶优势,异常的三环萜烷分布,全油和正构烷烃δ13C同位素明显偏重以及高含量的多环芳烃的出现主要归因于高过成熟热演化作用、低温热液或侵入岩浆等异常热事件的影响,而并非反映Є—O1烃源岩中生烃母质的地球化学特征。局部的硫酸盐热化学还原反应导致无机硫并入形成次生的噻吩类化合物,造成有机硫同位素值明显升高,无法反映母源特征,目前被选做寒武系典型烃源岩和端元油的生烃母源特征很可能是经历多种次生地球化学作用改造的结果。通过分析寒武系—奥陶系两套中等热成熟度烃源岩的形成环境和生物母质类型,表明塔里木盆地台盆区寒武系—奥陶系烃源岩的油源特征差异主要受控于沉积相,塔北中西部海相原油主要与透光厌氧环境烃源岩有关,塔中地区原油主要来源于深水盆地相烃源岩。重新建立不同物化性质原油与高过成熟烃源岩之间可靠的油-源对比参数,需要同时考虑成熟度和次生改造等复杂地球化学作用的多重影响才能确定其成因和来源。

    Abstract

    The origin characteristics of Cambrian-Ordovician source rocks in the Tarim basin and their contribution to ultra-deep hydrocarbons were the critical fundamental issues for the marine exploration of the Tarim basin. According to molecular and isotopic geochemical analysis and hydrocarbon generation thermal simulation experimental research, the geochemical parameters of oil source correlation are systematically analysed. It is considered that the distribution of C26~C30 sterane in crude oil, gamma wax index, the ratio of tricyclic terpane to pentacyclic terpane and n-alkane isotope and other oil source tracing indicators are susceptible to the influence of thermal evolution degree, biodegradation and water rock redox, covering up the differences of parent source input and sedimentary environment. Odd even dominance of n-alkanes, abnormal distribution of tricyclic terpanes, heavierin δ13C of whole oil and n-alkanes, and the appearance of high content of polycyclic aromatic hydrocarbons are mainly due to the influence of abnormal thermal action caused by high-post maturity and magmatic intrusion or hydrothermal activity, rather than reflecting the geochemical characteristics of hydrocarbon generating biological materials in Є-O1 source rocks. Local sulfate thermochemical reduction reaction leads to the incorporation of inorganic sulfur into thiophene compounds, resulting in the obvious increase of organic sulfur isotope value, which cannot reflect the characteristics of original source. The characteristics of typical source rocks and end member oils currently selected are likely to be the result of multi-superposition of secondary alterations. By analyzing the formation environment and biological parent material types of middle mature Cambrian-Ordovician source rocks with significant differences in thermal evolution, we show that the oil source differences of Cambrian Ordovician source rocks in the platform basin area of Tarim basin are mainly controlled by sedimentary facies; the marine crude oil in the middle and west of northern Tarim is mainly related to the source rocks in anaerobic environment, and the crude oil in Central Tarim is mainly from the source rocks of deep-water basin facies. To re-establish reliable oil source correlation parameters between crude oils with different physicochemical properties and high over mature source rocks, we need to consider the multiple effects of complex geochemical processes such as maturity and secondary transformation at the same time to determine their genesis and source.

  • 塔里木盆地是中国唯一发现海相工业性石油的含油气盆地,历经近40年的勘探实践揭示,整个塔里木盆地海相油气储量达50×108 t油当量,成为我国海相油气最重要的生产基地。然而塔里木盆地海相烃源岩时代老,热成熟度高,储层埋深大,多套烃源岩多阶段生烃,油气发生多次调整、混合和次生改造过程,造成油气物理-化学特征复杂多样(Zhang et al.,2005; Pan and Liu,2009; Jia et al.,2010Li et al.,2010; Yu et al.,2011)。其中,次生改造作用包括热裂解(Zhao et al.,2005)、生物降解(Jia et al.,2010; Zhang et al.,2014)、气侵分馏(Zhang,2000; Zhang et al.,2011)和硫酸盐热化学还原反应(TSR)(Cai et al.,2001; 2009)等,形成了稠油、正常油、凝析油等多种油气类型并存的特点。如此复杂的油气性质也给油气来源研究提出了世界级的难题,多种多样的次生化学作用相互叠加强烈地改变了油气藏的物理相态和化学组成,造成原油中生物标记化合物和同位素所继承的母源特征受到改造,导致对塔里木盆地台盆区油气来源的认识仍然存在很大争议,但同时也成为油气地质与地球化学研究的难得实例。

  • 生物标记化合物是一种被广泛用于确定烃源岩与原油亲缘关系、生烃母质类型和沉积环境的指标,在塔里木盆地海相油源判别中已经做了非常详细的研究。根据甲藻甾烷、正/异丙基胆甾烷和降胆甾烷等生物标志化合物的研究表明,台盆区除少数原油(塔东2井、塔中62井、轮南63井)与Є—O1烃源岩密切相关外,绝大多数的油来自于O2-3烃源岩(Hanson et al.,2000; Zhang et al.,200020022004; Wang and Xiao,2004; Zhang and Huang,2005; Li et al.,2010; Yu et al.,2011; Li et al.,2012)。然而相对于Є—O1烃源岩而言,O2-3地层中有效烃源岩的厚度有限,TOC也相对较低(<2%),一些地质学家预测Є—O1更可能是塔里木盆地的主力烃源岩(赵孟军和黄第藩, 1996; 康玉柱,2003)。还有学者根据轻烃指纹、异构烷烃以及三环、四环萜烷等萜类化合物,将目前发现的原油划分多达四类油组,推测来源塔里木盆地下古生界多套不同类型的烃源岩,基于特殊分子化合物的油源判识莫衷一是。

  • 烃源岩和油气的碳同位素组成特征是另一类普遍用于判识塔里木盆地海相油气来源的指标(Li et al.,2010; Tian et al.,2012)。烃源岩中干酪根的碳同位素值主要受控于埋存的生物类型和海洋、大气中CO2的碳同位素组成,原油的稳定碳同位素组成取决于生油岩中干酪根的碳同位素值,因此稳定碳同位素值作为油源对比参数被广泛应用。台盆区中原油的δ13C值差异相当明显(Yu et al.,2011; Li et al.,20122015; Jia et al.,2013),例如塔东2井寒武系原油中含丰富的13C,因此在几乎所有的研究中都将其作为来源于Є—O1烃源岩的端元油,同时δ13C同位素值最低的原油则被自然地选为代表O2-3烃源岩贡献的原油。进而利用两个端元油的混合比例计算的变化,研究认为除了少量样品显示了典型的Є—O1同位素特征,绝大多数原油归因于混合来源(Li et al.,20102015; Tian et al.,2012)。这项研究依据全油和正构烷烃δ13C同位素组成,提出了台盆区海相原油中Є—O1贡献的比例超过一半,与生物标志化合物的相关证据形成鲜明对比,油源贡献的结论就变得混淆不清。

  • 还有多种其他的技术手段,例如干酪根和原油的硫同位素值(δ34S)(Cai et al.,2009)、稀土元素和过渡金属分析(Jiao et al.,2010)、储集岩的连续抽提(Jiao et al.,2010)、通过连续抽提释放沥青滞留烃(Tian et al.,2012)以及快速热解与色质联用(Jia et al.,2010)等方法也应用于塔里木盆地油源对比研究。稀土元素和过渡金属分析显示台盆区原油具有混源的特征(Jiao et al.,2010)。Cai et al.(2009)研究认为从寒武系、下奥陶统到上奥陶统烃源岩中干酪根的δ34S值呈现明显降低的趋势,未受到生物降解和硫酸盐热化学还原作用(TSR)改造的原油主要来自Є—O1烃源岩。然而,遭受严重生物降解的原油以及TSR作用形成的富34S的含硫化合物,都可能导致原油δ34S值变重,而更接近寒武纪海水中硫酸盐δ34S值,因此在使用硫同位素指示油源时,需要谨慎地排除TSR作用的影响。

  • 由此可见,明确塔里木盆地海相主要烃源岩的沉积环境和生物母源特征对台盆区超深层油气勘探至关重要。因此针对多重次生改造和热成熟作用,本文通过热模拟实验和最新勘探发现的下古生界烃源岩地球化学特征分析,解析不同水体环境沉积烃源岩的分子与同位素特征,及其随成熟度演化的变化特征,重新梳理现有油-源对比的指标适用性,明确次生地球化学作用对分子和同位素组成的影响。明确下古生界等时异相烃源岩本身的地球化学特征,提出反映烃源岩形成环境和生物母质构成的分子和同位素参数,揭示盆地超深层油气的主要来源。

  • 1 塔里木盆地超深层烃源岩与油气发现

  • 近十年来,塔里木盆地的油气勘探逐渐突破7000 m深度,在顺北—富满地区发现10×108 t轻质油的平均埋深接近8000 m,目前获得工业油气流的最深钻井——轮探1井,完井深度达到8882 m(图1),预示着塔里木盆地超深层具备广阔的油气勘探前景。随着在台盆区古隆起和斜坡区(顺北、跃进、果勒和顺托等区块)的勘探深入(图1),不仅在超深层发现了大量的轻质油和凝析油气,而且在多口深钻中揭示了塔里木盆地下寒武统的优质烃源岩,TOC最高可达18.48%。其中在沙雅隆起西北部钻探的星火1井,钻遇下寒武统玉尔吐斯组优质烃源岩29 m,TOC范围1.0%~9.43%(朱传玲等,2014),在轮南低凸起钻探的轮探1井(2019年,中国石油),揭示下寒武统玉尔吐斯组高含有机质烃源岩26 m,TOC范围为2.43%~18.48%(杨海军等,2020),但是由于埋深较大,烃源岩的成熟度VRE基本都大于1.5%;随着旗探1井钻遇低成熟的玉尔吐斯组烃源岩(VRE<1.0%),为比较自然条件下成熟度对寒武系烃源岩中生物标记化合物含量的影响提供了实际的地质样品。更值得关注的是,最近完钻的轮探3井(位于轮探1井东南附近),揭示了塔里木盆地东部地层分区的下寒武统西山布拉克组烃源岩。再加上塔东凸起早期钻探的塔东2井下寒武统西山布拉克组烃源岩,为详细研究全盆地范围内寒武系底部烃源岩的沉积相变、有机质富集机制和成烃母源特征提供了不同成熟度阶段岩石样品。不仅如此,近几年塔里木盆地超深层(埋深>8000 m)的油气勘探,揭示了多个高产油气田,主要包括满加尔凹陷西部斜坡区的金跃—富源—满深和顺北—顺托等,亟需明确超深层油气的来源与相关烃源岩的主要供烃范围,为预测和拓展超深层勘探规模提供决策依据。

  • 图1 塔里木盆地超深层油气藏和钻遇寒武系烃源岩的探井分布

  • Fig.1 Distribution of ultra-deep reservoirs and the drilled Cambrian source rocks in the Tarim basin

  • 塔里木盆地超深层原油(轻质油)主要赋存于中—下奥陶统的鹰山组和一间房组,塔北和塔中隆起的下寒武统也发现工业油气流,根据甾、萜类生物标记化合物特征,这类轻质油普遍具有高含长链三环萜烷(>C26 tricyclic terpane)、高重排C27甾烷和低含C28αα20R甾烷的特征(图2),这既不同于通常认为的寒武系烃源岩的生标特征(高含C28αα20R甾烷;Li et al.,2012),也有别于中—上奥陶统烃源岩的生标特征(低重排C27甾烷;Zhang et al.,2000)。超深层油气藏分布在满加尔凹陷西斜坡,储层主要是中—下奥陶统碳酸盐岩,埋深分布在7000~8000 m之间,中—上奥陶统烃源岩对老地层的侧向供烃范围有限,寒武系烃源岩也不能完全解释满西地区超深层轻质油的来源。因此,需要重新认识甾烷和萜烷在判识超深层高成熟轻质油来源方面的适用条件和影响因素,可能对于明确超深层油气的来源提供更符合实际的地质证据。

  • 1.1 寒武系—奥陶系烃源岩与超深层原油的生物标记物特征

  • 勘探实践揭示塔里木盆地寒武系—奥陶系发育多套烃源岩,近几年围绕超深层的油气勘探解释了中等成熟度的寒武系烃源岩,为海相油气源研究提供了有效对比的地质样品。通过系统梳理下古生界烃源岩的发育层位和有机质丰度(表1),寒武系主要发育北部坳陷广泛分布的玉尔吐斯组(期)烃源岩和东部满加尔坳陷的中、下寒武统烃源岩,奥陶系主要发育中—下奥陶统黑土凹组、中—上奥陶统萨尔干组—良里塔格组烃源岩。不同地区发育层段具有明显“等时异相”特征,在台地凹陷、台缘斜坡、深水陆棚、深海盆地等不同的沉积环境下,形成了多种地球化学特征的烃源岩。

  • 奥陶系烃源岩发育相带较多,包括东部黑土凹组O1-2h盆地相烃源岩,中部良里塔格组O3l斜坡灰泥丘相烃源岩;西部萨尔干组O2-3s深水陆棚-盆地相烃源岩。由于晚奥陶世东西部构造演化差异导致中—上奥陶统烃源岩热演化程度低于中—下奥陶统黑土凹组烃源岩,中—上奥陶系烃源岩成熟度分布在0.65%~1.1%,而黑土凹组烃源岩成熟度普遍大于1.5%。从甾、萜生标化合物分布来看,中—下奥陶统黑土凹组O1-2h烃源岩的抽提物具有高伽马蜡烷,高C28甾烷,低C27甾烷的特点;而成熟度相对较低的中—上奥陶统良里塔格组O3l烃源岩则表现出相反的分布特征(图3)。由此推测,甾、萜生标化合物分布的差异不仅受控于烃源岩沉积环境,而且也受到热成熟演化程度的影响,处于高过程阶段烃源岩的生物标记化学特征可能不再具有指示生烃母源和沉积环境的作用。

  • 图2 塔里木盆地古隆起寒武系和斜坡区顺北—富满奥陶系超深层原油甾萜类生标特征

  • Fig.2 Composition of steranes and terpene in the deep Cambrian reservoirs of the paleo-uplift and the ultra-deep Ordovician reservoirs of the Shunbei-Fuman slope in the Tarim basin

  • 表1 塔里木盆地寒武系—奥陶系多套烃源岩发育层位、成熟度和有机碳丰度

  • Table1 Strata, maturity and total organic carbon of multiple sets of Cambrian-Ordovician source rocks in the Tarim basin

  • 图3 塔里木盆地不同成熟度不同层位奥陶系烃源岩甾、萜生标化合物分布对比

  • Fig.3 The distribution of steranes and terpenes in the Ordovician source rocks with different maturity in the Tarim basin

  • 寒武系烃源岩厚度变化大,多种沉积相带并存,烃源岩在不同地区发育层段不同,主要发育下寒武统盆地相和中、下寒武统蒸发潟湖相,东部上寒武统发育盆地相烃源岩。寒武系烃源岩整体成熟度达到高过成熟阶段,等效反射率VRE主体分布在1.5%~2.8%之间,近期钻探的旗探1井揭示了下寒武统低成熟度的玉尔吐斯组烃源岩(Tmax=443℃,VRE<1.0%),是目前塔里木盆地发现的唯一中等成熟度的寒武系烃源岩,代表了寒武系烃源岩原始生烃母源特征。从烃源岩的TOC含量的地质规模来看,下寒武统盆地相烃源岩以玉尔吐斯组、西山布拉克组为代表,厚11~35 m,TOC为0.1%~10%,位于盆地西北部的星火1井,埋深5832 m的下寒武统玉尔吐斯组烃源岩,TOC=4.88%,VRE=1.51%(朱传玲等,2014),生标特征:高伽马蜡烷,高C28甾烷,高C29甾烷;而塔北中部轮探1井揭示的高过成熟度的下寒武统烃源岩,具有高伽马蜡烷,高C27甾烷,高C28甾烷(图4)。寒武系高成熟烃源岩的常规特征基本一致,但旗探1井中等成熟度的玉尔吐斯组烃源岩中萜烷和藿烷、C27~C29甾烷的相对含量却与早期认为的典型寒武系烃源岩存在差异,主要表现为C28甾烷含量偏低,而高含C27~C28三环萜烷,这很可能是受沉积相控制。

  • 寒武系—奥陶系不同沉积相烃源岩抽提物中甾萜生标化合物对比表明:寒武系不同沉积相烃源岩成熟度普遍>1.5%,甾、萜烷分布特征较为一致,具有高伽马蜡烷,高C28甾烷,低重排甾烷的特点(图4);奥陶系O1-2h烃源岩VRE普遍大于1.5%,甾萜生标特征与寒武系相似,而O3l烃源岩VRE<1.1%,甾、萜烷具有低伽马蜡烷,低C28甾烷,高重排甾烷的特点(图3)。因此,根据低伽马蜡烷和低C28甾烷等生物标记化合物特征来判识奥陶系烃源岩的贡献,很可能造成中深1井寒武系凝析油来源认识的混乱(宋到福等,2016)。塔中隆起深层中深1C井下寒武统凝析油的甾、萜分布特征显示,伽马蜡烷和C28甾烷的含量相对较低(图2),与中—上奥陶统烃源岩特征相似,但从地层埋深演化过程上看,中—上奥陶统烃源岩不存在侧向运移和“倒灌”进入下寒武统储层的条件,油源对比的结果与地质认识存在明显矛盾。2019年在塔北隆起超深井轮探1井下寒武统肖尔布拉克组发现轻质油,其甾、萜分布特征中几乎不含有藿烷系列,C28甾烷的相对含量异常偏低(图2),与典型寒武系—奥陶系烃源岩的生标特征都不尽相同。因此,对于古老海相克拉通高过成熟油气系统而言,复杂类型原油和多套不同成熟度烃源岩的甾、萜类生物标记化合物之间的亲缘关系,并不能直接对比得到合理的地质结论。

  • 图4 塔里木盆地寒武系多套不同沉积环境烃源岩生物标记化合物特征

  • Fig.4 The distributions of steranes and terpenes in different sedimentary environments of Cambrian source rocks in the Tarim basin

  • 1.2 超深层原油正构烷烃与寒武系—奥陶系烃源岩碳同位素特征

  • 正构烷烃同位素是最常用的油源对比指标,通常认为奥陶系来源的原油正构烷烃同位素偏轻,典型的端元油为英买2井奥陶系原油,正构烷烃同位素分布在-33.2‰~-34.4‰之间;塔东2井寒武系稠油普遍被作为寒武系烃源岩的端元油,其正构烷烃同位素基本都重于-30‰。但是通过对比发现(图5),英东2井中—下奥陶统黑土凹组烃源岩成熟度约为1.5%,沥青“A”的正构烷烃同位素整体分布在-29.8‰~-32.6‰之间,明显重于奥陶系端元油的同位素,表明有机碳同位素偏轻不能作为奥陶系烃源岩端元油的典型特征,成熟作用可以造成正构烷烃同位素变重。另外,龙口1井、英南2井等侏罗系原油中正构烷烃同位素偏重,应是寒武系来源的原油,但塔中地区寒武系盐下发现的中深1C井原油中正构烷烃同位素分布在-34.1‰~-37.7‰之间,明显轻于寒武系来源原油的碳同位素,这表明寒武系烃源岩的有机碳同位素偏重也不是寒武系烃源岩的典型特征,烃源岩在生烃过程的不同成熟阶段,形成原油的正构烷烃同位素也存在显著差异。同样是塔中隆起的中深1C井下寒武统肖尔布拉克组原油的正构烷烃同位素呈现低碳数同位素重于-30‰,而高碳数正构烷烃同位素轻于-34‰,碳同位素与对应的正构烷烃碳数存在显著的倾斜,很可能经历强烈的次生地球化学作用改造,因此不能通过简单对比正构烷烃同位素判识油源。

  • 然而,从寒武系到上奥陶统烃源岩生成原油的碳同位素变轻缺乏足够证据,现有干酪根分析数据没有揭示出奥陶系烃源岩具轻同位素特征,反而柯坪剖面寒武系干酪根的碳同位素最轻的可达-37‰,这个与全球寒武系有机质同位素值相似的数据却经常被认为是经历了异常地质作用而被剔除掉了。没有任何证据表明塔里木盆地寒武纪存在碳同位素富集过程并与全球同位素趋势相反,中国南方的上扬子地区及印度、中东、澳大利亚等同时代数据均显示寒武系有机质同位素比奥陶系轻,之所以认定寒武系原油同位素重是因为塔东2井原油的同位素重,而塔东2井又被认定是寒武系的端元,由此带来了一系列非常混乱、并可能与实际情况完全相反的油源对比结果。全球寒武系原油δ13C平均为-34.81‰,疑源类单细胞真核生物勃发(Tissot and Welte,1984),消耗了浮游植物中的蛋白质和碳水化合物,沉积的有机质为同位素偏轻的脂类化合物。而来自奥陶系的原油δ13C平均值为-29.16‰,碳同位素偏重的有机质主要来源于奥陶系烃源岩中丰富的黏球型藻(Andrusevich et al.,1998)。13C相对富集的整体趋势并不受控于烃源岩(Stahl,1977),突变的拐点与寒武系—奥陶系的界面一致。从寒武纪到奥陶纪,碳同位素正漂的地质记录代表了全球碳循环的扰动,反映了古生物群落丰度和性质的变化趋势,以及大气中CO2、O2与碳保存的波动关系(Glumac and Walker,1998)。尽管当时塔里木盆地的气候和生物量可能存在复杂变化,但古生界有机质的演化和保存应符合全球趋势,碳同位素组成的变化经历了生物圈统一的影响,塔里木盆地有机质的碳同位素演化趋势应该与相同时代全球的变化趋势相同(图6),柯坪地区和塔东2井寒武系烃源岩的干酪根碳同位素负偏就证明了这一观点。还有学者认为塔里木盆地下奥陶统到中—上奥陶统碳酸盐岩碳同位素呈现强烈的正漂移(最高达到4‰;王大锐和宋力生,2002),是全油碳同位素负漂移的原因(Tian et al.,2012)。然而,这种δ13Ccarb和δ13Corg相反的变化趋势仅发生在较低丰度有机质的碳酸盐岩中(TOC≤0.1%),而在富含有机质的黑色页岩和碳酸盐岩中,δ13Ccarb和δ13Corg表现出一致的变化趋势(Jiang et al.,2012),浮游植物勃发主要发生在O2-3可能是最终导致有机和无机碳同位素富集13C的主要原因。

  • 图5 塔里木盆地寒武系—奥陶系烃源岩与原油正构烷烃碳同位素特征对比

  • Fig.5 Comparison of n-alkanes carbon isotopes between Cambrian-Ordovician source rocks and marine oils in the Tarim basin

  • 图6 全球无机碳同位素偏移曲线(a)与塔里木盆地寒武系—奥陶系干酪根碳同位素(b)对比

  • Fig.6 Global stratigraphic curve of inorganic carbon isotope (a) and carbon isotope shifts of Cambrian-Ordovician kerogen in the Tarim basin (b)

  • 2 寒武系—奥陶系烃源岩生源特征的成因机制

  • 2.1 热模拟实验与甾萜生物标记化合物分布特征

  • 甾烷作为沉积物的生物指纹,广泛应用于指示沉积环境、原油母源性质和成熟度。甾烷类化合物几乎都来源于藻类、浮游植物、浮游动物或高等植物等真核生物,活的生物体中没有甾烷,有机质沉积后在热力作用下由甾醇经过甾二烯转变为甾烷。一般烃源岩和原油中,最常见的规则甾烷是C27~C29三个碳数的甾烷,普遍的认识是C27甾烷通常来源于低等水生生物和底栖红藻类,C28甾烷大多数来源于褐藻,C29甾烷可以来源于藻类和陆源高等植物,但实际也有很多例外,部分藻类如褐藻、绿藻也含有C29甾醇,形成C29甾烷。根据全球500个不同地质时代烃源岩中C28/C29甾烷比值的变化(图7),表明寒武系—奥陶系藻类分异程度相对较低,C28/C29甾烷比值不超过0.3,其比值参数不具备区分寒武系—奥陶系烃源岩的生源依据。通过对比柯坪—乌什地区露头剖面的下寒武统玉尔吐斯组、塔东2井下寒武统西大山组和塔中12井中—上奥陶统良里塔格组烃源岩的C28/C29甾烷比值显示,塔里木盆地寒武系烃源岩的C28/C29甾烷比值均大于0.5,明显高于全球寒武系烃源岩C28/C29甾烷比值的统计平均值0.25。塔里木盆地寒武系烃源岩这种偏离全球寒武系C28/C29甾烷比值的特征,除了受有机质的生物母质来源影响,可能还受控于烃源岩的热成熟演化过程。

  • 另外,重排甾烷/常规甾烷参数常常被用于鉴别原油来自于碎屑岩还是碳酸盐岩生油岩。多数情况下,低的重排甾烷/常规甾烷指示缺氧、贫黏土的碳酸盐岩环境,而高的重排甾烷/常规甾烷比值指示原油来源于富含黏土生油岩。塔里木盆地原油中甾烷和重排甾烷相对含量变化还与生物降解作用有关,规则甾烷比重排甾烷容易受生物降解的影响,随生物降解作用强度增加,重排甾烷含量会明显升高。为了论证烃源岩中甾、萜类生标化合物随热成熟度的演化机理,选取塔中地区塔参1井深度4003 m的等效成熟度为VRE=0.67%的中—上奥陶统良里塔格组烃源岩(TOC=0.62%),进行热反应釜模拟实验,升温速率为1 h从室温升到350℃,保持72 h。实验结果证实了甾、萜烷随成熟度升高,含量明显降低,但是C27重排/规则甾烷、伽马蜡烷/C30藿烷和C28/(C27~C29)比值分别从0.28、0.02和0.10增加到0.43、0.30和0.23(图8),由此说明除了生烃母源之外,热成熟作用也影响了甾、萜类生物标记化合物含量和比值的特征。

  • 图7 全球烃源岩样品中C28/C29甾烷比值随年代变化(据Schwark and Empt,2006修改)

  • Fig.7 The ratio of C28/C29 steranes in global source rocks varies over time (modified from Schwark and Empt, 2006)

  • 图8 塔里木盆地奥陶系低成熟烃源岩的黄金管热模拟实验前后甾萜生标对比

  • Fig.8 Comparison of steranes and terpenes of low-mature Ordovician source rocks through thermal simulation experiments in the Tarim basin

  • 2.2 次生地球化学作用与正构烷烃同位素演变

  • 塔里木盆地源岩抽提物中单体烃同位素变化非常复杂,根据生烃过程的同位素分馏原理,寒武系干酪根相对于奥陶系具有较轻的同位素,生成的烃类应该具有较轻的正构碳同位素。但是我们实际测得的同位素在高成熟区域偏重,而奥陶系达到高成熟阶段正构烷烃也变重。寒武系和奥陶系来源的原油及抽提物正构同位素同时有极轻的和重的同位素,认为简单地将重的划为寒武系来源,将轻的划为奥陶系来源是不可靠的。干酪根和生成的原油中异常重碳同位素值是变质作用后动力同位素分异的典型结果。例如,瑞士阿尔卑斯Liassic黑色页岩中的有机质遭受了变质作用改造,同位素值显著增高,比原始干酪根重14.6‰,而比未成熟样品中可提取有机质重5.0‰。单体烃同位素分析同样显示同位素异常富集13C,尤其在低分子量部分(图9)。

  • 图9 源岩抽提物中单体烃同位素随接触变质温度变化(据Schwab et al.,2005

  • Fig.9 Carbon isotopes of n-alkanes in the extracts of source rock vary with contact metamorphism temperatures (after Schwab et al., 2005)

  • 传统观念认为通过热成熟过程不会大幅改变石油的碳同位素值,该定律可能适用于大规模、相对低温条件下的油田,但不适用于塔东2井这样局部的孤立型油藏。塔东2井寒武系原油从产出层位上看确实来源于寒武系烃源岩,但根据3-+4-甲基双金刚烷含量分析,指示塔东2井经历了较为强烈的热裂解作用(Zhang et al.,2011),很可能改变了其原始碳同位素组成,无论是塔东2井原油的碳同位素、生物标志物、还是多环芳烃组成和含量特征都不能代表寒武系端元。塔东2井原油碳同位素之所以重是热成熟作用的结果,而不能指示原始有机质的生物母源和沉积环境。另外,英南2井侏罗系储层中的海相原油同位素与遭受了变质作用改造的Liassic黑色页岩中有机质同位素组成非常相似,可能表明异常热液活动的影响(图5)。塔北隆起沙74重油中提取的残余组分在加热实验中随温度的升高而增加,总碳同位素值比完整油在600°C下加热24 h后的总碳同位素值高6‰ (刘光祥,2008)。根据二苯并噻吩和硫代金刚烷定量分析表明(Cai et al.,2015),中深1C井下寒武统肖尔布拉克组凝析油遭受了热硫酸盐还原反应(TSR)的改造,导致原始油藏发生了明显的裂解作用,原油的正构烷烃碳同位素呈现陡斜的组成特征,n-C18-比n-C24+正烷烃的碳同位素重~4‰,也与遭受变质作用改造的黑色页岩中有机碳同位素组成非常相似。因此,那些被认为具偏重的碳同位素特征的寒武系烃源岩贡献的端元油,很可能都是受到异常热事件作用蚀变的结果,不能作为划分油源的指标。

  • 3 下寒武统烃源岩生源特征与超深层油气来源判识

  • 3.1 下寒武统底部烃源岩的生源指标

  • 塔里木盆地下寒武统玉尔吐斯期相当于国际地层年代的纽芬兰统第二阶(Xiao et al.,2016),是目前塔里木盆地海相地层发现的分布范围最广、TOC含量最高的烃源岩,根据塔北隆起超深层轮探1井和旗探1井揭示的烃源岩中富含芳基类异戊二烯烃(TMAIs,图10),表明其是发育在具有缺氧带穿过透光带的水体环境中,主要的生物母质为光合自养菌。当淡水流入一个有海底山脊的海相盆地而该盆地又很少蒸发时,特别是当山脊将深部盐水与开阔海隔开时,就可能产生盐跃层或密度分层的水柱。正向水平衡导致表层水低盐度,而深部水则为高盐度,在一定深度就产生了永久盐跃层,盐跃层也是含氧和缺氧条件分界的化学跃层。缺氧水体穿越透光带,有机沉积物中异胡萝卜素和相关化合物的分布表明光合绿硫细菌(Chlorobiaceae)的存在,形成特殊的芳基类异戊二烯烃类化合物只分布在光合作用的细菌和属于光合作用厌氧菌的少数放射菌类中。玉尔吐斯组烃源岩形成于透光厌氧带分层水体,发育化学自养型绿硫细菌、紫硫细菌和产甲烷细菌等,所形成的干酪根有机母质的碳同位素偏轻,可达37‰;水体相对不深,未见明显的硫化物沉积如黄铁矿,硫化物多被透光带绿硫细菌所消耗;重晶石沉淀发育,其必须的丰富的SO42-和CH4来源于化学自养-产甲烷细菌的繁盛;Ni和Mo等微量元素富集,指示了缺氧的沉积环境(Algeo et al.,2009);随着地质时代变新,大气含氧量升高,透光厌氧带消失,地层中有机碳同位素变重。

  • 图10 轮探1和旗探1井玉尔吐斯组烃源岩与超深层原油芳基类异戊二烯烃色质谱图

  • Fig.10 Chromatograms of aryl isoprenoids in the Є1y source rocks (Yuertusi Formation) and ultra-deep oils of wells LT-1 and QT-1

  • 台盆区东部寒武系盆地相水体较深,下寒武统与玉尔吐斯组沉积同期的主力烃源岩为西山布拉克组,多发育硅质泥岩;与玉尔吐斯组相比,东部下寒武统西山布拉克组有机质碳同位素δ13C较重(-33‰~-31‰),而盆地中部的下寒武统烃源岩的有机碳同位素居中,并且富含芳基类异戊二烯系列化合物(图11)。盆地中—上奥陶统含氧量上升,有机质碳同位素较重(>-31‰),生烃有机质主要富集在台缘斜坡相,奥陶系烃源岩中芳基类异戊二烯基本不能检出(图12)。

  • 透光缺氧带发育绿硫细菌-产甲烷菌,绿硫细菌产生1-烷基-2,3,6三甲基苯,在塔北原油中大量检出此类化合物(图13),并且靠近西部原油碳同位素偏轻,更能说明玉尔吐斯组烃源岩对塔北油气生成的贡献。

  • 3.2 海相超深层油气来源重新厘定

  • 台盆区大多数海相原油的稳定碳同位素集中分布在-30.5‰~-34‰,表明主要来源于寒武系,而奥陶系烃源岩干酪根同位素偏重。通过详细统计塔里木盆地塔北、塔中地区典型原油中芳基类异戊二烯烃类化合物的含量可以看出,中深1C井原油主要来源于东部中、下寒武统烃源岩,塔北中西部主要来源于玉尔吐斯组烃源岩(图14)。玉尔吐斯组烃源岩干酪根碳同位素为-34‰~-37‰,可与塔北中西部原油和麦盖提斜坡部分原油对比,东部盆地寒武系烃源岩干酪根碳同位素为-33‰~-30‰,可能生成原油相对玉尔吐斯组来源原油较富δ13C。芳基类异戊二烯烃类指示透光缺氧带还原环境,玉尔吐斯组具有较高含量的芳基类异戊二烯烃,塔北中西部原油具有类似特征。芳烃菲与二苯并噻吩指示塔里木盆地海相原油多数来自于页岩,来源于碳酸盐岩烃源岩较少,干酪根硫同位素δ34S与原油进行有效对比,表明原油主要来源于寒武系烃源岩,但是当原油中含硫量大于0.1%时,其硫同位素受次生作用影响较大,油源对比必须谨慎。因此,综合芳基类异戊二烯、菲/二苯并噻吩、硫同位素和碳同位素等油源指标对比表明,塔里木盆地塔北斜坡区超深层原油中芳基类异戊二烯烃含量丰富,有机碳同位素普遍小于-33.0‰,与下寒武统玉尔吐斯组烃源岩的生源特征相似,而中—下奥陶统黑土凹组烃源岩和中—上奥陶统良里塔格组(萨尔干组)烃源岩的抽提物基本不含有芳基类异戊二烯烃系列化合物,因此塔北南斜坡超深层油气很可能主要来源于下寒武统玉尔吐斯组烃源岩,这表明塔里木盆地超深层油气中、下寒武统烃源岩的贡献将明显增加。

  • 图11 塔里木盆地东部下寒武统盆地相烃源岩中芳基类异戊二烯烃类化合物含量对比

  • Fig.11 The comparison of aryl isoprenoids in the Lower Cambrian source rocks in the Tarim basin

  • 图12 塔里木盆地奥陶系烃源岩中芳基类异戊二烯烃类化合物分布特征

  • Fig.12 The distribution of aryl isoprenoids in the Ordovician source rocks of the Tarim basin

  • 图13 塔北地区典型原油1-烷基-2,3,6三甲基苯化合物分布

  • Fig.13 The distribution of 1-alkyl-2, 3, 6-trimethyl alkyl isoprenoids in the typical crude oils in the northern of Tarim basin

  • 4 结论

  • 通过自然样品和热模拟实验对比研究,系统梳理塔里木盆地海相油源对比指标的影响因素和控制条件。重新认识断代生标和正构烷烃碳同位素在古老、高成熟含油气盆地中划分油源的适用性:① 甾、萜烷生物标记化合物受成熟作用影响显著,随着热成熟度增加,烃源岩沥青“A”中C28/(C27~C29)甾烷和伽马蜡烷/C30藿烷的比值呈现升高的特征。② 干酪根碳同位素受全球碳循环变化与沉积环境控制,受后期热成熟作用影响较小;烃源岩抽提物沥青“A”碳同位素与正构烷烃碳同位素受到沉积环境、成熟作用、次生作用共同影响,异常热事件、热成熟和次生地球化学作用能导致正构烷烃单体碳同位素变重。

  • 建立包括芳基类异戊二烯烃化合物系列新的油源对比指标,芳基类异戊二烯烃类参数主要包括1-烷基-2,3,6三甲基苯的含量、芳基类异戊二烯烃类化合物碳同位素、芳基类异戊二烯/C5~25烷基甲苯比值和AIR(C13~17/C18~22)等。高芳基类异戊二烯烃(TMAI)含量,偏重的TMAI单体碳同位素(约-20‰),高芳基类异戊二烯烃/C5~25烷基甲苯比值指示透光厌氧环境烃源岩的发育。由此建立的油源对比参数显示,塔里木盆地超深层轻质原油主要来源于下寒武统玉尔吐斯组烃源岩。

  • 图14 典型钻井原油与不同类型烃源岩沉积有机相来源对比判识

  • Fig.14 Comparison and identification of sedimentary organic facies sources between typical drilling crude oil and different types of source rocks

  • 致谢:感谢中国石油塔里木油田公司和中国石化西北油田分公司提供的技术支持和油气样品,油气分子和同位素的实验测试分析主要在中国石油集团公司油气地球化学重点实验室完成。

  • 参考文献

    • Algeo T J, Lyons, T W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleo hydro graphic conditions. Paleoceanography, 21(1): 1~23.

    • Andrusevich V E, Engel M H, Zumberge J E, Brothers L A. 1998. Secular, episodic changes in stable carbon isotope composition of crude oils. Chemical Geology, 152: 59~72.

    • Cai C F, Hu W S, Worden R H. 2001. Thermochemical sulfate reduction in Cambrian-Ordovician carbonates in Central Tarim. Marine and Petroleum Geology, 18: 729~741.

    • Cai C F, Zhang C M, Cai L L, Wu G H, Jiang L, Xu Z M, Li K K, Ma A L, Chen L X. 2009. Origins of Palaeozoic oils in the Tarim basin: Evidence from sulfur isotopes and biomarkers. Chemical Geology, 268: 197~210.

    • Cai C F, Zhang C M, Worden R H, Wang T K, Li H X, Jiang L, Huang S Y, Zhang B S. 2015. Application of sulfur and carbon isotopes to oil-source rock correlation: A case study from the Tazhong area, Tarim basin, China. Organic Geochemistry, 83-84: 140~152.

    • Glumac B, Walker K R. 1998. A Late Cambrian positive carbon-isotope excursion in the southern Appalachians: Relation to biostratigraphy, sequence stratigraphy, environments of deposition and diagenesis. Journal of Sedimentary Research, 68: 1212~1222.

    • Hanson A D, Zhang S C, Moldowan J M, Liang D G, Zhang B M. 2000. Molecularorganic geochemistry of the Tarim basin, northwest China. American Association of Petroleum Geologists Bulletin, 84: 1109~1128.

    • Jia W L, Xiao Z Y, Yu C L, Peng P A. 2010. Molecular and isotopic compositions of bitumens in Silurian oil sands from the Tarim basin, NW China: Characterizing biodegradation and hydrocarbon charging in an old composite basin. Marine and Petroleum Geology, 27: 13~25.

    • Jia W L, Wang Q L, Peng P A, Xiao Z Y, Li B H. 2013. Isotopic compositions and biomarkers in crude oils from the Tarim basin: Oil maturity and oil mixing. Organic Geochemistry, 57: 95~106.

    • Jiang G Q, Wang X Q, Shi X Y, Xiao S H, Zhang S H, Dong J. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze platform. Earth and Planetary Science Letters, 317-318: 96~110.

    • Jiao W W, Yang H J, Zhao Y, Zhang H Z, Zhou Y Y, Zhang J, Xe Q L. 2010. Application of trace elements in the study of oil-source correlation and hydrocarbon migration in the Tarim basin, China. Energy Exploration & Exploitation, 28: 451~466.

    • Kang Yuzhu. 2003. Geological characteristics of the formation of the large Tahe oilfield in the Tarim basin and its prospects. Geology in China, 30(3): 315~319 (in Chinese with English abstract).

    • Li S, Pang X, Jin Z, Yang H, Xiao Z, Gu Q, Zhang B. 2010. Petroleum source in the Tazhong uplift, Tarim basin: New insights from geochemical and fluid inclusion data. Organic Geochemistry, 41: 531~553.

    • Li S M, Shi Q, Pang X Q, Zhang B S, Zhang H Z. 2012. Origin of the unusually high dibenzothiophene oils in Tazhong-4 oilfield of Tarim basin and its implication in deep petroleum exploration. Organic Geochemistry, 48: 56~80.

    • Li S M, Amrani A, Pang X Q, Yang H J, Said-Ahmad W, Zhang B S, Pang Q J. 2015. Origin and quantitative source assessment of deep oils in the Tazhong uplift, Tarim basin. Organic Geochemistry, 78: 1~22.

    • Liu Guangxiang. 2008. Thermal simulation study of crude oil from well S74 in the Tarim basin (I)—Geochemical characteristics of the simulation products. Petroleum Geology & Experiment, 30(2): 179~185 (in Chinese with English abstract).

    • Pan C C, Liu D Y. 2009. Molecular correlation of free oil, adsorbed oil and inclusion oil of reservoir rocks in the Tazhong uplift of the Tarim basin, China. Organic Geochemistry, 40: 387~399.

    • Schwab V, Spangenberg J E, Grimalt J O. 2005. Chemical and carbon isotopic evolution of hydrocarbons during prograde metamorphism from 100℃ to 550℃: Case study in the Liassic black shale formation of Central Swiss Alps. Geochimica et Cosmochimica Acta, 69: 1825~1840.

    • Schwark L, Empt P. 2006. Sterane biomarkers as indicators of Palaeozoic algal evolution and extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 225~236.

    • Song Daofu, Wang Tieguan, Li Meijun. 2016. Geochemistry and possible origin of the hydrocarbons from wells Zhongshen 1 and Zhongshen 1C, Tazhong uplift. Science China Earth Science, 46(1): 107~117 (in Chinese with English abstract).

    • Stahl W J. 1977. Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chemical Geology, 20(2): 121~149.

    • Tian Y K, Yang C P, Liao Z W, Zhang H Z. 2012. Geochemical quantification of mixed marine oils from Tazhong area of Tarim basin, NW China. Journal of Petroleum Science and Engineering, 90-91: 96~106.

    • Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence, second ed. Berlin: Springer.

    • Wang Darui, Song Lisheng. 2002. A thesis about forming conditions of marine Middle-Upper Ordovician source rocks in China. Acta Petrolei Sinica, 23(1): 31~34 (in Chinese with English abstract).

    • Wang Z M, Xiao Z Y. 2004. A comprehensive review concerning the problem of marine crudes sources in Tarim basin. Chinese Science Bulletin, 49: 1~9.

    • Xiao S, Narbonne G M, Zhou C, Laflamme M, Grazhdankin D V, Moczydłowska-Vidal M, Cui H. 2016. Toward an Ediacaran Time Scale: Problems, Protocols, and Prospects. Episodes, 39(4): 540~555.

    • Yang Haijun, Chen Yongquan, Tian Jun, Du Jinhua, Zhu Yongfeng, Li Honghui, Pan Wenqing, Yang Pengfei, Li Yong, An Haiting. 2020. An important discovery in well Luntan-1 of the Tarim basin, China, and its significance for ultra-deep oil and gas exploration. China Petroleum Exploration, 25(2): 62~72 (in Chinese with English abstract).

    • Yu S, Pan C C, Wang J J, Jin X D, Jiang L L, Liu D Y, Lu X X, Qin J Z, Qian Y X, Ding Y, Chen H H. 2011. Molecular correlation of crude oils and oil components from reservoir rocks in the Tazhong and Tabei uplift of the Tarim basin, China. Organic Geochemistry, 42: 1241~1262. Zhang S C. 2000. The migration fractionation: An important mechanism in the formation of condensate and waxy oil. Chinese Science Bulletin, 45: 1341~1344.

    • Zhang S C, Hanson A D, Moldowan J M, Graham S A, Liang D G, Chang E, Fago F. 2000. Paleozoic oil-source rock correlations in the Tarim basin, NW China. Organic Geochemistry, 31: 273~286.

    • Zhang S C, Liang D G, Li M W, Xiao Z Y, He Z H. 2002. Molecular fossils and oil-source rock correlations in Tarim basin, NW China. Chinese Science Bulletin, 47: 20~27.

    • Zhang S C, Liang D G, Zhang B M, Wang F Y, Bian L Z, Zhao M J. 2004. Generation of Marine Oil and Gas in Tarim Basin. Beijing: Petroleum Industry Press.

    • Zhang S C, Huang H P. 2005. Geochemistry of Palaeozoic marine petroleum from the Tarim basin, NW China. Part 1. Oil family classification. Organic Geochemistry, 36: 1204~1214.

    • Zhang S C, Huang H P, Xiao Z Y, Liang D G. 2005. Geochemistry of Palaeozoic marine petroleum from the Tarim basin, NW China. Part 2: Maturity assessment. Organic Geochemistry, 36: 1215~1225.

    • Zhang S C, Su J, Wang X M, Zhu G Y, Yang H J, Liu K Y, Li Z X. 2011. Geochemistry of Palaeozoic marine petroleum from the Tarim basin, NW China: Part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations. Organic Geochemistry, 42: 1394~1410.

    • Zhang S C, Huang H P, Su J, Zhu G Y, Wang X M, Larter S. 2014. Geochemistry of Palaeozoic marine oils from the Tarim basin, NW China. Part 4: Paleobiodegradation and oil charge mixing. Organic Geochemistry, 67: 41~57.

    • Zhao Mengjun, Huang Difan. 1996. Carbon isotopic distributive characteriscs of crude oil monomers produced in different sedimentary environments. Petroleum Geology & Experiment, 17(2): 171~179 (in Chinese with English abstract).

    • Zhao W Z, Zhang S C, Wang F Y, Chen J P, Xiao Z Y, Song F Q. 2005. Gas accumulation from oil cracking in the eastern Tarim basin: A case study of the YN2 gas field. Organic Geochemistry, 36: 1602~1616.

    • Zhu Chuanling, Yan Hua, Yun Lu, Han Qiang, Ma Huiming. 2014. Characteristics of Cambrian source rocks in well XH1, Shaya uplift, Tarim basin. Petroleum Geology & Experiment, 36(2): 626~632 (in Chinese with English abstract).

    • 康玉柱. 2003. 塔里木盆地塔河大油田形成的地质条件及前景展望. 中国地质, 30(3) : 315~319.

    • 刘光祥. 2008. 塔里木盆地S74井稠油热模拟实验研究(一)——模拟产物地球化学特征. 石油实验地质, 30(2): 179~185.

    • 宋到福, 王铁冠, 李美俊. 2016. 塔中地区中深1和中深1C井盐下寒武系油气地球化学特征及其油气源判识. 中国科学: 地球科学, 46(1): 107~117.

    • 王大锐, 宋力生. 2002. 论我国海相中上奥陶统烃源岩的形成条件——以塔里木盆地为例. 石油学报, 23(1): 31~34+39-5.

    • 杨海军, 陈永权, 田军, 杜金虎, 朱永峰, 李洪辉, 潘文庆, 杨鹏飞, 李勇, 安海亭. 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62~72.

    • 赵孟军, 黄第藩. 1996. 不同沉积环境生成的原油单体烃碳同位素分布特征. 石油实验地质, 17(2): 171~179.

    • 朱传玲, 闫华, 云露, 韩强, 马慧明. 2014. 塔里木盆地沙雅隆起星火1 井寒武系烃源岩特征. 石油实验地质, 36(5): 626~632.

  • 参考文献

    • Algeo T J, Lyons, T W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleo hydro graphic conditions. Paleoceanography, 21(1): 1~23.

    • Andrusevich V E, Engel M H, Zumberge J E, Brothers L A. 1998. Secular, episodic changes in stable carbon isotope composition of crude oils. Chemical Geology, 152: 59~72.

    • Cai C F, Hu W S, Worden R H. 2001. Thermochemical sulfate reduction in Cambrian-Ordovician carbonates in Central Tarim. Marine and Petroleum Geology, 18: 729~741.

    • Cai C F, Zhang C M, Cai L L, Wu G H, Jiang L, Xu Z M, Li K K, Ma A L, Chen L X. 2009. Origins of Palaeozoic oils in the Tarim basin: Evidence from sulfur isotopes and biomarkers. Chemical Geology, 268: 197~210.

    • Cai C F, Zhang C M, Worden R H, Wang T K, Li H X, Jiang L, Huang S Y, Zhang B S. 2015. Application of sulfur and carbon isotopes to oil-source rock correlation: A case study from the Tazhong area, Tarim basin, China. Organic Geochemistry, 83-84: 140~152.

    • Glumac B, Walker K R. 1998. A Late Cambrian positive carbon-isotope excursion in the southern Appalachians: Relation to biostratigraphy, sequence stratigraphy, environments of deposition and diagenesis. Journal of Sedimentary Research, 68: 1212~1222.

    • Hanson A D, Zhang S C, Moldowan J M, Liang D G, Zhang B M. 2000. Molecularorganic geochemistry of the Tarim basin, northwest China. American Association of Petroleum Geologists Bulletin, 84: 1109~1128.

    • Jia W L, Xiao Z Y, Yu C L, Peng P A. 2010. Molecular and isotopic compositions of bitumens in Silurian oil sands from the Tarim basin, NW China: Characterizing biodegradation and hydrocarbon charging in an old composite basin. Marine and Petroleum Geology, 27: 13~25.

    • Jia W L, Wang Q L, Peng P A, Xiao Z Y, Li B H. 2013. Isotopic compositions and biomarkers in crude oils from the Tarim basin: Oil maturity and oil mixing. Organic Geochemistry, 57: 95~106.

    • Jiang G Q, Wang X Q, Shi X Y, Xiao S H, Zhang S H, Dong J. 2012. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze platform. Earth and Planetary Science Letters, 317-318: 96~110.

    • Jiao W W, Yang H J, Zhao Y, Zhang H Z, Zhou Y Y, Zhang J, Xe Q L. 2010. Application of trace elements in the study of oil-source correlation and hydrocarbon migration in the Tarim basin, China. Energy Exploration & Exploitation, 28: 451~466.

    • Kang Yuzhu. 2003. Geological characteristics of the formation of the large Tahe oilfield in the Tarim basin and its prospects. Geology in China, 30(3): 315~319 (in Chinese with English abstract).

    • Li S, Pang X, Jin Z, Yang H, Xiao Z, Gu Q, Zhang B. 2010. Petroleum source in the Tazhong uplift, Tarim basin: New insights from geochemical and fluid inclusion data. Organic Geochemistry, 41: 531~553.

    • Li S M, Shi Q, Pang X Q, Zhang B S, Zhang H Z. 2012. Origin of the unusually high dibenzothiophene oils in Tazhong-4 oilfield of Tarim basin and its implication in deep petroleum exploration. Organic Geochemistry, 48: 56~80.

    • Li S M, Amrani A, Pang X Q, Yang H J, Said-Ahmad W, Zhang B S, Pang Q J. 2015. Origin and quantitative source assessment of deep oils in the Tazhong uplift, Tarim basin. Organic Geochemistry, 78: 1~22.

    • Liu Guangxiang. 2008. Thermal simulation study of crude oil from well S74 in the Tarim basin (I)—Geochemical characteristics of the simulation products. Petroleum Geology & Experiment, 30(2): 179~185 (in Chinese with English abstract).

    • Pan C C, Liu D Y. 2009. Molecular correlation of free oil, adsorbed oil and inclusion oil of reservoir rocks in the Tazhong uplift of the Tarim basin, China. Organic Geochemistry, 40: 387~399.

    • Schwab V, Spangenberg J E, Grimalt J O. 2005. Chemical and carbon isotopic evolution of hydrocarbons during prograde metamorphism from 100℃ to 550℃: Case study in the Liassic black shale formation of Central Swiss Alps. Geochimica et Cosmochimica Acta, 69: 1825~1840.

    • Schwark L, Empt P. 2006. Sterane biomarkers as indicators of Palaeozoic algal evolution and extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 225~236.

    • Song Daofu, Wang Tieguan, Li Meijun. 2016. Geochemistry and possible origin of the hydrocarbons from wells Zhongshen 1 and Zhongshen 1C, Tazhong uplift. Science China Earth Science, 46(1): 107~117 (in Chinese with English abstract).

    • Stahl W J. 1977. Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chemical Geology, 20(2): 121~149.

    • Tian Y K, Yang C P, Liao Z W, Zhang H Z. 2012. Geochemical quantification of mixed marine oils from Tazhong area of Tarim basin, NW China. Journal of Petroleum Science and Engineering, 90-91: 96~106.

    • Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence, second ed. Berlin: Springer.

    • Wang Darui, Song Lisheng. 2002. A thesis about forming conditions of marine Middle-Upper Ordovician source rocks in China. Acta Petrolei Sinica, 23(1): 31~34 (in Chinese with English abstract).

    • Wang Z M, Xiao Z Y. 2004. A comprehensive review concerning the problem of marine crudes sources in Tarim basin. Chinese Science Bulletin, 49: 1~9.

    • Xiao S, Narbonne G M, Zhou C, Laflamme M, Grazhdankin D V, Moczydłowska-Vidal M, Cui H. 2016. Toward an Ediacaran Time Scale: Problems, Protocols, and Prospects. Episodes, 39(4): 540~555.

    • Yang Haijun, Chen Yongquan, Tian Jun, Du Jinhua, Zhu Yongfeng, Li Honghui, Pan Wenqing, Yang Pengfei, Li Yong, An Haiting. 2020. An important discovery in well Luntan-1 of the Tarim basin, China, and its significance for ultra-deep oil and gas exploration. China Petroleum Exploration, 25(2): 62~72 (in Chinese with English abstract).

    • Yu S, Pan C C, Wang J J, Jin X D, Jiang L L, Liu D Y, Lu X X, Qin J Z, Qian Y X, Ding Y, Chen H H. 2011. Molecular correlation of crude oils and oil components from reservoir rocks in the Tazhong and Tabei uplift of the Tarim basin, China. Organic Geochemistry, 42: 1241~1262. Zhang S C. 2000. The migration fractionation: An important mechanism in the formation of condensate and waxy oil. Chinese Science Bulletin, 45: 1341~1344.

    • Zhang S C, Hanson A D, Moldowan J M, Graham S A, Liang D G, Chang E, Fago F. 2000. Paleozoic oil-source rock correlations in the Tarim basin, NW China. Organic Geochemistry, 31: 273~286.

    • Zhang S C, Liang D G, Li M W, Xiao Z Y, He Z H. 2002. Molecular fossils and oil-source rock correlations in Tarim basin, NW China. Chinese Science Bulletin, 47: 20~27.

    • Zhang S C, Liang D G, Zhang B M, Wang F Y, Bian L Z, Zhao M J. 2004. Generation of Marine Oil and Gas in Tarim Basin. Beijing: Petroleum Industry Press.

    • Zhang S C, Huang H P. 2005. Geochemistry of Palaeozoic marine petroleum from the Tarim basin, NW China. Part 1. Oil family classification. Organic Geochemistry, 36: 1204~1214.

    • Zhang S C, Huang H P, Xiao Z Y, Liang D G. 2005. Geochemistry of Palaeozoic marine petroleum from the Tarim basin, NW China. Part 2: Maturity assessment. Organic Geochemistry, 36: 1215~1225.

    • Zhang S C, Su J, Wang X M, Zhu G Y, Yang H J, Liu K Y, Li Z X. 2011. Geochemistry of Palaeozoic marine petroleum from the Tarim basin, NW China: Part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations. Organic Geochemistry, 42: 1394~1410.

    • Zhang S C, Huang H P, Su J, Zhu G Y, Wang X M, Larter S. 2014. Geochemistry of Palaeozoic marine oils from the Tarim basin, NW China. Part 4: Paleobiodegradation and oil charge mixing. Organic Geochemistry, 67: 41~57.

    • Zhao Mengjun, Huang Difan. 1996. Carbon isotopic distributive characteriscs of crude oil monomers produced in different sedimentary environments. Petroleum Geology & Experiment, 17(2): 171~179 (in Chinese with English abstract).

    • Zhao W Z, Zhang S C, Wang F Y, Chen J P, Xiao Z Y, Song F Q. 2005. Gas accumulation from oil cracking in the eastern Tarim basin: A case study of the YN2 gas field. Organic Geochemistry, 36: 1602~1616.

    • Zhu Chuanling, Yan Hua, Yun Lu, Han Qiang, Ma Huiming. 2014. Characteristics of Cambrian source rocks in well XH1, Shaya uplift, Tarim basin. Petroleum Geology & Experiment, 36(2): 626~632 (in Chinese with English abstract).

    • 康玉柱. 2003. 塔里木盆地塔河大油田形成的地质条件及前景展望. 中国地质, 30(3) : 315~319.

    • 刘光祥. 2008. 塔里木盆地S74井稠油热模拟实验研究(一)——模拟产物地球化学特征. 石油实验地质, 30(2): 179~185.

    • 宋到福, 王铁冠, 李美俊. 2016. 塔中地区中深1和中深1C井盐下寒武系油气地球化学特征及其油气源判识. 中国科学: 地球科学, 46(1): 107~117.

    • 王大锐, 宋力生. 2002. 论我国海相中上奥陶统烃源岩的形成条件——以塔里木盆地为例. 石油学报, 23(1): 31~34+39-5.

    • 杨海军, 陈永权, 田军, 杜金虎, 朱永峰, 李洪辉, 潘文庆, 杨鹏飞, 李勇, 安海亭. 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62~72.

    • 赵孟军, 黄第藩. 1996. 不同沉积环境生成的原油单体烃碳同位素分布特征. 石油实验地质, 17(2): 171~179.

    • 朱传玲, 闫华, 云露, 韩强, 马慧明. 2014. 塔里木盆地沙雅隆起星火1 井寒武系烃源岩特征. 石油实验地质, 36(5): 626~632.