en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴双鹏,男,1996年生。硕士研究生,地质工程专业。E-mail:1718769076@qq.com。

通讯作者:

张泽明,男,1961年生。研究员,主要从事大陆造山带的变质作用、岩浆作用与构造演化研究。E-mail:zzm2111@sina.com。

参考文献
Booth A L, Zeitler P K, Kidd W S, Wooden J, Liu Y, Idleman B, Hren M, Chamberlain C P. 2004. U-Pb Zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area. American Journal of Science, 304(10): 889~929.
参考文献
Bhadra S, Bhattacharya A. 2007. The barometer tremolite+tschermakite+2albite=2pargasite+8quartz: Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. American Mineralogist, 92(4): 491~502.
参考文献
Ding Huixia, Zhang Zeming, Kohn M J, Gou Zhengbin. 2021. Timescales of partial melting and melt crystallization in the Eastern Himalayan Orogen: Insights from zircon Petrochronology. Geochemistry, Geophysics, Geosystems, 22(4): e2020GC009539.
参考文献
Ding Lin, Zhong Dalai. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China Series D-Earth Sciences, 42(5): 491~505.
参考文献
Ding Lin, Zhong Dalai, Yin An, Kapp P, Harrison T M. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423~438.
参考文献
Donaldson D G, Webb A A G, Menold C A, Kylander-Clark A R C, Hacker B R. 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology, (8): 835~838.
参考文献
Green E C R, White R W, Diener J F A, Powell R, Holland T J B, Palin R M. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9): 845~869.
参考文献
Guillot S, Mahéo G, de Sigoyer J, Hattori K H, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics Asia Out of Tethys: Geochronologic, Tectonic and Sedimentary Records, 451(1): 225~241.
参考文献
Geng Quanru, Pan Guitang, Zheng Lailin, Chen Zhiliang, Fisher R, Sun Zhiming, Ou Chunsheng, Dong Han, Wang Xiaowei, Li Sheng, Lou Xiongying, Fu Heng. 2006. The eastern Himalayan syntaxis: Major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences, 27(3): 265~285.
参考文献
Guilmette C, Indares A, Hébert R. 2011. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural evidence for partial melting, phase equilibria modeling and tectonic implications. Lithos, 124(1): 66~81.
参考文献
Holland T J B, Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433~447.
参考文献
Holland T J B, Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145(4): 492~501.
参考文献
Holland T J B, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333~383.
参考文献
Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M, Rehman Hu, Kausar A B, Shiraishi K. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology, 21(6): 589~599.
参考文献
Kang Dongyan, Zhang Zeming, Palin R M, Tian Zuolin, Dong Xin. 2020. Prolonged partial melting of garnet amphibolite from the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of large hot orogens. Journal of Geophysical Research: Solid Earth, 125(6): e2019JB019119.
参考文献
Kohn M J. 2014. Himalayan metamorphism and its tectonic implications. Annual Review of Earth and Planetary Sciences, 42: 381~419.
参考文献
Larson K P, Gervais F, Kellett D A. 2013. A P-T-t-D discontinuity in east-central Nepal: Implications for the evolution of the Himalayan mid-crust. Lithos, 179: 275~292.
参考文献
Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Guo Youzhi. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35: 219~246.
参考文献
Li Qingyun, Zhang Lifei, Fu Bin, Bader T, Yu Huanglu. 2019. Petrology and zircon U-Pb dating of well-preserved eclogites from the Thongmön area in Central Himalaya and their tectonic implications. Journal of Metamorphic Geology, 37(2): 203~226.
参考文献
Liu Fenglin, Zhang Lifei. 2014. High-pressure granulites from Eastern Himalayan Syntaxis: P-T path, zircon U-Pb dating and geological implication. Acta Petrologica Sinica, 30(10): 2808~2820 (in Chinese with English abstract).
参考文献
Liu Yan, Zhong Dalai. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451~466.
参考文献
Liu Yan, Yang Ziqing, Wang Meng. 2007. History of zircon growth in a high-pressure granulite within the Eastern Himalayan Syntaxis, and tectonic implications. International Geology Review, 49(9): 861~872.
参考文献
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.
参考文献
Ludwig K R. 2012. Isoplot 4. 15: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication.
参考文献
Lu Weirui, Zhang Zeming, Li Wentan, An Wentao, Ren Hongfei, Guo Mingming, Wang Di, Wu Shuangpeng. 2021. Zircon and monazite dating of pelitic high-pressure granulite in the Eastern Himalayan Syntaxis and geological significance. Acta Petrologica Sinica, 37(11): 3413~3434 (in Chinese with English abstract).
参考文献
Montomoli C, Iaccarino S, Carosi R, Langone A, Visonà D. 2013. Tectonometamorphic discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya): Insights on the exhumation of crystalline rocks. Tectonophysics, 608: 1349~1370.
参考文献
Mukherjee B K, Sachan H K. 2001. Discovery of coesite from Indian Himalaya: A record of ultra-high pressure metamorphism in Indian Continental Crust. Current Science: 1358~1361.
参考文献
O'Brien P J, Zotov N, Law R, Khan M A, Jan M Q. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29(5): 435~438.
参考文献
Palin R, Reuber G, White R, Kaus B, Weller O. 2017. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: An integrated geodynamic and petrological modelling approach. Earth and Planetary Science Letters, 467: 108~119.
参考文献
Parrish R, Gough S, Searle M, Waters D. 2006. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 34(11): 989~992.
参考文献
Peng Tao, Zeng Lingsen, Gao Lie, Gerdes A, Gao Jiahao, Hu Zhaoping, Wu Chunming. 2018. Metamorphic P-T path and SIMS zircon U-Pb dating of amphibolite of the Namche Barwa complex, southeast Tibet, China. Lithos, 320: 454~469.
参考文献
Peng Tao. 2019. The Cenozoic divergent metamorphism within the Namche Barwa Complex, Eastern Himalayan Syntaxis. Doctoral dissertation of University of Chinese Academy of Sciences.
参考文献
Peng Tao, Gerdes A, Zeng Lingsen, Millonig L J, Albert R, Marko L, Wang H Y C, Wu Chunming. 2022. Divergent metamorphism within theNamche Barwa complex, the Eastern Himalaya, southeast Tibet, China: Insights from in situ U-Th-Pb dating of metamorphic monazite. Journal of Metamorphic Geology, 40(3): 307~328.
参考文献
Rehman H, Kobayash K, Tsujimori T, Ota T, Yamamoto H, Nakamura E, Kaneko Y, Khan T, Terabayashi M, Yoshida K, Hirajima T. 2013. Ion microprobe U-Th-Pb geochronology and study of micro-inclusions in zircon from the Himalayan high- and ultrahigh-pressure eclogites, Kaghan Valley of Pakistan. Journal of Asian Earth Sciences, 63: 179~196.
参考文献
St-Onge M R, Rayner N, Palin R M, Searle M P, Waters D J. 2013. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): Implications for the burial and exhumation path of UHP units in the western Himalaya. Journal of Metamorphic Geology, 31(5): 469~504.
参考文献
Su Wen, Zhang Ming, Liu Xiaohan, Lin Jinfu, Ye Kai, Liu Xin. 2012. Exact timing of granulite metamorphism in the Namche-Barwa, eastern Himalayan syntaxis: New constrains from SIMS U-Pb zircon age. International Journal of Earth Sciences, 101(1): 239~252.
参考文献
Tian Zuolin, Zhang Zeming, Dong Xin. 2016. Metamorphism of high-P metagreywacke from the Eastern Himalayan syntaxis: Phase equilibria and P-T path. Journal of Metamorphic Geology, 34(7): 697~718.
参考文献
Tian Zuolin, Kang Dongyan, Mu Hongchen. 2017. Metamorphic P-T-t path of garnet amphibolite from the Eastern Himalayan Syntaxis: Phase equilibria and zircon chronology. Acta Petrologica Sinica, 33(8): 2467~2478 (in Chinese with English abstract).
参考文献
Tian Zuolin, Zhang Zeming, Dong Xin. 2019. Constraining the age of high-pressure metamorphism of paragneisses from the Eastern Himalayan Syntaxis using zircon petrochronology and phase equilibria. Geological Society, London, Special Publications, 474(1): 331~352.
参考文献
Wang Jiamin, Zhang Jinjiang, Wang Xiaoxian. 2013. Structural kinematics, metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet: Implication for a revised channel flow. Journal of Metamorphic Geology, 31(6): 607~628.
参考文献
Wang Jiamin, Rubatto D, Zhang Jinjiang. 2015. Timing of partial melting and cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya): In-sequencethrusting and its implications. Journal of Petrology, 56(9): 1677~1702.
参考文献
Wang Jiamin, Zhang Jinjiang, Liu Kai, Zhang Bo, Wang Xiaoxian, Rai S, Scheltens M. 2016. Spatial and temporal evolution of tectonometamorphic discontinuities in the Central Himalaya: Constraints from P-T paths and geochronology. Tectonophysics, 679: 41~60.
参考文献
Wang Jiamin, Wu Fuyuan, Zhang Jinjiang, Gautam Khanal, Yang Lei. 2022. The Himalayan collisional orogeny: A metamorphic perspective. Acta Geologica Sinica, 96(9): 3128~3157 (in Chinese with English abstract).
参考文献
Wang Yuhua, Zhang Lifei, Zhang Jinjiang, Wei Chunjing. 2017. The youngest eclogite in Central Himalaya: P-T path, U-Pb zircon age and its tectonic implication. Gondwana Research, 41: 188~206.
参考文献
White R W, Powell R, Holland T J B, Worley B A. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497~511.
参考文献
White R W, Powell R, Holland T J B, Johnson T E, Green E C R. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261~286.
参考文献
Wilke F D H, O'Brien P J, Altenberger U, Konrad-Schmolke M, Khan M A. 2010. Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes. Lithos, 114(1): 70~85.
参考文献
Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).
参考文献
Xiang Hua, Zhang Zeming, Dong Xin, Qi Min, Lin Yanhao, Lei Hengcong. 2013. High-pressure metamorphism and anatexis during the subduction of Indian continent: Phase equilibria modeling of the Namche Barwa complex. Eastern Himalayan Syntaxis. Acta Petrologica Sinica. 29(11): 3792~3802 (in Chinese with English abstract).
参考文献
Xiang Hua, Connolly J A D. 2021. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. Journal of Metamorphic Geology, 40(2): 243~255.
参考文献
Xu Wangchun, Zhang Hongfei, Parrish R, Harris N, Guo Liang, Yuan Honglin. 2010. Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications. Tectonophysics, 485(1-4): 231~244.
参考文献
Xu Zhiqin, Ji Shaocheng, Cai Zhihui, Zeng Lingsen, Geng Quanru, Cao Hui. 2012. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deformation, fabrics and geochronology. Gondwana Research, 21(1): 19~36.
参考文献
Yakymchuk C, Brown M. 2014. Behaviour of zircon and monazite during crustal melting. Journal of the Geological Society, 171(4): 465~479.
参考文献
Yin An. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1): 1~131.
参考文献
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
参考文献
Zhang Dingding, Ding Lin, Chen Yi, Schertl H P, Qasim M, Jadoon U K, Wang Houqi, Li Jinxiang, Zhang Liyun, Yue Yahui. 2022. Two contrasting exhumation scenarios of deeply subducted continental crust in north Pakistan. Geochemistry, Geophysics, Geosystems, 23(2): e2021GC010193.
参考文献
Zhang Dingding, Zhang Heng. 2022. The exhumation mechanism of eclogites in continental orogenic belts: Metamorphic petrology and geophysical constraints. Earth Science Frontiers, 29(1): 303~315 (in Chinese with English abstract).
参考文献
Zhang Zeming, Zhao Guochun, Santosh M, Wang Jinli, Dong Xin, Liou J G. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: Petrology, Zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719~733.
参考文献
Zhang Zeming, Dong Xin, Santosh M, Liu Feng, Wang Wei, Yiu Fei, He Zhenyu, Shen Kun. 2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research, 21(1): 123~137.
参考文献
Zhang Zeming, Dong Xin, Santosh M, Zhao Guochun. 2014. Metamorphism and tectonic evolution of the Lhasa terrane, central Tibet. Gondwana Research, 25(1): 170~189.
参考文献
Zhang Zeming, Xiang Hua, Dong Xin, Ding Huixia, He Zhenyu. 2015. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212: 1~15.
参考文献
Zhang Zeming, Dong Xin, Ding Huixia, Tian Zuolin, Xiang Hua. 2017. Metamorphism and partial melting of the Himalayan Orogen. Acta Petrologica Sinica, 33(8): 2313~2341 (in Chinese with English abstract).
参考文献
Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin, Kang Dongyan, Mu Hongchen, Qin Shengkai, Jiang Yuanyuan, Li Mengmei. 2018. High-temperature metamorphism, anataxis and tectonic evolution of a mafic granulite from the eastern Himalayan orogen. Journal of Earth Science, 29(5): 1010~1025.
参考文献
Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin. 2019. Two contrasting eclogite types in the Himalayan Orogen and differential subduction of Indian continent. Earth Science, 44(05): 1602~1619 (in Chinese with English abstract).
参考文献
Zhang Zeming, Ding Huixia, Palin R M, Dong Xin, Tian Zuolin, Kang Dongyan, Jiang Yuanyuan, Qin Shengkai, Li Wentan. 2021. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Research, 104: 4~22.
参考文献
Zhong Dalai, Ding Lin. 1995. Discovery of high-pressure granulite in Namjiabarwa area, Tibet, China. Chinese Science Bulletin, 40(14): 1343 (in Chinese).
参考文献
刘凤麟, 张立飞. 2014. 东喜马拉雅构造结高压麻粒岩P-T轨迹、锆石U-Pb定年及其地质意义. 岩石学报, 30(10): 2808~2820.
参考文献
芦维瑞, 张泽明, 李文坛, 安文涛, 任宏飞, 郭明明, 王迪, 吴双鹏. 2021. 东喜马拉雅构造结泥质高压麻粒岩的锆石和独居石定年与地质意义. 岩石学报, 37(11): 3413~3434.
参考文献
彭涛. 2019. 东喜马拉雅构造结南迦巴瓦杂岩区新生代差异变质作用. 中国科学院大学, 博士论文.
参考文献
田作林, 康东艳, 穆虹辰. 2017. 东喜马拉雅构造结石榴角闪岩变质作用P-T-t轨迹: 相平衡模拟与锆石年代学. 岩石学报, 33(8): 2467~2478.
参考文献
王佳敏, 吴福元, 张进江, Gautam K, 杨雷. 2022. 喜马拉雅碰撞造山过程: 变质地质学视角. 地质学报, 96(9): 3128~3157.
参考文献
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.
参考文献
向华, 张泽明, 董昕, 祁敏, 林彦蒿, 雷恒聪. 2013. 印度大陆俯冲过程中的高压变质与深熔作用: 东喜马拉雅构造结南迦巴瓦杂岩的相平衡模拟研究. 岩石学报, 29(11): 3792~3802.
参考文献
张丁丁, 张衡. 2022. 全球典型大陆造山带中榴辉岩的折返机制: 来自变质岩和地球物理的限制. 地学前缘, 29(1): 303~315.
参考文献
张泽明, 董昕, 丁慧霞, 田作林, 向华. 2017. 喜马拉雅造山带的变质作用与部分熔融. 岩石学报, 33(8): 2313~2341.
参考文献
张泽明, 丁慧霞, 董昕, 田作林. 2019. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲. 地球科学, 44(05): 1602~1619.
参考文献
钟大赉, 丁林. 1995. 西藏南迦巴瓦峰地区发现高压麻粒岩. 科学通报, 40(14): 1343.
目录contents

    摘要

    东喜马拉雅构造结南迦巴瓦杂岩中存在典型的泥质、长英质和基性高压麻粒岩。但是,高压麻粒岩在南迦巴瓦杂岩中的分布范围、变质条件和变质时间是否存在空间上的变化并不明确。本文对南迦巴瓦杂岩西南部巴嘎地区的高压基性麻粒岩进行了岩石学和年代学研究。研究表明,巴嘎高压基性麻粒岩由石榴子石、单斜辉石、角闪石、斜长石、黑云母和石英组成,石榴子石变斑晶发育生长成分环带。识别出三期矿物组合:进变质矿物组合M1为石榴子石变斑晶核部及其矿物包裹体,包括石榴子石、石英、榍石和磷灰石;峰期矿物组合M2为变斑晶石榴子石边部和基质矿物,即石榴子石+单斜辉石+斜长石+角闪石+石英+金红石+熔体;退变质矿物组合M3呈冠状体或基质产出,其组合为角闪石+斜长石+单斜辉石+黑云母+石英+榍石。高压基性麻粒岩的峰期变质条件约为1.5 GPa和915 ℃,具有顺时针P-T轨迹,退变质的早期和晚期分别为近等温降压和降温降压过程。高压基性麻粒岩在峰期条件下发生了明显的部分熔融,含~26%(体积)的熔体,其退变质和熔体结晶作用很可能发生在26~14 Ma。本文和研究区现有研究成果表明,东喜马拉雅构造结南迦巴瓦杂岩中的高压麻粒岩广泛分布,从东北部的加拉、直白和派乡延伸到西南部的巴嘎沟,形成了一条长度超过80 km的高压麻粒岩带。整个带中的高压麻粒岩具有类似的变质条件和持续时间,是印度大陆地壳平缓俯冲并经历了高温和高压变质与部分熔融的产物,构成了喜马拉雅造山带的加厚下地壳。大量高压麻粒岩强烈部分熔融产生的熔体可能为喜马拉雅淡色花岗岩提供了源区。

    Abstract

    There are typical high-pressure pelitic, felsic, and mafic granulites in the Namche Barwa Complex in the Eastern Himalayan Syntaxis. However, the distribution and spatial variation of metamorphic conditions and timing of the high-pressure granulites in the Namche Barwa complex needs to be further studied. In this paper, we conducted a petrological and geochronological study for high-pressure mafic granulite from the Baga area in the southwest segment of the Namche Barwa Complex. The high-pressure mafic granulite consists of garnet, amphibole, clinopyroxene, plagioclase, biotite, and quartz, and the porphyroblastic garnets show growth compositional zoning. The granulite contains three stages of mineral assemblage: the prograde one is the core of porphyroblastic garnet and hosting mineral inclusions, including garnet, quartz, titanite, and apatite; the peak metamorphic assemblage is the rim of porphyroblastic garnet and matrix minerals of clinopyroxene, plagioclase, amphibole, quartz, rutile, and melt; the retrograde assemblage is symplectitic and matrix minerals, including clinopyroxene, amphibole, plagioclase, biotite, quartz, and titanite. The high-pressure granulite has a clockwise P-T path, with peak metamorphic conditions of 1.5 GPa and 915 ℃ and ~26% (volume) partial melt under the peak condition. The retrograde metamorphism and melt crystallization of the granulite is likely to have occurred at ~26 Ma, and last until ~14 Ma. Combined with previous studies, we suggest that the high-pressure granulites in the Namche Barwa Complex have a wide spatial distribution, extending at least more than 80 km from the northeast Gala, Zhibai, Pai to the southwest Baga area, and that these granulites have similar metamorphic conditions and metamorphic time scale. This study indicates that a large number of high-pressure granulites in the Namche Barwa Complex were derived from high-temperature and high-pressure metamorphism and partial melting of the underthrusted Indian continental crust, representing the thickened lower crust of Himalayan orogen. The voluminous melts produced by intensive partial melting of the high-pressure granulites provide the sources for Himalayan granites.

  • 喜马拉雅造山带是印度板块与亚洲板块在新生代碰撞的产物,其核部的高喜马拉雅结晶岩系是印度大陆地壳深俯冲并经历高级变质和部分熔融之后折返回地表的产物,记录了喜马拉雅造山带的形成和演化历史。麻粒岩作为高喜马拉雅结晶岩系的主要岩石类型,一直是喜马拉雅造山带研究的热点。钟大赉等(1995)在南迦巴瓦杂岩中发现了高压基性麻粒岩,并获得了~1.5 GPa和~800℃的峰期变质条件。此后,关于南迦巴瓦高压基性麻粒岩的报道和研究不断积累,获得1.15~1.80 GPa和760~904℃的峰期变质条件(Liu Yan et al.,1997; 刘凤麟等,2014田作林等,2017Zhang Zeming et al.,20182021; Kang Dongyan et al.,2020)。此外,在南迦巴瓦杂岩中还发现了典型的长英质和泥质高压麻粒岩,取得了相似的峰期变质条件(Ding Lin et al.,1999; Guilmette et al.,2011; 向华等,2013; Zhang Zeming et al.,2015; Tian Zuolin et al.,20162019)。上述已发现的高压麻粒岩在南迦巴瓦杂岩北部的加拉、直白、派乡和丹娘地区连续分布(图1b)。这很可能表明这些地区的岩石普遍经历了高压麻粒岩相的变质作用。但是,Peng Tao et al.(2018,2022)和彭涛等(2019)认为这些地区的岩石并没有都达到高压麻粒岩相的变质条件,有些岩石仅经历了高角闪岩相变质作用。此外,关于南迦巴瓦杂岩中高压麻粒岩的变质时间与持续过程也存在不同认识,如峰期变质作用被认为是发生在40~20 Ma的不同时间(Ding Lin et al.,2001; Liu Yan et al.,2007; Xu Wangchun et al.,2010; Zhang Zeming et al.,2010201220182021; Su Wen et al.,2012; 刘凤麟等,2014; Tian Zuolin et al.,20162019; 田作林等,2017Peng Tao et al.,2018,2021)。而且,Peng Tao et al.(2018,2022)和彭涛等(2019)认为南迦巴瓦杂岩中的变质岩在变质时间上存在差异。

  • 为了进一步确定南迦巴瓦杂岩中高压麻粒岩的空间分布,以及高压麻粒岩的变质条件和变质时间是否存在空间变化,本文对远离南迦巴瓦杂岩中已知高压麻粒岩分布区的巴嘎沟基性变质岩进行了岩石学与锆石年代学研究。本文和已有的研究成果表明,南迦巴瓦杂岩中的高压麻粒岩有更广泛分布,而且不同地区产出的高压麻粒岩具有类似的变质条件与变质时间。这一研究成果为东喜马拉雅构造结高压麻粒岩的成因与构造演化提供了重要约束。

  • 1 地质背景和样品描述

  • 喜马拉雅造山带位于青藏高原南部。从巴基斯坦的西喜马拉雅构造结到中国西藏的东喜马拉雅构造结,延伸超过2400 km(图1a)。喜马拉雅造山带由4个构造单元组成,从北向南分别是特提斯喜马拉雅系列、高喜马拉雅系列、低喜马拉雅系列和次喜马拉雅系列(Yin An and Harrison,2000; Yin An,2006; Kohn,2014)。这些单元分别以印度河-雅鲁藏布江缝合带(IYS)、藏南拆离系(STDS)、主中央逆冲断裂(MCT)、主边界逆冲断裂(MBT)和主前缘逆冲断裂(MFT)为边界(图1a)。特提斯喜马拉雅系列是印度大陆北缘的晚元古代至中生代的沉积岩系,未变质到低角闪岩相变质(Yin An and Harrison,2000; Guillot et al.,2008; Zhang Zeming et al.,2014)。高喜马拉雅系列是俯冲至亚洲大陆之下而后折返上来的印度大陆地壳物质,由元古宙至古生代的沉积岩系和岩浆岩组成,普遍经历了角闪岩相、麻粒岩相到榴辉岩相变质和深熔作用。低喜马拉雅系列主要由元古宙的沉积岩系和岩浆岩组成,经历了绿片岩相到角闪岩相变质作用。从变质作用程度上说,较高级变质的高喜马拉雅岩系夹在变质程度较低的特提斯喜马拉雅和低喜马拉雅岩系之间,形成一个“三明治”构造。

  • 东喜马拉雅构造结由拉萨地体、印度河-雅鲁藏布江缝合带和喜马拉雅带三个岩石构造单元组成(图1b)。拉萨地体或称冈底斯岩浆弧属于亚洲大陆南部,主要由寒武纪至中生代沉积岩、中—新生代变质岩和中—新生代岩基组成。印度河-雅鲁藏布江缝合带由亚洲和印度板块之间的新特提斯洋壳残余组成;喜马拉雅带为印度大陆的北缘,包括特提斯喜马拉雅系列和高喜马拉雅系列(Yin An and Harrison,2000; Booth et al.,2004; Geng Quanru et al.,2006; Zhang Zeming et al.,2010; Xu Zhiqin et al.,2012)。前者由古生代和中生代沉积岩组成,经历了绿片岩相至绿帘角闪岩相变质。后者由混合岩化的正片麻岩、副片麻岩、斜长角闪岩、片岩、大理石和钙硅酸盐岩组成。含蓝晶石和石榴子石的长英质、泥质高压麻粒岩以及含石榴子石和单斜辉石的基性高压麻粒岩呈似层状或透镜状产出在片麻岩、片岩和斜长角闪岩中。以前的研究揭示,南迦巴瓦杂岩中的高压麻粒岩产出在沿雅鲁藏布江的加拉、直白、派乡和丹娘地区,呈北东-南西向的带状展布,长约60 km(图1b)。

  • 图1 喜马拉雅造山带(a)和东喜马拉雅构造结(b)地质简图(据Zhang et al.,2021修改)

  • Fig.1 Sketch geological maps of Himalayan orogen (a) and Eastern Himalayan Syntaxis (b) (modified after Zhang Zeming et al., 2021)

  • STD—藏南拆离断层系;MCT—主中央逆冲断裂;MBT—主边界逆冲断裂;MFT—主前缘逆冲断裂;IYS—印度河-雅鲁藏布江缝合带

  • STD—South Tibet Detachment Sequence; MCT—Main Central Thrust; MBT—Main Boundary Thrust; MFT—Main Frontal Thrust; IYS—Indus-Yarlung Zangbo River suture

  • 本文研究区位于以前研究确定的高压麻粒岩带西南部约20 km的巴嘎沟(图1b)。采样坐标为N94°28′40.677″和E29°17′54.967″。芦维瑞等(2021)报道了该地区高压泥质麻粒岩的变质年龄,但没有计算变质条件。本文所研究的基性高压麻粒岩呈薄层状或透镜状产出在长英质高压麻粒岩(含蓝晶石石榴子石片麻岩)和泥质高压麻粒岩(蓝晶石石榴子石云母片岩)之中,岩石中均含有平行面理产出的条带状或脉状浅色体(图2)。本文所研究的样品T20-33-2和T20-33-8为长英质高压麻粒岩中的似层状基性高压麻粒岩,另一个样品T20-33-5为长英质高压麻粒岩中的基性高压麻粒岩透镜体(图2a、b)。野外观察表明,这些高压麻粒岩都经历了明显的退变质作用,主要表现为长英质和泥质高压麻粒岩中的蓝晶石被矽线石替代、石榴子石被黑云母和斜长石替代,基性高压麻粒岩中的石榴子石和单斜辉石被角闪石和斜长石替代。随着退变质程度的增加,基性高压麻粒岩转变成含石榴子石斜长角闪岩和不含石榴子石的斜长角闪岩。样品T20-33-5为弱退变质的基性高压麻粒岩,主要由石榴子石、角闪石、单斜辉石、斜长石和石英组成;样品T20-33-2为较强退变质的基性高压麻粒岩,现称之为含石榴子石斜长角闪岩,主要由角闪石、斜长石、石榴子石和石英组成;样品T20-33-8为强退变质的基性高压麻粒岩,现称为斜长角闪岩,主要由角闪石、斜长石和石英组成。

  • 2 测试方法

  • 所研究岩石的矿物相分布图、背散射图像(BSE)和锆石阴极发光(CL)图像在中国地质科学院地质研究所用集成矿物分析仪(TESCAN integrated mineral analyzer,TIMA)获得。TIMA系统型号为TIMA3-X LMH,数据采集条件的加速电压为 25 kV,电流为20 nA,工作距离为15 mm,电流和BSE信号强度使用铂法拉第杯自动程序校准,特征X射线(EDS)信号使用Mn标样校准。测试中使用数据采集模式的点阵模式(dot mapping),分析模式的解离分析(liberation analysis)获取 BSE 图像和 EDS 数据,每个点的 X射线计数1000,步长大小2 μm,能谱步长6 μm。锆石阴极发光实验条件如下:电压10 kV,电流14 nA,工作距离10~15 mm。BSE获取条件为电压15 kV,电流12 nA。

  • 图2 巴嘎沟高压基性麻粒岩的野外照片

  • Fig.2 Outcrop photos of the high-pressure mafic granulites from Baga

  • (a)—高压基性麻粒岩含有呈条带状产出的长英质浅色体,从照片上部到下部,高压麻粒岩的退变质程度明显增强,石榴子石减少,而角闪石和斜长石增多;(b)—长英质高压麻粒岩中的高压基性麻粒岩呈透镜体产出,从透镜体的核部到边部,退变质程度增加,石榴子石含量减少,长英质高压麻粒岩中富含条带状的长英质浅色体

  • (a) —high-pressure mafic granulite contains banded felsic leucosomes, and shows an increasing degree of retrograde metamorphism from the top to bottom of the picture, characterized by decreasing garnet contents, and increasing amphibole and plagioclase contents; (b) —high-pressure mafic granulite lens within felsic high-pressure granulite shows an increasing degree of retrograde metamorphism from the core to rim of the lens; the felsic high-pressure granulite contains abundant felsic leucosome bands

  • 矿物化学成分分析在中国地质科学院地质研究所利用日本电子的电子探针(JEOL.JXA 8900)完成。实验条件为加速电压15 kV,电子电流20 nA,峰值和背景的采集时间均为10 s。电子束斑直径一般设定为5 μm。采用天然和合成标准矿物以及ZAF法校正。

  • 锆石U-Pb定年测试在武汉上谱分析科技有限责任公司实验室使用LA-ICP-MS完成。激光剥蚀系统为GeolasPro 2005,采用的激光剥蚀束斑为24 μm,频率5 Hz。分析仪器输出的分析数据包含15 s左右的空白背景区间和40~50 s的信号区间。仪器相关操作流程见Liu Yongsheng et al.(2010)。采用锆石标样91500进行U-Th-Pb同位素含量校正,NIST610为外标进行锆石微量元素含量校正。分析数据的离线处理(U-Pb同位素比值计算、年龄计算和微量元素含量计算)均利用ICPMSDataCal10.9软件完成。U-Pb年龄谐和图和加权平均年龄图的绘制利用Isoplot 4.15完成(Ludwig,2012)。

  • 3 岩石学

  • 高压基性麻粒岩(样品T20-33-5)主要由角闪石、石榴子石、斜长石和石英组成,含少量的黑云母和单斜辉石,以及副矿物榍石、磷灰石、赤铁矿和钛铁矿(图3a、b)。变斑晶石榴子石颗粒多为他形,边缘呈锯齿状或港湾状,多个集中产出的石榴子石颗粒构成原大颗粒石榴子石的假象(图3a、b,图4a~c)。石榴子石的核部含有石英、榍石和磷灰石包体,石榴子石的边部含有斜长石、角闪石、单斜辉石、榍石、磷灰石和榍石包体(图4a~c)。石榴子石边缘被由角闪石、斜长石、石英和黑云母组成的后成合晶冠状体替代(图4a~c)。少量的单斜辉石呈基质或在石榴子石边部呈包体产出(图3a、b和图4a~c)。岩石的变基质矿物主要由半自形至他形的角闪石、斜长石和石英组成(图3a、b)。细粒的榍石和磷灰石可作为变基质矿物,或在石榴子石、单斜辉石和角闪石中呈包体出现(图3b,图4a~c)。局部可见榍石与钛铁矿构成合晶,很可能是替代原来的金红石(图4c)。

  • 含石榴子石斜长角闪岩(样品T20-33-2)为较强退变质的高压基性麻粒岩,主要由角闪石、斜长石和石英组成,含少量石榴子石、黑云母、单斜辉石、白云母和钾长石,副矿物磷灰石、榍石、赤铁矿与钛铁矿(图3c、d)。石榴子石呈他形,边缘多为锯齿状或港湾状,被由斜长石、角闪石和黑云母组成的后成合晶冠状体替代(图3c、d,图4d、e)。石榴子石核部含石英和磷灰石包体,裂隙中可见钾长石、斜长石和黑云母(图4e)。石榴子石核部含石英和磷灰石包体(图4d、e)。基质中的角闪石多呈半自形柱状,斜长石和石英为他形粒状(图3d、e)。角闪石和石榴子石中含磷灰石包体(图4e)。

  • 斜长角闪岩(样品T20-33-8)为强退变质的高压基性麻粒岩,由角闪石、斜长石、石英、钾长石、黑云母、单斜辉石、赤铁矿、榍石、钛铁矿和磷灰石组成(图3e、f)。角闪石为半自形柱状到他形粒状,而斜长石、石英、单斜辉石和黑云母呈他形分布在角闪石颗粒之间(图4f)。

  • 本文对三个样品中石榴子石、单斜辉石、斜长石、角闪石和黑云母的化学成分进行电子探针分析,详细分析结果见附表1~5。分析结果显示,样品T20-33-2 和T20-33-5中的石榴子石具有类似的成分,富含铁铝榴石(XFe)和钙铝榴石(XCa)组分,从核到边镁铝榴石组分(XMg)增加,而锰铝榴石组分(XMn)减少,具有较明显的生长成分环带(图5、6,表1,附表1),其XFe(= [Fe/(Mg+Fe+Ca+Mn)])、XCa(= [Ca/(Mg+Fe+Ca+Mn)])、XMg(= [Mg/(Mg+Fe+Ca+Mn)])和XMn(= [Mn/(Mg+Fe+Ca+Mn)])分别为0.406~0.472和0.440~0.502,0.288~0.328和0.290~0.353,0.136~0.212和0.141~0.208,0.045~0.115和0.019~0.027(表1,附表1)。

  • 本文所研究高压基性麻粒岩(T20-33-5)中的单斜辉石呈变基质和石榴子石中包体产出,它们显示类似的化学成分,具有较高的CaO(22.58%~24.41%)和较低的Na2O(0.55%~0.87%)(表2,附表2),其Wo=0.481~0.502、En=0.357~0.386和Fs=0.121~0.154,均属透辉石(图7a)。

  • 高压基性麻粒岩(T20-33-5)变基质中的斜长石具有相对较低的CaO和较高的Na2O含量,即具有较低的钙长石(An)组分(0.304~0.374),而呈冠状体的斜长石具有较高CaO和较低的NaO含量,其An=0.427~0.568(图7b,表3,附表3)。同样,含石榴子石斜长角闪岩(T20-33-2)变基质中的斜长石具有较低的An组分(0.416~0.509),而呈冠状体产出的斜长石具有较高的An组分(0.864)。斜长角闪岩(T20-33-8)中的变基质斜长石具有较低的An组分(0.386~0.461)(图7b,附表3)。

  • 图3 巴嘎沟高压基性麻粒岩显微照片(a、c、e)和由TIMA获得的矿物相分布图和矿物含量(b、d、f)

  • Fig.3 Photomicrographs (a, c, e) and mineral phase distribution maps obtained by TIMA (b, d, f) of the high-pressure mafic granulites from Baga

  • (a、b)—高压基性麻粒岩由石榴子石、单斜辉石、角闪石、斜长石、黑云母、石英、白云母、磷灰石、榍石、赤铁矿和钛铁矿组成;(c、d)—含石榴子石斜长角闪岩由石榴子石、角闪石、斜长石黑云母、石英、白云母、磷灰石、榍石、钛铁矿、赤铁矿、钾长石和单斜辉石组成;(e、f)—斜长角闪岩由角闪石、斜长石、石英、黑云母、白云母、钾长石、赤铁矿、榍石和磷灰石组成;Grt—石榴子石;Cpx—单斜辉石;Amp—角闪石;Pl—斜长石;Bt—黑云母;Q—石英;Ttn—榍石;Ap—磷灰石;Hem—赤铁矿;Ilm—钛铁矿;Ms—白云母;Kf—钾长石

  • (a, b) —high-pressure mafic granulite contains garnet, clinopyroxene,amphibole,plagioclase, biotite, quartz, muscovite, apatite, titanite hematite and ilmenite; (c, d) —garnet-bearing amphibolite contains garnet, amphibole, plagioclase, biotite, quartz, muscovite, apatite, titanite, ilmenite, hematite, K-feldspar and clinopyroxene; (e, f) —amphibolite contains amphibole, plagioclase, quartz, biotite, muscovite, K-feldspar, hematite, apatite and titanite; Grt—garnet; Cpx—clinopyroxene; Amp—amphibole; Pl—plagioclase; Bt—biotite; Q—quartz; Ttn—titanite; Ap—aptite; Hem—hematite; Ilm—ilmetite; Ms—muscovite; Kf—K-feldspar

  • 三个样品中的变基质角闪石均具有成分环带,其核部具有较高的Al2O3(11.20%~14.05%)、TiO2(0.72%~1.68%)含量,较低的MgO含量(8.72%~12.23%),为镁钙闪石,边部则具有较低的Al2O3(4.77%~10.24%)、TiO2(0.28%~0.0.73%)和高MgO的(10.30%~16.54%),为镁角闪石(Leake et al.,1997)(图7c)。斜长角闪岩样品中的角闪石具相对较低的TiO2含量(0.28%~0.89%)。在高压麻粒岩和含石榴子石角闪岩中呈冠状体产出的角闪石具相对较低的MgO(7.98%~10.56%)和TiO2(0.16%~0.76%)含量(表4,附表4)。

  • 图4 巴嘎沟高压基性麻粒岩显微照片(a、b、d、f)和背散射图像(BSE,c、e)

  • Fig.4 Photomicrographs (a, b, d, f) and back-scattered-electron images (BSE, c, e) of the high-pressure mafic granulites from Baga

  • (a~c)—高压基性麻粒岩,样品T20-33-5;变斑晶石榴子石多具锯齿状或港湾边缘,被由角闪石、斜长石、石英和黑云母组成的冠状体替代;石榴子石核部含有榍石和磷灰石包体,边部含有石英、角闪石、斜长石、单斜辉石和榍石包体,榍石和钛铁矿合晶替代金红石;(d~e)—含石榴子石斜长角闪岩,样品T20-33-2;石榴子石中含有斜长石和磷灰石包体。石榴子石边部或沿其裂隙被由角闪石+斜长石+黑云母+石英组成的合晶替代;(f)—斜长角闪岩,主要由角闪石、斜长石和石英组成,含少量黑云母和单斜辉石

  • (a~c) —sample T20-33-5, high-pressure mafic granulite; the porphyroblasts garnet have many jagged or harbor shaped edges and are replaced by symplectitic coronas of amphibole, plagioclase, quartz and biotite; the core of the garnet contains the titanite and apatite inclusions,and the rims contain quartz, amphibole, plagioclase, clinopyroxene, and titanite inclusions; the symplectitic minerals of titanite and ilmenite replaces rutile; (d~e) —sample T20-33-2, garnet-bearing amphibolite; the garnet contains plagioclase, K-feldspar and apatite inclusions and K-feldspar; the symplectitic minerals of amphibole+plagioclase+biotite+quartz occur along the rims and cracks of garnet; (f) —sample T20-33-8, amphibolite contains of amphibole, plagioclase and quartz, with small amount of biotite and clinopyroxene

  • 表1 巴嘎沟高压基性麻粒岩(T20-33-2)石榴子石化学成分(%)分析结果

  • Table1 Results of garnet chemical compositions (%) of the high-pressure mafic granulites (T20-33-2) from Baga

  • 注:bd为低于检测限。

  • 图5 巴嘎沟高压基性麻粒岩石榴子石颗粒X光扫描图

  • Fig.5 X-ray mapping of garnet grains in the high-pressure mafic granulites from Baga

  • 图中虚线位置为图6中成分剖面的分析位置

  • The dashed lines are locations of the compositional profile shown in Fig.6

  • 表2 巴嘎沟高压基性麻粒岩单斜辉石化学成分(%)代表性分析结果

  • Table2 Representative results of clinopyroxene chemical compositions (%) of the high-pressure mafic granulites from Baga

  • 高压基性麻粒岩中的基质黑云母具有较高的TiO2含量(4.10%~4.21%),Ti阳离子数(a.p.f.u.)为=0.233~0.240(图7d,表5)。含石榴子石斜长角闪岩中的基质黑云母具有较高的TiO2(4.08%~4.15%)含量,Ti=0.228~0.234,而呈冠状体产出的黑云母具有较低的TiO2含量(0.57%~1.48%),Ti(a.p.f.u.)=0.033~0.086。斜长角闪岩中的黑云母具有相对较低的TiO2含量(2.14%~2.17%),Ti(a.p.f.u)=0.118~0.120。样品T20-33-2和T20-33-5基质中的黑云母具有类似的TiO2含量,样品T20-33-5中的冠状体黑云母与样品T20-33-8中的基质黑云母具有类似的TiO2含量(表5,附表5)。

  • 上面描述的岩相学和矿物化学特征表明,所研究的高压基性麻粒岩保存有进变质、峰期变质和退变质三期矿物组合。第一期进变质矿物组合M1由具有生长成分环带的石榴子石核部和所包含的矿物包体组成,可见的矿物是石榴子石、石英、磷灰石和榍石。第二期矿物组合M2由具有成分环带的石榴子石边部和其中的角闪石、斜长石和单斜辉石包体,以及基质中的单斜辉石、斜长石、角闪石、石英、可能存在的金红石和熔体组成,矿物组合是Grt+Cpx+Pl+Amp+Q+Rt+L。这一矿物组合中的石榴子石以相对富MgO、贫FeO和MnO,斜长石具有较低的An组分,角闪石具有较高的TiO2含量为特征。第三期退变质矿物组合M3由高压基性麻粒岩和含石榴子石斜长角闪岩中呈冠状体产出的矿物,以及斜长角闪岩中的基质矿物组成,其矿物组合是Cpx+Pl+Amp+Bt+Q+H2O+Ttn。呈冠状体产出的斜长石具有较高的An组分,角闪石具有较低的TiO2含量。

  • 图6 巴嘎沟高压基性麻粒岩石榴子石化学成分剖面图

  • Fig.6 Garnet compositional profiles of the high-pressure mafic granulites from Baga

  • 表3 巴嘎沟高压基性麻粒岩代表性斜长石化学成分(%)分析结果

  • Table3 Representative results of plagioclase chemical compositions (%) of the high-pressure mafic granulites from Baga

  • 注:bd为低于检测限。

  • 表4 巴嘎沟高压基性麻粒岩代表性角闪石化学成分(%)分析结果

  • Table4 Representative results of amphibole chemical compositions (%) of the high-pressure mafic granulites from Baga

  • 表5 巴嘎沟高压基性麻粒岩黑云母化学成分(%)分析结果

  • Table5 Results of biotite chemical compositions (%) of the high-pressure mafic granulites from Baga

  • 4 变质作用的温压条件

  • 4.1 相平衡模拟

  • 本文利用GeoPS(3.3.8版本,Xiang Hua et al.,2021)对含石榴子石斜长角闪岩样品(T20-33-2)进行了相平衡模拟。所采用数据库为Holland et al.(2011)的HP62.DS,所涉及到的矿物及熔体相的活度-成分关系模型为角闪石、普通辉石和熔体(Green et al.,2016),石榴子石、黑云母和斜方辉石(White et al.,2014),长石(Holland et al.,2003),绿帘石(Holland et al.,2011),钛铁矿(White et al.,2000)。由于对基性岩,除石榴子石外的其他矿物活度-成分关系模型中都没有考虑MnO,所以本模拟选择Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O(NCKFMASHTO)体系,并采用实测的全岩化学成分进行模拟,具体成分为Na2O=1.92%,MgO=8.47%,Al2O3=14.12%,SiO2=53.96%,K2O=1.17%,CaO=9.84%,FeO=7.66%,TiO2=0.76%,O=0.25%。模拟中使用的H2O(1.54%)是在利用实测全岩成分计算出的T-M(H2O)图中获得的。模拟的温度和压力范围是550~950℃和0.4~1.8 GPa。

  • 在模拟的P-T视剖面图中,石榴子石在压力>0.9~1.12 GPa区域稳定存在,金红石在压力>1.12 GPa出现,白云母在>1.04 GPa和<850℃的区域稳定存在,斜方辉石在<1.06 GPa和>820℃的区域稳定,角闪石在整个区域稳定存在,斜长石在0.88~1.80 GPa,550~930℃右下方区域内出现(图8a)。系统的固相线位于630~730℃之间,熔体含量随着温度升高而增加(图8b)。P-T视剖面图中的石榴子石的XMg= [Mg/(Mg+Fe+Ca)]、角闪石的Ti离子和斜长石的XCa= [Ca/(Ca+Na+K)]等值线。石榴子石XMg等值线具负斜率,随温度增加而增大,斜长石的XCa为正斜率,其随压力增加而降低,角闪石的Ti等值线几乎与温度轴垂直,其随着温度增加而增加。

  • 图7 巴嘎沟高压基性麻粒岩单斜辉石(a)、斜长石(b)、角闪石(c)和黑云母(d)成分分类图

  • Fig.7 Classification diagrams of clinopyroxene (a) , plagioclase (b) , amphibole (c) and biotite (d) of the high-pressure mafic granulites from Baga

  • 在模拟的P-T视剖面中,所观察到的峰期矿物组合Grt+Cpx+Amp+Pl+Q+Rt+L稳定在1.16~1.76 GPa,850~950℃范围内(图8a),相应的熔体体积含量在15%~34%之间。基质角闪石核部的最高Ti等值线与基质斜长石最低的XCa等值线交叉给出了~1.5 GPa和~915℃的温、压条件且位于在峰期矿物组合的稳定域内,代表了基性麻粒岩的峰期变质条件(图8c中的B)。所研究岩石中的石榴子石变斑晶具有生长成分环带,其XMg值在视剖面图中随温度增加而增加,表明岩石经历了增温的进变质过程,其中最大的XMg值(0.24)与基质斜长石最小的XCa值(0.41)交叉在830℃和1.4 GPa(图8c中的A)。由于在高压基性麻粒岩退变质过程中,石榴子石的边部已经被后成合晶矿物替代,具有最高XMg值的石榴子石部分并没有被保存下来。因此,上述交叉点A很可能代表高压麻粒岩的进变质条件。岩石的退变质矿物组合Cpx+Amp+Bt+Pl+Q+Ttn+L+H2O稳定在一个很小的区域,其P-T条件为0.4~0.7 GPa和655~690℃,且稳定域的低温一侧为固相线(图8a),应代表高压麻粒岩的退变质和残余熔体结晶条件。

  • 4.2 矿物温压计

  • 对于斜长角闪岩样品利用角闪石-斜长石-石英(HPQ)压力计(Bhadra et al.,2007)和角闪石-斜长石(HP)温度计(Holland et al.,1994),使用基质角闪石与斜长石成分计算得出的P-T条件是0.5~0.8 GPa和655~722℃。这一结果与相平衡模拟得出的高压麻粒岩退变质条件基本一致。

  • 5 锆石U-Pb定年和微量元素

  • 本文对三个样品中的锆石进行U-Pb同位素和微量元素分析,分析结果见附表6。三个样品中的锆石颗粒为半自形短柱状到他形椭圆状,粒径在100~200 μm之间,多具弱的补丁状分带(图9)。除个别颗粒具有很小的继承核外,大部分锆石不具有核-边结构。三个样品共109个分析点获得了谐和或近谐和的206Pb/238U年龄,分别为32.1~17.4 Ma(T20-33-5)、26.0~14.2 Ma(T20-33-2)和28.4~13.9 Ma(T20-33-8)(图10)。全部分析点给出了26 Ma、21 Ma和14 Ma三个年龄峰值(图11a)。这些分析点具有较低的Th/U比值,分别为0.045~0.218(T20-33-5),0.007~0.047(T20-33-2)和0.002~0.140(T20-33-8)。在球粒陨石标准化稀土元素配分图中,除个别分析点具有弱分异的稀土元素模式,大多数分析点显示出明显的稀土元素分异,以亏损轻稀土和富集重稀土为特征,无或较弱的Eu负异常(图10)。三个样品全部分析点显示出重稀土元素含量有随年龄减少而增加的趋势(图11b)。

  • 图8 巴嘎沟高压基性麻粒岩P-T视剖面图

  • Fig.8 P-T pseudosection for the high-pressure mafic granulite from Baga

  • (a)—高压基性麻粒岩P-T视剖图,图中不同颜色的粗线是部分矿物的出现(in)或消失(out)线;(b)—有熔体体积等值线的简化P-T剖面图;(c)—有石榴子石XMg=[Mg/(Mg+Fe+Ca)](红色虚线)、斜长石XCa=[Ca/(Ca+Na+K)]等值线(白色虚线)和角闪石Ti等值线(黄色虚线)的简化P-T视剖面图;Rt—金红石;Opx—斜方辉石;Ep—绿帘石;Ab—钠长石;H2O—水;L—熔体;Solidus—固相线;in—矿物出现;out—矿物消失;Melt—熔体

  • (a) —P-T pseudosection for the high-pressure mafic granulites; the appearance (in) and disappearance (out) lines of various minerals are shown by thick lines with different colors; (b) —isomodes of melt; (c) —isopleths of XMg of garnet, XCa of plagioclase and Ti of amphibole; Rt—rutile; Opx—orthopyroxene; Ep—epidote; Ab—albite; H2O—water; L—liquid; Solidus—olidus; in—mineral out; out—mineral out; Melt—melt

  • 6 讨论

  • 6.1 巴嘎沟高压基性麻粒岩变质作用的P-T-t轨迹

  • 本文的岩相学与矿物化学研究表明,巴嘎沟高压基性麻粒岩中的石榴子石发育较明显的生长成分环带,其核部以贫MgO和富MnO为特征,边部以贫MnO和富MgO为特征,并且含有单斜辉石、斜长石和角闪石包体。这说明高压麻粒岩经历了明显的增温进变质过程。本研究表明,高压基性麻粒岩叠加了强烈的角闪岩相退变质作用,以石榴子石被后成合晶矿物角闪石、富Ca的斜长石、黑云母和石英替代为特征。强烈退变质的基性麻粒岩已经转变成了含石榴子石或无石榴子石的斜长角闪岩。因此,所研究的高压基性麻粒岩可划出三期矿物组合,进变质阶段的M1矿物组合包括石榴子石(富MnO的核部)和其中的榍石和磷灰石包体,峰期变质阶段的M2组合为石榴子石(富MgO的边部)和基质矿物单斜辉石、角闪石、斜长石、石英、金红石和熔体,退变质阶段的M3组合为弱退变质基性麻粒岩中的后成合晶矿物,以及斜长角闪岩的基质矿物,为角闪石、斜长石、单斜辉石、黑云母、石英、榍石、钛铁矿和赤铁矿。

  • 图9 巴嘎沟高压基性麻粒岩锆石阴极发光图像和分析点位置及相应年龄

  • Fig.9 Cathodoluminescence images of zircon in the high-pressure mafic granulites, from Baga, showing the analyzed spot locations and relevant ages

  • 图10 巴嘎沟高压基性麻粒岩锆石U-Pb谐和图(a、c、e)和球粒陨石标准化稀土配分模式图(b、d、f)

  • Fig.10 U-Pb concordia diagrams (a, c, e) and chondrite-normalized REE patterns (b, d, f) of zircon of the high-pressure mafic granulites from Baga

  • 图11 巴嘎沟高压基性麻粒岩锆石U-Pb年龄频率直方图(a)和锆石U-Pb年龄与重稀土含量关系图(b)

  • Fig.11 Relative probability diagrams of zircon U-Pb ages (a) and zircon U-Pb ages versus HREE content diagram (b) of the high-pressure mafic granulites from Baga

  • 相平衡模拟和温压计计算表明,巴嘎沟高压基性麻粒岩经历了1.4 GPa 和830℃条件下的进变质,1.5 GPa和915℃条件的高压麻粒岩相峰期变质,以及0.5~0.8 GPa和655~722℃条件下的角闪岩相退变质作用。因此,所研究的高压基性麻粒岩具有一个顺时针型变质作用P-T轨迹,其进变质以增温和增压为特征,退变质以降温和降压为特征(图8)。

  • 巴嘎沟高压基性麻粒岩中的锆石多呈半自形短柱状,具有弱的补丁状环带,具有低的Th/U比(大多<0.1),是变质锆石的典型特征(吴元保等,2004)。三个样品中锆石给出了类似的U-Pb年龄(图10)。相应分析点大多具有相对高的稀土元素含量,以及亏损LREE和富集HREE的、无或弱负Eu异常的稀土元素配分模式(图10)。这表明所分析锆石生长在高压麻粒岩的退变质过程中,即形成在富HREE石榴子石的分解过程中。这与高压基性麻粒岩中的石榴子石呈少量残留体产出,强退变质基性麻粒岩中无石榴子石是一致的。而且,随着锆石年龄的变小,其重稀土元素含量具有升高的趋势(图11b),这进一步表明锆石生长在石榴子石分解过程中。因此,我们认为所获得的锆石U-Pb年龄代表高压基性麻粒岩的退变质年龄。如果不考虑少量年龄较大的分析点,在锆石年龄频率图中的第一个年龄峰值(~26 Ma)很可能是高压麻粒岩早期强烈退变质发生的时间,而晚期退变质和残余熔体结晶持续到~14 Ma。

  • 6.2 高压麻粒岩的空间分布及其变质条件与时间的空间变化

  • 自从钟大赉等(1995)在南迦巴瓦杂岩中发现由石榴子石和单斜辉石组成的高压基性麻粒岩以来,后来的研究者相继报道了南迦巴瓦杂岩中产出有由石榴子石、单斜辉石、斜长石、角闪石和石英组成的典型高压基性麻粒岩(Liu Yan et al.,1997; Ding Lin et al.,2001; Zhang Zeming et al.,2010; 刘凤麟等,2014; Zhang Zeming et al.,20182021; Kang Dongyan et al.,2020),以及由石榴子石、蓝晶石、斜长石、钾长石(或三元长石)和石英组成的典型泥质和长英质高压麻粒岩(Ding and Zhong,1999; Zhang Zeming et al.,2010; Guilmette et al.,2011; 向华等,2013; Zhang Zeming et al.,2015; Tian Zuolin et al.,20162019)。到目前为止,已知的各种类型高压麻粒岩在沿雅鲁藏布江的加拉、直白、派乡和丹娘地区产出,构成了一条约60 km长的北东-南西向的高压麻粒岩带。本文和芦维瑞等(2021)的研究表明,在已知高压麻粒岩带西南部的巴嘎沟地区产出有典型的基性、长英质和泥质高压麻粒岩。因此,南迦巴瓦杂岩中的高压麻粒岩带延伸至少有80 km。

  • 基于地质温压计计算,钟大赉等(1995)在直白地区的高压基性麻粒岩获得了1.4~1.5 GPa和~800℃的峰期变质条件。Liu Yan et al.(1997)从加拉和直白地区泥质高压麻粒岩和直白地区高压基性麻粒岩中得到了1.7~1.8 GPa和~890℃的峰期变质条件;Ding Lin et al.(1999)从直白地区的泥质高压麻粒岩中得到了1.4~1.8 GPa和750~850℃的峰期变质条件。

  • 基于相平衡模拟,Guilmette et al.(2011)从派乡地区的高压长英质麻粒岩中获得了1.5~1.6 GPa和~850℃的峰期变质条件;向华等(2013)从派乡地区的泥质高压麻粒岩获得了1.3~1.35 GPa和~820℃变质条件;刘凤麟等(2014)从直白地区基性高压麻粒岩得到了~1.37 GPa和~904℃的峰期条件;Zhang Zeming et al.(2015)从派乡地区的泥质高压麻粒岩中获得了1.3~1.6 GPa和840~880℃峰期条件;Tian Zuolin et al.(2016)在加拉和直白地区的长英质高压麻粒岩中得出了1.5~1.6 GPa和825~835℃的峰期变质条件;Zhang Zeming et al.(2018,2021)在直白和加拉地区的基性麻粒岩中分别得到了1.4~1.55 GPa和760~790℃,1.5~1.7 GPa和820~880℃峰期变质条件;Kang Dongyan et al.(2020)在派乡基性高压麻粒岩得出1.5~1.7 GPa和805~840℃的峰期温压条件。本文的相平衡模拟结果表明,巴嘎沟地区高压基性麻粒岩峰期变质作用发生在1.5 GPa和~915℃条件下。

  • 考虑到上两种计算方法的误差,我们认为现有研究得出的高压麻粒岩峰期变质条件基本一致,即在1.4~1.7 GPa和 800~900℃之间,不同地区的高压麻粒岩变质条件大致相同,并不存在空间上的差异,并且这些高压麻粒岩均经历了早期的角闪岩相进变质作用,以及晚期的低麻粒岩相和角闪岩相退变质作用,具有顺时针型的变质作用P-T轨迹(图12)。但值得注意的是,Peng Tao et al.(2018,2022)和彭涛等(2019)使用地质温压计从直白、派乡和丹娘地区的变质岩中获得了高角闪岩相峰期变质作用条件,认为它们并没有经历高压麻粒岩相变质作用。如他们从直白和派乡的斜长角闪岩中分别获得了1.0 GPa、~750℃和0.85~1.05 GPa、670~790℃的变质条件,从派乡和丹娘地区的泥质片岩中获得了0.8~1.1 GPa 和700~750℃的变质条件,从派乡石榴子石辉石岩中获得了1.16 GPa和738℃的变质条件。因此,彭涛等(2019)认为南迦巴瓦杂岩高压麻粒岩带中的变质岩具有不同的变质条件,是形成在俯冲隧道中的构造混杂岩。我们认为,由于南迦巴瓦杂岩中的高压麻粒岩都经历了不同程度的退变质作用,对于较强烈退变质的岩石,运用地质温压计进行计算所获得的变质条件更可能是其退变质条件,而不是峰期变质作用。另外,由于某些退变质岩石中的矿物之间并不处于化学平衡,所计算出的变质条件很可能是无意义的。

  • 对于南迦巴瓦杂岩中的高压麻粒岩已经进行了大量的原位和微区锆石U-Pb定年,以期限定高压麻粒岩的进变质、峰期变质和退变质时间(图12)。在加拉地区,Liu Yan et al.(2007)从长英质高压麻粒岩中获得了~30 Ma的峰期变质年龄,~23 Ma的退变质年龄,Zhang Zeming et al.(2018)在基性高压麻粒岩中获得了39~11 Ma年龄范围,认为峰期变质发生在~22 Ma。对于直白地区,Xu Wangchun et al.(2010)认为高压麻粒岩相峰期变质发生在~24 Ma,随后的角闪岩相退变质年龄为19~17 Ma;Su Wen et al.(2012)认为泥质高压麻粒岩的峰期变质年龄为~25 Ma,角闪岩相退变质年龄为~18 Ma;Tian Zuolin et al.(2019)从长英质高压麻粒岩中获得了32.6~25.2 Ma,25~24 Ma和23.5~13.1 Ma的进变质、峰期和退变质年龄;刘凤麟等(2014)认为基性高压麻粒岩的峰期变质年龄为~20 Ma。对于派乡地区,Zhang Zeming et al.(2010)认为高压泥质麻粒岩峰期和退变质作用分别发生在37~32 Ma和29~16 Ma;Zhang Zeming et al.(2015)认为泥质高压麻粒岩的近峰期变质发生在约40~30 Ma,早期和晚期退变质作用分别在约25~15 Ma和约11~7 Ma;Kang Dongyan et al.(2020)认为高压基性麻粒岩经历了从40~20 Ma的进变质和深熔过程,以及从20~10 Ma的退变质和熔体结晶过程。另外,Peng Tao et al.(2018,2022)和彭涛等(2019)对高压麻粒岩带中的多种变质岩进行了锆石、独居石和榍石U-Th-Pb定年,获得了不同的年龄或年龄范围。如直白斜长角闪岩的变质年龄为30~9 Ma,退变质麻粒岩的变质年龄为20~15 Ma,派乡斜长角闪岩的变质年龄小于10 Ma,泥质变质岩具有23~3 Ma的变质年龄,丹娘泥质岩记录了19~14 Ma和8~3 Ma的变质年龄。

  • 由上述研究从高压麻粒岩和其退变质岩中获得了不同年龄或不同年龄范围,以及对所获年龄的不同解释,彭涛等(2019)认为南迦巴瓦杂岩中的岩石不仅形成的不同条件下,也具有不同的变质时间。然而大量研究表明,定年副矿物锆石、独居石和榍石在中—高级变质岩,特别是深熔岩石中的生长行为受多种因素影响。这些因素包括定年矿物在岩石中的结构位置、主要造岩矿物的稳定性、变质作用P-T轨迹、部分熔融程度、熔体的分离等等(Yakymchuk et al.,2014)。因此,对高级变质岩中的锆石、独居石和榍石进行定年不一定能全面约束寄主岩石变质作用的开始与持续时间。Ding Huixia et al.(2021)对喜马拉雅造山带中段亚东地区混合岩化高压泥质麻粒岩的岩石年代学研究表明,混合岩暗色体中的锆石具有28~21 Ma年龄,仅记录了进变质和部分熔融时间,而浅色体中的锆石具有32~12 Ma年龄,不仅记录了进变质和熔融时间,还记录退变质和熔体结晶时间。这说明只有对混合岩化麻粒岩的不同部分进行系统定年才可能对其整个变质作用过程进行约束,不然会得出片面的结论。

  • 芦维瑞等(2021)对巴嘎沟6个泥质高压麻粒岩中的锆石和独居石进行了内部结构、U-Th-Pb定年和微量元素分析。研究表明,高压泥质麻粒岩中的锆石均由继承碎屑核+变质(深熔)幔+变质边组成。3个样品的锆石幔部给出了相近的较老年龄范围(41~31 Ma),边部获得了相近的年轻年龄范围(28~17 Ma)。另外3个样品的锆石幔部较窄,不能进行定年,从其边部获得了较年轻的年龄范围(22~17 Ma)。一个样品的独居石获得了较宽年龄范围38~18 Ma,另外3个样品的独居石获得了较窄的年龄范围(26~17 Ma)。他们认为来自同一地区的这些泥质高压麻粒岩应该具有相同的变质作用开始与持续时间,但由于某些样品中的锆石和独居石在早期变质过程中形成的结晶域(幔部)太窄或者没有生长,只能从晚期的结晶域(边部)中得出较年轻的变质年龄。本文从巴嘎沟基性高压麻粒岩中的锆石获得了26~14 Ma年龄范围,这与同一地区泥质高压麻粒岩锆石变质边的年龄范围类似。这进一步表明,所获得年龄范围是巴嘎沟基性高压麻粒岩的退变质持续时间,而进变质的时间应该更早。结合现有的多数研究结果,我们认为,南迦巴瓦杂岩中的高压麻粒岩很可能具有大致类似的、长期持续的变质与熔融和熔体结晶过程,进变质作用至少开始于~40 Ma,退变质作用至少持续到10 Ma。

  • 6.3 构造意义

  • 本文和已有研究表明,东喜马拉雅构造结南迦巴瓦杂岩中的高压麻粒岩分布广泛,从加拉和直白,延伸到巴嘎沟地区,构成了一条至少80 km长的北东-南西向的高压麻粒岩带。这个带中的高压麻粒岩均具有相同的顺时针型变质作用P-T轨迹,很可能具有类似的峰期变质条件(800~900℃和1.4~1.7 GPa),以及相似的、长期持续的(从约40 Ma到至少10 Ma)的变质作用过程。这些研究表明,在新生代的碰撞造山过程中,平缓俯冲(underthrusting)的印度大陆地壳构成了造山带的加厚下地壳,经历了高压和高温麻粒岩相变质作用与部分熔融,在长英质和泥质高压麻粒岩的进变质过程中发生了白云母和黑云母脱水熔融(Ding Lin et al.,1999; 向华等,2013; Zhang Zeming et al.,2015Tian Zuolin et al.,20162019; 张泽明等,2017),在基性高压麻粒岩的进变质过程中发生了角闪石脱水熔融(田作林等,2017; Kang Dongyan et al.,2020; Zhang Zeming et al.,2021)。这些岩石部分熔融形成了大量的花岗质熔体为喜马拉雅的淡色花岗岩提供了源区(Zhang Zeming et al.,20152021; Tian Zuolin et al.,20162019; Kang Dongyan et al.,2020)。相平衡模拟表明所研究的基性麻粒岩可以产生26%(体积)的熔体,进一步表明长期持续的高温麻粒岩相变质作用和部分熔融为喜马拉雅淡色花岗岩提供了来源。

  • 图12 东喜马拉雅构造结高压麻粒岩的变质作用P-T-t轨迹

  • Fig.12 Metamorphic P-T-t paths for the high-pressure granulites in the Eastern Himalayan Syntaxis

  • 变质轨迹上的数字为变质年龄

  • The numbers on the paths are metamorphic ages

  • 研究表明,喜马拉雅造山带西段Kaghan和Tso Morari地区的榴辉岩经历3.0~3.5 GPa条件下的超高压变质作用,表明印度大陆西北缘向北俯冲到至少有100~120 km的地幔深度(O'Brien et al.,2001; Mukherjee et al.,2001; Wilke et al.,2010; Rehman et al.,2013; Palin et al.,2017)。年代学研究揭示,这两个地区的超高压变质岩具有~50 Ma的进变质年龄,~47 Ma的峰期变质年龄和~40 Ma的退变质年龄,表明印度大陆地壳在喜马拉雅造山带西段经历了快速俯冲与快速折返过程(Kaneko et al.,2003; Parrish et al.,2006; Rehman et al.,2013; Donaldson et al.,2013; St-Onge et al.,2013)。与其相反,本文和现有研究表明,在喜马拉雅造山带中东段的岩石经历了高压麻粒岩相至榴辉岩相变质作用,表明印度大陆地壳平缓俯冲到亚洲大陆地壳之下,而且具有缓幔的俯冲与折返过程。这表明喜马拉雅造山带的西段与中东段在变质作用与构造演化上存在明显的差异(张泽明等,2019Zhang Zeming et al.,2021)。

  • 研究表明,印度与亚洲大陆(拉萨地体)的碰撞发生在50 Ma,印度大陆地壳经历了长期的北向俯冲过程。高喜马拉雅结晶岩系作为俯冲的印度大陆地壳折返上来的岩石,其很可能是由不同的构造岩片组成的,它们具有不同的俯冲深度,不同的俯冲和折返时间与速率,即在高喜马拉雅结晶岩系中存在明显的变质-构造不连续(Larson K P et al.,2013; Montomoli C et al.,2013; Wang Jiamin et al.,201320152016; 王佳敏等,2022)。如西构造结Naran地区的榴辉岩经历了2.4~2.8 GPa和720~780℃条件下的高压变质作用,其高压变质作用峰期发生在~42 Ma,角闪岩相退变质作用发生在~26 Ma,具有相对缓慢的折返速率(张丁丁等,2022Zhang Dingding et al.,2022)。因此,Naran地区的高压榴辉岩与Kaghan地区的超高压榴辉岩处在不同的岩片中。造山带中部的Ama Drime和Thongmön地区榴辉岩的峰期变质作用发生在17~14 Ma(Wang Yuhua et al.,2017; Li Qingyun et al.,2019),很可能是一个晚期俯冲或晚期折返上的构造岩片。在东喜马拉雅构造结的南迦巴瓦地区,Tian Zuolin et al.(2016)认为存在两个具有不同变质条件和不同变质时间的构造岩片。彭涛等(2019)Peng Tao et al.(2022)认为南迦巴瓦杂岩由三个岩片构成,从北东至南西,它们的变质压力减少,变质时间变年轻。

  • 7 结论

  • (1)东喜马拉雅构造结巴嘎沟地区的高压基性麻粒岩保存有三期矿物组合:进变质组合为石榴子石变斑晶核部和所含的矿物包体;峰期矿物组合为变斑晶石榴子石边部和变基质矿物,即石榴子石+单斜辉石+斜长石+角闪石+石英+金红石+熔体;退变质组合由后成合晶或变质基质矿物组成,为单斜辉石+角闪石+斜长石+黑云母+石英+榍石。

  • (2)巴嘎沟高压基性麻粒岩具有~1.5 GPa和~915℃峰期变质条件,叠加了0.5~0.8 GPa和655~722℃条件下的退变质作用,具有顺时针P-T-t轨迹,其进变质为升温和升压过程,退变质为降温和降压过程,退变质作用发生在26~14 Ma。

  • (3)东喜马拉雅构造结南迦巴瓦杂岩中的高压麻粒岩广泛分布,构成了一条至少80 km长的高压麻粒岩带。整个带中的高压麻粒岩很可能具有相似的变质条件和变质时间,以及相同的顺时针型变质作用P-T-t轨迹。

  • 附件:本文附件(附表1~6)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202401091?st=article_issue

  • 参考文献

    • Booth A L, Zeitler P K, Kidd W S, Wooden J, Liu Y, Idleman B, Hren M, Chamberlain C P. 2004. U-Pb Zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area. American Journal of Science, 304(10): 889~929.

    • Bhadra S, Bhattacharya A. 2007. The barometer tremolite+tschermakite+2albite=2pargasite+8quartz: Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. American Mineralogist, 92(4): 491~502.

    • Ding Huixia, Zhang Zeming, Kohn M J, Gou Zhengbin. 2021. Timescales of partial melting and melt crystallization in the Eastern Himalayan Orogen: Insights from zircon Petrochronology. Geochemistry, Geophysics, Geosystems, 22(4): e2020GC009539.

    • Ding Lin, Zhong Dalai. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China Series D-Earth Sciences, 42(5): 491~505.

    • Ding Lin, Zhong Dalai, Yin An, Kapp P, Harrison T M. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423~438.

    • Donaldson D G, Webb A A G, Menold C A, Kylander-Clark A R C, Hacker B R. 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology, (8): 835~838.

    • Green E C R, White R W, Diener J F A, Powell R, Holland T J B, Palin R M. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9): 845~869.

    • Guillot S, Mahéo G, de Sigoyer J, Hattori K H, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics Asia Out of Tethys: Geochronologic, Tectonic and Sedimentary Records, 451(1): 225~241.

    • Geng Quanru, Pan Guitang, Zheng Lailin, Chen Zhiliang, Fisher R, Sun Zhiming, Ou Chunsheng, Dong Han, Wang Xiaowei, Li Sheng, Lou Xiongying, Fu Heng. 2006. The eastern Himalayan syntaxis: Major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences, 27(3): 265~285.

    • Guilmette C, Indares A, Hébert R. 2011. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural evidence for partial melting, phase equilibria modeling and tectonic implications. Lithos, 124(1): 66~81.

    • Holland T J B, Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433~447.

    • Holland T J B, Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145(4): 492~501.

    • Holland T J B, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333~383.

    • Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M, Rehman Hu, Kausar A B, Shiraishi K. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology, 21(6): 589~599.

    • Kang Dongyan, Zhang Zeming, Palin R M, Tian Zuolin, Dong Xin. 2020. Prolonged partial melting of garnet amphibolite from the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of large hot orogens. Journal of Geophysical Research: Solid Earth, 125(6): e2019JB019119.

    • Kohn M J. 2014. Himalayan metamorphism and its tectonic implications. Annual Review of Earth and Planetary Sciences, 42: 381~419.

    • Larson K P, Gervais F, Kellett D A. 2013. A P-T-t-D discontinuity in east-central Nepal: Implications for the evolution of the Himalayan mid-crust. Lithos, 179: 275~292.

    • Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Guo Youzhi. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35: 219~246.

    • Li Qingyun, Zhang Lifei, Fu Bin, Bader T, Yu Huanglu. 2019. Petrology and zircon U-Pb dating of well-preserved eclogites from the Thongmön area in Central Himalaya and their tectonic implications. Journal of Metamorphic Geology, 37(2): 203~226.

    • Liu Fenglin, Zhang Lifei. 2014. High-pressure granulites from Eastern Himalayan Syntaxis: P-T path, zircon U-Pb dating and geological implication. Acta Petrologica Sinica, 30(10): 2808~2820 (in Chinese with English abstract).

    • Liu Yan, Zhong Dalai. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451~466.

    • Liu Yan, Yang Ziqing, Wang Meng. 2007. History of zircon growth in a high-pressure granulite within the Eastern Himalayan Syntaxis, and tectonic implications. International Geology Review, 49(9): 861~872.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Ludwig K R. 2012. Isoplot 4. 15: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication.

    • Lu Weirui, Zhang Zeming, Li Wentan, An Wentao, Ren Hongfei, Guo Mingming, Wang Di, Wu Shuangpeng. 2021. Zircon and monazite dating of pelitic high-pressure granulite in the Eastern Himalayan Syntaxis and geological significance. Acta Petrologica Sinica, 37(11): 3413~3434 (in Chinese with English abstract).

    • Montomoli C, Iaccarino S, Carosi R, Langone A, Visonà D. 2013. Tectonometamorphic discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya): Insights on the exhumation of crystalline rocks. Tectonophysics, 608: 1349~1370.

    • Mukherjee B K, Sachan H K. 2001. Discovery of coesite from Indian Himalaya: A record of ultra-high pressure metamorphism in Indian Continental Crust. Current Science: 1358~1361.

    • O'Brien P J, Zotov N, Law R, Khan M A, Jan M Q. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29(5): 435~438.

    • Palin R, Reuber G, White R, Kaus B, Weller O. 2017. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: An integrated geodynamic and petrological modelling approach. Earth and Planetary Science Letters, 467: 108~119.

    • Parrish R, Gough S, Searle M, Waters D. 2006. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 34(11): 989~992.

    • Peng Tao, Zeng Lingsen, Gao Lie, Gerdes A, Gao Jiahao, Hu Zhaoping, Wu Chunming. 2018. Metamorphic P-T path and SIMS zircon U-Pb dating of amphibolite of the Namche Barwa complex, southeast Tibet, China. Lithos, 320: 454~469.

    • Peng Tao. 2019. The Cenozoic divergent metamorphism within the Namche Barwa Complex, Eastern Himalayan Syntaxis. Doctoral dissertation of University of Chinese Academy of Sciences.

    • Peng Tao, Gerdes A, Zeng Lingsen, Millonig L J, Albert R, Marko L, Wang H Y C, Wu Chunming. 2022. Divergent metamorphism within theNamche Barwa complex, the Eastern Himalaya, southeast Tibet, China: Insights from in situ U-Th-Pb dating of metamorphic monazite. Journal of Metamorphic Geology, 40(3): 307~328.

    • Rehman H, Kobayash K, Tsujimori T, Ota T, Yamamoto H, Nakamura E, Kaneko Y, Khan T, Terabayashi M, Yoshida K, Hirajima T. 2013. Ion microprobe U-Th-Pb geochronology and study of micro-inclusions in zircon from the Himalayan high- and ultrahigh-pressure eclogites, Kaghan Valley of Pakistan. Journal of Asian Earth Sciences, 63: 179~196.

    • St-Onge M R, Rayner N, Palin R M, Searle M P, Waters D J. 2013. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): Implications for the burial and exhumation path of UHP units in the western Himalaya. Journal of Metamorphic Geology, 31(5): 469~504.

    • Su Wen, Zhang Ming, Liu Xiaohan, Lin Jinfu, Ye Kai, Liu Xin. 2012. Exact timing of granulite metamorphism in the Namche-Barwa, eastern Himalayan syntaxis: New constrains from SIMS U-Pb zircon age. International Journal of Earth Sciences, 101(1): 239~252.

    • Tian Zuolin, Zhang Zeming, Dong Xin. 2016. Metamorphism of high-P metagreywacke from the Eastern Himalayan syntaxis: Phase equilibria and P-T path. Journal of Metamorphic Geology, 34(7): 697~718.

    • Tian Zuolin, Kang Dongyan, Mu Hongchen. 2017. Metamorphic P-T-t path of garnet amphibolite from the Eastern Himalayan Syntaxis: Phase equilibria and zircon chronology. Acta Petrologica Sinica, 33(8): 2467~2478 (in Chinese with English abstract).

    • Tian Zuolin, Zhang Zeming, Dong Xin. 2019. Constraining the age of high-pressure metamorphism of paragneisses from the Eastern Himalayan Syntaxis using zircon petrochronology and phase equilibria. Geological Society, London, Special Publications, 474(1): 331~352.

    • Wang Jiamin, Zhang Jinjiang, Wang Xiaoxian. 2013. Structural kinematics, metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet: Implication for a revised channel flow. Journal of Metamorphic Geology, 31(6): 607~628.

    • Wang Jiamin, Rubatto D, Zhang Jinjiang. 2015. Timing of partial melting and cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya): In-sequencethrusting and its implications. Journal of Petrology, 56(9): 1677~1702.

    • Wang Jiamin, Zhang Jinjiang, Liu Kai, Zhang Bo, Wang Xiaoxian, Rai S, Scheltens M. 2016. Spatial and temporal evolution of tectonometamorphic discontinuities in the Central Himalaya: Constraints from P-T paths and geochronology. Tectonophysics, 679: 41~60.

    • Wang Jiamin, Wu Fuyuan, Zhang Jinjiang, Gautam Khanal, Yang Lei. 2022. The Himalayan collisional orogeny: A metamorphic perspective. Acta Geologica Sinica, 96(9): 3128~3157 (in Chinese with English abstract).

    • Wang Yuhua, Zhang Lifei, Zhang Jinjiang, Wei Chunjing. 2017. The youngest eclogite in Central Himalaya: P-T path, U-Pb zircon age and its tectonic implication. Gondwana Research, 41: 188~206.

    • White R W, Powell R, Holland T J B, Worley B A. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497~511.

    • White R W, Powell R, Holland T J B, Johnson T E, Green E C R. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261~286.

    • Wilke F D H, O'Brien P J, Altenberger U, Konrad-Schmolke M, Khan M A. 2010. Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes. Lithos, 114(1): 70~85.

    • Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).

    • Xiang Hua, Zhang Zeming, Dong Xin, Qi Min, Lin Yanhao, Lei Hengcong. 2013. High-pressure metamorphism and anatexis during the subduction of Indian continent: Phase equilibria modeling of the Namche Barwa complex. Eastern Himalayan Syntaxis. Acta Petrologica Sinica. 29(11): 3792~3802 (in Chinese with English abstract).

    • Xiang Hua, Connolly J A D. 2021. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. Journal of Metamorphic Geology, 40(2): 243~255.

    • Xu Wangchun, Zhang Hongfei, Parrish R, Harris N, Guo Liang, Yuan Honglin. 2010. Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications. Tectonophysics, 485(1-4): 231~244.

    • Xu Zhiqin, Ji Shaocheng, Cai Zhihui, Zeng Lingsen, Geng Quanru, Cao Hui. 2012. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deformation, fabrics and geochronology. Gondwana Research, 21(1): 19~36.

    • Yakymchuk C, Brown M. 2014. Behaviour of zircon and monazite during crustal melting. Journal of the Geological Society, 171(4): 465~479.

    • Yin An. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1): 1~131.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Zhang Dingding, Ding Lin, Chen Yi, Schertl H P, Qasim M, Jadoon U K, Wang Houqi, Li Jinxiang, Zhang Liyun, Yue Yahui. 2022. Two contrasting exhumation scenarios of deeply subducted continental crust in north Pakistan. Geochemistry, Geophysics, Geosystems, 23(2): e2021GC010193.

    • Zhang Dingding, Zhang Heng. 2022. The exhumation mechanism of eclogites in continental orogenic belts: Metamorphic petrology and geophysical constraints. Earth Science Frontiers, 29(1): 303~315 (in Chinese with English abstract).

    • Zhang Zeming, Zhao Guochun, Santosh M, Wang Jinli, Dong Xin, Liou J G. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: Petrology, Zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719~733.

    • Zhang Zeming, Dong Xin, Santosh M, Liu Feng, Wang Wei, Yiu Fei, He Zhenyu, Shen Kun. 2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research, 21(1): 123~137.

    • Zhang Zeming, Dong Xin, Santosh M, Zhao Guochun. 2014. Metamorphism and tectonic evolution of the Lhasa terrane, central Tibet. Gondwana Research, 25(1): 170~189.

    • Zhang Zeming, Xiang Hua, Dong Xin, Ding Huixia, He Zhenyu. 2015. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212: 1~15.

    • Zhang Zeming, Dong Xin, Ding Huixia, Tian Zuolin, Xiang Hua. 2017. Metamorphism and partial melting of the Himalayan Orogen. Acta Petrologica Sinica, 33(8): 2313~2341 (in Chinese with English abstract).

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin, Kang Dongyan, Mu Hongchen, Qin Shengkai, Jiang Yuanyuan, Li Mengmei. 2018. High-temperature metamorphism, anataxis and tectonic evolution of a mafic granulite from the eastern Himalayan orogen. Journal of Earth Science, 29(5): 1010~1025.

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin. 2019. Two contrasting eclogite types in the Himalayan Orogen and differential subduction of Indian continent. Earth Science, 44(05): 1602~1619 (in Chinese with English abstract).

    • Zhang Zeming, Ding Huixia, Palin R M, Dong Xin, Tian Zuolin, Kang Dongyan, Jiang Yuanyuan, Qin Shengkai, Li Wentan. 2021. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Research, 104: 4~22.

    • Zhong Dalai, Ding Lin. 1995. Discovery of high-pressure granulite in Namjiabarwa area, Tibet, China. Chinese Science Bulletin, 40(14): 1343 (in Chinese).

    • 刘凤麟, 张立飞. 2014. 东喜马拉雅构造结高压麻粒岩P-T轨迹、锆石U-Pb定年及其地质意义. 岩石学报, 30(10): 2808~2820.

    • 芦维瑞, 张泽明, 李文坛, 安文涛, 任宏飞, 郭明明, 王迪, 吴双鹏. 2021. 东喜马拉雅构造结泥质高压麻粒岩的锆石和独居石定年与地质意义. 岩石学报, 37(11): 3413~3434.

    • 彭涛. 2019. 东喜马拉雅构造结南迦巴瓦杂岩区新生代差异变质作用. 中国科学院大学, 博士论文.

    • 田作林, 康东艳, 穆虹辰. 2017. 东喜马拉雅构造结石榴角闪岩变质作用P-T-t轨迹: 相平衡模拟与锆石年代学. 岩石学报, 33(8): 2467~2478.

    • 王佳敏, 吴福元, 张进江, Gautam K, 杨雷. 2022. 喜马拉雅碰撞造山过程: 变质地质学视角. 地质学报, 96(9): 3128~3157.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 向华, 张泽明, 董昕, 祁敏, 林彦蒿, 雷恒聪. 2013. 印度大陆俯冲过程中的高压变质与深熔作用: 东喜马拉雅构造结南迦巴瓦杂岩的相平衡模拟研究. 岩石学报, 29(11): 3792~3802.

    • 张丁丁, 张衡. 2022. 全球典型大陆造山带中榴辉岩的折返机制: 来自变质岩和地球物理的限制. 地学前缘, 29(1): 303~315.

    • 张泽明, 董昕, 丁慧霞, 田作林, 向华. 2017. 喜马拉雅造山带的变质作用与部分熔融. 岩石学报, 33(8): 2313~2341.

    • 张泽明, 丁慧霞, 董昕, 田作林. 2019. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲. 地球科学, 44(05): 1602~1619.

    • 钟大赉, 丁林. 1995. 西藏南迦巴瓦峰地区发现高压麻粒岩. 科学通报, 40(14): 1343.

  • 参考文献

    • Booth A L, Zeitler P K, Kidd W S, Wooden J, Liu Y, Idleman B, Hren M, Chamberlain C P. 2004. U-Pb Zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area. American Journal of Science, 304(10): 889~929.

    • Bhadra S, Bhattacharya A. 2007. The barometer tremolite+tschermakite+2albite=2pargasite+8quartz: Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. American Mineralogist, 92(4): 491~502.

    • Ding Huixia, Zhang Zeming, Kohn M J, Gou Zhengbin. 2021. Timescales of partial melting and melt crystallization in the Eastern Himalayan Orogen: Insights from zircon Petrochronology. Geochemistry, Geophysics, Geosystems, 22(4): e2020GC009539.

    • Ding Lin, Zhong Dalai. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China Series D-Earth Sciences, 42(5): 491~505.

    • Ding Lin, Zhong Dalai, Yin An, Kapp P, Harrison T M. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423~438.

    • Donaldson D G, Webb A A G, Menold C A, Kylander-Clark A R C, Hacker B R. 2013. Petrochronology of Himalayan ultrahigh-pressure eclogite. Geology, (8): 835~838.

    • Green E C R, White R W, Diener J F A, Powell R, Holland T J B, Palin R M. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9): 845~869.

    • Guillot S, Mahéo G, de Sigoyer J, Hattori K H, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics Asia Out of Tethys: Geochronologic, Tectonic and Sedimentary Records, 451(1): 225~241.

    • Geng Quanru, Pan Guitang, Zheng Lailin, Chen Zhiliang, Fisher R, Sun Zhiming, Ou Chunsheng, Dong Han, Wang Xiaowei, Li Sheng, Lou Xiongying, Fu Heng. 2006. The eastern Himalayan syntaxis: Major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences, 27(3): 265~285.

    • Guilmette C, Indares A, Hébert R. 2011. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural evidence for partial melting, phase equilibria modeling and tectonic implications. Lithos, 124(1): 66~81.

    • Holland T J B, Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433~447.

    • Holland T J B, Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145(4): 492~501.

    • Holland T J B, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333~383.

    • Kaneko Y, Katayama I, Yamamoto H, Misawa K, Ishikawa M, Rehman Hu, Kausar A B, Shiraishi K. 2003. Timing of Himalayan ultrahigh-pressure metamorphism: Sinking rate and subduction angle of the Indian continental crust beneath Asia. Journal of Metamorphic Geology, 21(6): 589~599.

    • Kang Dongyan, Zhang Zeming, Palin R M, Tian Zuolin, Dong Xin. 2020. Prolonged partial melting of garnet amphibolite from the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of large hot orogens. Journal of Geophysical Research: Solid Earth, 125(6): e2019JB019119.

    • Kohn M J. 2014. Himalayan metamorphism and its tectonic implications. Annual Review of Earth and Planetary Sciences, 42: 381~419.

    • Larson K P, Gervais F, Kellett D A. 2013. A P-T-t-D discontinuity in east-central Nepal: Implications for the evolution of the Himalayan mid-crust. Lithos, 179: 275~292.

    • Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Guo Youzhi. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35: 219~246.

    • Li Qingyun, Zhang Lifei, Fu Bin, Bader T, Yu Huanglu. 2019. Petrology and zircon U-Pb dating of well-preserved eclogites from the Thongmön area in Central Himalaya and their tectonic implications. Journal of Metamorphic Geology, 37(2): 203~226.

    • Liu Fenglin, Zhang Lifei. 2014. High-pressure granulites from Eastern Himalayan Syntaxis: P-T path, zircon U-Pb dating and geological implication. Acta Petrologica Sinica, 30(10): 2808~2820 (in Chinese with English abstract).

    • Liu Yan, Zhong Dalai. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451~466.

    • Liu Yan, Yang Ziqing, Wang Meng. 2007. History of zircon growth in a high-pressure granulite within the Eastern Himalayan Syntaxis, and tectonic implications. International Geology Review, 49(9): 861~872.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Ludwig K R. 2012. Isoplot 4. 15: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication.

    • Lu Weirui, Zhang Zeming, Li Wentan, An Wentao, Ren Hongfei, Guo Mingming, Wang Di, Wu Shuangpeng. 2021. Zircon and monazite dating of pelitic high-pressure granulite in the Eastern Himalayan Syntaxis and geological significance. Acta Petrologica Sinica, 37(11): 3413~3434 (in Chinese with English abstract).

    • Montomoli C, Iaccarino S, Carosi R, Langone A, Visonà D. 2013. Tectonometamorphic discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya): Insights on the exhumation of crystalline rocks. Tectonophysics, 608: 1349~1370.

    • Mukherjee B K, Sachan H K. 2001. Discovery of coesite from Indian Himalaya: A record of ultra-high pressure metamorphism in Indian Continental Crust. Current Science: 1358~1361.

    • O'Brien P J, Zotov N, Law R, Khan M A, Jan M Q. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29(5): 435~438.

    • Palin R, Reuber G, White R, Kaus B, Weller O. 2017. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: An integrated geodynamic and petrological modelling approach. Earth and Planetary Science Letters, 467: 108~119.

    • Parrish R, Gough S, Searle M, Waters D. 2006. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 34(11): 989~992.

    • Peng Tao, Zeng Lingsen, Gao Lie, Gerdes A, Gao Jiahao, Hu Zhaoping, Wu Chunming. 2018. Metamorphic P-T path and SIMS zircon U-Pb dating of amphibolite of the Namche Barwa complex, southeast Tibet, China. Lithos, 320: 454~469.

    • Peng Tao. 2019. The Cenozoic divergent metamorphism within the Namche Barwa Complex, Eastern Himalayan Syntaxis. Doctoral dissertation of University of Chinese Academy of Sciences.

    • Peng Tao, Gerdes A, Zeng Lingsen, Millonig L J, Albert R, Marko L, Wang H Y C, Wu Chunming. 2022. Divergent metamorphism within theNamche Barwa complex, the Eastern Himalaya, southeast Tibet, China: Insights from in situ U-Th-Pb dating of metamorphic monazite. Journal of Metamorphic Geology, 40(3): 307~328.

    • Rehman H, Kobayash K, Tsujimori T, Ota T, Yamamoto H, Nakamura E, Kaneko Y, Khan T, Terabayashi M, Yoshida K, Hirajima T. 2013. Ion microprobe U-Th-Pb geochronology and study of micro-inclusions in zircon from the Himalayan high- and ultrahigh-pressure eclogites, Kaghan Valley of Pakistan. Journal of Asian Earth Sciences, 63: 179~196.

    • St-Onge M R, Rayner N, Palin R M, Searle M P, Waters D J. 2013. Integrated pressure-temperature-time constraints for the Tso Morari dome (Northwest India): Implications for the burial and exhumation path of UHP units in the western Himalaya. Journal of Metamorphic Geology, 31(5): 469~504.

    • Su Wen, Zhang Ming, Liu Xiaohan, Lin Jinfu, Ye Kai, Liu Xin. 2012. Exact timing of granulite metamorphism in the Namche-Barwa, eastern Himalayan syntaxis: New constrains from SIMS U-Pb zircon age. International Journal of Earth Sciences, 101(1): 239~252.

    • Tian Zuolin, Zhang Zeming, Dong Xin. 2016. Metamorphism of high-P metagreywacke from the Eastern Himalayan syntaxis: Phase equilibria and P-T path. Journal of Metamorphic Geology, 34(7): 697~718.

    • Tian Zuolin, Kang Dongyan, Mu Hongchen. 2017. Metamorphic P-T-t path of garnet amphibolite from the Eastern Himalayan Syntaxis: Phase equilibria and zircon chronology. Acta Petrologica Sinica, 33(8): 2467~2478 (in Chinese with English abstract).

    • Tian Zuolin, Zhang Zeming, Dong Xin. 2019. Constraining the age of high-pressure metamorphism of paragneisses from the Eastern Himalayan Syntaxis using zircon petrochronology and phase equilibria. Geological Society, London, Special Publications, 474(1): 331~352.

    • Wang Jiamin, Zhang Jinjiang, Wang Xiaoxian. 2013. Structural kinematics, metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet: Implication for a revised channel flow. Journal of Metamorphic Geology, 31(6): 607~628.

    • Wang Jiamin, Rubatto D, Zhang Jinjiang. 2015. Timing of partial melting and cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya): In-sequencethrusting and its implications. Journal of Petrology, 56(9): 1677~1702.

    • Wang Jiamin, Zhang Jinjiang, Liu Kai, Zhang Bo, Wang Xiaoxian, Rai S, Scheltens M. 2016. Spatial and temporal evolution of tectonometamorphic discontinuities in the Central Himalaya: Constraints from P-T paths and geochronology. Tectonophysics, 679: 41~60.

    • Wang Jiamin, Wu Fuyuan, Zhang Jinjiang, Gautam Khanal, Yang Lei. 2022. The Himalayan collisional orogeny: A metamorphic perspective. Acta Geologica Sinica, 96(9): 3128~3157 (in Chinese with English abstract).

    • Wang Yuhua, Zhang Lifei, Zhang Jinjiang, Wei Chunjing. 2017. The youngest eclogite in Central Himalaya: P-T path, U-Pb zircon age and its tectonic implication. Gondwana Research, 41: 188~206.

    • White R W, Powell R, Holland T J B, Worley B A. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497~511.

    • White R W, Powell R, Holland T J B, Johnson T E, Green E C R. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261~286.

    • Wilke F D H, O'Brien P J, Altenberger U, Konrad-Schmolke M, Khan M A. 2010. Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes. Lithos, 114(1): 70~85.

    • Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).

    • Xiang Hua, Zhang Zeming, Dong Xin, Qi Min, Lin Yanhao, Lei Hengcong. 2013. High-pressure metamorphism and anatexis during the subduction of Indian continent: Phase equilibria modeling of the Namche Barwa complex. Eastern Himalayan Syntaxis. Acta Petrologica Sinica. 29(11): 3792~3802 (in Chinese with English abstract).

    • Xiang Hua, Connolly J A D. 2021. GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. Journal of Metamorphic Geology, 40(2): 243~255.

    • Xu Wangchun, Zhang Hongfei, Parrish R, Harris N, Guo Liang, Yuan Honglin. 2010. Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications. Tectonophysics, 485(1-4): 231~244.

    • Xu Zhiqin, Ji Shaocheng, Cai Zhihui, Zeng Lingsen, Geng Quanru, Cao Hui. 2012. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deformation, fabrics and geochronology. Gondwana Research, 21(1): 19~36.

    • Yakymchuk C, Brown M. 2014. Behaviour of zircon and monazite during crustal melting. Journal of the Geological Society, 171(4): 465~479.

    • Yin An. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1): 1~131.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Zhang Dingding, Ding Lin, Chen Yi, Schertl H P, Qasim M, Jadoon U K, Wang Houqi, Li Jinxiang, Zhang Liyun, Yue Yahui. 2022. Two contrasting exhumation scenarios of deeply subducted continental crust in north Pakistan. Geochemistry, Geophysics, Geosystems, 23(2): e2021GC010193.

    • Zhang Dingding, Zhang Heng. 2022. The exhumation mechanism of eclogites in continental orogenic belts: Metamorphic petrology and geophysical constraints. Earth Science Frontiers, 29(1): 303~315 (in Chinese with English abstract).

    • Zhang Zeming, Zhao Guochun, Santosh M, Wang Jinli, Dong Xin, Liou J G. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: Petrology, Zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719~733.

    • Zhang Zeming, Dong Xin, Santosh M, Liu Feng, Wang Wei, Yiu Fei, He Zhenyu, Shen Kun. 2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research, 21(1): 123~137.

    • Zhang Zeming, Dong Xin, Santosh M, Zhao Guochun. 2014. Metamorphism and tectonic evolution of the Lhasa terrane, central Tibet. Gondwana Research, 25(1): 170~189.

    • Zhang Zeming, Xiang Hua, Dong Xin, Ding Huixia, He Zhenyu. 2015. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212: 1~15.

    • Zhang Zeming, Dong Xin, Ding Huixia, Tian Zuolin, Xiang Hua. 2017. Metamorphism and partial melting of the Himalayan Orogen. Acta Petrologica Sinica, 33(8): 2313~2341 (in Chinese with English abstract).

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin, Kang Dongyan, Mu Hongchen, Qin Shengkai, Jiang Yuanyuan, Li Mengmei. 2018. High-temperature metamorphism, anataxis and tectonic evolution of a mafic granulite from the eastern Himalayan orogen. Journal of Earth Science, 29(5): 1010~1025.

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin. 2019. Two contrasting eclogite types in the Himalayan Orogen and differential subduction of Indian continent. Earth Science, 44(05): 1602~1619 (in Chinese with English abstract).

    • Zhang Zeming, Ding Huixia, Palin R M, Dong Xin, Tian Zuolin, Kang Dongyan, Jiang Yuanyuan, Qin Shengkai, Li Wentan. 2021. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Research, 104: 4~22.

    • Zhong Dalai, Ding Lin. 1995. Discovery of high-pressure granulite in Namjiabarwa area, Tibet, China. Chinese Science Bulletin, 40(14): 1343 (in Chinese).

    • 刘凤麟, 张立飞. 2014. 东喜马拉雅构造结高压麻粒岩P-T轨迹、锆石U-Pb定年及其地质意义. 岩石学报, 30(10): 2808~2820.

    • 芦维瑞, 张泽明, 李文坛, 安文涛, 任宏飞, 郭明明, 王迪, 吴双鹏. 2021. 东喜马拉雅构造结泥质高压麻粒岩的锆石和独居石定年与地质意义. 岩石学报, 37(11): 3413~3434.

    • 彭涛. 2019. 东喜马拉雅构造结南迦巴瓦杂岩区新生代差异变质作用. 中国科学院大学, 博士论文.

    • 田作林, 康东艳, 穆虹辰. 2017. 东喜马拉雅构造结石榴角闪岩变质作用P-T-t轨迹: 相平衡模拟与锆石年代学. 岩石学报, 33(8): 2467~2478.

    • 王佳敏, 吴福元, 张进江, Gautam K, 杨雷. 2022. 喜马拉雅碰撞造山过程: 变质地质学视角. 地质学报, 96(9): 3128~3157.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 向华, 张泽明, 董昕, 祁敏, 林彦蒿, 雷恒聪. 2013. 印度大陆俯冲过程中的高压变质与深熔作用: 东喜马拉雅构造结南迦巴瓦杂岩的相平衡模拟研究. 岩石学报, 29(11): 3792~3802.

    • 张丁丁, 张衡. 2022. 全球典型大陆造山带中榴辉岩的折返机制: 来自变质岩和地球物理的限制. 地学前缘, 29(1): 303~315.

    • 张泽明, 董昕, 丁慧霞, 田作林, 向华. 2017. 喜马拉雅造山带的变质作用与部分熔融. 岩石学报, 33(8): 2313~2341.

    • 张泽明, 丁慧霞, 董昕, 田作林. 2019. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲. 地球科学, 44(05): 1602~1619.

    • 钟大赉, 丁林. 1995. 西藏南迦巴瓦峰地区发现高压麻粒岩. 科学通报, 40(14): 1343.