-
大陆的伸展和岩石圈的破裂同时控制着被动大陆边缘地壳的减薄过程、不同构造单元带内的沉积结构变化以及岩浆的供给。被动大陆边缘同裂陷和裂后盆地的研究主要集中于其伸展的属性,如纯剪切或简单剪切(Lister et al.,1986; Manspeizer et al.,1988; Hendrie et al.,1994; Kusznir et al.,1996; Morley,1999; Watcharanantakul et al.,2000)、古地貌(Olsen,1990; Carroll et al.,1999; Lin et al.,2001)、沉积环境(Madon et al.,2013; Liu et al.,2016)等,这些丰富的信息记录在盆地内部。近年来,由于横跨共轭被动大陆边缘的深-长地震剖面的数量和品质不断提升,为学者们研究被动陆缘裂谷盆地的相关构造、地壳结构、以及岩浆供给等方面都提供了十分珍贵的数据。
-
前人在南海陆缘的研究认为,其打开方式为“剪刀式”扩张,在这种扩张模式下,扩张极点远离扩张中心,当停止扩张时,形成V型盆地(Le Pourhiet et al.,2018)。同时,在这种“剪刀式”扩张的影响下,南海陆缘发生地壳减薄及破裂的过程,周围裂谷盆地的发育、演化时间及形成的盆地类型均对“剪刀式”扩张有所响应。前人通过研究发现,在南海扩张的过程中,南海的破裂过程表现为自陆向洋、自东向西的迁移现象(任建业等,2015,2018),但陆缘盆地内构造-地层-岩浆的具体响应方式仍未明确。本文将通过两条南海陆缘的地震剖面,展示裂谷边缘盆地的地层结构、构造、岩浆等信息,其中一条剖面横跨南海西南次海盆V型尖端共轭边缘,另一条剖面位于南海北部陆缘,为了更清晰地展示伸展构造的侧向迁移,地震剖面及相关解释会呈现在一起,从而将横跨南海东部次海盆与横跨南海西南次海盆的地震剖面及盆地结构构造进行对比,以诠释南海陆缘伸展破裂过程中的构造迁移和盆地演化。
-
1 区域地质概况
-
南海位于欧亚板块、印度-澳大利亚板块和太平洋板块三大板块的交汇处(图1),在晚始新世开始的全球板块运动重组事件中,南海地区的形成受印度板块和欧亚板块的碰撞-挤出作用以及太平洋板块对欧亚板块俯冲作用的影响,具有复杂的地球动力学背景(李学杰等,2020)。自三叠纪开始,南海一直处于古太平洋俯冲引起的汇聚环境中,从古近纪开始,由于古太平洋板块俯冲后撤,南海所处的古应力场由挤压转变为伸展(Taylor et al.,1980),导致早期隆起的高部位局部发生剥蚀或形成小型的裂陷。进入新生代,盆地开始发育一系列的伸展构造,包括后期在南海陆缘发现的低角度拆离断层(Larsen et al.,2018; Zhao et al.,2018)。在新生代,南海主要发育了两期裂陷: ① 早古新世至始新世,陆缘广泛发育小型断陷盆地; ② 晚始新世至早中新世,该期裂谷事件最终使得海底扩张和南海形成(Cullen et al.,2010)。
-
图1 南海区域地质概况及其在东南亚的位置图
-
Fig.1 Map of the South China Sea and its location in SE Asia
-
OCT的位置参照Song et al.(2019); 磁异常条带位置参考Briais et al.(1993); NWSB—西北次海盆; ESB—东部次海盆; SWSB—西南次海盆; ZJN—中建南盆地; WA—万安盆地; NS—南沙地块; SI—分散海岛; LY—礼乐盆地; XT—西沙海槽
-
The location of the OCT is adapted from Song et al. (2019) ; the magnetic anomaly is adapted from Briais et al. (1993) ; NWSB—northwest sub-basin of the South China Sea; ESB—east sub-basin the South China Sea; SWSB—southwest sub-basin of the South China Sea; ZJN—Zhongjiannan basin; WA—Wanan basin; NS—Nansha block; SI—Spratly Island; LY—Liyue basin; XT—Xisha Trough
-
南海的洋盆可以划分为西北次海盆、东部次海盆、西南次海盆(图1),有关南海的打开模式, Taylor et al.(1980)和Briais et al.(1993)提出,南海磁异常数据显示海底的扩张发生于32~16 Ma,并且认为南海的打开首先在东部次海盆发生自东向西的扩张,随后在23 Ma左右发生洋脊跃迁,扩张中心转移到了西南次海盆,并且扩张方向也转变为北东-南西向(Briais et al.,1993; Ding et al.,2018,2020; Song et al.,2019; Jourdon et al.,2020)。有关23 Ma左右的洋脊跃迁,Le Pourhiet et al.(2018)和Jourdon et al.(2020)通过数值模拟提出,32~23 Ma期间东西向的迁移存在一个由构造应力荷载引起的“停滞期”,当应力场的边界发生变化时,这个“停滞期”则会消失,最终形成从23~16 Ma北东-南西向的海底扩张。至于南海洋脊跃迁的具体起因,目前尚存在争议。IODP349航次获取的磁异常数据、367航次和368航次的地震、测井数据均验证了Taylor et al.(1980)和Briais et al.(1993)提出的观点,即海底扩张期发生于渐新世至中新世(Li et al.,2014,2015)。Cullen et al.(2010)研究发现南海扩张停止与巴拉望—婆罗洲—民都洛之间的碰撞时间一致,认为这次碰撞事件导致了南海扩张的停止。因此,南海东部次海盆的扩张始于~32 Ma,结束于~16 Ma;南海西南次海盆的扩张始于南海洋脊跃迁后的~23 Ma,同样停止于~16 Ma。本文提供的测线将横跨南海东部次海盆及南海西南次海盆共轭陆缘,其记录了由陆壳向洋壳转变的过渡带内发育的盆地结构、构造(图1)。
-
2 洋陆转换带构造单元带划分及构造样式
-
洋陆转换带指正常的陆壳与正常的洋壳之间的过渡带,简称OCT(ocean continental transition)(Minshull et al.,1998)。20世纪90年代开始,科学家通过地质地球物理资料观察发现,尽管被动大陆边缘在形态、岩浆和沉积物方面具有很强的差异性,但所有被动边缘在一级构造上都具有相似性。通过对全球被动陆缘的研究,发现可以依据地壳厚度、断层类型、Moho面变化等识别出近端带、细颈化带及远端带(Manatschal,2004; Reston,2009; Masini et al.,2011; Haupert et al.,2016),其中近端带内地壳厚度约为30~35 km,细颈化带内地壳厚度约为10~25 km,远端带内地壳厚度小于10 km。Chenin et al.(2017)以“一级界面”,即海底、基底、Moho面之间的相互关系和地壳几何形态为基准,将OCT划分为近端带和远端带。由于本文所选取两条测线中初始地壳厚度差异较大,测线A所在的南海北部陆缘初始地壳厚度为30~35 km(Zhao et al.,2018),而测线B所在的南海西南次海盆V型尖端初始地壳厚度为20~25 km,本文将沿用Chenin et al.(2017)的划分方案,将被动陆缘依据“一级界面”之间的相互关系划分为近端带和远端带。因此,近端带内地壳形态表现为箱型,地壳厚度在近端带内基本保持不变,基底、Moho面及海底界面基本保持平行(图2a);在远端带内,地壳形态表现为楔形,地壳厚度在远端带内发生强烈减薄,基底、Moho面及海底界面向最终发生海底扩张的方向发生汇聚,在最终地壳破裂的地方,Moho面和基底界面近乎相交(图2a)。
-
图2 OCT构造单元带划分(a)和典型构造样式(b弱伸展型盆地、c强烈伸展型盆地)(据Dore et al.,2015; Chenin et al.,2017; Tugend et al.,2018修改)
-
Fig.2 Different domains at the ocean continental transition (a) and the classic architectures within the domains (b, weak extension basin; c, hyper-extension basin) (modified after Dore et al., 2015; Chenin et al., 2017; Tugend et al., 2018)
-
不同构造单元带内,盆地构造-地层格架差异巨大。在近端带内,主要发育弱伸展型盆地,发育经典的裂谷构造,以高角度正断层和倾斜断块分隔的地堑、半地堑为特征,盆地内发育楔形沉积层,近端带伸展量较小,因此地壳厚度只是些许减薄(图2b);相反,在远端带内,主要发育强伸展型盆地,盆地内发育低角度拆离断层,断层及其下盘有时会剥露于海底(Tugend et al.,2015; Luo et al.,2021),由于这类断层可以产生极大的可容纳空间,并且使地壳发生强烈薄化,它们常发育在强烈伸展陆缘远端的大型沉积盆地底部(图2c),这种强伸展型盆地也被称作“大型拆离盆地”,常见于一些深水裂谷边缘,如伊比利亚边缘、安哥拉陆缘(Peron-Pinvidic et al.,2007,2013; Unternehr et al.,2010)。
-
3 横跨南海共轭陆缘测线揭示的地震特征、地壳厚度变化及盆地样式
-
3.1 地震特征
-
为了更清晰地解读南海陆缘洋陆转换带内地壳结构、地层结构-构造信息,本文分别选择了跨南海东部次海盆长剖面和跨南海西南次海盆长剖面。盆地的基底界面Tb指新生代岩石圈开裂不整合界面,为地震基底,基底之下包括了新生代裂陷之前的物质,而不是区分结晶地壳和沉积物的物质界面;SD界面为大型拆离断层开始活动界面,拆离断层活动之前沉积地层为T1;PD界面为拆离断层停止活动界面,拆离断层活动时期沉积地层为T2;Bi为岩石圈最终裂解的响应界面,拆离断层活动之后而岩石圈最终裂解之前沉积地层为T3。
-
3.1.1 横跨东部次海盆测线A
-
测线A记录了横跨北部白云凹陷、荔湾凹陷,南部西北巴拉望边缘,长度超过350 km长的减薄地壳,地壳时间域厚度为2~8 s双程旅行时(图3),对应的深度域厚度约为6~25 km,与南海其他陆缘记录的减薄或强烈减薄地壳厚度类似(Savva et al.,2013,2014; Lei et al.,2016,2018,2019; Cameselle et al.,2020; Nirrengarten et al.,2020)。在测线的NW端(10~150 km处),由陆向洋Moho面逐渐抬升,基底面先呈现抬升趋势,至测线10~150 km处,后逐渐下降至约7 s 双程反射时),红色低角度断层与抬升的Moho面在向洋一侧(145 km左右)发生汇聚,为远端带。在进入正常洋壳之后Moho面逐渐趋于平稳,与基底界面基本保持平行,进入洋区。在测线的SE端,Moho面在一定区域内变化很小,不超过1 s双程旅行时(280~360 km处),在近端带(300~360 km)范围内,基底与Moho面基本保持平行,在远端带内(280~300 km处)二者逐渐汇聚。在基底顶界面(280~360 km处),一系列高角度正断层限定了盆地的边缘,在测线的SE端(图3,蓝色断层),这些断层与同裂陷沉积的底部地层密切相关,本文将该套地层定义为T1,即早期高角度正断层活动期间控制的同沉积地层。在280~360 km范围内,高角度断层几乎停止于6 s双程旅行时对应的深度以上。从250~280 km,Moho面迅速变浅,抬升到接近8 s双程旅行时对应的深度。而断距超过3 s双程旅行时对应距离的断层(10~150 km,260~300 km处),断层所限定的断块能深入到7~8 s双程旅行时对应深度(图3,红色断层),通常将南海陆缘发现的这种大型的低角度正断层定义为拆离断层。在拆离断面或滑脱面附近,发育一系列水平反射(120~150 km,8 s 双程旅行时对应位置),而这些水平反射上部的断块,常由拆离断层控制,在地壳中发生旋转,因此在同裂陷时期,产生大量的可容纳空间(如50 km处)。但是由于噪音、基底多次波等的影响,在测线东南端,拆离断层的反射并不明显(250~300 km处)。
-
在沉积盆地内部(0~100 km),可以识别出2 s 双程旅行时、近4 km厚的沉积层,表现为强振幅反射特征,但是这套地层在向海一侧振幅能量逐渐减小,直至消失。这种拆离断层控制的同裂陷沉积,本文定义为T2地层,表现为向低角度正断层稍微发生地层的增厚。该时期沉积的地层远厚于早期T1地层。T2地层之上的亮黄色地层定义为T3地层,在25~80 km处可见,T3地层表现为双向上超现象,沉积中心受断层影响较小。因此常将T3地层定义为拆离断层活动停止之后、由断陷向坳陷转变时期形成的地层,即断坳转换期地层。T3之上的界面可追踪到稳定扩张的海底的第一个界面,定义为破裂不整合面,T3之上发育裂后地层,表现为水平、近水平反射地层,断层活动几乎停止。
-
3.1.2 横跨西南次海盆测线B
-
测线B横跨南海西南次海盆V型尖端,长度近500 km,由北向南经过了中建南盆地南部陆缘、西南次海盆和南沙地块,展示了南海西南部共轭陆缘的部分盆地形态。测线B地壳厚度和断层形态与测线A的类似。Moho面在近端带表现为近水平状态(0~50 km,360~420 km),同时基底面也表现为近水平状态,与Moho面几乎平行发育,地壳厚度维持稳定。进入远端带(50~90 km,320~360 km)内,Moho面发生显著提升,海底和基底界面也逐渐下降,与Moho面组成楔形状态,地壳厚度逐渐减小,直到减小为0。早期的高角度正断层(图4,蓝色断层)断距一般较小,而拆离断层(图4,红色断层),断距高达3 s双程旅行时对应距离,盆地深入到~8 s双程旅行时对应深度。
-
图3 过南海(SCS)东部共轭边缘测线A地震剖面(a)、素描剖面及基底Tb和Moho面的解释方案(b)、内部反射界面及断层的解释方案(c)(位置见图1)
-
Fig.3 Time migrated reflection seismic profile A across the east conjugate margin of South China Sea (SCS) (a) , line drawing and interpretation of top (Tb) basement and Moho (b) , interpretation of interfaces and faults of the section (c) (see Fig.1 for profile locations)
-
早期形成的同裂陷沉积(即T1地层)在近端带与测线A中近端带中的T1地层类似,均向蓝色的高角度正断层增厚,表现为楔形形态。在10~40 km范围内,7~8 s双程旅行时深度上,发育一系列强振幅、不连续反射,认为是中下地壳物质,高角度正断层终止于该套反射顶部;在50~90 km和320~360 km的远端带内,T2地层的厚度较T1地层厚,在地壳岩石圈破裂之前,即形成稳定海底之前,主要的沉降发生在T2时期。T2地层整体向拆离断层增厚,在T2地层内部,发育了一系列向沉积中心倾斜、被T2地层截断的早期断层,并且和拆离断层在近似的深度停止发育。T2之上为T3地层,在近端带T3地层表现为水平、近水平反射,几乎不受断层影响。但是在远端带(75~90 km,325~340 km处),T3地层和岩浆物质表现出“手指状”交叉接触,表明在T3地层沉积的同时,内部岩浆物质开始喷出,向陆一侧表现为T3地层的沉积,向洋一侧表现为岩浆物质上涌。在此构造单元带内(50~90 km处),可见7~8 s 双程旅行时对应位置发育的强振幅、不连续反射的韧性层沿着大洋方向逐渐减薄,拆离断层深入韧性层内,在90 km处与韧性层底部重合,此时韧性层厚度几乎减薄为0,表明中下地壳在此处几乎消失。T3以上或岩浆物质以上为裂后沉积,断层活动几乎停止。
-
3.2 南海洋陆转换带内的构造变形追踪
-
近年来,为了探明洋陆转换带内构造变形迁移的时间-空间关系,学者们常采用构造变形追踪法,通常又叫做“wheeler diagram”法,这种方法有效地阐明了构造和相关沉积体随伸展时空迁移的特性,如在伊比利亚-纽芬兰边缘(Masini et al.,2011; Ribes et al.,2019)。为研究构造变形在南海陆缘共轭剖面上不同构造单元带内的演化,本文将同样用“wheeler diagram”方法追踪在T1、T2、T3这三个不同的地层单元内,同构造和构造后地层的分布。此外,在本文中将引用“同构造(syn-tectonic)”地层概念,指在某一构造单元带内,由构造活动控制所沉积的地层,“构造后(post-tectonic)”地层,指在某一构造单元带内,断层等构造活动停止后所沉积的地层(Masini et al.,2011; Ribes et al.,2019)。Péron-Pinvidic et al.(2007)、Masini et al.(2011)和Ribes et al.(2019)的研究均表明,在被动大陆边缘伸展破裂过程中,同构造地层单元在不同构造带内是“穿时”的,沿着贫岩浆裂谷边缘的古特提斯和伊比利亚远端向大洋方向逐渐变年轻,通过追踪“同构造”地层单元在不同构造带内的时间和结构,从而在“wheeler diagram”和平面图中显示同构造地层单元沿地壳减薄方向的年龄变化,结果如图5所示。
-
图4 过南海西南次海盆共轭边缘测线 B地震剖面(a)、素描剖面及基底Tb和Moho面的解释方案(b)、内部反射界面及断层的解释方案(c)、局部信息放大图(d、e)(位置见图1)
-
Fig.4 Time migrated reflection seismic profile B across the southwest conjugate margin of SCS (a) , line drawing and interpretation of top basement and Moho (b) , interpretation of interfaces and faults of the section (c) , detail information for part of the seismic line (d, e) (see Fig.1 for profile locations)
-
在测线A近端带内,高角度正断层控制地层为T1,因此T1为同构造地层。而在远端带内,T1地层沿着拆离断层发生旋转,地层厚度不受拆离断层作用控制,T2地层向拆离断层方向增厚,表现为同构造单元,同构造地层和构造后地层的边界向洋方向逐渐迁移。在T3阶段时,远端带内已进入断坳转换期,拆离断层活动停止,但是向洋一侧并未产生稳定的海底扩张,因此此时主要的同构造活动集中于新产生的原洋洋壳域。由于在近端带内,T2地层、T3地层以及裂后地层之间的接触关系为整合接触,很难在这个构造带内确定岩石圈破裂的时间。但是如果需要选择一个界面,则为T2地层和T3地层之间的PD界面,在远端带内区分同构造地层T2和构造后地层T3,T2界面之后拆离断层停止活动,地壳岩石圈开始发生破裂(任建业等,2018),但岩石圈的破裂并不是瞬时的。裂后地层的底界面标志着裂陷作用的停止,以及覆盖在新产生洋壳/原洋洋壳之上的的第一个界面,此时开始产生稳定海底扩张。前人研究认为近端带内T1地层的顶界面和远端带内T3地层的顶界面是同一界面,并将其定义为破裂不整合界面。这种解释方案认为,在整个陆缘,所有的同构造地层都是同样时间的,“同构造”和“同裂陷”也是同样一套地层,和McKenzie(1978)提出的深度相关纯剪切模型类似。
-
图5 测线A(a)及测线B(b)的构造-地层演化及相关的“wheeler diagram”追踪
-
Fig.5 Schematic tectono-sedimentary evolution and associated tracts represented in a “wheeler diagram” for line A (a) and line B (b)
-
顶部图层显示不同构造单元带内沉积-构造-岩浆结构;中间图层显示同构造地层单元由陆向洋迁移;底部图层显示测线A的解释方案
-
The upper panel shows the sediment magmatic-tectonic architecture at different domains; the middle panel shows the syn-tectonic packages migrating from the continent towards the ocean; the lower panel shows the interpretation of line A
-
在测线B近端带内同构造地层为T1,表现为向断层一侧的地层厚度增加。由于后期伸展作用及岩浆作用的影响,在远端带内T1地层的形态并不是十分清晰,T2地层的底部表现为同构造单元,而T2的上部地层向洋方向显示为构造后地层和底超的特征。同构造地层和构造后地层的边界向洋方向逐渐迁移。第一个构造后的地层或直接覆盖在剥露断层之上,或覆盖在剥露地壳之上。岩浆的产生和T3地层的沉积是同时进行的,由于在整个剖面内,T3地层都表现为构造后地层,认为T3地层的沉积和岩浆的增生以及地壳的破裂是同时的(Masini et al.,2011)。因此在测线B中,构造活动由近端带内的T1时期向远端带内的T2时期迁移,其活动的方向同样是表现为由陆向洋逐渐在变年轻。
-
南海洋陆转换带内,不同构造单元带指示着不同的地壳流变学特征。在近端带内,多发育以高角度正断层控制的地堑、半地堑盆地,高角度断层一般停止于上地壳在深度范围内,此时岩石圈的变形主要为纯剪切变形(Peron-Pinvidic et al.,2010; 任建业等,2018),同构造地层形成于T1时期;在远端带内,多发育以低角度拆离断层控制的拆离盆地,低角度断层一般深入至下地壳,终止于Moho面,此时岩石圈的变形主要为简单剪切变形,同构造地层形成于T2时期。从靠近陆地一侧的近端带向靠近大洋一侧的远端带,“同构造”地层在逐渐变年轻,构造活动向洋迁移。
-
4 讨论
-
4.1 南海陆缘不同构造单元带盆地原型对比研究
-
在过南海东部共轭陆缘测线A中,裂陷作用开始时间为Tb(~65 Ma),裂陷作用停止界面为Bi(~32 Ma)(Briais et al.,1993),大型拆离断层开始活动时间为58 Ma左右,停止活动时间为42 Ma左右(Zhao et al.,2018)。在过南海西南次海盆共轭陆缘测线B中,裂陷作用开始的时间确定为T1地层的底界面(~45 Ma)(Ding et al.,2015,2016),裂陷作用停止的时间为T3地层的顶界面(16 Ma)(Yao et al.,2012; Peng et al.,2019,2020; Chang et al.,2022),大型拆离断层开始活动时间为~32 Ma,停止活动时间为~23 Ma(Luo et al.,2021)。结合前文对测线A、测线B的解释及构造变形追踪结果发现,在裂谷边缘OCT内盆地构造形态尽管展现了由陆向洋的变化,同一地层阶段(T1、T2、T3)在时间上有所差异,但在同一地层阶段,不同区域盆地原型仍具有可对比性。
-
南海陆缘不同构造单元带构造-地层特征可总结为:在T1地层内,断层作用主要以高角度正断层为主,仅作用于上地壳,所记录的盆地类型为高角度正断层限定的深断陷盆地(Wang et al.,2019; 孙珍,2022),但在南海东部,该深断陷盆地发育时间约为65~58 Ma,在南海西部其发育时间约为45~32 Ma;在T2地层内,断层作用以低角度的拆离作用为主,所记录的盆地类型为低角度拆离断层限定的拆离盆地(Wang et al.,2019; 孙珍,2022),在南海东部和西部,拆离盆地发育时间分别为58~42 Ma和32~23 Ma,但所记录的拆离盆地原型有一定差异,在南海东部的白云凹陷,经历减薄阶段将形成废弃裂谷,拆离盆地以低角度断层为控盆边界,记录在凹陷内;而在南海西南部,研究区将形成海底扩张中心,拆离盆地持续伸展,最终岩浆倾入。在T3地层内,断层活动停止,盆地进入断坳转换期,南海东部的断坳转换期为42~32 Ma,而南海西部的断坳转换期为23~15 Ma。因此在南海东部共轭陆缘(测线A所处部分)和南海西南部(测线B所处部分),尽管裂陷阶段的时间有一定差异,但是其记录的盆地原型具有一致性(图6)。T3地层沉积之后,南海东部次海盆经历了海底南北向的扩张,洋脊跃迁之后,海底扩张方向改变为北西-南东向;南海西南次海盆的V型尖端则未经历正常的海底扩张阶段(Luo et al.,2021)。
-
4.2 岩石圈伸展变形的时间-空间迁移演化
-
岩石圈伸展变形的迁移除了沿着洋盆扩张方向,同时会沿着洋盆走向发生应力集中。通过对南海洋陆转换带内不同构造单元带的划分,对比在南海东部测线A和南海西南次海盆V型尖端测线B中同一构造单元带内的“同构造”地层的年龄发现,在同一构造单元带内,“同构造”地层向洋中脊扩张方向变年轻,伸展变形沿着海底扩张方向集中和迁移。在岩石圈伸展模式的基础上,结合盆地构造演化过程研究,可以将南海岩石圈伸展破裂过程划分为以下阶段:
-
图6 沿南海陆缘的穿时构造-地层图
-
Fig.6 Tectono-stratigraphic chart along the SCS margins
-
伸展阶段:在南海临界破裂区的裂陷作用之前(Tb之前),由于西太平洋的俯冲作用,使南海临界破裂区的岩石圈发生一定程度的减薄作用(Zhang et al.,2021)。之后进入早期伸展阶段(即T1时期),尽管地壳属性由于早期的俯冲作用具有一定的继承性,岩石圈变形仍然为纯剪切模式,表层发育受高角度正断层控制的地堑、半地堑,变形范围分布较广。早期形成的基底(Tb)由于高角度正断层的作用被分割为多段,但水平断距均较小。该类盆地主要保存在近端带内,如现今的南沙地块(如图4测线南端近端带所记录的区域)。地壳包含脆性上地壳和韧性下地壳。Lavier et al.(2006)的数值模拟发现,高角度正断层一般切穿脆性上地壳,而终止于韧性下地壳内,岩石圈的变形为非耦合状态。
-
减薄阶段:在晚期伸展阶段(T2阶段),伸展变形开始逐渐集中于裂谷中心,如白云凹陷、中建南盆地、荔湾凹陷等盆地(Dore et al.,2015; 任建业等,2018; Chang et al.,2022),开始形成切穿整个地壳的大型拆离断层,该类拆离断层控制了地壳的强烈减薄,形成强烈减薄地壳。在不同构造单元带的平面图上,变形集中于新产生的远端带。早期形成的基底界面和T1地层底界面,由于拆离断层的作用,形成具有较大水平距离的多个区段。地壳变形具有不对称性,在共轭边缘形成具有不同断层样式的上盘边缘和下盘边缘。此时由于断层切穿了整个地壳,地壳流变学特征发生改变,脆/韧性转换面由早期的上、下地壳分界面转变为壳、幔分界面,岩石圈为耦合变形(Zhao et al.,2018)。
-
破裂阶段:当地壳减薄到一定程度时(T3阶段),由于岩浆作用的活跃,伸展变形迁移至地壳最终破裂的地方,形成最终的海底扩张中心,此时岩浆与地层变现为“鳄鱼嘴”式接触关系(Tugend et al.,2018),即部分岩浆侵入同沉积地层,部分岩浆聚集于地幔顶部(图3,图4)。而早期的裂谷中心(如白云凹陷和中建南盆地),由于应力的迁移,进入断坳转换阶段,断层活动几乎停止,形成废弃的裂谷中心。在不同构造单元带的平面图上,变形在南海海盆东部集中于形成的原洋洋壳域或洋壳,在南海海盆西部区段,集中于形成的远端带内。因此变形即沿着岩石圈伸展方向发生迁移和集中,同时沿着海底扩张方向发生迁移和集中。
-
图7 南海陆缘时间-空间构造迁移演化剖面
-
Fig.7 Time-space evolution of the SCS margins
-
5 结论
-
(1)通过对比同一条剖面不同构造单元带内同构造地层的年龄发现,岩石圈伸展变形从陆向洋逐渐变年轻;通过对比东部次海盆共轭边缘测线A和西南次海盆V型裂谷测线B发现,同一构造单元带内的同构造地层从北东向南西逐渐变年轻:近端带记录了高角度正断层限定的断陷盆地,在东部侧线A中的同构造地层发育于约65~58 Ma,在西南部测线B中的同构造地层发育于约45~32 Ma;远端带记录了低角度拆离断层控制的拆离盆地,在东部侧线A中的同构造地层发育于约65~42 Ma,在西南部测线B中的同构造地层发育于约45~23 Ma。因此,岩石圈伸展变形的迁移除了从陆向洋,同时会沿着洋盆走向发生应力集中。
-
(2)南海海盆的扩张时期为32~16 Ma,且表现为自东向西区段式扩张,意味着岩石圈的裂解也表现为东早西晚的时空变化规律。在这一时空格架下,南海北部陆缘和南海西南次海盆陆缘岩石圈的伸展破裂过程均经历了早期的伸展阶段,进而到减薄阶段,最后发生岩石圈的破裂,形成现今南海的格局。
-
参考文献
-
Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth (1978—2012), 98(B4): 6299~6328.
-
Cameselle A L, Ranero C R, Barckhausen U. 2020. Understanding the 3D formation of a wide rift: The central South China sea rift system. Tectonics, 39(12): e2019TC006040.
-
Carroll A R, Bohacs K M. 1999. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27: 99~102.
-
Chang Shungping, Pubellier M, Delescluse M, Yan Qiu, Michael N, Geoffroy M, Nicolas C R, Yao Liang. 2022. Crustal architecture and evolution of the southwestern South China Sea: Implications to continental breakup. Marine and Petroleum Geology, 136: 105~450.
-
Chenin P, Manatschal G, Picazo S, Müntener O, Karner G D, Johnson C, Ulrich M. 2017. Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans. Geosphere, 13(2): 1~18.
-
Cullen A, Reemst P, Henstra G, Gozzard S, Ray A. 2010. Rifting of the South China Sea: New perspectives. Petroleum Geoscience, 16(3): 273~282.
-
Ding Weiwei, Li Jiabiao, Dong Congzhi, Fang Yinxia. 2015. Oligocene-Miocene carbonates in the Reed Bank area, South China Sea, and their tectono-sedimentary evolution. Marine Geophysical Research, 36(2-3): 149~165.
-
Ding Weiwei, Li Jiabiao, Clift P D. 2016. Spreading dynamics and sedimentary process of the Southwest Sub-basin, South China Sea: Constraints from multi-channel seismic data and IODP expedition 349. Journal of Asian Earth Sciences, 115: 97~113.
-
Ding Weiwei, Sun Zhen, Dadd K, Fang Yinxia, Li Jiabiao. 2018. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes. Earth and Planetary Science Letters, 488: 115~125.
-
Ding Weiwei, Sun Zhen, Mohn G, Nirrengarten M, Tugend J, Manatschal G, Li Jiabiao. 2020. Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367 & 368 drilling results. Earth and Planetary Science Letters, 531: 115~932.
-
Doré T, Lundin E. 2015. Research focus: Hyperextended continental margins-knowns and unknowns. Geology, 43(1): 95~96.
-
Haupert I, Manatschal G, Decarlis A, Unternehr P. 2016. Upper-plate magma-poor rifted margins: Stratigraphic architecture and structural evolution. Marine and Petroleum Geology, 69: 241~261.
-
Hendrie D B, Kusznir N J, Morley C K, Ebinger C J. 1994. Cenozoic extension in northern Kenya: A quantitative model of rift basin development in the Turkana region. Tectonophysics, 236: 409~438.
-
Jourdon A, Le Pourhiet L, Mouthereau F, May D. 2020. Modes of propagation of continental breakup and associated oblique rift structures. Journal of Geophysical Research: Solid Earth, 125: 9.
-
Kusznir N J, Kovkhuto A, Stephenson R A. 1996. Syn-rift evolution of the Pripyat Trough: Constraints from structural and stratigraphic modeling. Tectonophysics, 268: 221~236.
-
Larsen H C, Mohn G, Nirrengarten M. 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11(10): 782~789.
-
Lavier L L, Manatschal G. 2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440: 324~328.
-
Le Pourhiet L, Chamot-Rooke N, Delescluse M, May D, Watremez L, Pubellier M. 2018. Continental break-up of the South China Sea stalled by far-field compression. Nature Geoscience, 11(8): 605~609.
-
Lei Chao, Ren Jianye. 2016. Hyper-extended rift systems in the Xisha Trough, northwestern South China Sea: Implications for extreme crustal thinning ahead of a propagating ocean. Marine and Petroleum Geology, 77: 846~864.
-
Lei Chao, Ren Jianye, Pang Xiong, Chao Peng, Han Xianying. 2018. Continental rifting and sediment infill in the distal part of the northern South China Sea in the western Pacific region: Challenge on the present-day models for the passive margins. Marine and Petroleum Geology, 93: 166~181.
-
Lei Chao, Alves T M, Ren Jianye, Pang Xiong, Yang Linlong, Liu Jun. 2019. Depositional architecture and structural evolution of a region immediately inboard of the locus of continental breakup (Liwan Sub-basin, South China Sea). GSA Bulletin, 131(7-8): 1059~1074.
-
Li Chunfeng, Xu Xing, Lin Jian, Sun Zhen, Zhu Jian, Yao Yongjian, Zhao Xixi, Liu Qingsong, Kulhanek D K, Wang Jian, Song Taoran, Zhao Junfeng, Qiu Ning, Guan Yongxian, Zhou Zhiyuan, Williams T, Bao Rui, Briais A, Brown E A, Chen Yifeng, Clift P D, Colwell F S, Dadd K A, Ding Weiwei, Almeida I H, Huang Xiaolong, Hyun S M, Jiang Tao, Koppers A A P, Li Qianyu, Liu Chuanlian, Liu Zhifei, Nagai R H, Peleo-Alampay A, Su Xin, Tejada M L G, Trinh H S, Yeh Y C, Zhang Chuanlun, Zhang Fan, Zhang Guoliang. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958~4983.
-
Li Chunfeng, Li Jiabiao, Ding Weiwei, Franke D, Yao Yongjian, Shi Hesheng, Pang Xiong, Cao Ying, Lin Jian, Kulhanek D K, Williams T, Bao Rui, Briais A, Brown E A, Chen Yifeng, Clift P D, Colwell F S, Dadd K A, Almeida I H, Huang Xiaolong, Sangmin Hyun, Hyun S M, Jiang Tao, Koppers A A P, Li Qianyu, Liu Chuanlian, Liu Qingsong, Liu Zhifei, Nagai R H, Peleo-Alampay A, Su Xin, Sun Zhen, Maria L G, Tejada H S T, Yeh Y C, Zhang Chuanlun, Zhang Fan, Zhang Guoliang, Zhao Xixi. 2015. Seismic stratigraphy of the central South China Sea basin and implications for Neotectonics. Journal of Geophysical Research: Solid Earth, 120(3): 1377~1399.
-
Li Xuejie, Wang Zhe, Yao Yongjian, Gao Hongfang, Zhu Song, Xu Ziying. 2020. The formation and evolution of the South China Sea. Geology in China, 47(5): 1310~1322 (in Chinese with English abstract).
-
Lin Changsong, Kenneth E, Li Sitian, Wan Yongxian, Ren Jianye, Zhang Yanmei. 2001. Sequence architecture, depositional systems and computer simulation of lacustrine basin fills in Erlian basin, Northeast China. AAPG Bulletin, 85(11): 2017~2043.
-
Liu Qianghu, Zhu Xiaomin, Yang Yong, Geng Mingyang, Tan Mingxuan, Jiang Long, Chen Liang. 2016. Sequence stratigraphy and seismic geomorphology application of facies architecture and sediment-dispersal patterns analysis in the third member of Eocene Shahejie formation, slope system of Zhanhua sag, Bohai bay basin, China. Marine and Petroleum Geology, 78: 766~784.
-
Lister G S, Etheridge M A, Symonds P A. 1986. Detachment faulting and the evolution of passive continental margins. Geology, 14: 246~250.
-
Luo Pan, Manatschal G, Ren Jianye, Zhao Zhigang, Wang Houjin, Tong Dianjun. 2021. Tectono-magmatic and stratigraphic evolution of final rifting and breakup: Evidence from the tip of the southwestern propagator in the South China Sea. Marine and Petroleum Geology, 129: 105079.
-
Madon M, Kim C L, Wong R. 2013. The structure and stratigraphy of deep-water Sarawak, Malaysia: Implications for tectonic evolution. Journal of Asian Earth Sciences, 76: 312~333.
-
Manatschal G. 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93(3): 432~466.
-
Manspeizer W, Cousminer H L. 1988. Late Triassic-Early Jurassic synrift basins of the US Atlantic margin. The Geology of North America: Geological Society of America, 2: 197~216.
-
Masini E, Manatschal G, Mohn G, Ghienne J F, Lafont F. 2011. The tectono-sedimentary evolution of a supra-detachment rift basin at a deep-water magma-poor rifted margin: The example of the Samedan basin preserved in the Err nappe in SE Switzerland. Basin Research, 23(6): 652~677.
-
McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1): 25~32.
-
Minshull T A, Dean S M, Whitmarsh R B, Russell S M, Louden K E, Chian D. 1998. Deep Structure in the vicinity of the ocean-continental transition zone under southern Iberia Abyssal Plain. Geology, 26(8): 743~746.
-
Morley C K. 1999. Patterns of displacement along large normal faults: Implications for basin evolution and fault propagation, based on examples from East Africa. AAPG Bulletin, 83: 613~634.
-
Nirrengarten M, Mohn G, Kusznir N J, Sapin F, Despinois F, Pubellier M, Chang Shungping, Larsen H C, Ringenbach J C. 2020. Extension modes and breakup processes of the Southeast China-Northwest Palawan conjugate rifted margins. Marine and Petroleum Geology, 113: 104~123.
-
Olsen P E. 1990. Tectonic, climatic and biotic modulation of lacustrine ecosystems—Examples fromnewark super group of eastern North America. Lacustrine basin exploration: Case studies and modern analogs. AAPG Memoir, 50: 209~224.
-
Peng Xi, Shen Chuanbo, Mei Lianfu, Zhao Zhigang, Xie Xiaojun. 2019. Rift-drift transition in the dangerous grounds, South China Sea. Marine Geophysical Research, 40(2): 163~183.
-
Peng Xi, Li Chunfeng, Shen Chuanbo, Li Kai, Zhao Zhigang, Xie Xiaojun. 2020. Anomalous lower crustal structure and origin of magmatism in the southeastern margin of the South China Sea. Marine Petroleum Geology, 122: 104711.
-
Peron-Pinvidic G, Manatschal G, Minshull T A, Sawyer D. 2007. Tectonosedimentary evolution of the deep Iberia-Newfoundland margins: Evidence for a complex breakup history. Tectonics, 26(TC20112).
-
Peron-Pinvidic G, Manatschal G. 2010. From microcontinentas to extensional allochtons: Witnesses of how continents rift and break apart? Petroleum Geoscience, 16: 189~197.
-
Peron-Pinvidic G, Manatschal G, Osmundsen P T. 2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43: 21~47.
-
Ren Jianye, Pang Xiong, Lei Chao, Yuan Lizhong, Liu Jun, Yang Linlong. 2015. Ocean and continent transition in passive continental margins and analysis of lithospheric extension andbreakup process: Implication for research of the deepwater basins in the continental margins of South China Sea. Earth Science Frontiers, 1: 102~114 (in Chinese with English abstract).
-
Ren Jianye, Pang Xiong, Yu Peng, Lei Chao, Luo Pan. 2018. Characteristics and formation mechanism of deepwater and ultra-deepwater basins in the northern continental margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901~4920 (in Chinese with English abstract).
-
Reston T J. 2009. The structure evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: a synthesis. Tectonophysics, 468(1-4): 6~27.
-
Ribes C, Manatschal G, Ghienne F, Karner G D, Johnson C A, Figueredo P H, Incerpi N, Epin M E. 2019. The syn-rift stratigraphic record across a fossil hyper-extended rifted margin: The example of the northwestern Adriatic margin exposed in the Central Alps. International Journal of Earth Sciences, 108(6): 2071~2095.
-
Savva D, Meresse F, Pubellier M, Chamot-Rooke N, Lavier L, Wong Po K, Franke D, Steuer S, Sapin F, Auxietre J L, Lamy G. 2013. Seismic evidence of hyper-stretched crust and mantle exhumation offshore Vietnam. Tectonophysics, 608: 72~83.
-
Savva D, Pubellier M, Franke D, Chamot-Rooke N, Meresse F, Steuer S, Auxietre J L. 2014. Different expressions of rifting on the South China Sea margins. Marine and Petroleum Geology, 58: 579~599.
-
Song Taoran, Li Chunfeng, Wu Shiguo, Yao Yongjian, Gao Jinwei. 2019. Extensional styles of the conjugate rifted margins of the South China Sea. Journal of Asian Earth Sciences, 177: 117~128.
-
Sun Zhen. 2022. Evolution of the South China Sea. Chinese Journal of Nature, 44(1): 31~38 (in Chinese with English abstract).
-
Taylor B, Hayes D E. 1980. The tectonic evolution of the South China basin. Geophysical Monograph Series, 23: 89~104.
-
Tugend J, Manatschal G, Kusznir N J, Masini E. 2015. Characterizing and identifying structural domains at rifted continental margins: Application to the Bay of Biscay margins and its Western Pyrenean fossil remnants. Geological Society of London, Special Publications, 413(1): 171~203.
-
Tugend J, Gillard M, Manatschal G, Nirrengarten M, Harkin Ce, Epin M E, Sauter D, Autin J, Kusznir N J, McDermott K. 2018. Reappraisal of the magma-rich versus magma-poor rifted margin archetypes. Geological Society London Special Publications, SP476. 9.
-
Unternehr P, Peron-Pinvidic G, Manatschal G, Sutra E. 2010. Hyper-extended crust in the south Atlantic: In search of a model. Petroleum Geoscience, 16: 207~215.
-
Wang Pinxian, Huang Chuanyan, Lin Jian, Jian Zhimin, Sun Zhen, Zhao Minghui. 2019. The South China Sea is not a mini-Atlantic: Plate-edge rifting vs intra-plate rifting. National Science Review, 6(5): 902~913.
-
Watcharanantakul R, Morley C K. 2000. Syn-rift and post-rift modeling of the Pattani basin, Thailand: Evidence for a ramp-flat detachment. Marine and Petroleum Geology, 17: 937~958.
-
Yao Yongjian, Liu Hailing, Yang Chupeng, Han Bing, Tian Jijun, Yin Zhengxin, Gong Junli, Xu Qiaoyue. 2012. Characteristics and evolution of cenozoic sediments in the Liyue basin, SE South China Sea. Journal of Asian Earth Sciences, 60: 114~129.
-
Zhang Cuimei, Sun Zhen, Manatschal G, Pang Xiong, Qiu Ning, Su Ming, Zheng Jinyun, Li Hongbo, Gu Yale, Zhang Jiangyang, Zhao Yanghui. 2021. Syn-rift magmatic characteristics and evolution at a sediment-rich margin: Insights from high-resolution seismic data from the South China Sea. Gondwana Research, 91: 81~96.
-
Zhao Yanghui, Ren Jianye, Pang Xiong, Yang Linlong, Zheng jinyun. 2018. Structural style, formation of low angle normal fault and its controls on the evolution of Baiyun rift, northern margin of the South China Sea. Marine and Petroleum Geology, 89(3): 687~700.
-
李学杰, 王哲, 姚永坚, 高红芳, 祝嵩, 徐子英. 2020. 南海成因及其演化模式探讨. 中国地质, 47(5): 1310~1322.
-
任建业, 庞雄, 雷超, 袁立忠, 刘军, 杨林龙. 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 1: 102~114.
-
任建业, 庞雄, 于鹏, 雷超, 罗盼. 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901~4920.
-
孙珍. 2022. 南海的形成与演变. 自然杂志, 44(1): 31~38.
-
摘要
为了阐明南海由陆向洋的过渡带内构造活动的时间-空间迁移过程,本文以两条跨南海东部共轭被动陆缘和南海西南部共轭陆缘的两条长剖面为基础,进行精细的构造解释和分析,在南海洋陆转换带内确定了出Tb、SD、PD和Bi四个一级层序界面,并以这4个一层序界面为界,将南海陆缘划分为:早期断陷盆地(Tb—SD)、晚期拆离盆地(SD—PD)和断坳转换盆地(PD—Bi)。通过对同一剖面不同构造单元带内同构造地层的分析,发现构造活动时代由陆向洋逐渐变年轻;通过对比不同剖面同一构造单元带内的同构造地层发现,构造活动时代沿着海底扩张迁移的方向逐渐变年轻。因此,在南海扩张期间,岩石圈的伸展变形不仅表现为向洋方向的迁移,同时表现为向海底扩张方向的迁移。
Abstract
In order to clarify the time-space evolution of tectonic activities during the ocean continental transition, we analyse and interpret 2 long seismic lines which across the conjugate margin of South China Sea. Four first order interfaces have been recognized in the ocean continental transition of SCS: Tb, SD, PD and Bi. These 4 first order horizons separated the basins on continental margin into different proto-basins: the early rifted basin (Tb-SD), the later detachment basin (SD-PD), and the transfer basin (PD-Bi). Based on the comparison of syn-tectonic sequences in different domains in one seismic line, the tectonic activities from continent to ocean. As inferred from comparison, the syn-tectonic sequences in same domain between different lines, the tectonic activities get younger along the seafloor spreading direction. Thus, during the seafloor spreading stage, the lithosphere extension deformation propagated not only from continent to ocean, but also along the seafloor spreading direction.