en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

何发岐,男,1967年生。博士、教授级高级工程师,石油天然气勘探开发研究方向。E-mail:hefq.hbsj@sinopec.com。

参考文献
Chen Husheng, Zhou Xueqing, Li Daoqi, He Shaoying. 1993. Specification of Geological Section of Lingbi-Fengxian (HQ-13), East China, 1∶1000000. Beijing: Geological Press (in Chinese).
参考文献
Dong Shuwen, Li Tingdong, Gao Rui, Lü Qingtian, Wu Zhenhan, Chen Xuanhua, Zhou Qi, Liu Gang, Liu Zhiqiang, Mei Lin. 2010. International progress in probing the Earth's lithosphere and deep interior: A review. Acta Geologica Sinica, 84(6): 743~770 (in Chinese with English abstract).
参考文献
Dong Shuwen, Li Tingdong, Chen Xuanhua, Wei Wenbo, Gao Rui, Lü Qingtian, Yang Jingsui, Wang Xueqiu, Chen Qunce, Shi Yaolin, Huang Danian, Zhou Qi. 2012. Progress of deep exploration in mainland China: A review. Chinese Journal of Geophysics, 55(12): 3884~3901 (in Chinese with English abstract).
参考文献
Feng Xingxiang. 1982. Neotectonic movements and seismicity in the Sanmenxia basin. Journal of Henan Normal University (Natural Science), (1): 49~55 (in Chinese).
参考文献
Geng Yuansheng, Kuang Hongwei, Du Lilin, Liu Yongqing, Zhao Taiping. 2019. On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent. Acta Petrologica Sinica, 35(8): 2299~2324 (in Chinese with English abstract).
参考文献
Han Yujing. 1986. Some new developments in the study of the European lithosphere. Geological Science and Technology Information, 5(1): 1~7 (in Chinese).
参考文献
Jiang Fuchu, Fu Jianli, Wang Shubing, Zhao Zhizhong. 2005. The age of the Yellow River passing through the Sanmen Gorge. Journal of Geomechanics, 11(4): 293~301 (in Chinese with English abstract).
参考文献
Liu Jin, Chen Xingqiang, Wang Ping, Li Tingdong. 2020. Sedimentary characteristics, provenance and tectonic significance of the Sanmen Formation in Weihe-Sanmenxia basin. Earth Science, 45(7): 2673~2683 (in Chinese with English abstract).
参考文献
Liu Zilong, Lu Zhanwu, Jia Junlian, Li Wenhui, Ren Yanzong. 2019. Using deep seismic reflection to profile deep structure of ore concentrated area: Current status and case histories. Earth Science, 44(6): 2084~2105 (in Chinese with English abstract).
参考文献
Quan Xinchang. 2005. Weihe basin faulted structure study. Coal Geology of China, 17(3): 1~4 (in Chinese with English abstract).
参考文献
Wang Dandan, Zhang Jiaodong, Liu Xufeng, Shao Changsheng, Ceng Qiunan, Zhang Wenhao, Liu Zhao. 2021. Structural framework of Sanmenxia basin, Henan Province and its oil and gas resources potential analysis. Geology in China, https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210304. 1824. 002. html (in Chinese with English abstract).
参考文献
Wang Zanjun, Wang Hongchao, Dong Di, Qin Juan. 2018. Review of geophysical results of Huayingshan fault zone. Earthquake Research in Sichuan, (3): 6~12 (in Chinese with English abstract).
参考文献
Wu Qibin. 1993. The state of the art of deep seismic reflection. Geological Science and Technology Information, 12(1): 85~91 (in Chinese with English abstract).
参考文献
Yang Weiran. 1983. On layered structure of lithosphere. Earth Science, (3): 23~32 (in Chinese with English abstract).
参考文献
Zhao Taiping, Pang Lanyin, Qiu Yifan, Zhu Xiyan, Wang Shiyan, Geng Yuansheng. 2019. The Paleo-Mesoproterozoic boundary: 1. 8 Ga. Acta Petrologica Sinica, 35(8): 2281~2298 (in Chinese with English abstract).
参考文献
Zhu Rixiang, Xu Yigang, Zhu Guang, Zhang Hongfu, Xia Qunke, Zheng Tianyu. 2012. Destruction of the North China Craton. Scientia Sinica (Terrae), 42(8): 1135~1159 (in Chinese with English abstract).
参考文献
陈沪生, 周雪清, 李道琪, 贺绍英.1993.中国东部灵璧—奉贤(HQ-13)地学断面图1∶1000000说明书.北京: 地质出版社.
参考文献
董树文, 李廷栋, 高锐, 吕庆田, 吴珍汉, 陈宣华, 周琦, 刘刚, 刘志强, 梅琳.2010.地球深部探测国际发展与我国现状综述.地质学报, 84(6): 743~770.
参考文献
董树文, 李廷栋, 陈宣华, 魏文博, 高锐, 吕庆田, 杨经绥, 王学求, 陈群策, 石耀霖, 黄大年, 周琦.2012.我国深部探测技术与实验研究进展综述.地球物理学报, 55(12): 3884~3901.
参考文献
冯兴祥.1982.三门峡盆地的新构造运动与地震活动.河南师大学报(自然科学版), (1): 49~55.
参考文献
耿元生, 旷红伟, 杜利林, 柳永清, 赵太平.2019.从哥伦比亚超大陆裂解事件论古/中元古代的界限.岩石学报, 35(8): 2299~2324.
参考文献
韩郁菁.1986.欧洲岩石圈研究的一些新进展.地质科技情报, 5(1): 1~7.
参考文献
蒋复初, 傅建利, 王书兵, 赵志中.2005.关于黄河贯通三门峡的时代.地质力学学报, 11(4): 293~301.
参考文献
刘瑾, 陈兴强, 王平, 李廷栋.2020.渭河-三门峡盆地三门组沉积充填特征、物源区及其构造意义.地球科学, 45(7): 2673~2683.
参考文献
刘子龙, 卢占武, 贾君莲, 李文辉, 任彦宗.2019.利用深地震反射剖面开展矿集区深部结构的探测: 现状与实例.地球科学, 44(6): 2084~2105.
参考文献
权新昌.2005.渭河盆地断裂构造研究.中国煤田地质, 17(3): 1~4.
参考文献
王丹丹, 张交东, 刘旭锋, 邵昌盛, 曾秋楠, 张文浩, 刘钊.2021.河南三门峡盆地构造格架及其油气资源远景分析.中国地质, https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210304. 1824. 002. html
参考文献
王赞军, 王宏超, 董娣, 秦娟.2018.华蓥山断裂带的物探成果综述.四川地震, (3): 6~12.
参考文献
吴其斌.1993.国外深地震反射研究之现状.地质科技情报, 12(1): 85~91.
参考文献
杨巍然.1983.论岩石圈的层状构造.地球科学, (3): 23~32.
参考文献
赵太平, 庞岚尹, 仇一凡, 祝禧艳, 王世炎, 耿元生.2019.古/中元古代界线: 1. 8 Ga.岩石学报, 35(8): 2281~2298.
参考文献
朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉.2012.华北克拉通破坏.中国科学(地球科学), 42(8): 1135~1159.
目录contents

    摘要

    近年来,围绕三门峡断陷盆地中的油气、地热资源做了大量的工作,成因机制研究较少,严重制约了矿产资源的勘探开发。本文在前人研究工作基础上,结合野外地质调查并利用高精度深反射地震剖面、大地电磁(MT)、重磁等地球物理探测技术,对三门峡盆地进行综合研究。发现三门峡盆地主要由东、西2个负花状构造构成,西花状构造体大于东花状构造体;盆地东部边缘以观音堂隆起与洛阳凹陷相邻,观音堂隆起发育有壳内透镜状低速体,其东、西两侧均发育有规模较大的隐伏逆断层。研究区内莫霍面为大约5 km厚度滑脱层,在深反射地震剖面上表现为蚯蚓状反射特征,指示滑脱层为西向运动。莫霍面滑脱层上部与下部新发现多条弧形断层。地质与地球物理资料综合研究表明,莫霍面滑脱层的解耦作用是三门峡断陷盆地花状构造形成的主因;在不同时空构造力系作用下,形成研究区新生代全地壳旋转花状构造盆地。

    Abstract

    In recent years, significant efforts have been dedicated to the study of oil, gas, and geothermal resources in the Sanmenxia faulted basin. However, the genetic mechanism behind these resources remains insufficiently investigated, posing a constraint on effective exploration and exploitation of mineral resources. On the basis of previous research, this study conducts a comprehensive investigation of the Sanmenxia basin,integrating field geological surveyswith advanced geophysical exploration technologies such ashigh-precision deep reflections seismic profiling, magnetotelluric (MT), gravity, and magnetic methods. The findings reveal that the Sanmenxia basin is mainly composed of two negative flower-like structures, with the western structure being larger than the eastern one. The eastern boundaryof the basin is adjacent to the Luoyang depression and the Guanyintang uplift. The Guanyintang uplift exhibitsa lens-like low-velocity body within itsshell, whilelarge-scale hidden reverse faults are prevalent on the east and west sides of the uplift. The Moho surface in the study area is characterized by a detachment layer, approximately 5 km thick, displaying distinctive earthworm reflection characteristics on the deep reflection seismic profile, indicative of westwardmovement. Notably, several newlyidentified arc-shaped faults are observed in the upper and lower parts of the Moho detachment layer. The comprehensive study of geological and geophysical data shows that the decoupling of the Moho detachment layer is the main reason for the formation of the flower structure in the Sanmenxia fault depression basin. The interaction of different temporal and spatial tectonic forceshas led to the development of a Cenozoic floral tectonic basin, characterized by whole-crust rotation in the study area.

  • 三门峡盆地位于豫、晋、陕三省接壤部位,盆地东西长约120 km,南北宽约40 km,黄河自西向东流经盆地中间。盆地北以中条山南缘断裂为界与中条山隆起相邻,西以华阴-绛县断裂为界与渭河盆地相连,南以华山北-崤山北断裂与小秦岭和崤山相接,东以观音堂隆起与洛阳凹陷相连。三门峡盆地构造上属于华北地块与秦岭交汇处,是秦岭断块、中条山断块与崤山断块之间的复合、联合部位,经历了多次构造运动与变动,逐步在新生代演变为三角形山间断陷盆地。由于面积小,资源有限,一直未受重视,相关研究工作较少。2019年3月,中化华油建设集团有限公司在三门峡盆地施工的函温1井钻至2150 m古近系小安组时,发现高产自喷轻质油流。据此,中石化华北油气分公司运用以高精度深反射地震为主导的多种地球物理探测技术,对三门峡盆地成因机制、沉积特征与演化规律,基底性质、构造模式、油气成藏特征等地质问题进行了系统研究,得到一些基本认识。本文主要利用深反射地震与MT资料讨论三门峡盆地及邻区深部结构成因机制。

  • 1 区域地质背景

  • 三门峡盆地基底由太古宇和元古宇强烈变质变形的斜长角闪岩、黑云母片麻岩、石英闪长质片麻岩、变粒岩、大理岩等变质岩组成,盖层由古生界—新生界巨厚层的碳酸盐岩和碎屑岩组成。

  • 吕梁运动期之前,新太古界太华岩群和古元古界中条群、嵩山群变质岩作为三门峡盆地褶皱基底成为古大陆的一部分。晋宁期,在南北向挤压应力作用下,形成东西向的坳陷槽地,地层是一套熊耳群为代表的安山质、流纹质火山岩(耿元生等,2019赵太平等,2019)。在盆地南部熊耳群上部沉积了一套滨浅海相的石英砂岩,长石石英砂岩和板岩,之间为平行不整合接触(冯兴祥,1982)。加里东运动早期,华北克拉通普遍下沉,研究区形成浅海盆地,并沉积了一套早古生代的海陆交互相的地层。主要为寒武系的灰岩、页岩和奥陶系的白云岩、灰岩,与下伏地层为平行不整合接触(冯兴祥,1982;王丹丹等,2021)。加里东运动晚期—海西运动早期,研究区受强烈造山运动影响,发生褶皱隆升,后期又遭受强烈剥蚀,导致了上奥陶统—下石炭统的缺失(王丹丹等,2021)并形成一个宽缓的向斜构造(冯兴祥,1982)。海西运动晚期—印支运动期,三门峡一带属于华北陆地组成部分,盆地构造运动不强烈,接受长期沉积,盆地中沉积了一套厚层的灰岩、砂岩、泥岩夹煤层。燕山运动早期,研究区有中酸性岩浆侵入。燕山运动后期,由于向斜南翼形成小秦岭北侧山前大断裂,向斜北翼形成中条山南麓大断裂。整体成为一个地堑型的断陷盆地(冯兴祥,1982)。

  • 古近纪,由于小秦岭北部断裂和中条山南麓断裂的活动,盆地拉张,三门峡盆地持续下降,并形成南、东、北三面隆起的半封闭的内陆湖泊,称之为平陆湖,其中平陆凹陷和五亩凹陷一带较深,为弱还原环境,发育有坡底组和小安组,岩性为灰色、黑色泥岩、钙质泥岩、油页岩,潼关凹陷、芮城凹陷的水深较浅,主要岩性为一套红色粉砂岩(冯兴祥,1982;王丹丹等,2021)。渐新世,三门峡盆地轻度抬升并产生宽缓褶皱,并在三门峡盆地东南形成大营-川口断裂,使得三门峡盆地成为一个三角形盆地。渐新世晚期,三门峡盆地西部抬升遭受剥蚀。

  • 新近纪,由于崤山次隆的隆升导致在盆地中、西部缺失新近系(王丹丹等,2021),之后,盆地经历多次升降过程,导致盆地内潼关等次级小盆地成为新的沉降中心,而且至今仍在继续沉降。新近纪,三门峡盆地轻度抬升并产生宽缓褶皱,在三门峡盆地东南形成温塘-会兴镇断裂,致使该区成为一个三角形的断陷盆地。上新世渭河盆地和三门峡盆地相互独立,早更新世由于青藏高原的快速隆升导致渭河盆地和三门峡盆地相互连通,湖水由渭河盆地注入三门峡盆地,形成统一的三门古湖(冯兴祥,1982;刘瑾等,2020)。渭河盆地水位下降并由深湖转为浅湖,而三门峡盆地水位上升并由河流相转为滨浅湖相(权新昌,2005)。之后到至少1.24 Ma之前,黄河切穿三门峡向东入海(蒋复初等,2005刘瑾等,2020)。在盆地相对下降期自下而上沉积了下更新统(砂砾层、砂层及砂质黏土互层)、中更新统(红黄色、棕黄色黄土类砂质黏土)、上更新统(浅黄色、灰黄色黄土类砂质黏土,中间夹古土壤层)、全新统(近代河流冲积物)等典型的第四系(王丹丹等,2021)。

  • 2 地球物理数据采集与综合研究方法

  • 深反射地震剖面是研究地壳和地幔精细结构的主要手段(吴其斌,1993;董树文等,2010董树文等,2012王赞军等,2018)。现在,人们也开始使用深反射地震剖面开展矿集区深部结构的探测(刘子龙等,2019)。因三门峡盆地构造位置的特殊性,我们决定采用深反射地震剖面为主导,结合大地电磁(MT)、重力、磁法、区域地质调查的工作方法,系统研究三门峡盆地成因机制等问题。我们采用高精度三线二炮宽线深反射地震剖面技术(记录长度16 s,采样率1 ms,道间距20 m、覆盖次数504次、室内采用相邻三个道集叠加,叠加次数达1512次,满覆盖总长度377.14 km);MT(320 Hz-2000 s频率范围78个测点,320 Hz-5000 s频率范围22个测点),MT测线与地震剖面基本重合;重力与磁法研究面积为97538.8 km2(图1~3)。

  • 3 讨论

  • 图4是EW1线地震剖面地质解释格架与局部放大显示剖面。EW1线起始于渭河盆地中部,穿过中条山南缘浅凹、三门峡盆地、观音堂隆起、洛阳凹陷。该地震剖面揭示渭河盆地是新生代断陷盆地。控盆断裂F201在下地壳与弧形断裂hxf1汇聚,浅部呈高角度与深大断裂F101汇聚(图4a、b)。渭河盆地新生界相对发育,古近系(上、下段)、新近系(高陵群、蓝田灞河组、张家坡组),第四系较厚。结合SN1线地震剖面,可知中生界与古生界被严重剥蚀,主要残留在盆地的底部。渭河盆地底部以下,存在一条与控边断层F201近于平行的前古生界的正断层。EW1线地震剖面显示,中条山南缘浅凹与三门峡盆地连为一体,西以F101深大断裂与渭河盆地相接,东以观音堂隆起为界。三门峡盆地表现为东、西二个负花状构造,西部花状构造体大于东花状构造体。

  • 观音堂隆起是三门峡盆地与洛阳凹陷过渡鞍部,总体呈NE-SW展布,其由太古宇太华岩群花岗质片麻岩和元古宇熊耳群安山岩、玄武安山岩、粗安岩及玄武岩组成。隆起内部发育NE、NW及近EW向断层,断层错综复杂,隆起内部岩石强烈破碎。反射地震剖面显示,观音堂隆起发育有壳内低速构造透镜体,构造透镜体速度大约低于围岩速度5%,顶部埋深4770 m、跨度18.18 km。东、西两侧均发育有规模较大的隐伏逆断层。新近纪,受到SE-NW向的局部应力场作用,NE向的逆断层强烈活动,观音堂隆起与崤山次隆一起快速抬升;同时,来自深部的热能快速向上传导,浅部岩石热导率低,将深部的热能阻挡在地壳深部,可能形成透镜状高温熔融体。

  • 图1 三门峡断陷盆地及邻区深反射地震测线与重磁工作范围

  • Fig.1 Deep reflection seismic profiles and gravity and magnetic working area in Sanmenxia fault basin and adjacent areas

  • 图2 三门峡断陷盆地及邻区重力异常(1∶50万)向上延拓10 km剩余场与深反射地震测线

  • Fig.2 Gravity anomaly (1∶500000) in the Sanmenxia fault basin and its adjacent areas continued upward for 10 km residual field and deep reflection seismic profiles

  • 图5是SN2线地震剖面地质解释格架与局部放大显示剖面。SN2线为SE-NW向,穿过中条山南缘浅凹、芮城凹陷、灵宝凹陷、崤山隆起。芮城凹陷与灵宝凹陷属于三门盆地内部凹陷,表现为Y状构造特征。崤山次隆内部也存在一个顶部埋深4880 m、跨度19.14 km、与围岩速度大约相差5%的低速构造透镜体。由地质地球物理资料分析,该构造透镜体的成因及时代与观音堂构造透镜体一致。图4、5反映,研究区莫霍面是大约5 km厚度的滑脱层,蚯蚓状反射特征指示滑脱层为西向运动。莫霍面上部与下部皆存在弧形断层。其原因可能与华北克拉通新生代岩石圈水含量有关,最大特点是:不仅低于典型克拉通地区的岩石圈,也低于非克拉通大陆地区岩石圈(朱日祥等,2012)。失去浮力作用后,在重力作用下,研究区莫霍面上部与下部的部分岩层发生水平破裂;受后期充水与高温热物质体作用,莫霍面产生韧性滑脱流动,来自太平洋板块力量的挤压及莫霍面解耦作用,水平断裂岩层向上隆起,形成弧形断层(陈沪生等,1993)。四条二维深反射地震剖面的三维地质解释格架栅状图(图6a),与图6b、c联合说明莫霍面滑脱层运动影响其上部与下部弧形断裂的空间分布。

  • 图3 三门峡断陷盆地及邻区化极后航磁ΔT异常(1∶50万)与深反射地震采集测线

  • Fig.3 Aeromagnet anomaly ΔT after reduction to the magnetic pole in the Sanmenxia faulted basin and its adjacent area (1∶500000) and deep reflection seismic profiles

  • 图7与图8分别是SN2线与EW1线重磁异常曲线与MT视电阻率剖面及解释剖面。重磁异常曲线综合反映测线沿线位置深部与浅部特征。观音堂隆起表现为低密低磁异常,意味着观音堂隆起内部存在低速、中酸性侵入岩体。EW1线MT视电阻率剖面上,莫霍面表现为横向串珠状低阻分布(图8b)。SN2线重磁异常曲线基本反映测线沿线位置深部与浅部隆起与凹陷特征,崤山隆起内部的构造透镜体在重磁异常上表现不明显。SN2线MT视电阻率剖面上,三门峡盆地深部表现为烟筒状结构(图7b)。MT剖面进一步证明研究区莫霍面滑脱层特征,同时说明三门峡盆地基底是中间凸起,凹陷主要分布在南北二边。盆地上地壳视电阻率为100~500 Ω·m,下地壳视电阻率为500~1000 Ω·m,上地幔顶部视电阻率大于1000 Ω·m。观音堂隆起与崤山隆起的壳内构造透镜体视电阻率为10~40 Ω·m。

  • 图4~8揭示:① 三门峡地区未发现康氏面存在条带状速度异常,断穿康氏面的断层是连续的,没有发生错动,上、下地壳之间没有发生空间位移,说明该区不存在中地壳。② 莫霍面是一具有约5 km厚度的滑脱层,莫霍面地震速度比下地壳大约低4.8%(图9)。③ 由图10知,该区上地壳、下地壳、莫霍面滑脱层、下地幔反射波带宽的高频端向低频方向移动。莫霍面滑脱层与上地幔高频端大致重叠。由测井岩石物理原理知,地震频率特性宏观上具有反映介质物理属性的趋势,隐含物质遗传变异的痕迹。该区深反射地震剖面的速度空间属性大于物质属性。因此,该区莫霍面滑脱层物质属性亲上地幔顶部,空间属性属于下地壳。意味着岩石莫霍面位于地球物理莫霍面之上,上地幔顶部的榴辉岩相变可能是莫霍面滑脱层的物质基础(杨巍然,1983;韩郁菁,1986)。图11说明该区康氏面具有连续地震反射,莫霍面滑脱层顶界面反射为宽相位,反射能量不稳定,底界面为高频连续反射。进一步说明莫霍面滑脱层物质属性亲上地幔顶部,空间属性亲下地壳。莫霍面滑脱层的性质使得该区下地壳运动与上地幔运动解耦。④ 对重力(图2)、航磁(图3)资料进行小波分析与反演,经地震与MT标定,得到三门峡盆地及邻区断裂体系与构造力系分析图(图12)。该图反映三门峡盆地为不同时空构造作用所致。华山弧主要是来自SE方向的扬子作用力产生,中条山弧是来自NW方向的华北作用力为主产生。来自太平洋的作用力,进一步使得中条山东部向北位移。同时,迫使小秦岭拐向东南方向。⑤ 综合图4、图5、图6、图12,结合区域地质背景可知,研究区莫霍面是大约5 km厚度滑脱层,使得该区下地壳运动与上地幔运动解耦。所以,三门峡盆地是不同时空构造力系作用形成的新生界左旋全地壳花状构造盆地(图13)。

  • 图4 EW1线深反射地震剖面地质解释格架(a)与局部放大剖面(b~d)

  • Fig.4 Geological interpretation framework (a) and local zoomed profiles (b~d) of EW1 deep reflection seismic profile

  • (a)—EW1线深反射地震剖面地质解释格架,图中虚线框A、B、C是局部放大剖面位置,红色箭头表示莫霍面滑脱层西向运动,①—第四系,②—第四系+新近系,③—新近系+古近系,④—新近系张家坡组,⑤—新近系蓝田灞河组,⑥—新近系高陵群,⑦—古近系柳林河组,⑧—古近系小安组,⑨—古近系坡底组,⑩—古近系上段,⑪—古近系下段,⑫—中生界,⑬—古生界,⑭—康氏面,⑮—莫霍面顶,⑯—莫霍面底;(b)—EW1线深反射地震剖面虚线框A局部放大,图中清晰可见莫霍面滑脱层上部与下部弧形断裂与莫霍面滑脱层内部蚯蚓状反射特征,蚯蚓状反射特征指示莫霍面滑脱层西向运动(红色箭头);(c)—EW1线深反射地震剖面虚线框B局部放大,图中清晰可见莫霍面滑脱层上部与下部弧形断裂与莫霍面滑脱层内部蚯蚓状反射特征,蚯蚓状反射特征指示莫霍面滑脱层西向运动(红色箭头);(d)—EW1线深反射地震剖面虚线框C局部放大,图中清晰可见莫霍面滑脱层上部与下部弧形断裂与莫霍面滑脱层内部蚯蚓状反射特征,蚯蚓状反射特征指示莫霍面滑脱层西向运动(红色箭头)

  • (a) —geological interpretation framework of EW1 deep reflection seismic profile. The dashed boxes A, B and C in the figure are the locations of the zoomed section, and the red arrow indicates the westward movement of the Moho detachment layer, ①—Quaternary, ②—Quaternary and Neogene, ③—Neogene and Paleogene, ④—Zhangjiapo Formation, ⑤—Lantian Bahe Formation, ⑥—Gaoling Group, ⑦—Liulinhe Formation, ⑧—Xiao'an Formation, ⑨—Podi Formation, ⑩—Upper Paleogene, ⑪—Lower Paleogene, ⑫—Mesozoic, ⑬—Paleozoic, ⑭—Conrad discontinuity, ⑮—top of Moho surface, ⑯—bottom of Moho surface; (b) —zoomed view of dashed frame A of EW1 line deep reflection seismic profile. In the figure, it is clearly seen that the upper and lower arc-shaped faults of the Moho surface detachment layer and the internal earthworm-like reflection characteristics of the Moho surface detachment layer indicate the westward movement of the Moho surface detachment layer (red arrow) ; (c) —zoomed view of dotted line box B of EW1 line deep reflection seismic profile. In the figure, it is clearly seen that the upper and lower arc-shaped faults of the Moho surface detachment layer and the internal earthworm-like reflection characteristics of the Moho surface detachment layer indicate the westward movement of the Moho surface detachment layer (red arrow) ; (d) —zoomed view of dashed frame C of EW1 line deep reflection seismic profile. In the figure, it is clearly seen that the upper and lower arc-shaped faults of the Moho surface detachment layer and the internal earthworm-like reflection characteristics of the Moho surface detachment layer indicate the westward movement of the Moho surface detachment layer (red arrow)

  • 图5 SN2线深反射地震剖面地质解释格架(a)与局部放大剖面(b)

  • Fig.5 Geological interpretation framework of SN2 deep reflection seismic profile (a) and local zoomed profile (b)

  • (a)—SN2线深反射地震剖面地质解释格架,图中虚线框A是局部放大剖面位置,红色箭头表示莫霍面滑脱层NW运动;(b)—SN2线深反射地震剖面虚线框A局部放大,图中清晰可见莫霍面滑脱层上部与下部弧形断裂与莫霍面滑脱层内部蚯蚓状反射特征,蚯蚓状反射特征指示莫霍面滑脱层NW运动(红色箭头)

  • (a) —geological interpretation framework of SN2 line deep reflection seismic profile, the dashed box A in the figure is the location of the zoomed section, and the red arrow indicates the NW movement of the Moho surface detachment layer; (b) —zoomed section of dashed frame A of SN2 line deep reflection seismic profile. In the figure, it is clearly seen that the upper and lower arc-shaped faults of the Moho surface detachment layer and the earthworm-like reflection characteristics inside the Moho surface detachment layer indicate the NW movement of the Moho surface detachment layer (red arrow)

  • 图6 三门峡盆地及邻区四条二维深反射地震剖面的三维地质解释格架及莫霍面滑脱层上部与下部弧形断裂平面分布(蓝色)

  • Fig.6 Three-dimensional geological interpretation framework of four two-dimensional deep reflection seismic profiles in the Sanmenxia basin and its adjacent areas and the plane distribution of the upper and lower arc-shaped faults of the Moho detachment layer (blue)

  • (a)—三门峡盆地及邻区四条二维深反射地震剖面三维地质解释格架栅状图;(b)—莫霍面滑脱层上部弧形断裂平面分布(蓝色);(c)—莫霍面滑脱层下部弧形断裂平面分布(蓝色)

  • (a) —three-dimensional geological interpretation grid of four two-dimensional deep reflection seismic profiles in Sanmenxia basin; (b) —plane distribution of arc fault in the upper part of Moho surface detachment layer (blue) ; (c) —plane distribution of arc fault at the lower part of Moho surface detachment layer (blue)

  • 图7 SN2线重磁异常曲线与MT视电阻率剖面及解释剖面

  • Fig.7 SN2 gravity and magnetic anomaly curve and MT apparent resistivity and interpretation profile

  • (a)—剩余布格重力异常和化极后ΔT磁异常曲线;(b)—二维视电阻率反演;(c)—地质解释格架

  • (a) —residual Bouguer gravity anomaly and magnetic anomaly ΔT after reduction to the pole (RTP) ; (b) —2D apparent resistivity inversion; (c) —geological interpretation framework

  • 图8 EW1线重磁异常曲线与MT视电阻率剖面及解释剖面

  • Fig.8 Line EW1 gravity and magnetic anomaly curve, MT apparent resistivity and interpretation profile

  • (a)—剩余布格重力异常和化极后ΔT磁异常曲线;(b)—二维视电阻率反演;(c)—地质解释格架

  • (a) —residual Bouguer gravity anomaly and magnetic anomaly after reduction to the pole (RTP) ; (b) —2D apparent resistivity inversion; (c) —geological interpretation framework

  • 图9 EW1线与SN2线地震速度剖面,莫霍面滑脱层地震速度比下地壳大约低4.8%

  • Fig.9 The seismic velocity profile of EW1 and SN2 lines shows that the seismic velocity of Moho detachment layer is about 4.8% lower than that of the lower crust

  • (a)—EW1线地震速度剖面,观音堂构造透镜体速度大约低于围岩速度5%;(b)—SN2线地震速度剖面,灵宝构造透镜体速度大约低于围岩速度5%

  • (a) —EW1 seismic velocity profile, the velocity of Guanyintang structural lens is about 5% lower than that of surrounding rock; (b) —SN2 seismic velocity profile, the velocity of Lingbao structure lens is about 5% lower than that of surrounding rock

  • 图10 EW1线沉积盆地、上地壳、下地壳、莫霍面滑脱层、上地幔地震反射振幅谱曲线

  • Fig.10 Seismic reflection frequency-amplitude curve of EW1 line for sedimentary basin, upper crust, lower crust, Moho surface detachment layer and upper mantle

  • 图11 三门峡盆地地壳模型地震正演模拟剖面(雷克子波主频11 Hz,带宽90 Hz)

  • Fig.11 Seismic forward modeling profile of crustal model in the Sanmenxia basin (peak frequency of Ricker wavelet: 11 Hz, bandwidth: 90 Hz)

  • 图12 三门峡盆地及邻区断裂体系与构造力系分析图

  • Fig.12 Analysis of fault system and tectonic force system in Sanmenxia basin and its adjacent areas

  • 图13 三门峡盆地形成机制模型

  • Fig.13 Formation mechanism model of Sanmenxia basin

  • 4 结论

  • 综合高精度深反射地震剖面、MT、重力与磁法及区域地质等资料的研究,证明三门峡盆地莫霍面是大约5 km厚度的滑脱层;莫霍面滑脱层的解耦作用及不同时空力系作用,是形成三门峡新生界全地壳左旋花状构造断陷盆地的因素之一。

  • 致谢:本项研究过程中,得到任纪舜院士、杨巍然教授的精心指导,对审稿者的精心审阅,在此表示深深的谢意。

  • 参考文献

    • Chen Husheng, Zhou Xueqing, Li Daoqi, He Shaoying. 1993. Specification of Geological Section of Lingbi-Fengxian (HQ-13), East China, 1∶1000000. Beijing: Geological Press (in Chinese).

    • Dong Shuwen, Li Tingdong, Gao Rui, Lü Qingtian, Wu Zhenhan, Chen Xuanhua, Zhou Qi, Liu Gang, Liu Zhiqiang, Mei Lin. 2010. International progress in probing the Earth's lithosphere and deep interior: A review. Acta Geologica Sinica, 84(6): 743~770 (in Chinese with English abstract).

    • Dong Shuwen, Li Tingdong, Chen Xuanhua, Wei Wenbo, Gao Rui, Lü Qingtian, Yang Jingsui, Wang Xueqiu, Chen Qunce, Shi Yaolin, Huang Danian, Zhou Qi. 2012. Progress of deep exploration in mainland China: A review. Chinese Journal of Geophysics, 55(12): 3884~3901 (in Chinese with English abstract).

    • Feng Xingxiang. 1982. Neotectonic movements and seismicity in the Sanmenxia basin. Journal of Henan Normal University (Natural Science), (1): 49~55 (in Chinese).

    • Geng Yuansheng, Kuang Hongwei, Du Lilin, Liu Yongqing, Zhao Taiping. 2019. On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent. Acta Petrologica Sinica, 35(8): 2299~2324 (in Chinese with English abstract).

    • Han Yujing. 1986. Some new developments in the study of the European lithosphere. Geological Science and Technology Information, 5(1): 1~7 (in Chinese).

    • Jiang Fuchu, Fu Jianli, Wang Shubing, Zhao Zhizhong. 2005. The age of the Yellow River passing through the Sanmen Gorge. Journal of Geomechanics, 11(4): 293~301 (in Chinese with English abstract).

    • Liu Jin, Chen Xingqiang, Wang Ping, Li Tingdong. 2020. Sedimentary characteristics, provenance and tectonic significance of the Sanmen Formation in Weihe-Sanmenxia basin. Earth Science, 45(7): 2673~2683 (in Chinese with English abstract).

    • Liu Zilong, Lu Zhanwu, Jia Junlian, Li Wenhui, Ren Yanzong. 2019. Using deep seismic reflection to profile deep structure of ore concentrated area: Current status and case histories. Earth Science, 44(6): 2084~2105 (in Chinese with English abstract).

    • Quan Xinchang. 2005. Weihe basin faulted structure study. Coal Geology of China, 17(3): 1~4 (in Chinese with English abstract).

    • Wang Dandan, Zhang Jiaodong, Liu Xufeng, Shao Changsheng, Ceng Qiunan, Zhang Wenhao, Liu Zhao. 2021. Structural framework of Sanmenxia basin, Henan Province and its oil and gas resources potential analysis. Geology in China, https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210304. 1824. 002. html (in Chinese with English abstract).

    • Wang Zanjun, Wang Hongchao, Dong Di, Qin Juan. 2018. Review of geophysical results of Huayingshan fault zone. Earthquake Research in Sichuan, (3): 6~12 (in Chinese with English abstract).

    • Wu Qibin. 1993. The state of the art of deep seismic reflection. Geological Science and Technology Information, 12(1): 85~91 (in Chinese with English abstract).

    • Yang Weiran. 1983. On layered structure of lithosphere. Earth Science, (3): 23~32 (in Chinese with English abstract).

    • Zhao Taiping, Pang Lanyin, Qiu Yifan, Zhu Xiyan, Wang Shiyan, Geng Yuansheng. 2019. The Paleo-Mesoproterozoic boundary: 1. 8 Ga. Acta Petrologica Sinica, 35(8): 2281~2298 (in Chinese with English abstract).

    • Zhu Rixiang, Xu Yigang, Zhu Guang, Zhang Hongfu, Xia Qunke, Zheng Tianyu. 2012. Destruction of the North China Craton. Scientia Sinica (Terrae), 42(8): 1135~1159 (in Chinese with English abstract).

    • 陈沪生, 周雪清, 李道琪, 贺绍英.1993.中国东部灵璧—奉贤(HQ-13)地学断面图1∶1000000说明书.北京: 地质出版社.

    • 董树文, 李廷栋, 高锐, 吕庆田, 吴珍汉, 陈宣华, 周琦, 刘刚, 刘志强, 梅琳.2010.地球深部探测国际发展与我国现状综述.地质学报, 84(6): 743~770.

    • 董树文, 李廷栋, 陈宣华, 魏文博, 高锐, 吕庆田, 杨经绥, 王学求, 陈群策, 石耀霖, 黄大年, 周琦.2012.我国深部探测技术与实验研究进展综述.地球物理学报, 55(12): 3884~3901.

    • 冯兴祥.1982.三门峡盆地的新构造运动与地震活动.河南师大学报(自然科学版), (1): 49~55.

    • 耿元生, 旷红伟, 杜利林, 柳永清, 赵太平.2019.从哥伦比亚超大陆裂解事件论古/中元古代的界限.岩石学报, 35(8): 2299~2324.

    • 韩郁菁.1986.欧洲岩石圈研究的一些新进展.地质科技情报, 5(1): 1~7.

    • 蒋复初, 傅建利, 王书兵, 赵志中.2005.关于黄河贯通三门峡的时代.地质力学学报, 11(4): 293~301.

    • 刘瑾, 陈兴强, 王平, 李廷栋.2020.渭河-三门峡盆地三门组沉积充填特征、物源区及其构造意义.地球科学, 45(7): 2673~2683.

    • 刘子龙, 卢占武, 贾君莲, 李文辉, 任彦宗.2019.利用深地震反射剖面开展矿集区深部结构的探测: 现状与实例.地球科学, 44(6): 2084~2105.

    • 权新昌.2005.渭河盆地断裂构造研究.中国煤田地质, 17(3): 1~4.

    • 王丹丹, 张交东, 刘旭锋, 邵昌盛, 曾秋楠, 张文浩, 刘钊.2021.河南三门峡盆地构造格架及其油气资源远景分析.中国地质, https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210304. 1824. 002. html

    • 王赞军, 王宏超, 董娣, 秦娟.2018.华蓥山断裂带的物探成果综述.四川地震, (3): 6~12.

    • 吴其斌.1993.国外深地震反射研究之现状.地质科技情报, 12(1): 85~91.

    • 杨巍然.1983.论岩石圈的层状构造.地球科学, (3): 23~32.

    • 赵太平, 庞岚尹, 仇一凡, 祝禧艳, 王世炎, 耿元生.2019.古/中元古代界线: 1. 8 Ga.岩石学报, 35(8): 2281~2298.

    • 朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉.2012.华北克拉通破坏.中国科学(地球科学), 42(8): 1135~1159.

  • 参考文献

    • Chen Husheng, Zhou Xueqing, Li Daoqi, He Shaoying. 1993. Specification of Geological Section of Lingbi-Fengxian (HQ-13), East China, 1∶1000000. Beijing: Geological Press (in Chinese).

    • Dong Shuwen, Li Tingdong, Gao Rui, Lü Qingtian, Wu Zhenhan, Chen Xuanhua, Zhou Qi, Liu Gang, Liu Zhiqiang, Mei Lin. 2010. International progress in probing the Earth's lithosphere and deep interior: A review. Acta Geologica Sinica, 84(6): 743~770 (in Chinese with English abstract).

    • Dong Shuwen, Li Tingdong, Chen Xuanhua, Wei Wenbo, Gao Rui, Lü Qingtian, Yang Jingsui, Wang Xueqiu, Chen Qunce, Shi Yaolin, Huang Danian, Zhou Qi. 2012. Progress of deep exploration in mainland China: A review. Chinese Journal of Geophysics, 55(12): 3884~3901 (in Chinese with English abstract).

    • Feng Xingxiang. 1982. Neotectonic movements and seismicity in the Sanmenxia basin. Journal of Henan Normal University (Natural Science), (1): 49~55 (in Chinese).

    • Geng Yuansheng, Kuang Hongwei, Du Lilin, Liu Yongqing, Zhao Taiping. 2019. On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent. Acta Petrologica Sinica, 35(8): 2299~2324 (in Chinese with English abstract).

    • Han Yujing. 1986. Some new developments in the study of the European lithosphere. Geological Science and Technology Information, 5(1): 1~7 (in Chinese).

    • Jiang Fuchu, Fu Jianli, Wang Shubing, Zhao Zhizhong. 2005. The age of the Yellow River passing through the Sanmen Gorge. Journal of Geomechanics, 11(4): 293~301 (in Chinese with English abstract).

    • Liu Jin, Chen Xingqiang, Wang Ping, Li Tingdong. 2020. Sedimentary characteristics, provenance and tectonic significance of the Sanmen Formation in Weihe-Sanmenxia basin. Earth Science, 45(7): 2673~2683 (in Chinese with English abstract).

    • Liu Zilong, Lu Zhanwu, Jia Junlian, Li Wenhui, Ren Yanzong. 2019. Using deep seismic reflection to profile deep structure of ore concentrated area: Current status and case histories. Earth Science, 44(6): 2084~2105 (in Chinese with English abstract).

    • Quan Xinchang. 2005. Weihe basin faulted structure study. Coal Geology of China, 17(3): 1~4 (in Chinese with English abstract).

    • Wang Dandan, Zhang Jiaodong, Liu Xufeng, Shao Changsheng, Ceng Qiunan, Zhang Wenhao, Liu Zhao. 2021. Structural framework of Sanmenxia basin, Henan Province and its oil and gas resources potential analysis. Geology in China, https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210304. 1824. 002. html (in Chinese with English abstract).

    • Wang Zanjun, Wang Hongchao, Dong Di, Qin Juan. 2018. Review of geophysical results of Huayingshan fault zone. Earthquake Research in Sichuan, (3): 6~12 (in Chinese with English abstract).

    • Wu Qibin. 1993. The state of the art of deep seismic reflection. Geological Science and Technology Information, 12(1): 85~91 (in Chinese with English abstract).

    • Yang Weiran. 1983. On layered structure of lithosphere. Earth Science, (3): 23~32 (in Chinese with English abstract).

    • Zhao Taiping, Pang Lanyin, Qiu Yifan, Zhu Xiyan, Wang Shiyan, Geng Yuansheng. 2019. The Paleo-Mesoproterozoic boundary: 1. 8 Ga. Acta Petrologica Sinica, 35(8): 2281~2298 (in Chinese with English abstract).

    • Zhu Rixiang, Xu Yigang, Zhu Guang, Zhang Hongfu, Xia Qunke, Zheng Tianyu. 2012. Destruction of the North China Craton. Scientia Sinica (Terrae), 42(8): 1135~1159 (in Chinese with English abstract).

    • 陈沪生, 周雪清, 李道琪, 贺绍英.1993.中国东部灵璧—奉贤(HQ-13)地学断面图1∶1000000说明书.北京: 地质出版社.

    • 董树文, 李廷栋, 高锐, 吕庆田, 吴珍汉, 陈宣华, 周琦, 刘刚, 刘志强, 梅琳.2010.地球深部探测国际发展与我国现状综述.地质学报, 84(6): 743~770.

    • 董树文, 李廷栋, 陈宣华, 魏文博, 高锐, 吕庆田, 杨经绥, 王学求, 陈群策, 石耀霖, 黄大年, 周琦.2012.我国深部探测技术与实验研究进展综述.地球物理学报, 55(12): 3884~3901.

    • 冯兴祥.1982.三门峡盆地的新构造运动与地震活动.河南师大学报(自然科学版), (1): 49~55.

    • 耿元生, 旷红伟, 杜利林, 柳永清, 赵太平.2019.从哥伦比亚超大陆裂解事件论古/中元古代的界限.岩石学报, 35(8): 2299~2324.

    • 韩郁菁.1986.欧洲岩石圈研究的一些新进展.地质科技情报, 5(1): 1~7.

    • 蒋复初, 傅建利, 王书兵, 赵志中.2005.关于黄河贯通三门峡的时代.地质力学学报, 11(4): 293~301.

    • 刘瑾, 陈兴强, 王平, 李廷栋.2020.渭河-三门峡盆地三门组沉积充填特征、物源区及其构造意义.地球科学, 45(7): 2673~2683.

    • 刘子龙, 卢占武, 贾君莲, 李文辉, 任彦宗.2019.利用深地震反射剖面开展矿集区深部结构的探测: 现状与实例.地球科学, 44(6): 2084~2105.

    • 权新昌.2005.渭河盆地断裂构造研究.中国煤田地质, 17(3): 1~4.

    • 王丹丹, 张交东, 刘旭锋, 邵昌盛, 曾秋楠, 张文浩, 刘钊.2021.河南三门峡盆地构造格架及其油气资源远景分析.中国地质, https: //kns. cnki. net/kcms/detail/11. 1167. P. 20210304. 1824. 002. html

    • 王赞军, 王宏超, 董娣, 秦娟.2018.华蓥山断裂带的物探成果综述.四川地震, (3): 6~12.

    • 吴其斌.1993.国外深地震反射研究之现状.地质科技情报, 12(1): 85~91.

    • 杨巍然.1983.论岩石圈的层状构造.地球科学, (3): 23~32.

    • 赵太平, 庞岚尹, 仇一凡, 祝禧艳, 王世炎, 耿元生.2019.古/中元古代界线: 1. 8 Ga.岩石学报, 35(8): 2281~2298.

    • 朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉.2012.华北克拉通破坏.中国科学(地球科学), 42(8): 1135~1159.