en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

屈童,男,1994年生。在读博士生,地质资源与地质工程专业。E-mail:qutong1994@sina.com。

通讯作者:

黄志龙,男,1962年生。博士,教授,主要从事油气藏形成与分布方面的研究。E-mail:huang5288@163.com。

参考文献
Cai Hua, Qin Lanzhi, Liu Yinghui. 2019. Differentiation andcoupling model of source-to-sink systems with transitional facies in Pingbei slope of Xihu sag. Earth Science, 44(3): 880~897 (in Chinese with English abstract).
参考文献
Cao Qian, Song Zaichao, Zhou Xiaojin, Liang Shiyou, Wang Ling. 2019. Geochemical characteristics and source of crude oil in Xihusag, East China Sea shelf basin. Petroleum Geology & Experiment, 41(2): 251~259 (in Chinese with English abstract).
参考文献
Chen Zhe, Zhang Changmin, Hou Guowei, Feng Wenjie, Xu Qinghai. 2020. Fault distribution patterns and their control on sand bodies in Pinghu Formation of Xihusag in East China Sea shelf basin. Oil & Gas Geology, 41(4): 824~837 (in Chinese with English abstract).
参考文献
Cheng Xiong, Hou Dujie, Zhao Zhe, Jiang Yuhan, Zhou Xinhuai, Diao Hui, Chen Xiaodong, Yang Lijie, Dong Licheng. 2019. Analysis on the genesis and source of natural gas in Xihu sag, East China Sea basin. China Offshore Oil and Gas, 31(3): 50~60 (in Chinese with English abstract).
参考文献
Dai Jinxing. 1992. Identification of various types of alkane gases. Science in China (Series B), (2): 185~193 (in Chinese).
参考文献
Dai Jinxing, Qi Houfa, Song Yan. 1985. On the indicators for identifying gas from oil and gas from coal measure. Acta Petrolei Sinica, 6(2): 31~38 (in Chinese with English abstract).
参考文献
Diao Hui, Liu Jinshui, Hou Yujie, Jiang Yiming, Zhang Tao, Zeng Wenqian. 2019. Coal-bearing source rocks formed in the transitional stage from faultingto depression nearshore China—A case from the Pinghu Formation in the Xihu sag. Marine Geology & Quaternary Geology, 39(6): 102~114 (in Chinese with English abstract).
参考文献
Fu Guang, Shi Jijian, Lv Yanfang. 2012. An improvement in quantitatively studying lateral seal of faults. Acta Petrolei Sinica, 33(3): 414~418 (in Chinese with English abstract).
参考文献
Fu Xiaofei, Jia Ru, Wang Haixue, Wu Tong, Meng Lingdong, Sun Yonghe. 2015. Quantitative evaluation of fault-caprock sealing capacity: A case from Dabei-Kelasu structural belt in Kuqa depression, Tarim basin, NW China. Petroleum Exploration and Development, 42(3): 300~309 (in Chinese with English abstract).
参考文献
Gao Gang, Xu Xinde, Qu Tong, Gan Jun, Dang Wenlong, Zhou Xiaoxiao, Liu Fengyan. 2020. Petroleumorigins and accumulation patterns in the Weixinan sag in the Beibu Gulf basin, using subsag B as an example. Acta Geologica Sinica (English Edition), 94(5): 1515~1530.
参考文献
Hou Guowei, Li Shuai, Qin Lanzhi, Cai Kun, Li Junjie, He Miao. 2019. Source-to-sink system of Pinghu Formation in west slope belt of Xihu sag, East China Sea basin. China Offshore Oil and Gas, 31(3): 29~39 (in Chinese with English abstract).
参考文献
Hu Mengying, Li Sanzhong, Dai Liming, Suo Yanhui, Guo Lingli, Liu Ze, Ma Fangfang, Tao Jianli. 2017. Numerical dynamic modeling of tectonic inversion in the northeastern Xihusag. Marine Geology & Quaternary Geology, 37(4): 151~166 (in Chinese with English abstract).
参考文献
Hu Mingyi, Shen Jiao, Hu Die. 2013. Reservoir characteristics and its main controlling factors of the Pinghu Formation in Pinghu structural belt, Xihu depression. Oil & Gas Geology, 34(2): 185~191 (in Chinese with English abstract).
参考文献
Jiang Yiming. 2019. Detrital zircon U-Pb age and milankovitch cycles of Pinghu Formation in the Pinghuslope of Xihu depression: Constraints on source-sink system and sedimentary evolution. Bulletin of Geological Science and Technology, 38(6): 133~140 (in Chinese with English abstract).
参考文献
Jiang Yiming, Shao Longyi, Li Shuai, Zhao Hong, Kang Shilong, Shen Wenchao, Yi Qi. 2020. Deposition system and stratigraphy of Pinghu Formation in Pinghutectonic belt, Xihu sag. Geoscience, 34(1): 141~153 (in Chinese with English abstract).
参考文献
Li Kun, Zhou Xinghai, Ding Feng, Yuan Jing, Shen Shan, Lv Peng. 2019. "Multi-factor control of sandboies distribution" in the Pinghu Formation, Pingbei region of Baochu slop, the Xihu sag. Marine Geology & Quaternary Geology, 39(6): 115~123 (in Chinese with English abstract).
参考文献
Liu Jinshui, Zhao Hong. 2019. Characteristics of differential gas invasion on Pinghuslope of Xihu sag, East China Sea basin. Journal of Chengdu University of Technology (Science & Technology Edition), 46(4): 487~496 (in Chinese with English abstract).
参考文献
Lv Yanfang, Wang Wei, Hu Xinlei, Fu Guang, Shi Jijian, Wang Chao, Liu Zhe, Jiang Wenya. 2016. Quantitative evaluation method of fault lateral sealing. Petroleum Exploration and Development, 43(2): 310~316 (in Chinese with English abstract).
参考文献
Noble R A, Alexander R, Kagi R I, Nox J K. 1986. Identification of some diterpenoid hydrocarbons in petroleum. Organic Geochemistry, 10(4-6): 825~829.
参考文献
Pang Xiongqi, Zhou Haiyan, Li Jianqing, Zhou Ruinian. 2000. A quantitative model for distinguishing the degree of transformation of mixed source gas parent materials and its application. Acta Petrolei Sinica, 21(5): 16~20 (in Chinese with English abstract).
参考文献
Philp R P, Gilbert T, Friedrich J. 1981. Bicyclic sesquiterpenoids and diterpenoids in Australian crude oils. Geochimicaet Cosmochimica Acta, 45(7): 1173~1180.
参考文献
Prinzhofer A, Huc A. 1995. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chemical Geology, 126(3-4): 281~290.
参考文献
Qin Lanzhi, Xie Jingjing, Zhang Wu. 2017. The main reservoir controlling factors of Pinghu Formation in Pingbei area of Xihusag. Journal of Yangtze University (Natural Science Edition), 14(19): 13~18 (in Chinese with English abstract).
参考文献
Radke M. 1988. Application of aromatic compounds as maturity indicators in source rocks and crude oils. Marine and Petroleum Geology, 5(3): 224~236.
参考文献
Shan Chao, Ye Jiaren, Cao Qiang, Lei Chuang, Peng Yuhui, Tian Yang. 2015. Controlling factors for gas accumulation in Kongqueting gas field of Xihusag. Marine Geology & Quaternary Geology, 35(1): 135~144 (in Chinese with English abstract).
参考文献
Shen Ping, Shen Qixiang, Wang Xianbin, Xu Yongchang. 1987. Isotopic composition characteristics of gaseous hydrocarbons and identification of coal type gas. Science in China (Series B), (6): 647~656 (in Chinese).
参考文献
Shi Jiannan, Jiang Jianqun, Li Mingkui. 2004. The modeling of pressure field evolution history in Damintunsag, Liaohe basin. Xinjiang Petroleum Geology, 25(3): 270~273 (in Chinese with English abstract).
参考文献
Sinninghe Damste J S, Kenig F, Koopmans M P, Koster J, Schouten S, Hayes J M, de Leeuw J W. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59(9): 1895~1900.
参考文献
Sofer Z. 1984. Stable carbon isotope compositions of crude oils; application to source depositional environments and petroleum alteration. AAPGBulletin, 68(1): 31~49.
参考文献
Su Ao, Chen Honghan. 2015. Geochemicalcharacteristics of oil and source rock, origin and genesis of oil in Xihu depression, East China Sea basin. Earth Science (Journal of China University of Geosciences), 40(6): 1072~1082 (in Chinese with English abstract).
参考文献
Tang Xianjun, Jiang Yiming, Zhang Jianpei, Wang Chao, He Xinjian, Yang Min. 2019. Fault characteristic and its control on traps of fault structural layer in the northern Pinghu slope belt, Xihusag, East China Sea shelf basin. Marine Geology Frontiers, 35(8): 34~43 (in Chinese with English abstract).
参考文献
Tao Shizhen, Zou Caineng. 2005. Accumulation and distribution of natural gases in Xihusag, East China Sea basin. Petroleum Exploration and Development, 32(4): 103~110 (in Chinese with English abstract).
参考文献
Wei Hengfei, Chen Jianfa, Chen Xiaodong. 2019. Characteristics andcontrolling factors of condensate reservoir accumulation in Xihu sag, East China Sea basin. Journal of Jilin University (Earth Science Edition), 49(6): 1507~1517 (in Chinese with English abstract).
参考文献
Whiticar M J. 1996. Stable isotope geochemistry of coals, humic kerogens and related natural gases. International Journal of Coal Geology, 32(1): 191~215.
参考文献
Xiao Xiaoguang, Hou Guowei, Zhang Wu, Jiang Xue, Miao Qing, Xie Jingjing. 2021. Diagenetic environment and pore evolution of the low permeability reservoir of Pinghu Formation in Xihusag. Marine Origin Petroleum Geology, 26(1): 60~70 (in Chinese with English abstract).
参考文献
Yin Shiyan, Ye Jiaren, Lei Chuang, Shan Chao, Tian Yang, Liu Fangyuan. 2014. Geochemicalcharacteristics of Pinghu crude oils in Pingbei area of Xihu sag. Xinjiang Petroleum Geology, 35(5): 542~546 (in Chinese with English abstract).
参考文献
Yu Shui. 2020. Depositional genesis analysis of source rock in Pinghu Formation of western slope, Xihu depression. Earth Science, 45(5): 1722~1736 (in Chinese with English abstract).
参考文献
Zhao Jing, Huang Zhilong, Liu Chunfeng, Li Tianjun, Jiang Yiming, Tan Sizhe, Huang Yun, Guo Xiaobo. 2021. Identification and distribution characteristics of coal-bearing source rocks in Pingbei area, Xihu sag. Lithologic Reservoirs, 33(5): 95~106 (in Chinese with English abstract).
参考文献
Zhou Donghong, Li Jianping, Guo Yonghua. 2012. Characteristics of pressure field and its relationship with hydrocarbon distribution in Liaoxilow uplift and Liaozhong sag. Fault-Block Oil & Gas Field, 19(1): 65~69 (in Chinese with English abstract).
参考文献
Zhou Liqing, Jiang Donghui, Zhang Shanghu, Zhou Xinghai, Yang Pengcheng, Li Kun. 2020. Formation conditions and exploration direction of large and medium oil and gas reservoirs in Xihu sag, East China Sea. Petroleum Geology & Experiment, 42(5): 803~812 (in Chinese with English abstract).
参考文献
Zhou Xinhuai. 2020. Geological understanding and innovation in Xihu sag and breakthroughs in oil and gas exploration. China Offshore Oil and Gas, 32(1): 1~12 (in Chinese with English abstract).
参考文献
Zhou Xinhuai, Gao Shunli, Gao Weizhong, Li Ning. 2019. Formation and distribution of marine-continental transitional lithologic reservoirs in Pingbei slope belt, Xihu sag, East China Seashelf basin. China Petroleum Exploration, 24(2): 153~164 (in Chinese with English abstract).
参考文献
蔡华, 秦兰芝, 刘英辉. 2019. 西湖凹陷平北斜坡带海陆过渡相源-汇系统差异性及其耦合模式. 地球科学, 44(3): 880~897.
参考文献
曹倩, 宋在超, 周小进, 梁世友, 王岭. 2019. 东海盆地西湖凹陷原油地化特征及来源分析. 石油实验地质, 41(2): 251~259.
参考文献
陈哲, 张昌民, 侯国伟, 冯文杰, 徐清海. 2020. 东海陆架盆地西湖凹陷平湖组断层组合样式及其控砂机制. 石油与天然气地质, 41(4): 824~837.
参考文献
程熊, 侯读杰, 赵喆, 姜玉涵, 周心怀, 刁慧, 陈晓东, 杨丽杰, 董立成. 2019. 西湖凹陷天然气成因及来源分析. 中国海上油气, 31(3): 50~60.
参考文献
戴金星. 1992. 各类烷烃气的鉴别. 中国科学(B辑), (2): 185~193.
参考文献
戴金星, 戚厚发, 宋岩. 1985. 鉴别煤成气和油型气若干指标的初步探讨. 石油学报, 6(2): 31~38.
参考文献
单超, 叶加仁, 曹强, 雷闯, 彭钰会, 田杨. 2015. 西湖凹陷孔雀亭气田成藏主控因素. 海洋地质与第四纪地质, 35(1): 135~144.
参考文献
刁慧, 刘金水, 侯读杰, 蒋一鸣, 张涛, 曾文倩. 2019. 中国近海断―坳转换期煤系烃源岩特征——以西湖凹陷平湖组烃源岩为例. 海洋地质与第四纪地质, 39(6): 102~114.
参考文献
付广, 史集建, 吕延防. 2012. 断层侧向封闭性定量研究方法的改进. 石油学报, 33(3): 414~418.
参考文献
付晓飞, 贾茹, 王海学, 吴桐, 孟令东, 孙永河. 2015. 断层-盖层封闭性定量评价——以塔里木盆地库车坳陷大北-克拉苏构造带为例. 石油勘探与开发, 42(3): 300~309.
参考文献
侯国伟, 李帅, 秦兰芝, 蔡坤, 李峻颉, 何苗. 2019. 西湖凹陷西部斜坡带平湖组源-汇体系特征. 中国海上油气, 31(3): 29~39.
参考文献
胡梦颖, 李三忠, 戴黎明, 索艳慧, 郭玲莉, 刘泽, 马芳芳, 陶建丽. 2017. 西湖凹陷中北部反转构造动力学机制的数值模拟. 海洋地质与第四纪地质, 37(4): 151~166.
参考文献
胡明毅, 沈娇, 胡蝶. 2013. 西湖凹陷平湖构造带平湖组砂岩储层特征及其主控因素. 石油与天然气地质, 34(2): 185~191.
参考文献
蒋一鸣. 2019. 西湖凹陷平湖斜坡带平湖组碎屑锆石U-Pb年龄及米兰科维奇旋回: 对源-汇系统及沉积演化的约束. 地质科技情报, 38(6): 133~140.
参考文献
蒋一鸣, 邵龙义, 李帅, 赵洪, 康世龙, 沈文超, 易琦. 2020. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究. 现代地质, 34(1): 141~153.
参考文献
李昆, 周兴海, 丁峰, 袁竞, 沈珊, 吕鹏. 2019. 西湖凹陷保俶斜坡带平北地区平湖组“多元控砂”机制分析. 海洋地质与第四纪地质, 39(6): 115~123.
参考文献
刘金水, 赵洪. 2019. 东海陆架盆地西湖凹陷平湖斜坡带差异性气侵的成藏模式. 成都理工大学学报(自然科学版), 46(4): 487~496.
参考文献
吕延防, 王伟, 胡欣蕾, 付广, 史集建, 王超, 刘哲, 姜文亚. 2016. 断层侧向封闭性定量评价方法. 石油勘探与开发, 43(2): 310~316.
参考文献
庞雄奇, 周海燕, 李建青, 周瑞年. 2000. 判别混源气母质转化程度的定量模式及其应用. 石油学报, 21(5): 16~20.
参考文献
秦兰芝, 谢晶晶, 张武. 2017. 西湖凹陷平北区平湖组储层主控因素分析. 长江大学学报(自科版), 14(19): 13~18.
参考文献
沈平, 申歧祥, 王先彬, 徐永昌. 1987. 气态烃同位素组成特征及煤型气判识. 中国科学(B辑), (6): 647~656.
参考文献
史建南, 姜建群, 李明葵. 2004. 辽河盆地大民屯凹陷压力场演化史模拟. 新疆石油地质, 25(3): 270~273.
参考文献
苏奥, 陈红汉. 2015. 东海盆地西湖凹陷油岩地球化学特征及原油成因来源. 地球科学(中国地质大学学报), 40(6): 1072~1082.
参考文献
唐贤君, 蒋一鸣, 张建培, 王超, 何新建, 杨敏. 2019. 东海盆地西湖凹陷平北区断陷层断裂特征及其对圈闭的控制. 海洋地质前沿, 35(8): 34~43.
参考文献
陶士振, 邹才能. 2005. 东海盆地西湖凹陷天然气成藏及分布规律. 石油勘探与开发, 32(4): 103~110.
参考文献
魏恒飞, 陈践发, 陈晓东. 2019. 东海盆地西湖凹陷凝析气藏成藏特征及分布控制因素. 吉林大学学报(地球科学版), 49(6): 1507~1517.
参考文献
肖晓光, 侯国伟, 张武, 姜雪, 苗清, 谢晶晶. 2021. 西湖凹陷平湖组低渗储层成岩环境及孔隙演化. 海相油气地质, 26(1): 60~70.
参考文献
殷世艳, 叶加仁, 雷闯, 单超, 田杨, 刘方圆. 2014. 西湖凹陷平北地区平湖组原油地球化学特征. 新疆石油地质, 35(5): 542~546.
参考文献
于水. 2020. 西湖凹陷西斜坡平湖组烃源岩沉积成因分析. 地球科学, 45(5): 1722~1736.
参考文献
赵静, 黄志龙, 刘春锋, 李天军, 蒋一鸣, 谭思哲, 黄鋆, 郭小波. 2021. 西湖凹陷平北地区煤系烃源岩识别与分布. 岩性油气藏, 33(5): 95~106.
参考文献
周东红, 李建平, 郭永华. 2012. 辽西低凸起及辽中凹陷压力场特征与油气分布关系. 断块油气田, 19(1): 65~69.
参考文献
周荔青, 江东辉, 张尚虎, 周兴海, 杨鹏程, 李昆. 2020. 东海西湖凹陷大中型油气田形成条件及勘探方向. 石油实验地质, 42(5): 803~812.
参考文献
周心怀. 2020. 西湖凹陷地质认识创新与油气勘探领域突破. 中国海上油气, 32(1): 1~12.
参考文献
周心怀, 高顺莉, 高伟中, 李宁. 2019. 东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测. 中国石油勘探, 24(2): 153~164.
目录contents

    摘要

    基于对武云亭地区烃源岩、储层、圈闭等油气藏形成基本条件的总结,系统分析油气特征及来源、压力分布与断层封闭、油气充注历史及油气运聚成藏过程,建立武云亭凝析气田成藏模式。研究表明,武云亭洼广泛分布的煤系烃源岩和宁波27主洼烃源岩生烃能力强、断层和砂岩尖灭耦合形成大型构造-岩性复合圈闭、三角洲沉积优质储集体发育、有利的断-砂配置、盖层质量好等因素共同构成了武云亭凝析气田形成的基础。武云亭油气田平湖组中下部成藏组合具有“武云亭洼煤系源岩供烃、源内持续弱超压充注”成藏特征;中上部成藏组合具有“武云亭洼和宁波27洼双源供烃、侧向持续强充注”成藏特征,早期双向来源原油与晚期大规模侧向来源高熟气混合形成凝析气藏。武云亭油气田总体上具有“早期油晚期气,多期成藏,连续充注”的特征,建立“多源持续强充注-断砂联控”成藏模式。

    Abstract

    Based on the summary of the basic conditions of hydrocarbon reservoir formation such as source rock, reservoir and trap in the Wuyunting area, this study systematically analyzes the characteristics and sources of oil and gas, pressure distribution and fault sealing, the history of hydrocarbon charging and accumulation, the process of hydrocarbon migration and accumulation, to establish the reservoir forming model of Wuyunting condensate gas field. Research shows that many factors jointly control formation of the Wuyunting condensate gas field, such as the strong hydrocarbon-generating capacity of widely distributed coal-measure source rocks in the Wuyunting sag and source rocks in the Ningbo 27 main sag, faults and sandstone pinch-out line controlled large-scale structural lithologic composite traps, the development of high-quality delta sedimentary reservoirs, favorable fault sand configuration and good caprock quality. The reservoir forming assemblage in the middle and lower part of Pinghu Formation of Wuyunting oil and gas field has the characteristics of “hydrocarbon supply from coal measure source rock in Wuyunting sag and continuous weak overpressure charging within the source rock”; the upper and middle part of the reservoir forming assemblage has the characteristics of “double source hydrocarbon supply from Wuyunting sag and Ningbo 27 sag, and continuous strong lateral charging”. The Early bidirectional source crude oil mixed with late large-scale lateral source high-mature gas to form condensate gas reservoir. Wuyunting oil and gas field is generally characterized by “early oil and late gas, multi-stage reservoir formation and continuous filling”, and a reservoir formation mode of “multi-source continuous strong filling and sand breaking combined control” is established. The Wuyunting oil and gas field generally has the characteristics of “early oil and late gas, multi-stage accumulation and continuous charging”, so the accumulation model of “multi-source continuous strong charging, fault-sand joint control” has been established.

  • 东海盆地西湖凹陷平北斜坡带历经40余年的勘探,已发现平湖、孔雀亭、武云亭、宝云亭等油气田(魏恒飞等,2019周荔青等,2020),其中平湖、宝云亭、武云亭均为凝析油气田(陶士振等,2005)。近年来,武云亭地区岩性及构造-岩性复合油气藏勘探取得了突破性进展,对宝云亭低隆起与反向断阶带共同控制下的武云亭地区进行了岩性圈闭勘探,单井钻遇油气储量丰度和单层产量均为平北地区勘探最佳(周心怀等,2019)。前人主要对孔雀亭及宝云亭油气田的油气来源及成藏过程进行了较多研究(殷世艳等,2014单超等,2015苏奥等,2015周心怀等,2019刘金水等,2019),而对于近年来获得勘探突破的武云亭油气田一直未得到系统的解剖,这极大地限制了武云亭周边潜在油气藏的勘探及优化勘探目标的选择。本文基于武云亭及周边已钻探井的烃源岩、储层、圈闭及保存条件等油气成藏基本条件的分析,综合运用地质、钻井、生物标志物、碳同位素及储层流体包裹体等资料,分析武云亭油气田油气分布与来源、储层演化、充注动力、油气成藏期次,明确油气成藏的动态过程,最终建立武云亭凝析气田成藏模式,这对武云亭地区下一步油气勘探有重要指导意义。

  • 1 区域地质概况

  • 西湖凹陷位于东海陆架盆地东北部,是北-北东向展布的狭长型新生代沉积凹陷,总面积近5×104 km2,蕴藏着丰富的油气资源(周心怀,2020)。西湖凹陷自西向东分为西部斜坡带、中央反转构造带、东部断阶带三个一级构造带,西部斜坡带自北向南进一步分为杭州斜坡、平湖斜坡和天台斜坡带,其中平湖斜坡带是目前西湖凹陷勘探程度最高且最富集油气的区带(胡梦颖等,2017蒋一鸣,2019)(图1a)。武云亭油气田位于平湖斜坡带中北部,自下而上发育始新统宝石组与平湖组,渐新统花港组,中新统龙井组、玉泉组、柳浪组,上新统三潭组与更新统东海群等地层(蒋一鸣等,2020)。目前钻井揭示油气主要富集在平湖组,也是本次研究的主要目的层,平湖组自上而下进一步可分为五个亚段(图1b)。

  • 图1 西湖凹陷构造单元划分(a,据周心怀等,2019修改)及地层柱状图(b,据肖晓光等,2021修改)

  • Fig.1 Division of structural units (a, modified from Zhou Xinhuai et al., 2019) and stratigraphic column (b, modified from Xiao Xiaoguang et al., 2021) in Xihu sag

  • 武云亭油气田(B井区)本地发育受反向断层控制的武云亭洼,东部与宁波27洼紧邻,武云亭洼和宁波27洼是武云亭油气田两个最重要的供烃洼陷(刘金水等,2019刁慧等,2019)。平湖组沉积时期为断陷阶段,断裂分布和古地形共同控制着构造格局,平湖组沉积早中期为潮坪-潟湖沉积环境,断层活动较强,受潮汐影响的三角洲河道砂体展布受断层控制明显(侯国伟等,2019蔡华等,2019陈哲等,2020),同时充足的裸子植物和蕨类植物供应为斜坡带武云亭洼煤系烃源岩的发育提供了良好的母源条件(刁慧等,2019),向西次凹方向陆源物质供给减少,煤层不发育,藻类等低等水生生物为主要生源(于水,2020);平湖组沉积晚期断裂活动减弱,对沉积无明显控制作用(周心怀等,2019)。

  • 2 武云亭油气藏形成的基本条件

  • 2.1 烃源岩条件

  • 研究区平湖组发育煤系烃源岩,包括煤、碳质泥岩和泥岩,其中煤的有机碳含量和生烃潜力最高,碳质泥岩次之,泥岩相对较差。煤的有机碳含量(TOC)介于40.75%~64.94%,平均为51.65%;热解生烃潜量(S1+S2)介于35.87~360.50 mg/g,平均为191.31 mg/g;氢指数(HI)介于86.90~718.66 mg/g,平均为339.62 mg/g(图2a)。碳质泥岩有机碳含量(TOC)介于6.29%~38.12%,平均为20.16%;热解生烃潜量(S1+S2)介于2.70~143.29 mg/g,平均值为40.31 mg/g;氢指数(HI)介于18.26~367.32 mg/g,平均为159.80 mg/g(图2a)。暗色泥岩TOC变化较大,有机碳(TOC)介于0.95%~5.41%,平均为0.95%,氢指数普遍小于250 mg/g,以差—中等泥岩为主(图2a)。泥岩的干酪根类型为Ⅱ2~Ⅲ型,整体要差于煤和碳质泥岩,为中等偏差烃源岩(图2b)。碳质泥岩的干酪根类型以Ⅱ1~Ⅱ2型为主,存在部分III型,为较好的烃源岩;而煤的干酪根类型以Ⅱ1型为主,个别样品甚至可以达到I型,为好—极好的烃源岩(图2b)。

  • 图2 西湖凹陷武云亭地区平湖组烃源岩TOC与S1+S2关系图(a)和氢指数HI与Tmax关系图(b)

  • Fig.2 Relationship between TOC and S1+S2 (a) and relationship between hydrogen index (HI) and Tmax (b) of Pinghu Formation source rocks in the Wuyunting area, Xihu sag

  • 由武云亭油气田典型井B-1井的全井段岩屑取样分析测试数据建立烃源岩地球化学剖面,基于自然伽马、密度和补偿中子测井曲线,利用多元线性回归方法对泥岩有机碳含量进行预测,并根据赵静等(2021)建立的烃源岩岩性测井识别方法对录井岩性进行校正,并统计B-1井平湖组不同亚段不同岩性烃源岩的厚度。由泥岩TOC测井预测结果可得,高有机碳含量的暗色泥岩(TOC>1%)主要分布在平湖组三、四段和五段的上部,平湖组一、二段TOC>1%的泥岩发育明显较少;从氢指数纵向变化来看,泥岩氢指数纵向变化不明显,表明有机质类型变化不明显,而煤和碳质泥岩的氢指数随深度增加而减小,其中以平湖组三段最高,有机质类型最好(图3a)。同时,平湖组三、四段煤层和碳质泥岩厚度最大,其次是平湖组一、二段,平湖组五段煤和碳质泥岩较薄(图3c)。平湖组烃源岩在埋深3000 m时达到低成熟演化阶段(Ro=0.5%),埋深达到3700 m左右时进入成熟演化阶段(Ro=0.7%)(图3b)。

  • 西湖凹陷平湖组烃源岩整体上具有满坡和满凹分布的特征,基于地震反演、单井统计及前人研究成果(赵静等,2021),对平湖组不同岩性烃源岩的厚度分布进行预测(图4a~c),结果表明,武云亭洼为烃源岩发育的厚度中心之一,发育厚层泥岩的同时(图4a),发育泥炭中心使得煤和碳质泥岩也较为发育(图4b、c),三种岩性烃源岩的大量发育使得武云亭本地生烃潜力巨大。结合地球化学指标和生烃动力学参数计算平北斜坡带生油气强度,计算结果显示,斜坡带生油强度普遍大于500×104 t/km2,生气强度普遍小于20×108 t/km2(图4d、e),西次凹烃源岩具有更高的生气强度,平均可达60×108 t/km2,油气源充足(图4e)。

  • 2.2 储层条件

  • 前人对斜坡带砂体展布及其控制因素已进行了较多研究,主要认为砂体展布受古地貌和断层活动控制(周心怀等,2019侯国伟等,2019蔡华等,2019李昆等,2019)。平湖组沉积早中期(平湖组四、五段沉积时期),武云亭地区为古隆起阻挡的隆洼相间的古地形格架,此时断层对砂体展布具有明显的控制作用(周心怀等,2019蔡华等,2019),辫状河三角洲前缘水下分流河道砂体顺着北东向展布的断槽发育(图5a、c),剖面上为紧邻断层分布的透镜状砂体(图5d),平湖组三段沉积时期断层活动性开始减弱,砂体开始顺坡连续分布;平湖组沉积晚期(平湖组一、二段沉积时期),断裂活动弱,反向断阶对砂体展布的控制不明显,此时砂体主要受斜坡带古地形控制,河控三角洲砂体整体沿斜坡大面积分布(图5b),砂体连续性好,延伸距离远,沟通至宁波27洼生烃主洼(图5d)。

  • 不同时期沉积砂体物性存在差异,平湖组三、四、五段储层孔隙度分布于1.81%~22.80%之间,平均13.07%,渗透率介于0.0125×10-3~884×10-3 μm2之间,平均为18.7×10-3 μm2;相比之下,平湖组一、二段储层物性相对较好,孔隙度为10.82%~21.97%,平均17.15%,渗透率为0.231×10-3~765.73×10-3 μm2,平均为176×10-3 μm2(图6a),埋深对储层物性的控制作用较为明显,浅层储层以线接触为主(图6b),而深层储层以线接触和凹凸接触为主(图6c)。总体而言,平湖组储层质量好,这为油气成藏提供了优质的储存场所(图6a),优质的储层与武云亭地区较低的地温梯度(2.7℃/100 m)和较早的成岩演化阶段有关,斜坡带储层总体处于中成岩A期(Ro=0.5%~1.3%)(胡明毅等,2013),这个阶段的成岩作用主要为胶结作用和溶蚀作用(图6b~d),其中溶蚀作用占主导地位,这是由于在该阶段烃源岩已进入早熟—成熟阶段,生成大量的有机酸使得孔隙流体性质以酸性为主,酸性流体使得储层多发育岩屑溶蚀孔和长石溶蚀孔(图6b、c),砂体次生溶蚀孔隙占比可达70%以上,部分层位高达90%(秦兰芝等,2017)。

  • 图3 西湖凹陷武云亭地区平湖组烃源岩综合评价图

  • Fig.3 Comprehensive evaluation of Pinghu Formation source rocks in the Wuyunting area, Xihu sag

  • (a)—B-1井地球化学单井综合评价剖面;(b)—镜质组反射率Ro随深度变化图;(c)—B-1井平湖组不同岩屑烃源岩厚度统计柱状图

  • (a) —well B-1 geochemical comprehensive evaluation profile; (b) —variation of vitrinite reflectance Ro with depth; (c) —statistical histogram of the source rock thickness in the Pinghu Formation of well B-1

  • 图4 西湖凹陷武云亭地区平湖组烃源岩厚度和生油气强度平面分布图

  • Fig.4 Plane distribution of source rock thickness and oil and gas generation intensity of Pinghu Formation source rocks in the Wuyunting area, Xihu sag

  • (a)—泥岩厚度平面分布图;(b)—碳质泥岩厚度平面分布图;(c)—煤层厚度平面分布图;(d)—烃源岩生油强度平面分布图;(e)—烃源岩生气强度平面分布图

  • (a) —plane distribution of mudstone thickness; (b) —plane distribution of carbonaceous mudstone thickness; (c) —plane distribution of coal thickness; (d) —plane distribution of oil generation intensity of source rocks; (e) —plane distribution of gas generation intensity of source rocks

  • 2.3 圈闭条件

  • 武云亭油气田受反向断阶和古隆起控制而呈现多种圈闭类型(唐贤君等,2019)。武云亭地区具有典型的槽垒结构特征(周心怀,2020),受微弱的侧向挤压应力,在反向断槽根部发育局部北东-东走向具有微弱回倾的次级构造脊(图7a),受玉泉和龙井运动影响,断裂下降盘一侧普遍具有背斜形态(图7b)。平湖组沉积早中期,断层对砂体控制明显,潮控三角洲前缘水下分流河道砂沿断槽呈北东-南西向展布,在北西向断层和挠曲坡折带影响下,形成断层-岩性和砂岩上倾尖灭圈闭(图7b);平湖组沉积晚期,断层活动变弱,对砂体展布基本不影响,砂体受斜坡带古地形控制,呈北西-南东向展布,西北翼高部位NE-SW向封闭性断层和西南翼砂岩尖灭线共同控制岩性圈闭和断层-岩性复合圈闭的形成(图7a)。

  • 图5 西湖凹陷武云亭地区平湖组砂体展布图

  • Fig.5 Sand body distribution of Pinghu Formation in the Wuyunting area, Xihu sag

  • (a)—平湖组沉积早中期(平湖组三、四、五段沉积时期)砂体展布图(据周心怀等,2019蔡华等,2019修改);(b)—平湖组沉积晚期(平湖组一、二段沉积时期)砂体展布图(据周心怀等,2019蔡华等,2019修改);(c)—平湖组沉积早中期砂体平面展布图;(d)—平湖组沉积早中期砂体剖面分布图(剖面位置见图5c)

  • (a) —sand body distribution in the early and middle period (the third, fourth and fifth members) of Pinghu Formation (modified from Zhou Xinhuai et al., 2019; Cai Hua et al., 2019) ; (b) —sand body distribution in the late period (the first and second members) of Pinghu Formation (modified from Zhou Xinhuai et al., 2019; Cai Hua et al., 2019) ; (c) —sand body plane distribution in the early and middle period of Pinghu Formation; (d) —sand body profile distribution in the early and middle period of Pinghu Formation (the profile position shown in Fig.5c)

  • 2.4 保存条件

  • 平湖组沉积期发育大量断层,早期断层活动性强,有效控制了沉积砂体展布,而在平湖组沉积中晚期,断层活动性大幅下降,近凹陷带断层基本停止活动,只有斜坡高带断层持续活动,最浅可断至中上新统柳浪组(图8a、b)。平湖组沉积早中期强断裂活动导致断裂断距普遍较大(图8b),砂-泥对接概率增大,使得有效的岩性-断层圈闭更易形成;平湖组沉积晚期断裂活动普遍较弱(图8b),泥-泥概率增大,有效地阻止了油气向上运移散失,为平湖组油气聚集成藏提供很好的保存条件。

  • 平湖组整体发育平湖组一、二段和四段两套区域性盖层(图8c)。平湖组一、二段区域性盖层厚度相对较薄,多为5~20 m,累计厚度最厚可达76 m,厚层泥岩的发育阻止了平湖组油气向上逸散,为油气聚集成藏提供了很好的保存条件。而平湖组四段区域性盖层厚度大,连续性好,最厚可达167 m,稳定分布的较厚泥岩盖层一方面为平湖组中下部储层提供了良好的保存条件,另一方面作为烃源岩也为上部储层提供了大量的油气来源。

  • 图6 西湖凹陷武云亭地区储层孔渗关系图和储层铸体薄片照片

  • Fig.6 Relationship between porosity and permeability of reservoirs and thin section photos of reservoirs in the Wuyunting area, Xihu sag

  • (a)—储层孔渗关系图;(b)—B-5井,3594.75 m,平湖组三段,颗粒呈线接触;(c)—B-2井,4057.61 m,平湖组四段,颗粒呈线接触或凹凸接触;(d)—B-1井,4183.95 m,平湖组三段,岩屑溶蚀;(e)—B-1井,4183.95 m,平湖组三段,长石溶蚀;(f)—B-3井,4692.58 m,平湖组五段,碳酸盐胶结

  • (a) —relationship between porosity and permeability of reservoirs; (b) —well B-5, 3594.75 m, the third member of Pinghu Formation, the particles are in line contact; (c) —well B-2, 4057.61 m, the fourth member of Pinghu Formation, particles in linear contact or concave-convex contact; (d) —well B-1, 4183.95 m, the third member of Pinghu Formation, cuttings dissolution; (e) —well B-1, 4183.95 m, the third member of Pinghu Formation, feldspar dissolution; (f) —well B-3, 4692.58 m, the fifth member of Pinghu Formation, carbonate cementation

  • 3 武云亭油气田成藏特征与成藏模式

  • 3.1 油气来源分析

  • 3.1.1 天然气成因与来源

  • 武云亭油气田的油气相态复杂,以天然气、轻质油和凝析油为主,油气分布整体呈“上油下气”的特征,气藏主要分布于平湖组三、四、五段(图8c)。天然气中甲烷含量介于74.2%~88.2%,平均为80.3%;乙烷含量介于5.8%~12.2%,平均为9.2%;干燥系数为0.77~0.91,平均为0.83,且甲烷含量和干燥系数呈由浅至深逐渐降低的趋势(表1)。研究区天然气甲烷、乙烷、丙烷碳同位素组成含量分别为-43.1‰~-35.1‰、-29.5‰~-25.6‰、-27.3‰~-23.6‰,碳同位素特征表明武云亭地区天然气以油型气和煤成气的混合气为主(图9a),均为Ⅲ型干酪根热成因气(图9b),根据δ13C1-(δ13C213C3)交汇图版,研究区天然气均位于干酪根初次裂解演化趋势线上,没有二次裂解成因气(图9c)。为了分析天然气来源,利用甲烷碳同位素对天然气Ro进行计算,前人已提出较多的天然气碳同位素计算Ro的经验公式(戴金星等,1985沈平等,1987庞雄奇等,2000),但由于地质条件的差异导致这些经验公式不适用于西湖凹陷,前人针对西湖凹陷利用天然气共生凝析油成熟度与甲烷碳同位素拟合建立了天然气δ13C1-Ro方程(程熊等,2019):

  • 图7 西湖凹陷武云亭地区构造-岩性复合圈闭平面和剖面分布图(剖面位置见图7a)

  • Fig.7 Plane and profile distribution of tectonic-lithologic composite traps in the Wuyunting area, Xihu sag (the profile position shown in Fig.7a)

  • 表1 西湖凹陷武云亭地区平湖组天然气组分、同位素组及天然气成熟度统计表

  • Table1 Statistical table of natural gas composition, isotope group and natural gas maturity of Pinghu Formation in the Wuyunting area, Xihu sag

  • δ13C158.67lnRo-44.37
    (1)
  • 根据式(1)对天然气成熟度进行计算可得,研究区天然气成熟度介于1.05%~1.44%之间(表1),属于成熟—高成熟天然气,且天然气成熟度由浅至深有减小趋势(图9d)。将计算的天然气成熟度与本地烃源岩实测Ro进行对比可得,平湖组中下部(四、五段)天然气成熟度相对较低,介于1.05%~1.39%之间(平均1.24%),与本地平湖组烃源岩成熟度相近,加之平湖组四段区域性优质盖层的封闭作用和宝云亭古隆起对西次凹气源的阻挡作用,判断平湖组四、五段天然气为本地平湖组中下部烃源岩贡献(图9d);平湖组中上部(一、二、三段)天然气成熟度在1.36%~1.44%之间(平均为1.41%),明显高于斜坡带平湖组烃源岩成熟度(图9d),平湖组中上部断裂活动弱已不存在古隆起的阻挡作用,且进积型三角洲砂体连续分布提供了良好的运移通道,判断中上部天然气主要来自于西次凹的侧向运移。

  • 3.1.2 原油特征与来源

  • 武云亭油气田原油主要分布于平湖组中上部(图8c)。原油密度为0.7746~0.8752 g/cm3(平均为0.8251 g/cm3),含蜡量为4.19%~26.81%(平均为11.26%),50℃下原油黏度为0.96~13.8 mPa·s(平均为5.27 mPa·s),凝固点介于-6~19℃(平均为8.71℃),整体具有“高含蜡量、高凝固点”的特征。平湖组中上部(一、二、三段)与中下部(四、五段)原油物性存在明显差异,“高含蜡量,高密度,高凝固点”的轻质油主要分布在斜坡中高带的平湖组中上部,而“低含蜡量,低密度、低凝固点”的凝析油和轻质油主要分布在近洼带的平湖组中下部,且气油比具有向凹陷方向逐渐降低的趋势(表2)。

  • 图8 西湖凹陷武云亭地区油气保存条件综合评价图

  • Fig.8 Comprehensive evaluation of oil and gas preservation conditions in the Wuyunting area, Xihu sag

  • (a)—断裂分布剖面图;(b)—主要断层活动强度图;(c)—区域盖层分布剖面图

  • (a) —fracture distribution profile; (b) —activity intensity of main fault; (c) —distribution profile of regional caprock

  • 图9 西湖凹陷武云亭地区天然气成因与来源判别图

  • Fig.9 Discrimination diagrams of natural gas origin and source in the Wuyunting area, Xihu sag

  • (a)—天然气成因类型判别图(图版据戴金星,1992);(b)—天然气成因“Bernard”分类图(图版据Whiticar,1996);(c)—天然气裂解类型判别图(图版据Prinzhofer et al.,1995);(d)—烃源岩实测Ro与油气计算Ro对比图

  • (a) —discrimination diagram of genetic type of natural gas (the plate is based on Dai Jinxing, 1992) ; (b) —“Bernard” classification map of natural gas origin (the plate is based on Whiticar, 1996) ; (c) —discrimination diagram of natural gas cracking types (the plate is based on Prinzhofer et al., 1995) ; (d) —comparison of the measured Ro of source rocks and the calculated Ro of oil and gas

  • 表2 西湖凹陷武云亭地区平湖组原油物性参数表

  • Table2 Physical properties of crude oil of Pinghu Formation in the Wuyunting area, Xihu sag

  • 三环二萜烷类降海松烷、异海松烷及四环二萜烷类16β(H)-扁枝烷、贝壳杉烷等化合物来源于针叶类裸子植物,常用于反映陆源高等植物输入特征(Philp et al.,1981Noble et al.,1986曹倩等,2019);伽马蜡烷可用于表征沉积水体盐度的差异,高伽马蜡烷值反映水体盐度较高(Sinninghe Damste et al.,1995殷世艳等,2014)。武云亭地区原油中检测出丰富的低分子量的二环倍半萜和二萜类化合物,主要包括降海松烷、异海松烷、16β(H)-扁枝烷和贝壳杉烷,而五环三萜类的甾烷和藿烷化合物含量较低,反映原油母质主要来自于陆源高等植物,为典型的煤系原油(图10)。

  • 由于平湖组四段厚层的区域性泥岩盖层影响,武云亭地区平湖组中上部和中下部的原油生物标志化合物特征具有明显的差异。平湖组中上部高蜡轻质油具有“低姥植比、C29甾烷优势,高伽马蜡烷、低奥利烷”的特征(图10a),姥植比介于4.03~5.26之间,C27/C29甾烷比值介于0.6~0.8之间,伽马蜡烷指数一般大于0.07,奥利烷/C30霍烷一般小于0.3,同时具有较高的16β(H)-扁枝烷含量,异海松烷/16β(H)-扁枝烷比值均小于4(表3),表明该类原油具有裸子植物和蕨类植物等陆源高等植物的贡献,并有相当程度的较高盐度水体环境的低等水生生物的贡献,该类原油母质与平湖组中下部相比具有相对较强的还原性(图11a),且与煤和泥岩抽提物特征亲缘性不明显,可能为煤、碳质泥岩和暗色泥岩混合来源。而平湖组中下部凝析油表现为“高姥植比、甾烷优势不明显、低伽马蜡烷、高奥利烷”的特征(图10b),姥植比大于7,C27/C29甾烷比值大于0.9,伽马蜡烷指数一般小于0.05,奥利烷/C30霍烷一般大于0.3,同时异海松烷/16β(H)-扁枝烷比值均大于4(表3),该类原油与平湖组四、五段煤和泥岩表现出相似的特征(图10b、d、e),尤其与煤具有强亲缘性(图11a~c),该类原油可能来源于淡水—微咸水沉积环境的煤和泥岩贡献。

  • 图10 西湖凹陷武云亭地区平湖组原油和烃源岩抽提物饱和烃色谱-质谱图

  • Fig.10 GC-MS of saturated hydrocarbon in crude oil and source rock extracts from Pinghu Formation in the Wuyunting area, Xihu sag

  • (a)—B-2井,3537 m,平湖组一、二段,原油;(b)—B-1井,4359~4382 m,平湖组四段,原油;(c)—B-3井,4019 m,平湖组一、二段,泥岩;(d)—B-3井,4684.65 m,平湖组五段,泥岩;(e)—B-3井,4697.64 m,平湖组五段,煤

  • (a) —well B-2, 3537 m, the first and second members of Pinghu Formation, crude oil; (b) —well B-1, 4359~4382 m, the fourth member of Pinghu Formation, crude oil; (c) —well B-3, 4019 m, the first and second members of Pinghu Formation, mudstone; (d) —well B-3, 4684.65 m, the fifth member of Pinghu Formation, mudstone; (e) —well B-3, 4697.64 m, the fifth member of Pinghu Formation, coal

  • 饱和烃和芳烃组分的碳同位素可用于判断生烃母质来源(Sofer et al.,1984Gao Gang et al.,2020)。组分碳同位素含量反映,研究区平湖组中上部原油存在部分海相有机质的贡献,结合生物标志化合物指标反映的陆源高等植物母质来源,表明平湖组中上部原油以陆相煤系地层贡献为主,存在部分低带-西次凹来源(图11d);平湖组中下部原油为陆源有机质贡献,与平湖组中下部煤和泥岩抽提物碳同位素相近(图11d),表明平湖组中下部原油主要为平湖组中下部煤和泥岩贡献,与生标物分析结果一致。

  • 表3 西湖凹陷武云亭地区平湖组原油生物标志化合物和组分碳同位素参数表

  • Table3 Biomarker compounds and carbon isotope parameters for components of crude oil from Pinghu Formation in the Wuyunting area, Xihu sag

  • 注:生物标志化合物:1—Pr/nC17; 2—Ph/nC18; 3—Pr/Ph; 4—异海松烷/16β(H)扁枝烷; 5—降海松烷/异海松烷; 6—C27甾烷/C29甾烷; 7—γ蜡烷/C30藿烷; 8—奥利烷/C30藿烷。MPI1—甲基菲指数。

  • 甲基菲指数(MPI1)在反映原油成熟度方面已得到了广泛的应用(Radke et al.,1988)。利用甲基菲指数对武云亭地区原油样品的成熟度进行计算(Ro = 0.60MPI1+0.40),烃源岩成熟度计算结果与实测结果吻合较好(图9d),表明了该方法在西湖凹陷的适用性。平湖组中上部高蜡轻质油成熟度1.00%~1.23%,原油成熟度高于本地烃源岩成熟度,而平湖组中下部原油与本地烃源岩成熟度一致(图9d),结合生物标志化合物和组分碳同位素分析结果,认为平湖组中上部原油具低带-西次凹烃源岩的贡献,而平湖组中下部原油为武云亭洼本地煤系烃源岩贡献。

  • 3.2 压力分布与油气运移

  • 基于声波时差测井曲线,利用等效深度法对地层压力进行预测的方法已得到广泛应用(史建南等,2004周东红等,2012)。对武云亭地区关键井的单井地层压力进行预测,结果可得,平湖组四段区域性盖层以上基本为常压系统,区域性盖层以下普遍发育超压(图12a、b),表明平湖组四段顶部区域性盖层封闭能力强;而靠近宁波27洼的B-1井在平湖组三段中部发育弱超压(图12a),向宁波27洼方向地层压力逐渐增大(图12e)。断层泥岩比率SGR(SGR=断距内的泥岩厚度总和/断距)可反映断层侧向封堵性及输导能力(付广等,2012付晓飞等,2015吕延防等,2016),对研究区几条关键断层的SGR指数进行计算可得,平湖组一、二段和四段区域盖层发育段断层侧向封堵性强,三段中上部SGR指数普遍较低(图12c、d),侧向封闭能力较差,F3和F4断层在平湖组四段和五段的下部封堵性也较差(图12d),整体而言,斜坡高带的F1和F2断裂侧向封堵能力相对较强(图12c、d),为油气藏提供了有效的侧向遮挡条件。

  • 综合砂体展布、超压分布及断层侧向封堵性表明,平湖组一、二、三段发育连续性好、顺坡展布的三角洲砂体(图5d),且物性较好(图6),由宁波27洼向斜坡方向为压力降低方向,油气侧向输导动力足,同时F1和F2断层侧向封堵能力差(图12e),为油气的侧向输导提供了有利条件,高效输导砂体侧向延伸沟通至宁波27洼(图12e)。平湖组四、五段砂体沿断槽展布,侧向连续性差,且受古隆起遮挡使得宁波27洼的油气难以向斜坡带运移,因此高效输导砂体不发育(图12e)。

  • 图11 西湖凹陷武云亭地区油源对比图

  • Fig.11 Comparison of oil and source rocks in the Wuyunting area, Xihu sag

  • (a)—Ph/nC18和Pr/nC17关系图;(b)—(C21+C22)/(C28+C29)和Pr/Ph关系图;(c)—Pr/Ph和γ蜡烷指数关系图;(d)—饱和烃和芳烃碳同位素关系图

  • (a) —relationship between Ph/nC18 and Pr/nC17; (b) —relationship between (C21+C22) / (C28+C29) and Pr/Ph; (c) —relationship between Pr/Ph and gamma cerane index; (d) —carbon isotope relationship of saturated hydrocarbon and aromatic hydrocarbon

  • 3.3 油气成藏期次

  • 武云亭油气田平湖组储层烃类包裹体主要为两期,早期包裹体主要沿石英加大边或石英颗粒的微裂隙呈带状分布,包裹体呈透明无色,少量为黄褐色,液态烃显示亮黄色荧光(图13a);晚期包裹体主要沿切穿石英颗粒和加大边的成岩晚期微裂隙呈带状分布,包裹体呈透明无色,液态烃显示亮蓝色荧光(图13b)。两期包裹体均一温度主峰均为120~130℃,在110~120℃、130~140℃和>140℃温度范围均有次峰分布(图13c),反映具有油气连续充注的特征。结合埋藏史和生烃史表明,两期油气成藏时间分别为14 Ma和4 Ma左右(图14),14 Ma时,平湖组烃源岩达到成熟阶段进入大量生油期,但由于龙井运动的构造抬升,平湖组地温有所降低或未持续增高,使生烃速率变慢,同时构造运动使得油气发生大量运移;5~4 Ma时,地层再次进入快速沉降阶段,平湖组烃源岩进入大量生气阶段,并持续至今(图14)。

  • 3.4 油气运聚过程与成藏模式

  • 武云亭油气田具有近源、远源和多灶超压供烃特征。平湖组中上部(一、二、三段)具有弱超压油源和强超压气源、优质盖层和常压储层成藏组合特征,同时具备本地平湖组中上部煤系烃源岩和宁波27洼烃源岩供烃条件,连续分布的优质储层和断裂侧向开启为油气的侧向运移提供了有利通道,侧向压力降低为油气运移提供了动力(图12);平湖组中下部(四、五段)具有弱超压油气源、优质盖层和弱超压储层成藏组合特征,平湖组中下部煤系烃源岩生烃顺断层进入中下部断槽砂体形成断层-岩性或岩性油气藏,由于受平湖组早期低洼高隆古地形的影响,宁波27主洼生成的油气难以越过宝云亭古隆起进入武云亭构造-岩性复合圈闭成藏,具有自源和近源成藏特征。

  • 图12 西湖凹陷武云亭地区压力预测和输导条件评价

  • Fig.12 Pressure prediction and transport condition evaluation in the Wuyunting area, Xihu sag

  • (a)—B-1井单井压力预测图;(b)—B-2井单井压力预测图;(c)—F1、F2断层SGR指数分布图;(d)—F3、F4断层SGR指数分布图;(e)—压力分布和高效输导砂体分布剖面图(剖面位置见图7a)

  • (a) —single well pressure prediction of well B-1; (b) —single well pressure prediction of well B-2; (c) —distribution of SGR index of F1 and F2 faults; (d) —distribution of SGR index of F3 and F4 faults; (e) —profile of pressure distribution and distribution of high-efficiency transport sand bodies (the profile position shown in Fig.7a)

  • 武云亭油气田具有“多源持续强充注-断砂联控”成藏特征。在中新世早期(16.4~15 Ma),构造背景为拉张应力场下形成的正向断阶背景,武云亭洼平湖组下部煤系烃源岩小范围进入成熟阶段,普遍为低熟阶段,开始生排烃并充注黄绿色荧光的低熟油,其规模较小,主要聚集在下成藏组合的圈闭中;而埋藏较深的宁波27洼平湖组烃源岩已进入大规模生排成熟油时期,在剩余压力差驱动下,平湖组中上部成藏组合的圈闭充注成熟油,此时背斜圈闭尚未形成,形成受岩性上倾尖灭遮挡的岩性油藏和受断层遮挡的构造-岩性油藏为主(图15a)。龙井运动时期(14~11 Ma),在强构造挤压背景下形成背斜圈闭,部分断层发生挤压反转形成逆断层,平湖组中下部成藏组合煤系烃源岩进入大量生油气时期并在中下部储层中成藏;武云亭洼平湖组中上部煤系烃源岩基本进入成熟阶段,宁波27洼烃源岩广泛进入成熟—高成熟阶段并大量生烃,伴随着强烈的龙井运动,侧向油气大规模运移充注,侧向来源的高成熟天然气大规模充注至早期油藏形成现今的成熟凝析气藏(图15b)。上新世晚期至今(5~0 Ma),构造格局基本定型,武云亭洼和宁波27主洼烃源岩快速沉降广泛进入成熟—高成熟阶段并再次达到生排烃高峰,高成熟天然气通过平湖组中上部有效的断-砂输导体系侧向运移补充早期油气藏,武云亭洼本地平湖组中下部烃源岩生成的油气进一步向中下部储层中充注形成现今格局(图15c)。

  • 图13 西湖凹陷武云亭地区平湖组四段储层包裹体显微照片(a,b)与均一温度分布图(c)

  • Fig.13 Micrograph (a, b) and homogenization temperature (c) of reservoir inclusions in the fourth member of Pinghu Formation in the Wuyunting area, Xihu sag

  • 综上所述,武云亭地区中下部成藏组合为“武云亭洼煤系源岩供烃、源内持续弱超压充注”成藏,中上部成藏组合为“武云亭洼和宁波27洼双源供烃、侧向持续强充注”成藏。武云亭洼优质煤系烃源岩和宁波27主洼为武云亭油气田提供了充足的油气来源(图4),高孔渗的三角洲砂体为油气成藏提供了有利的储集场所(图6),平湖组中上部连续分布的的砂体、侧向开启的断裂和侧向压力降低为宁波27洼油气侧向运移提供了有利条件(图12),广泛分布的厚层区域性盖层为油气的保存提供了保障(图8),有利的“源-储-运-保”耦合条件共同控制了武云亭地区构造-岩性复合油气藏的形成。

  • 图14 西湖凹陷武云亭地区平湖组埋藏史、热史及油气充注期次综合分析图

  • Fig.14 Comprehensive analysis of burial history, thermal history, and oil and hydrocarbon charging periods of the Pinghu Formation in the Wuyunting area, Xihu sag

  • 图15 西湖凹陷武云亭凝析气田“多源持续强充注-断砂联控”成藏模式(剖面位置见图7a)

  • Fig.15 Reservoir forming process and model of structural-lithologic reservoir in the Wuyunting condensate field, Xihu sag (the profile position shown in Fig.7a)

  • 4 结论

  • (1)多因素共同控制了武云亭地区凝析气藏的形成:广泛分布的煤系烃源岩和不同演化阶段的多源供烃是形成大中型凝析气藏的物质基础,反向同沉积断层及古地形控制的三角洲沉积优质储层是油气成藏的有利场所,平湖组中上部连续分布的优质砂体和局部侧向开启的断层是油气侧向运移的有利通道,侧向地层压力降低为油气侧向运移提供了动力,平湖组四段超压封盖、晚期断裂活动弱与连续厚层泥岩的配置形成了良好的保存条件。

  • (2)武云亭油气田具有近源、远源和多灶超压供烃的特征,整体呈现“上油下气”的相态特征。平湖组中下部成藏组合原油和天然气以武云亭洼煤系烃源岩贡献为主,中上部成藏组合油气主要为宁波27洼和武云亭洼混合贡献,大规模侧向运移的高成熟气与早期双向来源的轻质油混合形成现今凝析气藏。

  • (3)武云亭油气田具有“多源持续强充注-断砂联控” 成藏特征,中下部成藏组合为“武云亭洼煤系源岩供烃、源内持续弱超压充注”成藏,中上部成藏组合为“武云亭洼和宁波27洼双源供烃、侧向持续强充注”成藏。

  • 参考文献

    • Cai Hua, Qin Lanzhi, Liu Yinghui. 2019. Differentiation andcoupling model of source-to-sink systems with transitional facies in Pingbei slope of Xihu sag. Earth Science, 44(3): 880~897 (in Chinese with English abstract).

    • Cao Qian, Song Zaichao, Zhou Xiaojin, Liang Shiyou, Wang Ling. 2019. Geochemical characteristics and source of crude oil in Xihusag, East China Sea shelf basin. Petroleum Geology & Experiment, 41(2): 251~259 (in Chinese with English abstract).

    • Chen Zhe, Zhang Changmin, Hou Guowei, Feng Wenjie, Xu Qinghai. 2020. Fault distribution patterns and their control on sand bodies in Pinghu Formation of Xihusag in East China Sea shelf basin. Oil & Gas Geology, 41(4): 824~837 (in Chinese with English abstract).

    • Cheng Xiong, Hou Dujie, Zhao Zhe, Jiang Yuhan, Zhou Xinhuai, Diao Hui, Chen Xiaodong, Yang Lijie, Dong Licheng. 2019. Analysis on the genesis and source of natural gas in Xihu sag, East China Sea basin. China Offshore Oil and Gas, 31(3): 50~60 (in Chinese with English abstract).

    • Dai Jinxing. 1992. Identification of various types of alkane gases. Science in China (Series B), (2): 185~193 (in Chinese).

    • Dai Jinxing, Qi Houfa, Song Yan. 1985. On the indicators for identifying gas from oil and gas from coal measure. Acta Petrolei Sinica, 6(2): 31~38 (in Chinese with English abstract).

    • Diao Hui, Liu Jinshui, Hou Yujie, Jiang Yiming, Zhang Tao, Zeng Wenqian. 2019. Coal-bearing source rocks formed in the transitional stage from faultingto depression nearshore China—A case from the Pinghu Formation in the Xihu sag. Marine Geology & Quaternary Geology, 39(6): 102~114 (in Chinese with English abstract).

    • Fu Guang, Shi Jijian, Lv Yanfang. 2012. An improvement in quantitatively studying lateral seal of faults. Acta Petrolei Sinica, 33(3): 414~418 (in Chinese with English abstract).

    • Fu Xiaofei, Jia Ru, Wang Haixue, Wu Tong, Meng Lingdong, Sun Yonghe. 2015. Quantitative evaluation of fault-caprock sealing capacity: A case from Dabei-Kelasu structural belt in Kuqa depression, Tarim basin, NW China. Petroleum Exploration and Development, 42(3): 300~309 (in Chinese with English abstract).

    • Gao Gang, Xu Xinde, Qu Tong, Gan Jun, Dang Wenlong, Zhou Xiaoxiao, Liu Fengyan. 2020. Petroleumorigins and accumulation patterns in the Weixinan sag in the Beibu Gulf basin, using subsag B as an example. Acta Geologica Sinica (English Edition), 94(5): 1515~1530.

    • Hou Guowei, Li Shuai, Qin Lanzhi, Cai Kun, Li Junjie, He Miao. 2019. Source-to-sink system of Pinghu Formation in west slope belt of Xihu sag, East China Sea basin. China Offshore Oil and Gas, 31(3): 29~39 (in Chinese with English abstract).

    • Hu Mengying, Li Sanzhong, Dai Liming, Suo Yanhui, Guo Lingli, Liu Ze, Ma Fangfang, Tao Jianli. 2017. Numerical dynamic modeling of tectonic inversion in the northeastern Xihusag. Marine Geology & Quaternary Geology, 37(4): 151~166 (in Chinese with English abstract).

    • Hu Mingyi, Shen Jiao, Hu Die. 2013. Reservoir characteristics and its main controlling factors of the Pinghu Formation in Pinghu structural belt, Xihu depression. Oil & Gas Geology, 34(2): 185~191 (in Chinese with English abstract).

    • Jiang Yiming. 2019. Detrital zircon U-Pb age and milankovitch cycles of Pinghu Formation in the Pinghuslope of Xihu depression: Constraints on source-sink system and sedimentary evolution. Bulletin of Geological Science and Technology, 38(6): 133~140 (in Chinese with English abstract).

    • Jiang Yiming, Shao Longyi, Li Shuai, Zhao Hong, Kang Shilong, Shen Wenchao, Yi Qi. 2020. Deposition system and stratigraphy of Pinghu Formation in Pinghutectonic belt, Xihu sag. Geoscience, 34(1): 141~153 (in Chinese with English abstract).

    • Li Kun, Zhou Xinghai, Ding Feng, Yuan Jing, Shen Shan, Lv Peng. 2019. "Multi-factor control of sandboies distribution" in the Pinghu Formation, Pingbei region of Baochu slop, the Xihu sag. Marine Geology & Quaternary Geology, 39(6): 115~123 (in Chinese with English abstract).

    • Liu Jinshui, Zhao Hong. 2019. Characteristics of differential gas invasion on Pinghuslope of Xihu sag, East China Sea basin. Journal of Chengdu University of Technology (Science & Technology Edition), 46(4): 487~496 (in Chinese with English abstract).

    • Lv Yanfang, Wang Wei, Hu Xinlei, Fu Guang, Shi Jijian, Wang Chao, Liu Zhe, Jiang Wenya. 2016. Quantitative evaluation method of fault lateral sealing. Petroleum Exploration and Development, 43(2): 310~316 (in Chinese with English abstract).

    • Noble R A, Alexander R, Kagi R I, Nox J K. 1986. Identification of some diterpenoid hydrocarbons in petroleum. Organic Geochemistry, 10(4-6): 825~829.

    • Pang Xiongqi, Zhou Haiyan, Li Jianqing, Zhou Ruinian. 2000. A quantitative model for distinguishing the degree of transformation of mixed source gas parent materials and its application. Acta Petrolei Sinica, 21(5): 16~20 (in Chinese with English abstract).

    • Philp R P, Gilbert T, Friedrich J. 1981. Bicyclic sesquiterpenoids and diterpenoids in Australian crude oils. Geochimicaet Cosmochimica Acta, 45(7): 1173~1180.

    • Prinzhofer A, Huc A. 1995. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chemical Geology, 126(3-4): 281~290.

    • Qin Lanzhi, Xie Jingjing, Zhang Wu. 2017. The main reservoir controlling factors of Pinghu Formation in Pingbei area of Xihusag. Journal of Yangtze University (Natural Science Edition), 14(19): 13~18 (in Chinese with English abstract).

    • Radke M. 1988. Application of aromatic compounds as maturity indicators in source rocks and crude oils. Marine and Petroleum Geology, 5(3): 224~236.

    • Shan Chao, Ye Jiaren, Cao Qiang, Lei Chuang, Peng Yuhui, Tian Yang. 2015. Controlling factors for gas accumulation in Kongqueting gas field of Xihusag. Marine Geology & Quaternary Geology, 35(1): 135~144 (in Chinese with English abstract).

    • Shen Ping, Shen Qixiang, Wang Xianbin, Xu Yongchang. 1987. Isotopic composition characteristics of gaseous hydrocarbons and identification of coal type gas. Science in China (Series B), (6): 647~656 (in Chinese).

    • Shi Jiannan, Jiang Jianqun, Li Mingkui. 2004. The modeling of pressure field evolution history in Damintunsag, Liaohe basin. Xinjiang Petroleum Geology, 25(3): 270~273 (in Chinese with English abstract).

    • Sinninghe Damste J S, Kenig F, Koopmans M P, Koster J, Schouten S, Hayes J M, de Leeuw J W. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59(9): 1895~1900.

    • Sofer Z. 1984. Stable carbon isotope compositions of crude oils; application to source depositional environments and petroleum alteration. AAPGBulletin, 68(1): 31~49.

    • Su Ao, Chen Honghan. 2015. Geochemicalcharacteristics of oil and source rock, origin and genesis of oil in Xihu depression, East China Sea basin. Earth Science (Journal of China University of Geosciences), 40(6): 1072~1082 (in Chinese with English abstract).

    • Tang Xianjun, Jiang Yiming, Zhang Jianpei, Wang Chao, He Xinjian, Yang Min. 2019. Fault characteristic and its control on traps of fault structural layer in the northern Pinghu slope belt, Xihusag, East China Sea shelf basin. Marine Geology Frontiers, 35(8): 34~43 (in Chinese with English abstract).

    • Tao Shizhen, Zou Caineng. 2005. Accumulation and distribution of natural gases in Xihusag, East China Sea basin. Petroleum Exploration and Development, 32(4): 103~110 (in Chinese with English abstract).

    • Wei Hengfei, Chen Jianfa, Chen Xiaodong. 2019. Characteristics andcontrolling factors of condensate reservoir accumulation in Xihu sag, East China Sea basin. Journal of Jilin University (Earth Science Edition), 49(6): 1507~1517 (in Chinese with English abstract).

    • Whiticar M J. 1996. Stable isotope geochemistry of coals, humic kerogens and related natural gases. International Journal of Coal Geology, 32(1): 191~215.

    • Xiao Xiaoguang, Hou Guowei, Zhang Wu, Jiang Xue, Miao Qing, Xie Jingjing. 2021. Diagenetic environment and pore evolution of the low permeability reservoir of Pinghu Formation in Xihusag. Marine Origin Petroleum Geology, 26(1): 60~70 (in Chinese with English abstract).

    • Yin Shiyan, Ye Jiaren, Lei Chuang, Shan Chao, Tian Yang, Liu Fangyuan. 2014. Geochemicalcharacteristics of Pinghu crude oils in Pingbei area of Xihu sag. Xinjiang Petroleum Geology, 35(5): 542~546 (in Chinese with English abstract).

    • Yu Shui. 2020. Depositional genesis analysis of source rock in Pinghu Formation of western slope, Xihu depression. Earth Science, 45(5): 1722~1736 (in Chinese with English abstract).

    • Zhao Jing, Huang Zhilong, Liu Chunfeng, Li Tianjun, Jiang Yiming, Tan Sizhe, Huang Yun, Guo Xiaobo. 2021. Identification and distribution characteristics of coal-bearing source rocks in Pingbei area, Xihu sag. Lithologic Reservoirs, 33(5): 95~106 (in Chinese with English abstract).

    • Zhou Donghong, Li Jianping, Guo Yonghua. 2012. Characteristics of pressure field and its relationship with hydrocarbon distribution in Liaoxilow uplift and Liaozhong sag. Fault-Block Oil & Gas Field, 19(1): 65~69 (in Chinese with English abstract).

    • Zhou Liqing, Jiang Donghui, Zhang Shanghu, Zhou Xinghai, Yang Pengcheng, Li Kun. 2020. Formation conditions and exploration direction of large and medium oil and gas reservoirs in Xihu sag, East China Sea. Petroleum Geology & Experiment, 42(5): 803~812 (in Chinese with English abstract).

    • Zhou Xinhuai. 2020. Geological understanding and innovation in Xihu sag and breakthroughs in oil and gas exploration. China Offshore Oil and Gas, 32(1): 1~12 (in Chinese with English abstract).

    • Zhou Xinhuai, Gao Shunli, Gao Weizhong, Li Ning. 2019. Formation and distribution of marine-continental transitional lithologic reservoirs in Pingbei slope belt, Xihu sag, East China Seashelf basin. China Petroleum Exploration, 24(2): 153~164 (in Chinese with English abstract).

    • 蔡华, 秦兰芝, 刘英辉. 2019. 西湖凹陷平北斜坡带海陆过渡相源-汇系统差异性及其耦合模式. 地球科学, 44(3): 880~897.

    • 曹倩, 宋在超, 周小进, 梁世友, 王岭. 2019. 东海盆地西湖凹陷原油地化特征及来源分析. 石油实验地质, 41(2): 251~259.

    • 陈哲, 张昌民, 侯国伟, 冯文杰, 徐清海. 2020. 东海陆架盆地西湖凹陷平湖组断层组合样式及其控砂机制. 石油与天然气地质, 41(4): 824~837.

    • 程熊, 侯读杰, 赵喆, 姜玉涵, 周心怀, 刁慧, 陈晓东, 杨丽杰, 董立成. 2019. 西湖凹陷天然气成因及来源分析. 中国海上油气, 31(3): 50~60.

    • 戴金星. 1992. 各类烷烃气的鉴别. 中国科学(B辑), (2): 185~193.

    • 戴金星, 戚厚发, 宋岩. 1985. 鉴别煤成气和油型气若干指标的初步探讨. 石油学报, 6(2): 31~38.

    • 单超, 叶加仁, 曹强, 雷闯, 彭钰会, 田杨. 2015. 西湖凹陷孔雀亭气田成藏主控因素. 海洋地质与第四纪地质, 35(1): 135~144.

    • 刁慧, 刘金水, 侯读杰, 蒋一鸣, 张涛, 曾文倩. 2019. 中国近海断―坳转换期煤系烃源岩特征——以西湖凹陷平湖组烃源岩为例. 海洋地质与第四纪地质, 39(6): 102~114.

    • 付广, 史集建, 吕延防. 2012. 断层侧向封闭性定量研究方法的改进. 石油学报, 33(3): 414~418.

    • 付晓飞, 贾茹, 王海学, 吴桐, 孟令东, 孙永河. 2015. 断层-盖层封闭性定量评价——以塔里木盆地库车坳陷大北-克拉苏构造带为例. 石油勘探与开发, 42(3): 300~309.

    • 侯国伟, 李帅, 秦兰芝, 蔡坤, 李峻颉, 何苗. 2019. 西湖凹陷西部斜坡带平湖组源-汇体系特征. 中国海上油气, 31(3): 29~39.

    • 胡梦颖, 李三忠, 戴黎明, 索艳慧, 郭玲莉, 刘泽, 马芳芳, 陶建丽. 2017. 西湖凹陷中北部反转构造动力学机制的数值模拟. 海洋地质与第四纪地质, 37(4): 151~166.

    • 胡明毅, 沈娇, 胡蝶. 2013. 西湖凹陷平湖构造带平湖组砂岩储层特征及其主控因素. 石油与天然气地质, 34(2): 185~191.

    • 蒋一鸣. 2019. 西湖凹陷平湖斜坡带平湖组碎屑锆石U-Pb年龄及米兰科维奇旋回: 对源-汇系统及沉积演化的约束. 地质科技情报, 38(6): 133~140.

    • 蒋一鸣, 邵龙义, 李帅, 赵洪, 康世龙, 沈文超, 易琦. 2020. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究. 现代地质, 34(1): 141~153.

    • 李昆, 周兴海, 丁峰, 袁竞, 沈珊, 吕鹏. 2019. 西湖凹陷保俶斜坡带平北地区平湖组“多元控砂”机制分析. 海洋地质与第四纪地质, 39(6): 115~123.

    • 刘金水, 赵洪. 2019. 东海陆架盆地西湖凹陷平湖斜坡带差异性气侵的成藏模式. 成都理工大学学报(自然科学版), 46(4): 487~496.

    • 吕延防, 王伟, 胡欣蕾, 付广, 史集建, 王超, 刘哲, 姜文亚. 2016. 断层侧向封闭性定量评价方法. 石油勘探与开发, 43(2): 310~316.

    • 庞雄奇, 周海燕, 李建青, 周瑞年. 2000. 判别混源气母质转化程度的定量模式及其应用. 石油学报, 21(5): 16~20.

    • 秦兰芝, 谢晶晶, 张武. 2017. 西湖凹陷平北区平湖组储层主控因素分析. 长江大学学报(自科版), 14(19): 13~18.

    • 沈平, 申歧祥, 王先彬, 徐永昌. 1987. 气态烃同位素组成特征及煤型气判识. 中国科学(B辑), (6): 647~656.

    • 史建南, 姜建群, 李明葵. 2004. 辽河盆地大民屯凹陷压力场演化史模拟. 新疆石油地质, 25(3): 270~273.

    • 苏奥, 陈红汉. 2015. 东海盆地西湖凹陷油岩地球化学特征及原油成因来源. 地球科学(中国地质大学学报), 40(6): 1072~1082.

    • 唐贤君, 蒋一鸣, 张建培, 王超, 何新建, 杨敏. 2019. 东海盆地西湖凹陷平北区断陷层断裂特征及其对圈闭的控制. 海洋地质前沿, 35(8): 34~43.

    • 陶士振, 邹才能. 2005. 东海盆地西湖凹陷天然气成藏及分布规律. 石油勘探与开发, 32(4): 103~110.

    • 魏恒飞, 陈践发, 陈晓东. 2019. 东海盆地西湖凹陷凝析气藏成藏特征及分布控制因素. 吉林大学学报(地球科学版), 49(6): 1507~1517.

    • 肖晓光, 侯国伟, 张武, 姜雪, 苗清, 谢晶晶. 2021. 西湖凹陷平湖组低渗储层成岩环境及孔隙演化. 海相油气地质, 26(1): 60~70.

    • 殷世艳, 叶加仁, 雷闯, 单超, 田杨, 刘方圆. 2014. 西湖凹陷平北地区平湖组原油地球化学特征. 新疆石油地质, 35(5): 542~546.

    • 于水. 2020. 西湖凹陷西斜坡平湖组烃源岩沉积成因分析. 地球科学, 45(5): 1722~1736.

    • 赵静, 黄志龙, 刘春锋, 李天军, 蒋一鸣, 谭思哲, 黄鋆, 郭小波. 2021. 西湖凹陷平北地区煤系烃源岩识别与分布. 岩性油气藏, 33(5): 95~106.

    • 周东红, 李建平, 郭永华. 2012. 辽西低凸起及辽中凹陷压力场特征与油气分布关系. 断块油气田, 19(1): 65~69.

    • 周荔青, 江东辉, 张尚虎, 周兴海, 杨鹏程, 李昆. 2020. 东海西湖凹陷大中型油气田形成条件及勘探方向. 石油实验地质, 42(5): 803~812.

    • 周心怀. 2020. 西湖凹陷地质认识创新与油气勘探领域突破. 中国海上油气, 32(1): 1~12.

    • 周心怀, 高顺莉, 高伟中, 李宁. 2019. 东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测. 中国石油勘探, 24(2): 153~164.

  • 参考文献

    • Cai Hua, Qin Lanzhi, Liu Yinghui. 2019. Differentiation andcoupling model of source-to-sink systems with transitional facies in Pingbei slope of Xihu sag. Earth Science, 44(3): 880~897 (in Chinese with English abstract).

    • Cao Qian, Song Zaichao, Zhou Xiaojin, Liang Shiyou, Wang Ling. 2019. Geochemical characteristics and source of crude oil in Xihusag, East China Sea shelf basin. Petroleum Geology & Experiment, 41(2): 251~259 (in Chinese with English abstract).

    • Chen Zhe, Zhang Changmin, Hou Guowei, Feng Wenjie, Xu Qinghai. 2020. Fault distribution patterns and their control on sand bodies in Pinghu Formation of Xihusag in East China Sea shelf basin. Oil & Gas Geology, 41(4): 824~837 (in Chinese with English abstract).

    • Cheng Xiong, Hou Dujie, Zhao Zhe, Jiang Yuhan, Zhou Xinhuai, Diao Hui, Chen Xiaodong, Yang Lijie, Dong Licheng. 2019. Analysis on the genesis and source of natural gas in Xihu sag, East China Sea basin. China Offshore Oil and Gas, 31(3): 50~60 (in Chinese with English abstract).

    • Dai Jinxing. 1992. Identification of various types of alkane gases. Science in China (Series B), (2): 185~193 (in Chinese).

    • Dai Jinxing, Qi Houfa, Song Yan. 1985. On the indicators for identifying gas from oil and gas from coal measure. Acta Petrolei Sinica, 6(2): 31~38 (in Chinese with English abstract).

    • Diao Hui, Liu Jinshui, Hou Yujie, Jiang Yiming, Zhang Tao, Zeng Wenqian. 2019. Coal-bearing source rocks formed in the transitional stage from faultingto depression nearshore China—A case from the Pinghu Formation in the Xihu sag. Marine Geology & Quaternary Geology, 39(6): 102~114 (in Chinese with English abstract).

    • Fu Guang, Shi Jijian, Lv Yanfang. 2012. An improvement in quantitatively studying lateral seal of faults. Acta Petrolei Sinica, 33(3): 414~418 (in Chinese with English abstract).

    • Fu Xiaofei, Jia Ru, Wang Haixue, Wu Tong, Meng Lingdong, Sun Yonghe. 2015. Quantitative evaluation of fault-caprock sealing capacity: A case from Dabei-Kelasu structural belt in Kuqa depression, Tarim basin, NW China. Petroleum Exploration and Development, 42(3): 300~309 (in Chinese with English abstract).

    • Gao Gang, Xu Xinde, Qu Tong, Gan Jun, Dang Wenlong, Zhou Xiaoxiao, Liu Fengyan. 2020. Petroleumorigins and accumulation patterns in the Weixinan sag in the Beibu Gulf basin, using subsag B as an example. Acta Geologica Sinica (English Edition), 94(5): 1515~1530.

    • Hou Guowei, Li Shuai, Qin Lanzhi, Cai Kun, Li Junjie, He Miao. 2019. Source-to-sink system of Pinghu Formation in west slope belt of Xihu sag, East China Sea basin. China Offshore Oil and Gas, 31(3): 29~39 (in Chinese with English abstract).

    • Hu Mengying, Li Sanzhong, Dai Liming, Suo Yanhui, Guo Lingli, Liu Ze, Ma Fangfang, Tao Jianli. 2017. Numerical dynamic modeling of tectonic inversion in the northeastern Xihusag. Marine Geology & Quaternary Geology, 37(4): 151~166 (in Chinese with English abstract).

    • Hu Mingyi, Shen Jiao, Hu Die. 2013. Reservoir characteristics and its main controlling factors of the Pinghu Formation in Pinghu structural belt, Xihu depression. Oil & Gas Geology, 34(2): 185~191 (in Chinese with English abstract).

    • Jiang Yiming. 2019. Detrital zircon U-Pb age and milankovitch cycles of Pinghu Formation in the Pinghuslope of Xihu depression: Constraints on source-sink system and sedimentary evolution. Bulletin of Geological Science and Technology, 38(6): 133~140 (in Chinese with English abstract).

    • Jiang Yiming, Shao Longyi, Li Shuai, Zhao Hong, Kang Shilong, Shen Wenchao, Yi Qi. 2020. Deposition system and stratigraphy of Pinghu Formation in Pinghutectonic belt, Xihu sag. Geoscience, 34(1): 141~153 (in Chinese with English abstract).

    • Li Kun, Zhou Xinghai, Ding Feng, Yuan Jing, Shen Shan, Lv Peng. 2019. "Multi-factor control of sandboies distribution" in the Pinghu Formation, Pingbei region of Baochu slop, the Xihu sag. Marine Geology & Quaternary Geology, 39(6): 115~123 (in Chinese with English abstract).

    • Liu Jinshui, Zhao Hong. 2019. Characteristics of differential gas invasion on Pinghuslope of Xihu sag, East China Sea basin. Journal of Chengdu University of Technology (Science & Technology Edition), 46(4): 487~496 (in Chinese with English abstract).

    • Lv Yanfang, Wang Wei, Hu Xinlei, Fu Guang, Shi Jijian, Wang Chao, Liu Zhe, Jiang Wenya. 2016. Quantitative evaluation method of fault lateral sealing. Petroleum Exploration and Development, 43(2): 310~316 (in Chinese with English abstract).

    • Noble R A, Alexander R, Kagi R I, Nox J K. 1986. Identification of some diterpenoid hydrocarbons in petroleum. Organic Geochemistry, 10(4-6): 825~829.

    • Pang Xiongqi, Zhou Haiyan, Li Jianqing, Zhou Ruinian. 2000. A quantitative model for distinguishing the degree of transformation of mixed source gas parent materials and its application. Acta Petrolei Sinica, 21(5): 16~20 (in Chinese with English abstract).

    • Philp R P, Gilbert T, Friedrich J. 1981. Bicyclic sesquiterpenoids and diterpenoids in Australian crude oils. Geochimicaet Cosmochimica Acta, 45(7): 1173~1180.

    • Prinzhofer A, Huc A. 1995. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chemical Geology, 126(3-4): 281~290.

    • Qin Lanzhi, Xie Jingjing, Zhang Wu. 2017. The main reservoir controlling factors of Pinghu Formation in Pingbei area of Xihusag. Journal of Yangtze University (Natural Science Edition), 14(19): 13~18 (in Chinese with English abstract).

    • Radke M. 1988. Application of aromatic compounds as maturity indicators in source rocks and crude oils. Marine and Petroleum Geology, 5(3): 224~236.

    • Shan Chao, Ye Jiaren, Cao Qiang, Lei Chuang, Peng Yuhui, Tian Yang. 2015. Controlling factors for gas accumulation in Kongqueting gas field of Xihusag. Marine Geology & Quaternary Geology, 35(1): 135~144 (in Chinese with English abstract).

    • Shen Ping, Shen Qixiang, Wang Xianbin, Xu Yongchang. 1987. Isotopic composition characteristics of gaseous hydrocarbons and identification of coal type gas. Science in China (Series B), (6): 647~656 (in Chinese).

    • Shi Jiannan, Jiang Jianqun, Li Mingkui. 2004. The modeling of pressure field evolution history in Damintunsag, Liaohe basin. Xinjiang Petroleum Geology, 25(3): 270~273 (in Chinese with English abstract).

    • Sinninghe Damste J S, Kenig F, Koopmans M P, Koster J, Schouten S, Hayes J M, de Leeuw J W. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59(9): 1895~1900.

    • Sofer Z. 1984. Stable carbon isotope compositions of crude oils; application to source depositional environments and petroleum alteration. AAPGBulletin, 68(1): 31~49.

    • Su Ao, Chen Honghan. 2015. Geochemicalcharacteristics of oil and source rock, origin and genesis of oil in Xihu depression, East China Sea basin. Earth Science (Journal of China University of Geosciences), 40(6): 1072~1082 (in Chinese with English abstract).

    • Tang Xianjun, Jiang Yiming, Zhang Jianpei, Wang Chao, He Xinjian, Yang Min. 2019. Fault characteristic and its control on traps of fault structural layer in the northern Pinghu slope belt, Xihusag, East China Sea shelf basin. Marine Geology Frontiers, 35(8): 34~43 (in Chinese with English abstract).

    • Tao Shizhen, Zou Caineng. 2005. Accumulation and distribution of natural gases in Xihusag, East China Sea basin. Petroleum Exploration and Development, 32(4): 103~110 (in Chinese with English abstract).

    • Wei Hengfei, Chen Jianfa, Chen Xiaodong. 2019. Characteristics andcontrolling factors of condensate reservoir accumulation in Xihu sag, East China Sea basin. Journal of Jilin University (Earth Science Edition), 49(6): 1507~1517 (in Chinese with English abstract).

    • Whiticar M J. 1996. Stable isotope geochemistry of coals, humic kerogens and related natural gases. International Journal of Coal Geology, 32(1): 191~215.

    • Xiao Xiaoguang, Hou Guowei, Zhang Wu, Jiang Xue, Miao Qing, Xie Jingjing. 2021. Diagenetic environment and pore evolution of the low permeability reservoir of Pinghu Formation in Xihusag. Marine Origin Petroleum Geology, 26(1): 60~70 (in Chinese with English abstract).

    • Yin Shiyan, Ye Jiaren, Lei Chuang, Shan Chao, Tian Yang, Liu Fangyuan. 2014. Geochemicalcharacteristics of Pinghu crude oils in Pingbei area of Xihu sag. Xinjiang Petroleum Geology, 35(5): 542~546 (in Chinese with English abstract).

    • Yu Shui. 2020. Depositional genesis analysis of source rock in Pinghu Formation of western slope, Xihu depression. Earth Science, 45(5): 1722~1736 (in Chinese with English abstract).

    • Zhao Jing, Huang Zhilong, Liu Chunfeng, Li Tianjun, Jiang Yiming, Tan Sizhe, Huang Yun, Guo Xiaobo. 2021. Identification and distribution characteristics of coal-bearing source rocks in Pingbei area, Xihu sag. Lithologic Reservoirs, 33(5): 95~106 (in Chinese with English abstract).

    • Zhou Donghong, Li Jianping, Guo Yonghua. 2012. Characteristics of pressure field and its relationship with hydrocarbon distribution in Liaoxilow uplift and Liaozhong sag. Fault-Block Oil & Gas Field, 19(1): 65~69 (in Chinese with English abstract).

    • Zhou Liqing, Jiang Donghui, Zhang Shanghu, Zhou Xinghai, Yang Pengcheng, Li Kun. 2020. Formation conditions and exploration direction of large and medium oil and gas reservoirs in Xihu sag, East China Sea. Petroleum Geology & Experiment, 42(5): 803~812 (in Chinese with English abstract).

    • Zhou Xinhuai. 2020. Geological understanding and innovation in Xihu sag and breakthroughs in oil and gas exploration. China Offshore Oil and Gas, 32(1): 1~12 (in Chinese with English abstract).

    • Zhou Xinhuai, Gao Shunli, Gao Weizhong, Li Ning. 2019. Formation and distribution of marine-continental transitional lithologic reservoirs in Pingbei slope belt, Xihu sag, East China Seashelf basin. China Petroleum Exploration, 24(2): 153~164 (in Chinese with English abstract).

    • 蔡华, 秦兰芝, 刘英辉. 2019. 西湖凹陷平北斜坡带海陆过渡相源-汇系统差异性及其耦合模式. 地球科学, 44(3): 880~897.

    • 曹倩, 宋在超, 周小进, 梁世友, 王岭. 2019. 东海盆地西湖凹陷原油地化特征及来源分析. 石油实验地质, 41(2): 251~259.

    • 陈哲, 张昌民, 侯国伟, 冯文杰, 徐清海. 2020. 东海陆架盆地西湖凹陷平湖组断层组合样式及其控砂机制. 石油与天然气地质, 41(4): 824~837.

    • 程熊, 侯读杰, 赵喆, 姜玉涵, 周心怀, 刁慧, 陈晓东, 杨丽杰, 董立成. 2019. 西湖凹陷天然气成因及来源分析. 中国海上油气, 31(3): 50~60.

    • 戴金星. 1992. 各类烷烃气的鉴别. 中国科学(B辑), (2): 185~193.

    • 戴金星, 戚厚发, 宋岩. 1985. 鉴别煤成气和油型气若干指标的初步探讨. 石油学报, 6(2): 31~38.

    • 单超, 叶加仁, 曹强, 雷闯, 彭钰会, 田杨. 2015. 西湖凹陷孔雀亭气田成藏主控因素. 海洋地质与第四纪地质, 35(1): 135~144.

    • 刁慧, 刘金水, 侯读杰, 蒋一鸣, 张涛, 曾文倩. 2019. 中国近海断―坳转换期煤系烃源岩特征——以西湖凹陷平湖组烃源岩为例. 海洋地质与第四纪地质, 39(6): 102~114.

    • 付广, 史集建, 吕延防. 2012. 断层侧向封闭性定量研究方法的改进. 石油学报, 33(3): 414~418.

    • 付晓飞, 贾茹, 王海学, 吴桐, 孟令东, 孙永河. 2015. 断层-盖层封闭性定量评价——以塔里木盆地库车坳陷大北-克拉苏构造带为例. 石油勘探与开发, 42(3): 300~309.

    • 侯国伟, 李帅, 秦兰芝, 蔡坤, 李峻颉, 何苗. 2019. 西湖凹陷西部斜坡带平湖组源-汇体系特征. 中国海上油气, 31(3): 29~39.

    • 胡梦颖, 李三忠, 戴黎明, 索艳慧, 郭玲莉, 刘泽, 马芳芳, 陶建丽. 2017. 西湖凹陷中北部反转构造动力学机制的数值模拟. 海洋地质与第四纪地质, 37(4): 151~166.

    • 胡明毅, 沈娇, 胡蝶. 2013. 西湖凹陷平湖构造带平湖组砂岩储层特征及其主控因素. 石油与天然气地质, 34(2): 185~191.

    • 蒋一鸣. 2019. 西湖凹陷平湖斜坡带平湖组碎屑锆石U-Pb年龄及米兰科维奇旋回: 对源-汇系统及沉积演化的约束. 地质科技情报, 38(6): 133~140.

    • 蒋一鸣, 邵龙义, 李帅, 赵洪, 康世龙, 沈文超, 易琦. 2020. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究. 现代地质, 34(1): 141~153.

    • 李昆, 周兴海, 丁峰, 袁竞, 沈珊, 吕鹏. 2019. 西湖凹陷保俶斜坡带平北地区平湖组“多元控砂”机制分析. 海洋地质与第四纪地质, 39(6): 115~123.

    • 刘金水, 赵洪. 2019. 东海陆架盆地西湖凹陷平湖斜坡带差异性气侵的成藏模式. 成都理工大学学报(自然科学版), 46(4): 487~496.

    • 吕延防, 王伟, 胡欣蕾, 付广, 史集建, 王超, 刘哲, 姜文亚. 2016. 断层侧向封闭性定量评价方法. 石油勘探与开发, 43(2): 310~316.

    • 庞雄奇, 周海燕, 李建青, 周瑞年. 2000. 判别混源气母质转化程度的定量模式及其应用. 石油学报, 21(5): 16~20.

    • 秦兰芝, 谢晶晶, 张武. 2017. 西湖凹陷平北区平湖组储层主控因素分析. 长江大学学报(自科版), 14(19): 13~18.

    • 沈平, 申歧祥, 王先彬, 徐永昌. 1987. 气态烃同位素组成特征及煤型气判识. 中国科学(B辑), (6): 647~656.

    • 史建南, 姜建群, 李明葵. 2004. 辽河盆地大民屯凹陷压力场演化史模拟. 新疆石油地质, 25(3): 270~273.

    • 苏奥, 陈红汉. 2015. 东海盆地西湖凹陷油岩地球化学特征及原油成因来源. 地球科学(中国地质大学学报), 40(6): 1072~1082.

    • 唐贤君, 蒋一鸣, 张建培, 王超, 何新建, 杨敏. 2019. 东海盆地西湖凹陷平北区断陷层断裂特征及其对圈闭的控制. 海洋地质前沿, 35(8): 34~43.

    • 陶士振, 邹才能. 2005. 东海盆地西湖凹陷天然气成藏及分布规律. 石油勘探与开发, 32(4): 103~110.

    • 魏恒飞, 陈践发, 陈晓东. 2019. 东海盆地西湖凹陷凝析气藏成藏特征及分布控制因素. 吉林大学学报(地球科学版), 49(6): 1507~1517.

    • 肖晓光, 侯国伟, 张武, 姜雪, 苗清, 谢晶晶. 2021. 西湖凹陷平湖组低渗储层成岩环境及孔隙演化. 海相油气地质, 26(1): 60~70.

    • 殷世艳, 叶加仁, 雷闯, 单超, 田杨, 刘方圆. 2014. 西湖凹陷平北地区平湖组原油地球化学特征. 新疆石油地质, 35(5): 542~546.

    • 于水. 2020. 西湖凹陷西斜坡平湖组烃源岩沉积成因分析. 地球科学, 45(5): 1722~1736.

    • 赵静, 黄志龙, 刘春锋, 李天军, 蒋一鸣, 谭思哲, 黄鋆, 郭小波. 2021. 西湖凹陷平北地区煤系烃源岩识别与分布. 岩性油气藏, 33(5): 95~106.

    • 周东红, 李建平, 郭永华. 2012. 辽西低凸起及辽中凹陷压力场特征与油气分布关系. 断块油气田, 19(1): 65~69.

    • 周荔青, 江东辉, 张尚虎, 周兴海, 杨鹏程, 李昆. 2020. 东海西湖凹陷大中型油气田形成条件及勘探方向. 石油实验地质, 42(5): 803~812.

    • 周心怀. 2020. 西湖凹陷地质认识创新与油气勘探领域突破. 中国海上油气, 32(1): 1~12.

    • 周心怀, 高顺莉, 高伟中, 李宁. 2019. 东海陆架盆地西湖凹陷平北斜坡带海陆过渡型岩性油气藏形成与分布预测. 中国石油勘探, 24(2): 153~164.