-
埃迪卡拉系灯影组是四川盆地油气勘探最为重要层位之一。近70年的勘探历程表明,绵阳-长宁拉张槽(因形成机制复杂,定名繁多,本文均采用原始的“绵阳-长宁拉张槽”术语)对灯影组油气分布有明显的控制作用(刘树根等,2013)。无论是20世纪60年代发现的威远气田和90年代发现的资阳气田,还是2010年后发现的安岳气田,以及近期获得勘探突破的太和气区,都是沿绵阳-长宁拉张槽两侧分布。绵阳-长宁拉张槽的形态最初是通过地震资料刻画出来的,表现为槽内灯影组急剧减薄,但上覆寒武系明显厚于两侧(刘树根等,2013)。在上扬子地区整体处于陆表海碳酸盐岩台地的沉积背景下(Ding Yi et al.,2021),绵阳-长宁拉张槽的发育造成了明显的沉积分异,槽缘发育灯影组优质碳酸盐岩储层,槽内发育寒武系优质烃源岩层,并形成旁生侧储的源储配置关系提高了成藏效率,最终有利于灯影组油气藏的形成(刘树根等,2013,2016;张玺华等,2020)。尽管绵阳-长宁拉张槽的油气地质意义已经得到广泛认可,其形成时间及成因机制自发现以来争议不断。在绵阳-长宁拉张槽发现的初期,学者们根据有限的地震和钻井资料提出了拉张(刘树根等,2013;杜金虎等,2016)、侵蚀(杨雨等,2014)、拉张/侵蚀复合(汪泽成等,2014;李忠权等,2015)3种成因假说。随着近年来钻井和野外资料的逐渐丰富,绵阳-长宁拉张槽的认识也在这3种假说之上不断的完善。四川盆地西北部外缘的一系列露头研究表明拉绵阳-长宁拉张槽北段确实存在灯影组深水沉积,支持了拉张背景下的沉积成因(张玺华等,2020)。与此同时,川中—北斜坡一系列钻井证实拉张槽内缘灯4段(石油地质学界常把灯影组自下而上划分为4段)存在不同程度的缺失,甚至在拉张槽中心部位剥蚀至灯2段,支持了侵蚀成因在部分地区的主导地位(刘静江等,2021)。马奎等分段讨论了绵阳-长宁拉张槽的形成机制(马奎等,2022),认为绵阳-长宁拉张槽北段的形成以拉张裂陷作用为主,向南则逐渐转变为侵蚀作用主导。因此,绵阳-长宁拉张槽的地层充填样式和成因具有明显的时空差异性,亟需分区块精细研究,才能全面揭示绵阳-长宁拉张槽的形成机制,支撑下一步的油气勘探。本文对拉张槽北段东缘仅有的露头区广元—宁强地区的震旦系(国际上称埃迪卡拉系)—寒武系过渡地层开展了系统的地层序列、岩相分析工作,结合前人在其他地区开展的研究工作,以探讨该地区拉张槽的形成机制,为油气勘探部署提供参考。
-
1 区域地质背景
-
研究区位于上扬子地块西北缘的广元—宁强地区,现今构造属于扬子板块和华北板块的拼合带西段,是四川盆地与秦岭造山带的过渡地区(李智武等,2019)(图1)。该区地处碧口微地块以东,汉南隆起及米仓山隆起以西;西部的龙门山冲断带发育青川—阳平关、北川—映秀等多条断裂,致使露头不连续,变质严重(李佐臣,2011)(图1)。尽管具体机制还存在争议,大量的研究认为在新元古代早期,伴随着罗迪尼亚超大陆的裂解,扬子板块经历了强烈的裂谷作用,在中—上扬子地块周缘形成了一系列的裂谷盆地(Zhao Guochun et al.,2012)。其中,上扬子地块西北缘大致位于碧口—汉南裂谷盆地(Zhao Guochun et al.,2012)。南华纪时期,拉张作用不断减弱,裂谷盆地逐步转换为坳陷盆地(Jiang Ganqing et al.,2011)。震旦纪—寒武纪转折期,绵阳-长宁拉张槽北段在上扬子地块西北缘呈喇叭状开口与广海联通(刘树根等,2013,2016;张玺华等,2020;马奎等,2022)。直到寒武纪早期的沧浪铺组和龙王庙组沉积期,绵阳-长宁拉张槽基本被填平补齐,槽内和槽外沉积厚度和岩相趋于一致(刘树根等,2013)。
-
图1 广元—宁强区域地质概况及剖面点分布
-
Fig.1 Geologic settings of Guangyuan-Ningqiang area and the distribution of studied sections
-
研究区震旦系—寒武系过渡地层由下向上依次为陡山沱组、灯影组、宽川铺组、筇竹寺组(图2)。其中,陡山沱组的岩性以粉砂岩、页岩为主。灯影组可以明显划分为3段:藻白云岩段(灯一段和灯2段),高家山段(灯3段),碑湾段(灯4段)(Cai Yaoping et al.,2019; Ding Yi et al.,2021)。藻白云岩段和碑湾段以各类微生物白云岩(叠层石、凝块石等)为特征,也发育有泥晶白云岩、砂屑白云岩等其他岩石类型。总体而言,藻白云岩段微生物白云岩丰度高于碑湾段。高家山段以砂岩、砾岩、泥页岩等陆源沉积岩为特征,局部地区见有灰岩和白云岩夹层(Ding Yi et al.,2021)。此外,高家山段还发育有克劳德管、陕西迹、高家山虫等管状动物化石(Cai Yaoping et al.,2019; 华洪等,2020)。灯影组与上覆宽川铺组通常为不整合接触,在此情况下,其上部和宽川铺组(大致相当于盆内的麦地坪组)下部存在不同程度的缺失。宽川铺组以灰岩为主,常常夹硅质、磷质夹层,古生物方面以发育小壳化石为特征(Cai Yaoping et al.,2019)。其上为筇竹寺组黑色页岩、粉砂岩,以三叶虫出现为标志,也发育有两个小壳化石带,二者之间也常常呈不整合接触(Steiner et al.,2007; 刘树根等,2013,2016; Zhang Zhiliang et al.,2021)。
-
2 地层沉积特征
-
由于研究区临近龙门山冲断带,露头多数经历不同程度的变质作用,且受断层干扰严重。因此,本次研究针对性开展了特征岩性和界限地层分析,以反映整个区域的地层沉积序列,对出露相对完整的李家沟、董家沟、舒家坝等剖面进行了系统的实测工作。
-
2.1 宽川铺地区
-
宽川铺地区包括李家沟、上院、石钟沟、宽川铺、南沟里等多个露头点,以李家沟剖面最为完整。在南沟里剖面出露陡山沱组上部,主要发育灰黑色页岩。在石钟沟、宽川铺及上院剖面断续可见灯影组藻白云岩段,主要以泥晶白云岩、多种藻白云岩形成的米级旋回为特征,可见葡萄状构造(图3a)。整个宽川铺地区高家山段和碑湾段缺失严重,上院剖面葡萄状白云岩段向上不到18.7 m即为灯影组泥晶白云岩与宽川铺组硅磷质岩的界限(图3b、c),高家山段和碑湾段全部缺失。李家沟剖面灯二段藻白云岩段覆盖严重,高家山段以砂岩、页岩、灰岩、砂质白云岩互层为特征(图3d,图4),并夹有硅质条带,顶部为一套4.4 m的粉屑灰岩。高家山段之上为9.1 m厚的碑湾段,下部发育泥晶白云岩,向上逐渐过渡为砂屑白云岩。碑湾段与上覆宽川铺组的接触界面凹凸不平,且宽川铺组底部的灰岩中见有冲刷砾屑,指示不整合接触关系(图3e,图4)。宽川铺组主要发育硅磷质岩夹灰岩(图3f,图4)。石钟沟、宽川铺等剖面与李家沟剖面岩性和地层发育情况类似,其高家山段都普遍发育有管状动物化石,为晚震旦世地层的标志化石(Cai Yaoping et al.,2019)。
-
图2 广元—宁强区域震旦系—寒武系过渡地层综合柱状图
-
Fig.2 Composite column of the Sinian-Cambrian transitional strata in Guangyuan-Ningqiang area
-
图3 宁强宽川铺地区震旦系—寒武系过渡地层岩性图版
-
Fig.3 Lithofacies of the Sinian-Cambrian transitional strata in Kuanchuanpu area of the Ningqiang County
-
(a)—葡萄状构造,厘米级比例尺,宽川铺剖面;(b)—藻白云岩段泥晶白云岩与宽川铺组硅磷质岩不整合接触,地质锤长28 cm,西湾剖面;(c)—宽川铺组硅质岩,正交偏光,西湾剖面;(d)—粉砂质页岩夹白云岩,分米级比例尺,李家沟剖面;(e)—碑湾段泥晶白云岩与宽川铺组灰岩不整合接触,地质锤长35 cm,李家沟剖面;(f)—磷质灰岩,铅笔长14 cm,李家沟剖面
-
(a) —grape-like structure, scale in centimetres, Kuanchuanpu section; (b) —dolomudstone of the Algal Dolomite Member uncomfortably overlain by cherty phosphorite of the Kuanchuanpu Formation, hammer for scale is 28 cm, Xiwan section; (c) —chert of the Kuanchuanpu Formation, cross-polarized light, Xiwan section; (d) —silty shale with dolomite interlayer, scale in decimetre, Lijiagou section; (e) —dolomudstone of the Beiwan Member uncomfortably overlain by limestone of the Kuanchuanpu Formation, hammer for scale is 35 cm, Lijiagou section; (f) —phosphatic limestone, marker pen for scale is 14 cm, Lijiagou section
-
2.2 舒家坝地区
-
舒家坝地区包括舒家坝镇北西方前往范家山及主路上前往李家坪两条剖面路线。这两条路线内部均有断层错动,但沉积序列可以完整识别。灯影组藻白云岩段底部发育泥晶白云岩,之上主要发育泥晶白云岩、叠层石白云岩、藻纹层白云岩形成的米级旋回,常见渗流豆、鸟眼孔等暴露构造,并发育特征的葡萄状构造(图5,图6a)。藻白云岩段顶部的凝块石白云岩之上为2 m的云质粉砂岩风化壳层,与上覆高家山段灰绿色粉砂岩呈现不整合接触(图5,图6b)。高家山段主要发育粉砂岩、砂岩、砾岩。碑湾段实测近200 m主要发育藻纹层白云岩、凝块石白云岩夹泥晶白云岩,沥青含量向上逐渐增加(图5,图6c、d)。碑湾段之上为20 m左右的覆盖段,其上可见筇竹寺组黑色页岩(图5,图6e)。
-
图4 宁强李家沟剖面岩性柱状图(图例同图2)
-
Fig.4 Lithologic column of Lijiagou section of the Ningqiang County (see Fig.2 for legend)
-
2.3 亢家洞地区
-
亢家洞地区灯影组底部为断层接触,主要在亢家洞采石场出露近100 m。该剖面灯影组以泥晶白云岩为主,夹少量藻纹层白云岩,几乎全段富含沥青(图6f)。考虑到未见指示藻白云岩段的葡萄状构造,且全区碑湾段普遍富含沥青的特征,该段地层划归为碑湾段。
-
图5 宁强舒家坝剖面岩性柱状图(图例同图2)
-
Fig.5 Lithologic column of Shujiaba section of the Ningqiang County (see Fig.2 for legend)
-
2.4 曹家坝—东山子地区
-
曹家坝—东山子地区包括曹家坝、东山子、田坝里、黄家湾、窑场坪、毛坡梁、清边河等露头点。该区断层发育,露头极为不连续,区调填图错误较多。在清边河及纸坊沟一带可见块状叠层灰岩,之上为紫红色泥岩(图7a)。该套地层与研究区西侧的大滩—羊木一带类似(张玺华等,2020),属于陡山沱组或更老的地层。在毛坡梁剖面,可见断续出露的藻白云岩段葡萄状白云岩,之上为高家山段砂砾岩(图7b、c),再经过几十米覆盖段后见筇竹寺组页岩。因此碑湾段大概率是缺失、至少是不全的。此外,曹家坝、东山子、田坝里、黄家湾、窑场坪、毛坡梁等露头均零星发育藻白云岩段葡萄状白云岩,偶见其上发育的高家山段砾岩、砂岩,进一步印证碑湾段在该区缺失或不全。
-
图6 宁强舒家坝及亢家洞地区震旦系—寒武系过渡地层岩性图版
-
Fig.6 Lithofacies of the Sinian-Cambrian transitional strata in Shujiaba and Kangjiadong area of the Ningqiang County
-
(a)—藻纹层白云岩—渗流豆白云岩旋回,见葡萄状构造(红色箭头),厘米级比例尺,舒家坝剖面;(b)—藻白云岩段泥晶白云岩与高家山组粉砂岩不整合接触,站立者高170 cm,舒家坝剖面;(c)—凝块石白云岩,单偏光,舒家坝剖面;(d)—溶孔充填沥青,铅笔芯直径1 cm,舒家坝剖面;(e)—黑色页岩,舒家坝剖面;(f)—溶蚀孔缝充填沥青,铅笔芯直径1 cm,亢家洞剖面
-
(a) —cycle of algal dolomite-pisoidal dolomite, note grape-like structure (red arrow) , scale in centimetres, Shujiaba section; (b) —dolomudstone of the Algal Dolomite Member uncomfortably overlain by siltstone of the Gaojiashan Member, standing person for scale is 170 cm, Shujiaba section; (c) —thrombolite, plane-polarized light, Shujiaba section; (d) —dissolution porosity infilled with bitumen, pen point for scale is 1 cm, Shujiaba section; (e) —black shale, Shujiaba section; (f) —dissolution fissure infilled with bitumen, pen point for scale is 1 cm, Kangjiadong section
-
图7 宁强曹家坝—广元东山子及董家沟地区震旦系—寒武系过渡地层岩性图版
-
Fig.7 Lithofacies of the Sinian-Cambrian transitional strata in Ningqiang Caojiaba-Guangyuan Dongshanzi and Dongjiagou area
-
(a)—紫红色泥岩,地质锤长35 cm,宁强清边河剖面;(b)—藻纹层白云岩见葡萄状构造,地质锤长28 cm,宁强毛坡梁剖面;(c)—藻白云岩段泥晶白云岩与高家山段砂砾岩不整合接触,站立者高170 cm,宁强毛坡梁剖面;(d)—薄板状硅质岩,记号笔长15 cm,广元董家沟剖面;(e)—葡萄状构造,厘米级比例尺,广元董家沟剖面;(f)—高家山段灰绿色粉砂岩,地质锤长28 cm,广元董家沟剖面;(g)—宽川铺组薄板状硅质灰岩,站立者高170 cm,广元董家沟剖面;(h)—筇竹寺组黑色泥岩,地质锤长28 cm,广元董家沟剖面
-
(a) —purple mudstone, hammer for scale is 35 cm, Ningqiang Qingbianhe section; (b) —algal dololaminite with grape-like structure, hammer for scale is 28 cm, Ningqiang Maopoliang section; (c) —dolomudstone of the Algal Dolomite Member uncomfortably overlain by conglomerate of the Gaojiashan Member, standing person for scale is 170 cm, Ningqiang Maopoliang section; (d) —thin-bedded chert, marker pen for scale is 15 cm, Guangyuan Dongjiagou section; (e) —grape-like structure, Guangyuan Dongjiagou section; (f) —dark-green siltstone of the Gaojiashan Member, hammer for scale is 28 cm, Guangyuan Dongjiagou section; (g) —thin-bedded cherty limestone of the Kuanchuanpu Formation, standing person for scale is 170 cm, Guangyuan Dongjiagou section; (h) —black mudstone of the Qiongzhusi Formation, hammer for scale is 28 cm, Guangyuan Dongjiagou section
-
2.5 董家沟地区
-
董家沟地区露头主要出露在董家沟-钟家湾一带,中间被一条断层分隔。断层西侧主要薄层—中层状硅质岩(图7d,图8),与大滩—羊木一带的震旦系—寒武系过渡地层类似(张玺华等,2020)。断层东侧向上依次发育约350 m的藻白云岩段的泥晶白云岩夹藻纹层白云岩、叠层石白云岩,见葡萄状构造;7 m的高家山段浅灰色钙质泥岩;26 m的碑湾段块状泥晶白云岩;60 m的宽川铺组灰岩,偶夹硅质岩、页岩(图7e~g,图8)。宽川铺组之上为筇竹寺组黑色泥页岩(图7h,图8)。
-
图8 宁强董家沟剖面岩性柱状图(图例见图2)
-
Fig.8 Lithologic column of Dongjiagou section of the Ningqiang County (see Fig.2 for legend)
-
3 讨论
-
3.1 拉张槽东缘侵蚀型边缘
-
绵阳-长宁拉张槽成因的争论关键在于槽内地层减薄究竟是地层凝缩还是缺失成因。川中—北斜坡地区的蓬探1井等钻井揭示拉张槽内灯影组广泛发育藻白云岩及葡萄状构造(刘静江等,2021),指示该段灯影组地层为藻白云岩段。灯影组藻白云岩段之上的地层以泥页岩夹硅质白云岩、磷质岩、砂岩,并富含小壳化石为特征(刘静江等,2021)。与上扬子地区灯影组浅水地区发育纯白云岩,深水区发育纯硅质岩相比(Ding Yi et al.,2021),富磷、富含陆源碎屑、含小壳化石这些特征显然指示其与寒武纪早期麦地坪组时代相当(Steiner et al.,2007; Chen Daizhao et al.,2015)。因此,灯影组在川中—北斜坡拉张槽区域不同程度的缺失高家山段及碑湾段(马奎等,2022)。本文通过一系列的露头研究揭示该地层缺失区可以进一步向北延伸到广元—宁强一带,且不同地区地层缺失程度差异较大。其中,亢家洞地区、舒家坝地区分别见有碑湾段近100 m和200 m。由于露头覆盖原因,推测这两个地区与东侧的胡家坝露头区一样碑湾段大致完整,不在绵阳-长宁拉张槽范围。董家沟、宽川铺及曹家坝—东山子地区高家山段和碑湾段都存在不同程度的缺失,属于绵阳-长宁拉张槽边缘(图9)。此外,宽川铺及曹家坝—东山子地区与亢家洞地区、舒家坝地区直线距离仅有几千米,说明拉张槽东缘的北段边缘非常陡峭,与盆地内部地震剖面揭示的阶梯状陡坎类似(图10)(马奎等,2022)。
-
3.2 伸展背景下的断控型碳酸盐岩台地
-
研究表明上扬子地区在灯影组沉积时期主要发育陆表海碳酸盐岩台地,东南缘的南华盆地以硅质岩沉积为主(Ding Yi et al.,2021)(图11)。广元—宁强一带藻白云岩段和碑湾段主要发育多种藻白云岩和泥晶白云岩,且藻白云岩段中见有特征的葡萄状构造,都是指示了台内潮坪—潟湖环境(Ding Yi et al.,2021)。而相邻的大滩—羊木地区,灯影组快速相变为硅质岩,类似于湘桂地区的留茶坡组(Chen Daizhao et al.,2015),为斜坡—盆地相产物(Ding Yi et al.,2019,2021)。因此,从董家沟到大滩灯影组由上部地层广泛缺失的局限潮坪—潟湖环境截然变化为深水的斜坡—盆地环境(图9)。在前寒武系,由于缺乏造礁生物,碳酸盐岩台地往往难以形成高耸的边缘和陡峭的斜坡,因此主要发育缓坡型碳酸盐岩台地。例如,在中扬子台地西缘的三峡地区,灯影组发育了典型的碳酸盐岩缓坡,台内发育了局限台地,向外逐步过渡为台地边缘,中—外缓坡沉积环境(Ding Yi et al.,2019)。因此,这种突变型碳酸盐岩台地边缘最可能是同沉积伸展断层的活动的结果(Bosellini,1987; Chen Daizhao et al.,2001; Basilone et al.,2016; Koeshidayatullah et al.,2016)。伸展断层的活动使上盘斜坡—盆地相区快速沉降以凝缩深水沉积为主,同时伴随的断块掀斜作用使下盘台地边缘发生相对隆升,造成广泛的暴露和剥蚀(Chen Daizhao et al.,2001; Koeshidayatullah et al.,2016; Ding Yi et al.,2019,2021)。类似的情况在中扬子台地南缘(如:张家界—古丈一线)及上扬子台地东缘的(如:湄潭—铜仁一线等)均有报道(Ding Yi et al.,2019,2021)(图11),说明这种相带和沉积厚度的突变在灯影期中上扬子台地边缘非常常见。此外,宁强—广元地区地处扬子地块和碧口地块的拼合带(李佐臣等,2011),上扬子台地东缘和中扬子台地南缘也大致和新元古代早期形成的南华裂谷盆地边界重合(Zhao Guochun et al.,2012)。这些特征都反映了中上扬子地区在震旦纪—寒武纪转折期总体处于伸展背景下,造成早期的边界断裂进一步活化,最终广泛发育了断控型碳酸盐岩台地边缘。近年来发现的热液硅质岩沉积,以及越来越多的地球化学数据揭示灯影组广泛存在的正Eu异常均支持了中上扬子地区在震旦纪—寒武纪转折期经历了强烈的伸展活动(Chen Daizhao et al.,2009; Wang Han et al.,2022)。
-
图9 宁强大滩—董家沟—胡家坝剖面连井图(图例见图2)
-
Fig.9 Stratigraphic correlation of Datan-Dongjiagou-Hujiaba of the Ningqiang County (see Fig.2 for legend)
-
图10 仪陇—梓潼龙王庙底界拉平地震解释时间域剖面(剖面位置见图11)
-
Fig.10 Seismic interpreted profile in time domain with flattened base of the Longwangmiao Formation across the Yilong-Zitong (see Fig.11 for the locatin of section)
-
3.3 拉张槽北段东缘的形成机制
-
本次研究在曹家坝—东山子地区发现有块状叠层石灰岩到紫红色泥岩序列,与研究区西侧的大滩—羊木一带灯影组之下的地层序列一致(张玺华等,2020),说明在灯影组沉积之前研究区与大滩—羊木一带处于相似的沉积环境。而研究区东侧汉南及米仓山隆起一带,灯影组之下陡山沱组只有几十米,以砂岩沉积为主,局部地区灯影组甚至直接超覆于基底之上(Ding Yi et al.,2021)。由此可见,在灯影组沉积前,大滩—南郑一线已经存在东高西低的古地貌,但研究区和大滩—羊木一带同样处于低地貌区,沉积分异不明显。而灯影组沉积期,研究区为局限台地潮坪—潟湖沉积为主,而以西的大滩—羊木地区截然转变为硅质岩沉积,表明构造-沉积分异加剧,说明之间应该有伸展断层活动。先前不少研究认为绵阳-长宁拉张槽是侵蚀成因,但对侵蚀作用发生的条件探讨较少(杨雨等,2014; 马奎等,2022)。尽管震旦纪—寒武纪转折期发生了全球海平面下降(Ding Yi et al.,2021),但三级海平面下降的幅度通常只有几十米(Haq et al.,2008)。显然,单靠全球海平面下降难以造成高家山段及碑湾段剥蚀掉数百米厚的地层。
-
图11 中上扬子地区灯影期古地理及断控型台地边缘分布图
-
Fig.11 Paleogeography and distribution of fault-bounded platform margins in the Middle-Upper Yangtze area during the Dengying Period
-
在此背景下,之前的研究多认为灯影组顶部的不整合面及自上而下的剥蚀作用与桐湾运动造成的抬升有关系(刘树根等,2013;杨雨等,2014;汪泽成等,2014;马奎等,2022)。倘若绵阳-长宁拉张槽完全是依靠侵蚀作用形成负地貌,桐湾运动的性质必然是区域性抬升。然而,扬子板块在震旦纪—寒武纪转折期处于漂移状态(Jiang Ganqing et al.,2011),难有机制可以解释整个板块区域性抬升数百米。即便是扬子地块整体抬升造成相对海平面下降数百米,河流或冰川作用也难以形成绵阳-长宁拉张槽这种宽度(数十千米)规模的侵蚀谷(刘静江等,2021)。此外,上扬子地区台地相区普遍缺少麦地坪期的地层,灯影组和黑色页岩层系之间有近20 Ma(542~522 Ma)的沉积间断(Chen Daizhao et al.,2015; Ding Yi et al.,2019)。按照极低的剥蚀速率(50 m/Ma)算(Reiners et al.,2006; 徐胜等,2013),20 Ma也足够剥掉1000 m的地层。由此可见,灯影组顶部的不整合面应该是一个夷平面,而并非隆凹相间的岩溶地貌。综上所述,灯影组上部的广泛缺失应该受控于差异升降作用。考虑到研究区与川中—北斜坡的缺失区总体呈线状分布,且西侧紧邻大滩—羊木一带由快速沉降形成的斜坡—盆地区,断层上盘的掀斜作用引起相对抬升能够较好的解释拉张槽北段东缘灯影组上部的广泛缺失(图12a)。另一方面,研究区宽川铺组普遍发育小壳化石Ⅰ带,为麦地坪早期标志性化石带(Steiner et al.,2007)。因此,研究区缺失的地层为灯影组上部到宽川铺组底部,说明伸展断层活动的高峰期大致可以约束在灯影组沉积晚期到麦地坪组沉积初期之间(图12a)。之后的麦地坪期到筇竹寺早期伸展断层的活动进一步推进到拉张槽边缘(即研究区和东侧胡家坝露头区之间),使得研究区比东侧拉张槽外沉积有更全(更厚)的麦地坪组以及筇竹寺组(图12b)。
-
图12 广元—宁强地区震旦纪—寒武纪转折期构造-沉积演化模式图(图例参见图2)
-
Fig.12 Tectonic-sedimentary evolution of the Guangyuan-Ningqiang area during the Ediacaran-Cambrian transition (see Fig.2 for legend)
-
(a)—灯影组沉积后;(b)—麦地坪组沉积后
-
(a) —after the deposition of the Dengying Formation; (b) —after the deposition of the Maidiping Formation
-
4 结论
-
(1)研究区位于上扬子地块西北缘的广元—宁强地区,包含宽川铺、舒家坝、亢家洞、曹家坝—东山子、董家沟五个露头出露区。其中宽川铺、舒家坝、曹家坝—东山子地区灯影组上部的高家山段和碑湾段普遍存在不同程度的缺失,说明绵阳-长宁拉张槽东缘的灯影组上段地层缺失区可以由川中—北斜坡地区向北延伸到广元—宁强一带。
-
(2)从董家沟地区到大滩一线,灯影组由上部广泛缺失的局限潮坪—潟湖环境截然变化为深水的斜坡—盆地环境,形成突变型碳酸盐岩台地边缘,指示同沉积伸展断层的活动。类似的相带和沉积厚度突变在中扬子台地南缘和上扬子台地东缘也有发育,指示整个中上扬子地区在震旦纪—寒武纪转折期总体处于伸展背景,广泛发育断控型碳酸盐岩台地边缘。
-
(3)在灯影组沉积前,大滩—南郑一线已经存在东高西低的古地貌,但研究区和大滩—羊木地区同样处于低地貌区,沉积分异不明显。灯影组沉积初期的伸展断层活动造成构造-沉积分异加剧,大滩—羊木地区截然转变为硅质岩沉积的斜坡—盆地环境。伸展断层活动的高峰期大致可以约束在灯影组沉积晚期到麦地坪组沉积初期,断块掀斜作用造成研究区灯影组上部的广泛缺失。麦地坪期到筇竹寺早期伸展断层的活动进一步推进到拉张槽边缘,使得研究区比东侧拉张槽外沉积有更全(更厚)的麦地坪组和筇竹寺组。
-
致谢:感谢两位审稿专家和编辑部对本文提出的宝贵意见和帮助!
-
参考文献
-
Basilone L, Sulli A. 2016. A facies distribution model controlled by a tectonically inherited sea bottom topography in the carbonate rimmed shelf of the Upper Tithonian-Valanginian southern Tethyan continental margin (NW Sicily, Italy). Sedimentary Geology, 342: 91~105.
-
Bosellini A. 1989. Dynamics of Tethyan carbonate platforms. In: Crevello P D, Wilson J L, Sarg J F, Read J F, eds. Controls on Carbonate Platform and Basin Development. SEPM Special Publication, 44: 3~13.
-
Cai Yaoping, Xiao Shuhai, Li Guoxiang, Hua Hong. 2019. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. Geology, 47(4): 380~384.
-
Chen Daizhao, Tucker M E, Jiang Maosheng, Zhu Jingquan. 2001. Long-distance correlation between tectonic-controlled, isolated carbonate platforms by cyclostratigraphy and sequence stratigraphy in the Devonian of South China. Sedimentology, 48(1): 57~78.
-
Chen Daizhao, Wang Jianguo, Qing Hairuo, Yan Detian, Li Renwei. 2009. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints. Chemical Geology, 258(3~4): 168~181.
-
Chen Daizhao, Zhou Xiqiang, Fu Yong, Wang Jianguo, Yan Detian. 2015. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China. Terra Nova, 27(1): 62~68.
-
Ding Yi, Chen Daizhao, Zhou Xiqiang, Guo Chuan, Huang Taiyu, Zhang Gongjing. 2019. Tectono-depositional pattern and evolution of the Middle Yangtze Platform (South China) during the Late Ediacaran. Precambrian Research, 333: 105426.
-
Ding Yi, Li Zhiwu, Liu Shugen, Song Jinmin, Zhou Xiqiang, Sun Wei, Zhang Xihua, Li Shuangjian, Ran Bo, Peng Hanlin, Li Zeqi, Wang Han, Chen Daizhao. 2021. Sequence stratigraphy and tectono-depositional evolution of a Late Ediacaran epeiric platform in the Upper Yangtze area, South China. Precambrian Research, 354: 106077.
-
Du Jinhu, Wang Zecheng, Zou Caineng, Xu Chunchun, Shen Ping, Zhang Baomin, Jiang Hua, Huang Shipeng. 2016. The discovery of rifts in the Upper Yangtze Craton and its controlling effect on the formation of Anyue giant gas field. Acta Petrolei Sinica, 37(1): 1~16 (in Chinese with English abstract).
-
Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea-level changes. Science, 322(5898): 64~68.
-
Hua Hong, Cai Yaoping, Min Xiao, Chai Shu, Dai Qiaokun. 2020. “Big radiation” in tubular animals at the end of Ediacaran. Journal of Northwest University (Natural Science Edition), 50(2): 141~174 (in Chinese with English abstract).
-
Jiang Ganqing, Shi Xiaoying, Zhang Shihong, Wang Yue, Xiao Shuhai. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635~551 Ma) in South China. Gondwana Research, 19: 831~849.
-
Koeshidayatullah A, Al-Ramadan K, Collier R, Hughes G W. 2016. Variations in architecture and cyclicity in fault-bounded carbonate platforms: Early Miocene Red Sea Rift, NW Saudi Arabia. Marine and Petroleum Geology, 70: 77~92.
-
Li Zhiwu, Ran Bo, Xiao Bin, Song Jinmin, Zheng Ling, Li Jinxi, Wang Han, Xiao Bin, Ye Yuehao, Cai Qixin, Liu Shugen. 2019. The Sinian-Early Cambrian Uplift-depression pattern in the northern margin of Sichuan basin and its significance for oil and gas exploration. Earth Science Frontiers, 26(1): 59~85 (in Chinese with English abstract).
-
Li Zhongquan, Liu Ji, Li Ying, Hang Wenyan, Hong Haitao, Ying Danlin, Chen Xiao, Liu Ran, Duan Xinguo, Peng Ji. 2015. Characteristics and evolution of Sinian Weiyuan-Anyue extensional erosion trough in Sichuan basin. Petroleum Exploration and Development, 42(1): 26~33 (in Chinese with English abstract).
-
Li Zuochen, Pei Xianzhi, Liu Zhanqing, Li Ruibao, Ding Saping, Zhang Xiaofei, Chen Guochao, Liu Zhigang, Chen Youxin, Wang Xueliang. 2011. Characteristics and formation environment of Nanhuan-Early Paleozoic sedimentary strata in the Later Longmen Mountains, northwest margin of the Yangtze Block. Journal of Earth Sciences and Environment, 33(2): 117~124 (in Chinese with English abstract).
-
Liu Jingjiang, Liu Huirong, Li Wenhao, Xie Wuren, Jiang Hua, Su Wang, Li Wenzheng, Shi Shuyuan, Zhai Xiufen, Ma Shiyu. 2021. New progress in the study of rifting in Sichuan basin: Discussion on the genesis mechanism and formation time of rifting. Geological Review, 67(3): 767~786 (in Chinese with English abstract).
-
Liu Shugen, Sun Wei, Luo Zhili, Song Jinmin, Zhong Yong, Tian Yanhong, Peng Hanlin. 2013. Xingkai fissured movement and oil and gas exploration in Lower Combination of Sichuan basin. Journal of Chengdu University of Technology (Science & Technology Edition), 40(5): 511~520 (in Chinese with English abstract).
-
Liu Shugen, Wang Yigang, Sun Wei, Zhong Yong, Hong Haitao, Deng Bin, Xia Maolong, Song Jinmin, Wen Yingchu, Wu Juan. 2016. The controlling effect of tensioning trough on marine hydrocarbon distribution in Sichuan basin. Journal of Chengdu University of Technology (Science & Technology Edition), 43(1): 1~23 (in Chinese with English abstract).
-
Ma Kui, Wen Long, Zhang Benjian, Li Yong, Zhong Jiayi, Wang Yunlong, Peng Hanlin, Zhang Xihua, Yan Wei, Ding Yi, Chen Xiao. 2022. Sublevel evolution of Deyang-Anyue erosional rifting trough in Sichuan basin and its significance for oil and gas exploration. Petroleum Exploration and Development, 49(2): 274~284 (in Chinese with English abstract).
-
Reiners P, Brandon M. 2006. Using the rmochronology to understand orogenic erosion. Annual Reviews in Earth and Planetary Sciences, 34: 419~466.
-
Steiner M, Li Guoxiang, Qian Yi, Zhu Maoyan, Erdtmann B D. 2007. Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1~2): 67~99.
-
Wang Han, Liu Shugen, Hou Mincai, Zhang Benjian, Song Jinmin, Zhao Rongrong, Ding Yi, Han Yuyue, Li Zhiwu. 2022. Petrological and micrometer-scale geochemical constraints on chert origins in the Dengying Formation, Yangtze Block, South China: Implications for Late Ediacaran hydrothermal activity and tectonic setting. Precambrian Research, 370: 106531.
-
Wang Zecheng, Jiang Hua, Wang Tongshan, Lu Weihua, Gu Zhidong, Xu Anna, Yang Yu, Xu Zhaohui. 2014. Paleo-geomorphic characteristics and hydrocarbon accumulation significance of Tongwan Epoch in Sichuan basin. Petroleum Exploration and Development, 41(3): 305~312 (in Chinese with English abstract).
-
Xu Sheng, Liu Congqiang, Freeman S, Lang Yunchao, Schnabel C, Tu Chenglong, Wilcken K, Zhao Zhiqi. 2013. Erosion rate of cosmogenic nuclide 36Cl in carbonate rocks in karst area of Guizhou Province. Chinese Science Bulletin, 58(19): 1884 (in Chinese with English abstract).
-
Yang Yu, Huang Xianping, Zhang Jian, Yang Guang, Song Jiarong, Song Linke, Hong Haitao, Tan Xiucheng, Wen Long. 2014. Karst geomorphology of the top Sinian before Cambrian deposition in Sichuan basin and its geological significance. Natural Gas Industry, 34(3): 38~43 (in Chinese with English abstract).
-
Zhao Guochun, Cawood P A. 2012. Precambrian Geology of China. Precambrian Research, 222~223: 13~54.
-
Zhang Xihua, Peng Hanlin, Wen Long, Li Yong, Zhong Jiayi, Ma Kui, Luo Bing, Tian Xingwang. 2020. The discovery of Dengying Formation deep water deposits in northwest Sichuan basin and its petroleum geological significance. Natural Gas Exploration and Development, 43(4): 10~21 (in Chinese with English abstract).
-
Zhang Zhiliang, Mansoureh G P, Leonid E P, Holmer L E, Chen Feiyang, Chen Yanlong, Brock G A, Zhang Zhifei. 2021. The oldest Cambrian trilobite-brachiopod association in South China. Gondwana Resarch, 89: 147~167.
-
杜金虎, 汪泽成, 邹才能, 徐春春, 沈平, 张宝民, 姜华, 黄士鹏. 2016. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用. 石油学报, 37(1): 1~16.
-
华洪, 蔡耀平, 闵筱, 柴姝, 代乔坤. 2020. 埃迪卡拉纪末期管状动物的“大辐射”. 西北大学学报(自然科学版), 50(2): 141~174.
-
李智武, 冉波, 肖斌, 宋金民, 郑玲, 李金玺, 王瀚, 肖斌, 叶玥豪, 蔡其新, 刘树根. 2019. 四川盆地北缘震旦纪—早寒武世隆-坳格局及其油气勘探意义. 地学前缘, 26(1): 59~85.
-
李忠权, 刘记, 李应, 杭文艳, 洪海涛, 应丹琳, 陈骁, 刘冉, 段新国, 彭戟. 2015. 四川盆地震旦系威远—安岳拉张侵蚀槽特征及形成演化. 石油勘探与开发, 42(1): 26~33.
-
李佐臣, 裴先治, 刘战庆, 李瑞保, 丁仨平, 张晓飞, 陈国超, 刘智刚, 陈有, 王学良. 2011. 扬子地块西北缘后龙门山南华纪—早古生代沉积地层特征及其形成环境. 地球科学与环境学报, 33(2): 117~124.
-
刘静江, 刘慧荣, 李文皓, 谢武仁, , 姜华, 苏旺, 李文正, 石书缘, 翟秀芬, 马石玉. 2021. 四川盆地裂陷槽研究新进展——关于裂陷槽成因机制与形成时间的探讨. 地质论评, 67(3): 767~786.
-
刘树根, 孙玮, 罗志立, 宋金民, 钟勇, 田艳红, 彭瀚霖. 2013. 兴凯地裂运动与四川盆地下组合油气勘探. 成都理工大学学报(自然科学版), 40(5): 511~520.
-
刘树根, 王一刚, 孙玮, 钟勇, 洪海涛, 邓宾, 夏茂龙, 宋金民, 文应初, 吴娟. 2016. 拉张槽对四川盆地海相油气分布的控制作用. 成都理工大学学报(自然科学版), 43(1): 1~23.
-
马奎, 文龙, 张本健, 李勇, 钟佳倚, 王云龙, 彭瀚霖, 张玺华, 严威, 丁一, 陈骁. 2022. 四川盆地德阳—安岳侵蚀裂陷槽分段性演化分析和油气勘探意义. 石油勘探与开发, 49(2): 274~284.
-
汪泽成, 姜华, 王铜山, 鲁卫华, 谷志东, 徐安娜, 杨雨, 徐兆辉. 2014. 四川盆地桐湾期古地貌特征及成藏意义. 石油勘探与开发, 41(3): 305~312.
-
徐胜, 刘丛强, Freeman S, 郎赟超, Schnabel C, 涂成龙, Wilcken K, 赵志琦. 2013. 贵州喀斯特地区碳酸盐岩的宇宙成因核素36Cl侵蚀速率. 科学通报, 58(19): 1884.
-
杨雨, 黄先平, 张健, 杨光, 宋家荣, 宋林珂, 洪海涛, 谭秀成, 文龙. 2014. 四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义. 天然气工业, 34(3): 38~43.
-
张玺华, 彭瀚霖, 文龙, 李勇, 钟佳倚, 马奎, 罗冰, 田兴旺. 2020. 四川盆地西北部灯影组深水沉积的发现及油气地质意义. 天然气勘探与开发, 43(4): 10~21.
-
摘要
尽管绵阳-长宁拉张槽的油气地质意义已经得到广泛认可,其时空分布及成因机制自发现以来争议不断。在此背景下,本文对拉张槽北段东缘广元—宁强地区的震旦系(国际上称埃迪卡拉系)—寒武系过渡地层开展了系统的地层序列、岩相分析工作。特征岩相及生物地层表明宽川铺、舒家坝、曹家坝—东山子地区普遍出现碑湾段下部甚至藻白云岩段上部与宽川铺组不整合接触,反映了高家山段和碑湾段的广泛缺失。该地层缺失区可以与川中—北斜坡地区连成一线。研究区灯影组以局限潮坪—潟湖环境的藻白云岩及泥晶白云岩沉积为主,而西侧的大滩—羊木地区灯影组截然变化为斜坡—盆地相硅质岩沉积,指示同沉积伸展断层的活动。这种相带突变样式在中扬子台地南缘和上扬子台地东缘也有发育,反映了整个中上扬子地区在震旦纪—寒武纪转折期总体处于伸展背景,广泛发育断控型碳酸盐岩台地边缘。绵阳-长宁拉张槽巨大的宽度(数十千米)、剥蚀厚度(数百米)及灯影组顶部长期的沉积间断(近20 Ma)说明其形成与差异升降作用有关,难以用岩溶地貌解释。考虑到研究区与川中—北斜坡的灯影组上段的缺失区总体呈线状分布,可用断层上盘的掀斜作用引起相对抬升来解释。伸展断层活动的高峰期大致可以约束在灯影组沉积晚期到麦地坪组沉积初期,对应灯影组上部到宽川铺组底部的广泛缺失。
Abstract
Although the Mianyang-Changning intracratonic sag is widely recognized as a key petroleum accumulation site, its spatio-temporal distribution and formation mechanisms are still controversial. To address this, systematic stratigraphic and lithofacies investigations were carried out on the Sinian-Cambrian successions in the Guangyuan-Ningqiang area, located at the northeastern margin of the Mianyang-Changning intracratonic sag. Lithofacies indicators and biostratigraphic data suggest that the lower Beiwan Member or upper Algal Dolomite Member are commonly overlain by the Kuanchuanpu Formation, indicating that the Gaojiashan and Beiwan Members are pervasively missing in the Kuanchuanpu, Shujiaba, and Caojiaba-Dongshanzi areas. This indicates that the strata missing of the upper Dengying Formation at the eastern margin of the Mianyang-Changning intracratonic sag extends from the central Sichuan basin and the northern slope of the central Sichuan paleouplift to the Guangyuan-Ningqiang area. A sharp facies transition from tidal flat-lagoonal microbial dolomite and dolomudstone in the study area to slope-basinal chert in the Datan-Yangmu area indicates the influence of extensional faulting. Similar abrupt facies shifts are observed at the southern margin of the middle Yangtze platform and the eastern margin of the upper Yangtze platform, reflecting an extensional tectonic regime characterized by fault-bounded carbonate platforms. The spatial extent of several kilometers, erosion thickness of hundreds of meters, and the depositional break of up to 20 Ma suggest that the Mianyang-Changning intracratonic sag resulted from differential subsidence/uplift rather than karstic morphology. The linear distribution of strata missing area at the eastern margin of the Mianyang-Changning intracratonic sag is interpreted as the result of relative uplift at a tilted block. The climax of extensional faulting occurred at the Sinian-Cambrian transition, causing the strata missing from the upper Dengying Formation to the lowermost Kuanchuanpu Formation.