-
成冰纪(720~635 Ma)(Hoffman et al.,1998; Christie-Blick et al.,1999)发育斯图特期和马林诺期(由老到新的)两次冰期,它们是地球历史上最为重要的气候事件,强烈影响着同期地球表生环境与生命演化(Hebert et al.,2010; Macdonald et al.,2013),也是几十年来国际地学前沿研究热点。由于埃迪卡拉纪动物群的存在,雪球地球之后的埃迪卡拉纪(635~538.8 Ma)通常被人们认为是温暖气候时期。然而,国内外十数个克拉通或陆块,如北澳大利亚、西澳大利亚、华北、塔里木、南非、西非、中亚、阿拉伯、东欧、波罗地、格陵兰、北美和南美陆块/克拉通等,都不同规模地发育埃迪卡拉纪冰川(冰碛岩)(Hoffman and Li,2009;Chumakov,2009,2011a,2011b; Li et al.,2013),并多对比加拿大纽芬兰Gaskiers冰期(Hoffman and Li,2009;Pu et al.,2016)。尤其是中国北方埃迪卡拉系冰碛岩层序完整,顶底齐全,素材丰富、现象经典,是国际上近年来重点关注的埃迪卡拉纪冰期(冰碛岩)研究区(Wang et al.,2023a,2023b,2023c)。
-
中国北方埃迪卡拉纪冰碛岩拥有60余年研究历史(Mu et al.,1981),在冰碛岩、冰川属性和沉积特征等方面获得一系列重要进展。20世纪80年代,我国地质学家多集中讨论其是否为冰川成因以及沉积物特征和沉积相划分等方面(郑文武和斗守初,1980;张思纯和唐尚文,1982; 高振家,1983; 洪庆玉,1984; 吴瑞棠和关保德,1988; Guan et al.,1988;李威等,1990; 吴瑞棠和杨玉卿,1991; 杨玉卿和吴瑞棠,1992; 汪明洲和杨铁汾,1996; 蔡雄飞等,2013; Hu et al.,2015;张文龙等,2016)。如高振家(1983)首先认为豫西罗圈组是大陆冰盖成因; Mu et al.(1981)、Guan et al.(1988)、Wu and Guan(1988)、杨玉卿和吴瑞棠(1992)则识别出豫西罗圈组下伏基岩表面冰溜面构造,认为是山岳冰川作用所致;汪明州和杨铁汾(1996)基于豫西罗圈组沉积和下伏基底发育特征认为,罗圈组冰碛杂岩是新元古代成冰纪马林诺期冰期大陆冰川产物,并推测了冰期的古地貌,这些早期的进展都为后来的研究奠定了扎实的基础。
-
21 世纪初期,中国北方埃迪卡拉纪冰碛岩研究进一步深入和多学科综合研究阶段,新方法手段(古地磁和碳同位素等)开始应用密切相关(Zhang et al.,2001)。十余年来,则是中国北方埃迪卡拉纪冰碛岩进展最为快速和多元化,不仅从生物地层学、碎屑锆石等角度认识到埃迪卡拉纪冰期或冰碛岩的时代并非都与Gaskiers同期,晚于580 Ma的冰川沉积记录不断被证实。同时,冰碛岩古生物、年代学及盖帽白云岩等多学科研究得到进一步加强(Zhang et al.,2001; Shen et al.,2010; Zhu and Wang,2011; Yang et al.,2013,2019; Li et al.,2020; Pang et al.,2021; Wang,2021a,2021b)。新近,有关冰川沉积学、古地理学进一步得到扩展或深入,特别是冰川剥蚀地貌研究获得一系列重要进展(Zhao et al.,2018; Le Heron et al.,2018,2019,2022; Chen et al.,2020; Yue et al.,2020; Wu et al.,2020; Zhang et al.,2021),将中国埃迪卡拉纪冰川研究及有关构造背景研究提升到新的水平。尤其是2023年以来,Wang et al.(2023a,2023b,2023c)和Sun et al.(2023)等的中国埃迪卡拉纪冰川及年代约束、动力机制与构造背景研究,进一步助推上述研究热点。
-
然而,埃迪卡拉纪冰期也还耦合地发生着其他重大地质事件,如此时发生罗迪尼亚超大陆最终裂解和冈瓦纳大陆初次汇聚;还频繁出现基性岩大火山省事件(Xu et al.,2009,2013,2015; Youbi et al.,2020; Robert et al.,2020; Gumsley et al.,2020);而更具有巧合性的是,不仅成冰纪冰期结束伴随有全球性的盖帽白云岩发育,并被引证为全球性冰川(雪球地球)的重要标志之一(Hoffman et al.,1998; Christie-Blick et al.,1999; Jiang et al.,2003,2006),国内外埃迪卡拉纪部分冰碛岩上也覆盖有盖帽白云岩(Myrow and Kaufman,1999; Xiao et al.,2004; Yang et al.,2007,2013,2019; Shen et al.,2010; Wang et al.,2023a,2023b),其中也发育仅见于成冰纪盖帽白云岩中的特殊沉积构造和碳同位素异常。这是否说明埃迪卡拉纪冰川具有洲际性?或可能是揭示埃迪卡拉纪冰川洲际性及其幕式演化的关键环节,科学意义巨大,都有待进一步的研究。
-
近年,笔者在前期研究基础上,进一步系统开展了华北克拉通南缘罗圈组的地层、沉积层序、冰碛岩岩石组合与冰川沉积相的研究,特别是重点研究了豫西地区罗圈组下伏基底上的冰溜面构造,其上大量冰川擦痕定向统计都表明,大陆冰盖由北向南运动(Le Heron et al.,2019; Chen et al.,2020);同时,在罗圈组冰碛岩中也识别出从原地块状、冰缘层状冰水河流和远缘冰湖、浅海和冰筏等沉积相类型。尽管众多研究和一系列证据赞同罗圈组冰碛岩属于典型大陆冰盖冰川的产物,但有关罗圈期冰川物理属性、年代学和规模,构造背景,特别是与成冰纪雪球地球冰期和冰川作用的异同等重要科学问题仍然争议较大。此外,笔者也系统实地调查了华北和西北(除塔里木盆地东北库鲁克塔格和北祁连山与北山之外)的埃迪卡拉纪冰碛岩,获得了大量实际资料和数据,本文在上述研究基础之上并结合前人文献资料,将重点聚焦中国北方包括华北克拉通南缘、西缘贺兰山与阿拉善、青海柴达木盆地、甘肃北山和北祁连山、塔里木盆地东北等地的埃迪卡拉纪冰碛岩,系统描述它们的空间分布和地层和沉积格架,讨论年代约束,阐述冰碛岩岩石组合、盖帽白云岩沉积特征和冰碛物锆石物源分析,同时也概要介绍豫西地区冰川剥蚀地貌的主要成因类型与意义。最终,通过中国埃迪卡拉纪冰碛岩与北美和南美,以及西北非、阿拉伯—伊朗、中亚等地埃迪卡拉纪冰碛岩开展了对比研究,获得了部分全球或洲际范围上埃迪卡拉纪冰碛岩和冰川作用的初步见解,提出了原特提斯洋分隔的亚洲陆块群与西冈瓦纳大陆边缘构造古地理重建的推测性模式,本研究成果有益于深入理解埃迪卡拉纪冰期全球古地理重建与古构造演化。
-
1 地质背景
-
研究区包括中国北方华北克拉通、塔里木克拉通及二者之间阿拉善、祁连山、北山和柴达木等微小陆块群,它们现今属于由中、西亚至东南亚东西向延展的特提斯构造带东侧北缘;其北侧为欧亚大陆和中亚造山带,乌拉尔、哈萨克斯坦、吉尔吉斯斯坦与乌兹别克斯坦等陆块群位于中亚造山带南部。特提斯构造带南侧则为阿尔卑斯-喜马拉雅造山带(图1)。特提斯则是位于南侧冈瓦纳大陆和北侧劳伦大陆长寿命大洋,分别为元古宙—早古生代、晚古生代和中生代的原特提斯、古特提斯和新特提斯(Wu et al.,2020)。中亚造山带经历了1000 Ma至250 Ma长寿命增生型弧陆碰撞造山作用(Li et al.,2006; Xiao et al.,2009; Han et al.,2015; Zhao et al.,2018; Wu et al.,2020)。图1粗虚线表示研究区范围,其中标识的地块或克拉通都是本文研究对象。
-
华北克拉通北侧为中亚造山带,南侧为特提斯构造带,东侧为太平洋俯冲构造带,系具有太古宙—古元古代基底及中元古代—新生代盖层的大陆。塔里木克拉通位于中国西北,其两侧为特提斯分支,即秦-祁-昆-喜马拉雅构造带。中国西部发育祁连-柴达木-东昆仑造山带,其内自北而南为阿拉善地块、北祁连缝合带、中祁连地块、南祁连缝合带和欧龙布鲁克-全吉地块等。然而,无论是华北克拉通、塔里木克拉通,还是它们之间的中祁连(包括全吉-欧龙布鲁克块体)、柴达木、昆仑山和北秦岭等陆块群等与罗迪尼亚超大陆和冈瓦纳大陆构造亲疏关系,或者是它们之间的构造背景和演化关系等,长期以来都具有许多争议(葛肖虹和刘俊来,2000; 陆松年等,2002; 周喜文和耿元生,2009; 张建新等,2011; Zhao et al.,2018)。
-
2 埃迪卡拉纪冰碛岩空间分布、沉积层序与底、顶接触关系和岩石特征
-
中国埃迪卡拉纪冰碛岩全部分布在中国北方,而同时代位于中国南方的扬子克拉通则为温暖气候背景下,被动大陆边缘浅海—半深海环境的碎屑岩及碳酸盐岩。空间上,中国北方埃迪卡拉纪冰碛岩(由东至西)分布在华北东南部六安市霍邱县,淮南市凤台县、华北南部豫西(由东至西)驻马店遂平和确山县,平顶山汝州市和鲁山县,洛阳宜阳和汝阳市,三门峡灵宝市朱阳镇,山西运城市永济县水幽,陕西商洛地区洛南县、西北和内蒙古地区包括华北西部宁夏贺兰山地区,内蒙古阿拉善和北山地区,甘肃祁连山(肃南),青海柴达木全吉山和新疆塔里木盆地东北库鲁克塔格等地,东西跨度近3000 km(图1、2),跨越若干大型克拉通和数个不同规模陆块,是国内外埃迪卡拉纪冰碛岩分布面积最广泛的地区。
-
中国北方埃迪卡拉纪冰碛岩空间上的地层与沉积序列特征显示(图1、2),西北塔里木克拉通库鲁克塔格和柴达木地块全吉山的埃迪卡拉纪冰碛岩整合或平行不整合于下伏非冰的埃迪卡拉系(塔里木克拉通,水泉组; 全吉山,黑土坡组)滨浅海或潮坪沉积物之上(图2,剖面8和剖面7),但Sun et al.(2022)则认为青海柴达木地块全吉山埃迪卡拉纪冰碛岩下伏黑土坡组(碎屑锆石具有年轻的750 Ma峰值)可能属于拉伸系。此外,库鲁克塔格的埃迪卡拉系还整合或平行不整合于下伏成冰系之上(图2,剖面8),柴达木地块全吉山一带埃迪卡拉系则平行不整合于中元古界(原全吉群)红藻山组(1646~1640 Ma;张海军等,2016)之上。除上述地区之外的中国北方其他地区的埃迪卡拉纪冰碛杂岩或直接平行不整合于中元古界(图2,剖面6至剖面2),或新元古界之上(图2,剖面1,安徽淮南凤台县和六安市霍邱市)。故此,除塔里木克拉通和柴达木地块之外,中国北方埃迪卡拉纪冰碛岩与下伏地层(中元古界或新元古界)都存在着1.0 Ga或<0.5 Ga的不整合(面)。值得特别强调的是,中国北方寒武纪—前寒武纪过渡期巨型不整合面应位于埃迪卡拉纪冰碛岩与下伏中元古界或新元古界间,而不是前人认为的寒武系下统辛集组和前寒武系间(Sun et al.,2022,2023)。特别是,豫西地区(由西至东)以及安徽皖南地区这些巨型不整合面上都发育着不同规模的冰溜面(Wu and Guan,1988; Guan et al.,1988; Le Heron et al.,2018,2019; Chen et al.,2020),其上不仅具有类型丰富和中小尺度(米级—厘米级)的冰川剥蚀(侵蚀)构造,而且还可呈现国内外极其罕见的(几百米—千余米尺度的)深时宏观冰蚀(沟谷\峡谷)地貌。
-
图1 研究区位置及中国北方埃迪卡拉纪冰碛岩区域地质背景(底图据Wu et al.,2020)
-
Fig.1 Schematic geological background of Ediacaran glacial deposits and research areas (after Wu et al., 2020)
-
图2 中国北方埃迪卡拉纪冰碛岩空间分布及沉积序列
-
Fig.2 Distribution of the Ediacaran diamictites and sedimentary successions in northern China
-
但是,空间上中国北方埃迪卡拉纪冰碛岩地层结构、沉积层序和岩石组合等还具有一定的差异(图2)。位于华北克拉通大陆内部(华北克拉通北缘和山东与苏北地区)埃迪卡拉纪冰碛岩多为寒武系底部贫磷(碳酸盐岩或碎屑岩)岩系平行不整合覆盖,且寒武系最底部多可见厚度不一的硅质、白云岩质或灰质角砾岩,有人解释为冰碛岩(马晓晨等,2018; 史书婷等,2019;李辰卿等,2023),但其很可能与早寒武世初期极低海平面有关的喀斯特与风化残余沉积。在邻近大陆边缘(海盆)的(豫西洛阳汝州、汝阳,平顶山鲁山)地区,早寒武世初期海相贫磷滨岸石英砂岩覆盖在罗圈组冰碛岩上。但是,柴达木地块全吉山,华北克拉通西缘宁夏贺兰山和阿拉善,华北克拉通南缘陕西洛南、豫西灵宝、陕西运城永济,驻马店遂平和确山的埃迪卡拉纪冰碛岩之上,均可见50余米厚(皱节山组,柴达木地块全吉山;兔儿坑组,贺兰山;东坡组、河南)的冰后期海相灰绿色粉砂岩(粉砂质泥岩、页岩,偶含细小坠石),特别是还保存Shaanxilites或Shaanxilites及Charnia组合等埃迪卡拉纪中晚期动物化石(Shen et al.,2010; Pang et al.,2021; Wang et al.,2021a,2021b),再上则为含磷石英砂岩平行不整合覆盖。安徽六安霍邱及淮南凤台等地则都与上述情况不同,前者深灰色块状夹纹层状冰碛岩及暗色含坠石水平层理泥岩组合直接被寒武系底部含磷黑色岩系平行不整合覆盖,后者浅灰紫色白云岩质块状砾岩冰碛岩上覆早寒武世初期猴家山组贫磷灰岩与砂岩、粉砂岩韵律层序。而特别值得关注的是,中国西北柴达木地块全吉山和华北克拉通西缘宁夏贺兰山的皱节山组和兔儿坑组分别下伏5 m至不足1 m厚盖帽白云岩。但在塔里木克拉通库鲁克塔格,则埃迪卡拉纪冰碛岩直接与盖帽白云岩整合接触。此外,整个中国北方埃迪卡拉纪冰碛岩层序的总厚度也参差不齐,最大600余米厚度的冰碛岩发育在甘肃省肃南祁连山,最薄不足50 m厚度冰碛岩出现在安徽淮南凤台县,其余地区的冰碛岩厚度则介于或十数米和百余米间。
-
中国北方埃迪卡拉系冰碛岩岩石学特征较为简单,多数冰碛岩原色调为灰绿色,风化后为浅紫色或灰黄色,仅安徽六安霍邱发育中国北方唯一的深灰色(黑色)冰碛岩,风化色也为黄色。但无论什么自然色调的冰碛岩,其岩石类型或组合都较为简单,主要为块状/弱层状冰碛杂砾岩,含砾砂岩、砂岩/粉砂岩韵律和发育漂砾或含坠石的泥质粉砂岩与粉砂岩,也有仅安徽霍邱发育的黑色泥页岩,并表现为深灰色块状砾岩,黑色泥页岩夹重力流角砾岩及纹层状含坠石水平层理泥岩等特殊岩石组合。通常粗碎屑砾岩或砂岩块状中也发育平行层理,递变层理和少见的斜层理。含大漂砾或坠石泥质粉砂岩与粉砂岩,或夹重力流角砾状或纯黑色泥页岩发育水平层理和递变层理,但少有侵蚀构造。一般块状冰碛岩中的砾石含量都多达50%,甚至高达80%以上。砾石成分上,多为近源或冰碛岩直接下伏的基底岩石,包括各种碎屑岩、(叠层石、硅质条带或燧石蛋白石质砾石、臼齿构造)等白云岩砾石十分常见及变质岩和极少量(中基性或酸性)火山岩、侵入岩等。砾石规模几十厘米或米级至厘米级(长轴)参差不齐。面状(椭圆或拉长、子弹状、马鞍状、压扁状及浑圆状等形态)砾石,以及发育明显冰川擦痕,基质包裹着的压碎或被贯穿压裂的砾石更为常见。
-
3 中国北方埃迪卡拉纪冰碛岩沉积相与沉积环境
-
较早时候主要来自国外学者曾识别和划分了较为复杂的冰川沉积相类型(Boulton and Deynoux,1981; Eyles et al.,1983; Brodzikowski and Van Loon,1987;Spence et al.,2016),但这些冰碛岩的沉积相或亚相、微相或名称繁多或过于详细,导致区分和应用起来都不方便。Chen et al.(2023)新近基于豫西地区埃迪卡拉系冰碛岩研究也提出易于理解和掌握,并且较为实用的埃迪卡拉系冰碛岩沉积相类型。本文为进一步便捷和有效地识别冰碛岩沉积相,提出了更加简化的冰碛岩沉积相划分类型。也即主要基于空间上冰碛岩沉积物与冰川(冰盖)的(冰下、冰缘和冰前)相对位置,将中国北方埃迪卡拉纪冰碛岩划分出冰下、冰缘和冰前三种冰川沉积环境,并在此基础上识别出四种主要沉积相类型(表1),即:① 冰下滞积相(块状冰碛杂岩)与冲积相(弱层状冰碛杂岩);② 冰缘(冲积扇、泥石流、辫状河)冲积相;③ 冰前湖泊、滨浅海与三角洲前缘(分流河道)沉积相;④ 冰前半深海(冰筏)与重力流相。
-
(1)冰下滞积与河流或冲积扇。冰下滞积沉积物发育在基底或冰溜面之上呈块状堆积与弱层状的杂砾岩。分选极差、磨圆一般,杂基或颗粒支撑,砾石成分复杂多样但与下伏岩层密切相关。该类沉积物中的大部分砾石都具有多类型的面状形态,如马鞍状,熨斗状,子弹状等(图3a~d),坑或槽,裂口,尤其是截切砾石长轴的压裂构造十分发育。砾石的冰川擦痕是所有冰碛物砾石最发育的。部分砾石和基岩呈过渡状态,呈现冰川剥蚀基岩的残余角砾(图3a~d)。而冰下河流或冲积扇相多呈弱层状,也为冰碛杂岩,比较冰下滞积沉积物则冰下河流或冲积扇沉积物结构成熟度相对稍好,分选和磨圆一般,部分砾石呈现弱定向性。同样该沉积相的砾石也具有多类面状形态,压裂和擦痕构造也十分发育。可见非典型河流沉积二元结构(下部砾岩为主,上部少量块状或平行层理含砾砂岩或砂岩)。
-
图3 中国北方埃迪卡拉纪冰碛岩类型:冰下混杂砾岩
-
Fig.3 Subglacial diamictite of the Ediacaran in northern China
-
(a)—豫西汝州阳坡罗圈组浅紫色冰碛杂砾岩,砾石成分以白云岩(Dol.)为主;(b)—皖南八公山凤台组灰白色冰碛杂砾岩,其中白云岩(Dol.)砾石成分占90%以上;(c)—柴达木地块全吉山红铁沟组浅紫色冰碛杂砾岩,砾石成分主要为下伏中元古界红藻山组叠层石白云岩;(d)—宁夏贺兰山正目观组灰白色冰碛杂砾岩,砾石成分为白云岩(Dol.)、硅质岩(Chert)和碎屑岩
-
(a) —purple red glacial diamictite, pebble mainly dolomites, Luoquan Formation, Yangpo section, Ruzhou, western Henan; (b) —grey glacial diamictite, pebble mainly dolomites, more than 90%, Fengtai Formation, Bagongshan Geopark section, Huainan, southern Anhui; (c) —purple red glacial diamictite, pebble mainly dolomites from underlying stromatelite dolomite of the Mesoproterozoic Hongzaoshan Formation, Qaidam, Qinghai, NW China; (d) —grey glacial diamictite, pebble mainly dolomites (Dol.) , chert (Chert) and clastics, Zhengmuguan Formation, Hlanshan Mountain, Ningxia, NW China
-
(2)冰缘冲积相。主要为砂质砾岩与含砾砂岩或粉砂岩,弱层状或块状,少见层理构造,其中可含丰富、不等规模多元组分漂浮砾石或孤立砾石,中等磨圆和分选,也可见面状砾石及擦痕砾石,弱定向或无定向,米级尺度垂向层序中向上漂砾变小,减少,同时宿主砂岩颗粒粒度变细,进一步可划分出冲积扇、泥石流或辫状河相(图4)。该类冰碛沉积相是深时冰川沉积相的最主要类型,常与非冰环境的冲积扇、泥石流或辫状河相混淆,但可依据下列综合特征去区分,冰缘冲积相的沉积物中砾石具有冰川擦痕和各种(冰川剥蚀成因的)特殊面状形态;细碎屑沉积岩或层状杂岩中发育规模差异较大,有且孤立产出的“滚石”或似“坠石”砾岩团块或砾石;有冰溜面伴生及有冰川作用有关的变形构造;横向或垂向上沉积相和厚度变化十分显著,尤其是砾石或砾岩组分多与下伏基底相关性更密切,而一般的泥石流沉积物则成分更为复杂。
-
(3)冰前湖泊、滨浅海与三角洲前缘沉积相。冰前应是逐渐脱离冰川影响,但仍有局部冰川作用的环境,局部的冰筏沉积作用也会较为明显。因此,冰前环境的沉积物主要为滨浅湖环境粉砂岩、细砂岩或砂岩\粉砂岩\泥岩\高频韵律,常见平行或水平层理或小型斜层理,可见砂岩薄层或砂岩、砾岩薄层夹层或透镜体,也可以形成三角洲前缘沉积体系,从而可见滨浅湖环境粉砂岩中具有水下分流河道(砂岩或砾岩)(图5)。
-
图4 中国北方埃迪卡拉纪冰碛岩类型:冰缘冲积相
-
Fig.4 Periglacial alluvial (fan, mud-flow and braided revier) facies of the Ediacaran diamictite in northern China
-
(a)—柴达木地块全吉山(石灰沟)红铁沟组浅紫色层状冰碛杂砾岩,不仅砾石成分主要为中元古代红藻山组叠层石白云岩,而且砾石具有明显的定向性,细粒的砂质或细砾物质也发育明显的平行层理,冰缘砾质辫状河道相;(b)—豫西宜阳周村罗圈组灰绿色冰碛杂砾岩,块状构造,砾石成分以白云岩(Dol.)为主,大小参差不齐,分选差,基质支撑,砾岩(B)对基底(中元古界崔庄组粉砂岩)(A)有侵蚀,冰缘泥石流相;(c)—豫西宜阳周村罗圈组浅紫色冰碛杂砾岩(A),块状构造,砾石大小参差不齐,分选差,基质支撑,偶见孤立漂砾,解释为冰缘泥石流相,上部寒武系底部辛集组含磷石英砂岩不整合覆盖(B);(d)—豫西汝州罗圈村罗圈组灰绿色粉砂质冰砾岩,沉积物分选差,基质支撑,偶见孤立漂砾,解释为砂质泥石流
-
(a) —braided conglomerate channel deposits of the periglacial, purple red stratified diamictite with dolomites pebbles inside mainly, and from underlying Mesoproterozoic Hongzaoshan Formation, parallel beddings, the Ediacaran Hongtiegou Formation, Quanjishan, Qaidam, Qinghai, NW China; (b) —grey-green massive diamictite with dolomites pebbles, poor sorting and matrix supporting, erosional top (B) of the Mesoproterozoic Cuizhuang Formation (A) , Luoquan Formation, Zhoucun, Yiyang, Luoyang, western Henan; (c) —mud flow deposits of the periglacial: purple red massive diamictite, varied-size pebbles, poor sorting and matrix supporting, large-scale boulder pebble occasionally, covered by the Lower Cambrian quartze sandstone with phosphorus (B) , Luoquan Formation, Zhoucun, Yiyang, Luoyang, western Henan; (d) —sandy mud flow deposits of the periglacial: grey green silty diamictite, poor sorting and matrix supporting, large-scale boulder pebble occasionally of Luoquan Formation, Luoquancun, Ruzhou, western Henan
-
(4)冰前半深海(冰筏)与重力流相。冰碛岩中半深海(冰筏)与重力流相是(大冰盖)冰川流向海洋以及论证其大陆冰川属性的关键沉积学证据。该相特征是深灰色或黑色泥岩\粉砂岩\细砂岩韵律,发育水平层理或粒序层理,也可见典型深水浊积岩D—E层序,夹夹不同厚度的块状砾岩(海底扇或重力流)共生。而深灰色或黑色泥岩\粉砂岩中可以发育丰富厘米级砾径的坠石,有时可见铁紫色含铁质纹或条带(图6),但略微浅水环境纹层状坠石冰碛岩中的坠石直径可以达到几十厘米大小。
-
图5 冰前湖泊或及滨浅海与三角洲前缘沉积相
-
Fig.5 Preglacial lascustrine, shallow sea and delta-front facies of the Ediacaran diamictite
-
(a)—豫西汝州阳坡罗圈组浅紫色冰碛杂砾岩A,为之上浅紫色粉砂岩(滨浅湖相)B覆盖,其中发育规模不等的中粗砾岩—粗砂岩(C,三角洲前缘水下分流河道);(b)—豫西汝州周村罗圈组中部浅紫色粉砂岩(滨浅湖相),具有水平层理A,其中偶见坠石(B,箭头所示),上覆冰碛杂砾岩C
-
(a) —purple red glacial diamictite, covered by purple red siltstone (shallow lacustrine facies) with midddle-coarser grained conglomerate and coarser grained sandstone (C, underwater distributary channel of delta front) , Yangpo section, Ruzhou, western Henan; (b) —purple red glacial diamictite, covered by purple red siltstone (shallow lacustrine facies) with midddle-coarser grained conglomerate and coarser grained sandstone (C, underwater distributary channel of delta front) , Luoquan Formation, Zhoucun section, Ruzhou, western Henan
-
图6 冰前环境的半深海(冰筏)及重力流沉积相
-
Fig.6 Proglacial deep sea and gravity flow facies of the Ediacaran diamictite
-
(a)—豫西灵宝朱阳镇,浅紫色坠石纹层状冰碛岩,坠石成分以硅质等为主,十几厘米—几厘米大小,水平层理且有弯曲和含铁质;(b~d)—淮南六安霍邱深灰色深水冰伐冰碛岩,水平层理,局部丰富的厘米级坠石,厚度几十厘米(重力流相,d)
-
(a) —purple red laminated glacial diamictite with silica dropstones of ten centimeter size, Zhuyang section, Lingbao, western Henan) ; (b~d) —dark grey glacial diamictite with parallel beddings, a varity of scale dropstone, and gravity deposits of ten centimeter in thickness, d, Madian Formation, Madian section, Huoqiu, Liuan, southern Anhui
-
通过中国北方埃迪卡拉纪冰碛岩沉积层序的系统观察和梳理显示,一个综合或完整的埃迪卡拉纪冰碛岩垂向沉积层序及其沉积相组合(由下至上)为,下部①冰下滞积与冲积相,中部②冰缘冲积相和③冰前湖泊或及滨浅海与三角洲前缘沉积相,上部为④冰前半深海(冰筏)与重力流相,该沉积层序和沉积组合实际是代表着冰川由陆地流向海洋推进的沉积响应,而这正是判别冰川属于大陆冰川(冰盖)或山岳冰川最主要依据和沉积学特征(图2,图7),或者说冰川分布面积>50000 km2,同时冰川由陆地流向海洋,这便是大陆冰川(冰盖)属性所在。因此,中国北方埃迪卡拉纪冰碛岩的地层与沉积层序及其沉积相和岩石组合代表的是大陆冰川(冰盖)。
-
图7 中国北方埃迪卡拉纪冰碛岩垂向沉积序列及及对比
-
Fig.7 A correlation of typical sedimentary successions of the Ediacaran diamictites in northern China
-
而中国北方埃迪卡拉纪冰碛岩值得今后进一步深入研究的内容是,并非所有地区冰碛岩全部具有上述典型的垂向沉积层序,相反若干剖面都显示上覆早寒武世沉积前曾经存在沉积间断,或冰碛岩或多或少地被风化剥蚀,这不仅能从早寒武世沉积物和埃迪卡拉纪冰碛岩碎屑锆石年龄谱系的相似性得到证实(Hu et al.,2015; Li Zhensheng et al.,2018; Li Meng et al.,2020; Sun Yunpeng et al.,2022)。而且,豫西洛阳周村和上徐马等剖面不仅缺失冰碛岩上覆的冰后期东坡组细碎屑岩,而且冰碛岩垂向沉积层序的顶部还发育不规则或楔状厚度大于十余米的紫色砂质砾岩冰碛岩(图2,图7)。其中的砾石和碎屑物具有明显的被风化淋滤、硅化和角砾化等特征,间接暗示着冰碛岩沉积之后的可能被暴露与剥蚀过程。据此证据推测,中国北方埃迪卡拉纪冰期应未延续到早寒武世。
-
4 分析和讨论
-
4.1 中国北方冰碛岩古地磁与古地理位置
-
基于冰碛岩古地磁数据开展古地理重建是评价冰川规模的重要手段和地质证据。然而截止目前,尽管近期有少量埃迪卡拉纪冰碛岩古地磁数据及地质解释模型的报道(Wen et al.,2022; Boris et al.,2023; Wang et al.,2023a),但国内外有关埃迪卡拉纪冰碛岩的古地磁数据不仅数量少,而且精度还待提高(Hoffman and Li,2009; Li et al.,2013),特别是地质解释的多解性还很强,导致现今埃迪卡拉纪冰碛岩古地理重建研究较为薄弱,也限制了埃迪卡拉纪冰川局部性、地区性还是洲际性或全球性规模属性的科学评估。
-
前人研究成果显示,中国北方(华北)9个埃迪卡拉纪冰碛岩古地磁数据都为低纬度(Wu and Guan,1988),如豫西罗圈组为13.8°(S)和19°N(Piper and Zhang,1997)。虽然塔里木克拉通古纬度略高,但仍处于27°N低纬度区域(Zhan et al.,2007)。已发表的国内外埃迪卡拉纪冰碛岩古地磁数据显示,全球除0°~10°,以及高于60°以上的更高纬度外,余下10°~60°的区域似乎都可见埃迪卡拉纪冰碛岩的分布(Li et al.,2013)(图8)。此外,纽芬兰阿瓦隆地块(Gaskier冰碛岩)也处于19.1° 低纬度(Pisarevsky et al.,2012),西北澳大利亚地块(Gostin et al.,2010)和中亚微地块群也位于低纬度(Kheraskova et al.,2003)。然而,新近研究成果则认为,前述国内外埃迪卡拉纪冰碛岩古地磁结果显示的低纬古地理重建难以确信,并且埃迪卡拉纪冰碛岩上覆的盖帽碳酸盐岩(见后述)是完全不同于雪球地球盖帽白云岩,埃迪卡拉纪冰川很可能没有发生在低纬度地区(Wang et al.,2023a)。特别是Wen et al.(2022)指出580~560 Ma时期存在显著的真极移,所有大陆发生~90°重新定向,进而导致不同大陆穿时迁移到极地圈(Wen et al.,2022; Wang et al.,2023a)。本研究不对上述真极移模式进行评述,但从 Kheraskova et al.(2003),特别是Scotese(2016)的前寒武纪—寒武纪过渡期古地理重建图(图9)可见,从南半球的高纬度至低纬度,甚至邻近赤道地区都有保存埃迪卡拉纪冰碛岩的克拉通或陆块分布。因此,本文认为,仅据目前国内外埃迪卡拉纪冰碛岩有限的古地磁证据,既不能完全肯定,也不能全部否定埃迪卡拉纪的冰川是否发生在低纬度地区,以及它的可能洲际性或全球性属性。而所有这一切都是源于目前埃迪卡拉纪冰碛岩古地磁数据精度不高,可信度低,因此,埃迪卡拉纪冰川洲际性或全球性规模属性的推测和古地理重建仍存在更多未知。
-
4.2 埃迪卡拉纪冰川规模
-
正如前述,目前国内外对于埃迪卡拉纪冰川或冰期是否具有全球性仍还存有较大的争议。新近有学者认为埃迪卡拉纪冰川(冰期)受同期地球真极移运动驱动(Wen et al.,2022),包括发育于雪球地区特征不一致的盖帽白云岩等特征,都支持它们属于高纬度的冰川(Wang et al.,2023a,2023b,2023c)。实际上,很久前就有学者认为埃迪卡拉纪冰川是区域性的,而且是短寿命和低强度(能力和动力)的冰川(Hoffman and Li,2009)。本文将阐述两个可能与埃迪卡拉纪冰川分布规模有关的埃迪卡拉纪冰碛岩地质特征,其可能有助于我们判断埃迪卡拉纪冰川规模。
-
图8 全球埃迪卡拉纪冰碛岩古地磁揭示的冰碛岩古地理分布(据Li et al.,2013修改)
-
Fig.8 Palaeogeography of the global Ediacaran diamictites (modified from Li et al., 2013)
-
图9 全球埃迪卡拉纪冰碛岩分布(古地理图引自 Scotese,2016)
-
Fig.9 Palaeogeography on the transition of the Ediacaran and Cambrian (the palaeogeographic map modified from Scotese, 2016)
-
盖帽白云岩:众所周知,成冰纪雪球地球冰期结束后,全球各大陆块成冰纪冰碛岩之上几乎同时(~635 Ma)和迅速地沉积了厚度不大的(一般几米厚)粉细晶白云岩,即盖帽白云岩(Hoffman et al.,1998,2007,2009,2010;Jiang et al.,2003,2006;Kuang et al.,2022)。盖帽白云岩不仅表现着明显的全球性分布特点,而且还具有一系列独特的沉积构造,如帐篷构造,席状裂隙,层状晶洞和重晶石扇,以及碳同位素负漂等显著特征,是雪球地球理论和冰川几乎全球性发育的最重要证据之一。虽然埃迪卡拉纪冰碛岩上覆的盖帽白云岩并非普遍发育,但是包含中国北方在内的全球31个埃迪卡拉纪冰碛岩剖面中有11个剖面保存有盖帽白云岩。中国北方则可见于塔里木克拉通库鲁克塔格、青海柴达木地块全吉山和宁夏银川贺兰山(Xiao et al.,2004; Yang et al.,2007,2019; Shen et al.,2010; Wang et al.,2023b)(图10)。国际上如加拿大纽芬兰(Myrow and Kaufman,1999)和中东伊朗(Etemad-Saeed et al.,2016),以及西非、南美、中亚、澳大利亚与北美等地也可见。通常埃迪卡拉纪冰碛岩之上的盖帽白云岩厚度小于成冰纪盖帽白云岩,一般几十厘米至几米不等。
-
图10 中国西北地区埃迪卡拉纪冰碛岩上覆的盖帽白云岩
-
Fig.10 Cap dolostones overlying the Ediacaran diamictites in Northwest China
-
(a)—柴达木地块全吉山石灰沟埃迪卡拉纪冰碛岩之上盖帽白云岩(A—冰后期紫色粉砂岩,B—盖帽白云岩,C—盖帽白云岩上覆紫色粉砂岩,D—寒武系底部小高炉群含磷石英砂岩),(b)—宁夏贺兰山配件厂埃迪卡拉纪与成冰纪冰碛岩之上盖帽白云岩(A—冰碶杂砾岩,B—冰后含砾粗砂岩,C—盖帽白云岩,D—盖帽白云岩顶部帐篷构造)
-
(a) —cap dolostone overlying the Ediacaran glacial deposits, Shihuigou section, Quanjishan, Qaidam, NW Qinghai (A—purple red siltstone of post-glaciation, B—cap dolostone, C—purple red siltstone of post-glaciatio, D—phosphatic quartze of Xiaogaolu Group of the Lower Cambrian) ; (b) —cap dolostone overlying the Ediacaran glacial deposits in Peijianchang section, Helanshan, Ningxia, NW China (A—glacial diamictite, B—sandstone with pebbles of post-glaciation, C—cap dolostone, D—teepe structure)
-
成冰纪盖帽白云岩是冰川全球性发育(Hoffman et al.,1998,2007,2009,2010)的重要证据之一,那么埃迪卡拉纪和成冰纪盖帽白云岩有什么不同?是否前者也具有类似的指示其可能全球性或洲际性发育的意义?新近的研究(Wang et al.,2023b)则认为,埃迪卡拉纪和成冰纪盖帽白云岩是完全不同的,体现在古地理分布、沉积构造以及矿物和地球化学特征等方面。首先,埃迪卡拉纪冰碛岩上覆有盖帽白云岩的概率远远低于成冰纪冰碛岩,而后者几乎在全球普遍存在;其次,埃迪卡拉纪盖帽白云岩并不发育成冰纪盖帽白云岩的那些独特沉积构造;此外,埃迪卡拉纪和成冰纪盖帽白云岩的碳同位素组成也不完全相同,而且后者的锰含量还普遍偏高。据此,Wang et al.(2023a,2023b)进一步解释这是由于发育埃迪卡拉纪盖帽白云岩地块是受地球真极移运动控制由高纬度(冰盖发育)向低纬度(盖帽白云岩发育)的运动结果,也可能是埃迪卡拉纪盖帽白云岩全球分布不均衡的动力机制。
-
然而,笔者系统的野外观察和综合研究发现,在中国北方埃迪卡拉纪盖帽白云岩中,依然可以常见诸如帐篷构造、席状晶洞和席状角砾和叠层石等成冰纪盖帽白云岩常见的沉积构造。实际上,并不是所有的成冰纪和埃迪卡拉纪盖帽白云岩的碳同位素组成完全不同。塔里木克拉通库鲁克塔格汉格尔乔克组上覆盖帽白云岩碳同位素变化在-18‰~0之间(Xiao et al.,2004; Yang et al.,2007; Wang et al.,2023b),贺兰山埃迪卡拉纪冰碛岩之上盖帽白云岩也为明显δ13C负漂移(Yang et al.,2013,2019),相似于成冰纪盖帽白云岩碳同位素组成。北美加拿大纽芬兰埃迪卡拉纪盖帽白云岩的 δ13C更是显现-6‰~-1.5‰ 负漂移(Myrow and Kaufman,1999),也无异于成冰纪盖帽白云岩碳同位素组成。国内仅是柴达木地块埃迪卡拉纪盖帽白云岩表现既有δ13C负漂移,也发育较低正值漂移特征(Shen et al.,2010; Wang et al.,2023b),从而不同于成冰纪盖帽白云岩δ13C同位素组成。因此,国内外埃迪卡拉纪盖帽白云岩也主要显示碳同位素负漂移特点,个别则表现为由负向低正过渡。
-
特别值得注意的是,似乎地质历史时期不仅只有成冰纪和埃迪卡拉纪冰后期发育盖帽白云岩,只不过是成冰纪冰碛岩几乎都上覆有盖帽白云岩,而埃迪卡拉纪冰碛岩之上则部分地区发育盖帽白云岩,但后者盖帽白云岩的“缺失”并非是由于沉积环境水深而发生了沉积相变所致(Kuang et al.,2022)。更令人惊奇的是,冈瓦纳大陆古生代冰碛岩也可以上覆有盖帽白云岩,如中国藏南拉萨地块上古生界二叠系拉嘎组冰碛岩之上就发育米级厚度的盖帽碳酸盐岩,但不同于前寒武纪的盖帽白云岩的泥粉或白云岩岩石矿物学特征,二叠纪盖帽碳酸盐岩为生物碎屑灰岩,δ13C也表现为明显的正漂移(许欢,未发表资料)。很明显,成冰纪、埃迪卡拉纪和显生宙古生代冰碛岩上覆盖帽碳酸盐岩所展示的沉积特征等共性是,它们都可能具有指示冰川规模的洲际性的意义。而差异的存在说明在它们之后还有很多未知的成因机制有待查清,需要未来深入研究和探讨。
-
冰川剥蚀构造。从地质历史时期冰川剥蚀构造或地貌发育规律看,成冰纪及之前冰川剥蚀构造或地貌并不常见。但埃迪卡拉纪以来,包括显生宙和第四纪冰川剥蚀作用及其冰川剥蚀地貌或构造则极为多见,规模也越来越大。如冈瓦纳大陆的西澳大利亚早古生代(O3-S1)与南美和西非晚古生代(C3-P1) 都发育由大陆冰川形成的极其壮观冰溜面等冰蚀构造或地貌(Le Heron et al.,2007,2010,2022)。中国北方埃迪卡拉纪冰川剥蚀构造或地貌也较为发育,如华北豫西若干地区、皖南等地埃迪卡拉纪冰碛杂岩下伏中、新元古界石英砂岩或白云岩层面上保存规模不等的精美冰溜面,及其上发育一系列各种类型和厘米级—米级至十数米级尺度(起伏和距离)的冰川剥蚀构造(图11)(Mu,1981; Wu and Guan,1988; Le Heron et al.,2018,2019,2022; Chen et al.,2020)。此外,华北克拉通南缘由东至西(陕西洛南—豫西和皖南)还发育着一系列超大规模的冰川剥蚀峡谷。按豫西、皖南地区埃迪卡拉纪冰碛岩下伏残余元古宇及层厚度(冰碛岩下伏最年轻层位新元古界,淮南、霍邱等地;最老地层中元古界下部,豫西等地),华北克拉通南缘埃迪卡拉纪大陆冰川剥蚀的中新元古界厚度(深度)最大约千余米左右,反映了埃迪卡拉纪冰川强大的剥蚀能力与强度,甚至远大于冈瓦纳大陆古生代冰蚀构造或地貌(Le Heron et al.,2007,2010,2022)。同样,在澳大利亚(Corkeron and George,2001)、非洲(Germs and Gaucher,2012; Vernhet et al.,2012; Letsch et al.,2018)、巴西(Alvarenga et al.,2007)及伊朗(Etemad-Saeed et al.,2016)等克拉通或陆块也发育埃迪卡拉纪大陆冰川形成的不同尺度冰川剥蚀构造与地貌。其中,西非摩洛哥埃迪卡拉纪冰川形成的巨型—大型冰溜面构造或地貌可持续追索200余千米(Vernhet et al.,2012)。特别是西北非摩洛哥Ouarzazate群底部Tiddiline冰碛岩和顶部Bou Azzer冰碛岩下伏的两个不同时代冰溜面及其中的冰川侵蚀构造都指示着冰川运动方向为由南向北。
-
埃迪卡拉纪大陆冰川形成的超大规模,甚至可能是全球性的冰川剥蚀构造或地貌,是否与罗迪尼亚超大陆最后裂解,或与冈瓦纳大陆聚汇时期特殊的大地构造背景有关?或因为该时期全球广泛发育与大陆裂解有关的大火山岩省(Vernhet et al.,2012; Letsch et al.,2018; Robert et al.,2020; Li et al.,2023),它们影响了大陆地壳(冰川下伏基底载体)热力学状态?后者有益于形成暖温或变温冰川热力学状态,从而易于大陆冰盖移动?进而导致全球或洲际规模性的冰蚀地貌构造的发育?当然这些都是目前初级的推测,还需要进一步科学证据和综合与深入研究。但无论如何,埃迪卡拉纪时期大陆冰川形成在全球或洲际范围上都留下了超大规模地貌级别的冰川剥蚀构造,也形成了典型的冰下冰溜面及其之上丰富类型与尺度的剥蚀构造,这不得不要考虑它们形成和驱动是否与全球性构造背景有关,是否可作为判别埃迪卡拉纪大陆冰川洲际性发育标志之一。
-
图11 华北豫西鲁山石门沟罗圈冰碛杂岩下伏基底接触面上冰溜面等冰蚀构造
-
Fig.11 Subglacial pavement and glaciated structures beneath the Ediacaran diamictite in northern China
-
(a)—冰川导致的塑性变形构造A、密集冰川擦痕B;(b)—剥蚀沟槽A、冰川擦痕B;(c)—冰溜面及上面系列冰川擦痕A及阶步构造B;(d)—鲸鱼背构造A、阶步构造B,箭头示意冰川流动方向
-
(a) —glacier induced plastic deformation A and dens strias B; (b) —groove A and strias B; (c) —glacial pavement, strias A and step B; (d) —whale structure A and step B, arrow showing moveing direction of the glacier
-
4.3 埃迪卡拉纪冰川年代
-
尽管国内外埃迪卡拉纪冰碛岩年代学研究不断获得进展,但有关其冰期精确的年代学结果却还十分罕见,目前较多的仍然是间接的年代学数据,而直接的和最可信的冰期测年结果还是来自加拿大纽芬兰(580~579 Ma)Gaskiers冰期(Pu et al.,2016)。很多年以来,国内外都普遍将全球各地发育的埃迪卡拉纪冰川的时代对比加拿大纽芬兰(580~579 Ma)Gaskiers冰期。然而,近年来越来越多研究都显示,全球埃迪卡拉纪并非仅发育(580~579 Ma)Gaskiers冰期,目前有充分(间接年代学)证据表明,埃迪卡拉纪还存在年轻于Gaskiers的冰期(Chumakov,2009; Etemad-Saeed et al.,2016; Linnemann et al.,2018,2021; Wang et al.,2023a,2023c;黄博涛等,2023)。尽管如此,目前直接的测年数据仍很缺乏。
-
中国华北埃迪卡拉纪(冰期)冰碛岩至今也尚未发现理想(凝灰岩或火山岩等)测年对象,自然地直接测年数据稀缺。尽管前期发表了较多埃迪卡拉纪冰碛岩碎屑锆石年龄谱系结果,也仅显示普遍具有800 Ma、1700 Ma及2500 Ma等峰值(Hu et al.,2015; Dong et al.,2017; 李振生等,2018; Li et al.,2020; Sun et al.,2022,2023),指示了冰碛物来源于大陆冰盖对华北克拉通(冰碛岩下伏)中新元古界(基底)的剥蚀,但不能准确约束冰期时代。塔里木克拉通库鲁克塔格埃迪卡拉纪汉戈尔乔克组冰碛岩下伏615 Ma火山岩(Xu et al.,2015),北祁连和北山埃迪卡拉纪冰碛岩下伏更年轻583 Ma基性火山岩(Xu et al.,2009,2013),据此,可以粗略地限制中国北方埃迪卡拉纪冰期下限应晚于583 Ma(图12)。新近,黄博涛等(2023)报道了北山埃迪卡拉纪洗肠井群冰碛岩碎屑锆石年代学研究结果,其不仅揭示了635 Ma和631 Ma锆石年龄峰值,而且具有的最年轻锆石年龄分别为579 Ma和574 Ma。这是截止目前,中国北方埃迪卡拉纪冰碛岩产出的最年轻的碎屑锆石年代学数据,也间接指示着北山埃迪卡拉纪冰川(冰期)不早于579~574 Ma,同时说明中国北方埃迪卡拉纪确存在年轻于(580 Ma)Gaskiers(冰期)冰川。
-
非常重要和幸运的是,中国北方埃迪卡拉纪冰碛岩上覆和下伏地层具有年代学意义的古生物学素材为有效的约束冰碛岩或冰期时代提供了极好证据。埃迪卡拉纪冰碛岩(及盖帽)上覆地层,如华北豫西罗圈组冰碛岩上覆东坡组上部、宁夏贺兰山正目观组冰碛岩上覆兔儿坑组上部以及西北柴达木地块全吉山红铁沟组冰碛岩上覆皱节山组中上部等都产出Shaanxilithes(陕西迹),特别是柴达木地块皱节山组Shaanxilithes和Charnia 共生(Shen et al.,2010; Pang et al.,2021; Wang et al.,2021a,2021b; Fang et al.,2021)(图12)。前人研究认为,Shaanxilithes为早于寒武纪早期小壳动物群的埃迪卡拉纪晚期标准分子,也见于印度、西伯利亚埃迪卡拉系上部,以及中国扬子克拉通的滇东、黔中、陕南等地埃迪卡拉系灯影组中上部(张志亮等,2015;Pang et al.,2021; Wang et al.,2021a,2021b; Fang et al.,2021)。由于中国扬子三峡地区埃迪卡拉纪上统灯影组底界为551 Ma(Condon et al.,2005; Yang et al.,2021),故此,Shaanxilithes(陕西迹)就间接约束埃迪卡拉纪冰期应早于或约等于551 Ma,且肯定不会更太晚于551 Ma。综合上述,目前至少可以认为中国北方埃迪卡拉纪冰期时代大致应介于579 Ma和574~551 Ma间。
-
前已述及,埃迪卡拉纪冰期的同时也还耦合地发生着其他重大地质事件,如超大陆最终裂解和汇聚及大火山省等(Xu et al.,2009,2013,2015; Youbi et al.,2020; Robert et al.,2020; Gumsley et al.,2020),除此之外,埃迪卡拉纪中晚期还发生了全球性遗迹地质历史时期幅度最大和等时性的碳同位素负漂移事件(Shuram)(Macdonald et al.,2013; Wang et al.,2023a,2023b),而且新疆库鲁克塔格汉格尔乔克组冰碛岩下伏水泉组则记录了完好的Shuram信息(Xiao et al.,2004; Wang et al.,2023a,2023b)。而更重要的是,近期的研究表明,汉格尔乔克组冰碛岩(冰期)记录恰发生在Shuram事件之后(Wang et al.,2023a,2023b,2023c)。因此,如果我们获知Shuram事件的年代学结果,我们就可以借以约束埃迪卡拉纪冰期的年代下限。前人基于铼锇定年和天文年代学方法获得了Shuram负漂移年代约束为570.2~562.5 Ma(Gong and Li,2020)。这样,上述中国北方埃迪卡拉纪冰期时代约束579 Ma和574~551 Ma间,其起始时间又被进一步限定晚于562.5 Ma。综合前述各方面的证据,中国埃迪卡拉纪冰期的时代应置于562.5~551 Ma间,冰期持续了约12~11 Ma。
-
图12 中国北方埃迪卡拉纪冰碛岩及冰期时代约束
-
Fig.12 Age of the Ediacaran diamictite in northern China
-
实际上,国际上加拿大纽芬兰Gaskiers冰碛岩中凝灰岩夹层获得580~579 Ma的高精度定年数据(Pu et al.,2016),既精确定年了Gaskiers冰期,也同时说明它远早于中国北方埃迪卡拉纪冰期,并且进一步证实Gaskier冰期仅仅持续大于约1 Ma。此外,除了挪威南东Hedmark冰碛杂岩实测的620 Ma数据(Bingen et al.,2005)等老于Gaskiers冰期,以及北美Squantum冰碛岩(Hebert and Kaufman,2010; Thompson and Bowring,2000)具有和Gaskiers相近年龄数据外,乌拉圭Las Vantanas冰碛杂岩为615~579 Ma(Gaucher et al.,2008); 阿拉伯(伊朗)和中东等地也报道560~551 Ma的埃迪卡拉纪冰期年龄(Etemad-Saeed et al.,2016)。
-
西非克拉通是非常独特的埃迪卡拉纪冰碛杂岩产地。该地区埃迪卡拉纪(约580~560 Ma)Ouarzazate群保存着被非冰水沉积隔开的两套冰碛岩,即底部Tiddiline冰碛岩和顶部Bou Azzer冰碛岩(Álvaro et al.,2014)。早前和近年报道冰碛岩时代为579~561 Ma(Vernhet et al.,2012; Linnemann et al.,2018,2021; Letsch et al.,2018; Youbi et al.,2020)。笔者野外实际考察和分析文献年代数据表明,Tiddiline冰碛岩下伏(冰溜面)流纹岩还产出605 Ma与606 Ma的锆石U-Pb年龄(Thomas et al.,2002),而下伏花岗岩则获得579.4 Ma和578.5 Ma锆石U-Pb年龄数据(Inglis et al.,2004)。因此,Tiddiline冰碛岩可能或与(579~580 Ma)Gaskiers冰川同期或略老或略微年轻。而尤为重要的是,Ouarzazate群顶部Bou Azzer冰碛岩下伏冰溜面流纹岩或酸性火山碎屑岩获得565~560 Ma年龄数据(Vernhet et al.,2012),明显指明了年轻于(580~579 Ma)Gaskiers冰期的另一大陆冰川(冰期)的存在,而且与中亚和东亚(中国北方)年轻于(580~579 Ma)Gaskiers冰期的埃迪卡拉纪冰期基本同时,确凿地证实了埃迪卡拉纪冰期—间冰期与多旋回性发育特征,这应该是地球真极移模型不容易解释的。
-
综上所述,全世界报道的埃迪卡拉纪冰碛岩年代学数据表明:① 全球范围上580~579 Ma的Gaskiers冰碛岩代表埃迪卡拉纪最早冰期(幕);② 国内外存在晚于(580~579 Ma)Gaskiers的年轻埃迪卡拉纪冰期(幕);③ 埃迪卡拉纪冰川与冰期应是(旋回与)幕式发育的,目前可以肯定全球埃迪卡拉纪时期至少存在两次冰期,即约580~579 Ma和大致562~551 Ma两(旋回)幕冰期。
-
4.4 埃迪卡拉纪冰川构造背景初步分析
-
通常认为,超大陆裂解是元古代冰期形成的触发机制(Hoffman and Li,2009)。700~600 Ma时期罗迪尼亚超大陆的裂解导致劳伦、波罗地、西伯利亚等克拉通远离罗迪尼亚超大陆向北漂移,孕育了古亚洲洋和原特提斯洋的大地构造背景与条件。随着古亚洲洋和原特提斯洋的出现和随后的扩大(Zhao et al.,2018; Youbi et al.,2020; Robert et al.,2020; Gumsley et al.,2020),罗迪尼亚超大陆最终解体完成(Robert et al.,2020)。620~560 Ma时,泛非运动导致南半球各克拉通与陆块不断汇聚拼合,最终形成冈瓦纳大陆。罗迪尼亚超大陆最终解体和冈瓦纳大陆形成过程中,中国北方华北克拉通和塔里木克拉通,祁连山、北山以及阿拉善及中亚陆块等以亚洲陆块群形式共同远离冈瓦纳大陆向北漂移。580~560 Ma时期,亚洲陆块群隔着原特提斯洋与西冈瓦纳大陆边缘相望。
-
冈瓦纳大陆和亚洲陆块群,尤其是中国北方豫西、皖南等地保存的有限大陆冰盖移动(方向)数据显示由北而南运动(Le Heron et al.,2018,2019,2022; Chen et al.,2020),而西冈瓦纳大陆边缘的伊朗和北非等陆块上的大陆冰川则由南而北流动(Etemad-Saeed et al.,2016; Linnemann et al.,2018,2021; Letsch et al.,2018),似乎原特提斯洋是覆盖亚洲陆块群与冈瓦纳大陆大冰盖相向运动和汇聚的中心,而原特提斯洋也应为大陆冰盖所覆盖(原特提斯洋大冰盖)。此外,西冈瓦纳大陆埃迪卡拉纪冰碛岩的碎屑锆石分析显示,西北澳大利亚大陆、大印度大陆、阿拉伯克拉通和伊朗地块、西非克拉通西北和圣弗朗斯斯科克拉通等的锆石年龄谱都具有明显的620~560 Ma(~600 Ma)泛非事件记录(Etemad-Saeed et al.,2016; Linnemann et al.,2018,2021; Letsch et al.,2018)。但中国北方诸克拉通或微陆块,如华北克拉通、塔里木克拉通,阿拉善、祁连山、北山和欧伦布鲁克微陆块,也包括中亚的哈萨克斯坦陆块组成的亚洲陆块群上的埃迪卡拉纪冰碛物碎屑锆石年龄谱系完全不同于冈瓦纳大陆诸陆块或克拉通,不仅未见泛非事件的(锆石)记录,相反却主要显示着800 Ma、1700 Ma及2500 Ma等锆石年龄峰值(Hu et al.,2015; Dong et al.,2017; 李振生等,2018; Li et al.,2020),如前述,这些冰碛物物源皆来自于华北克拉通等。此外,亚洲陆块群冰碛岩中也未见早古生代初环绕冈瓦纳大陆的岩浆、火山与变质作用等地质事件的信息和锆石记录,这也充分说明亚洲陆块群并没有卷入冈瓦纳大陆最终汇聚事件,中国北方埃迪卡拉纪冰碛物大地构造背景与冈瓦纳大陆,或者说西北澳大利亚克拉通、印度大陆北缘的羌塘-拉萨-保山微陆块、阿拉伯克拉通和伊朗地块,以及西非克拉通西北、圣弗朗斯斯科克拉通和阿瓦隆等克拉通或陆块上的埃迪卡拉纪冰碛物构造属性与背景完全不同的。
-
5 结论
-
埃迪卡拉纪冰川沉积记录遍布全球十几个大陆,中国北方绵延3000 km,跨越华北克拉通和塔里木克拉通及其中间过渡区的若干微陆块广泛发育埃迪卡拉纪冰碛岩,发育在冰下、冰缘和冰前三种沉积环境,可区分出4种主要的冰川沉积相,共同构成由下至上,从冰下至冰前的完整冰碛物沉积层序,代表向上厚度变薄和水体加深和发育为海相的序列,是大陆冰川(盖)的沉积响应特征;埃迪卡拉纪冰碛岩之上可上覆或没有盖帽白云岩,同样发育部分与成冰纪盖帽白云岩类似的独特沉积构造,但埃迪纪和成冰纪盖帽白云岩的碳同位素却不完全相同;国内外埃迪卡拉纪冰川都形成一系列多尺度宏观和微观冰川剥蚀地貌;中国北方埃迪卡拉纪冰期发育于562.5~551 Ma,全球尺度上埃迪卡拉纪冰期幕式发育,且至少存在580~579 Ma与562.5~551 Ma两幕冰期。580~560 Ma期间亚洲陆块群和冈瓦纳大陆间可能存在原特提斯洋大冰盖,埃迪卡拉纪冰期时期亚洲陆块群与冈瓦纳大陆没有亲缘性。本文研究结果对理解埃迪卡拉纪时期的冰川发育、全球古地理重建和构造背景及其古环境演化具有重要意义。
-
致谢:诚挚感谢中国地质科学院地质研究所耿元生、刘鹏举和任留东研究员;衷心致谢中国科学院地球物理与地质研究所赵磊、彭澎研究员,奥地利维也纳大学Le Heron教授,英国皇家豪乐威大学Thomas Vandyk 博士,河南地质调查院和河南省国土资源局王世炎和张兴辽教授级高级工程师。
-
参考文献
-
Alvarenga D C, Figueiredo J, Babinski, M F, Pinho M F E. 2007. Glacial diamictites of the Serra Azul Formation (Ediacaran, Paraguay belt): Evidence of the Gaskiers glacial event in Brazil. Journal of South American Earth Sciences, 23: 236~241.
-
Álvaro J J, Benziane F, Thomas R. 2014. Neoproterozoic-Cambrian stratigraphic framework of the Anti-Atlas and Ouzellagh promontory (High Atlas), Morocco. Journal of African Earth Sciences, 98: 19~33.
-
Bingen B, Griffi N W L, Torsvik T H, Saeed A. 2005. Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, southeast Norway. Terra Nova, 17(3): 250~258.
-
Boulton G S, Deynoux M. 1981. Sedimentation in glacial environments and the identification of tills and tillites in ancient sedimentary sequences. Precambrian Research, 15(3-4): 397~422.
-
Boris R, Fernando C, Mathew D, Olivier B. 2023. Evidence for large disturbances of the Ediacaran geomagnetic field from West Africa. Precambrian Research, 394: 107095.
-
Brodzikowski K, Van Loon A J. 1987. A systematic classification of glacial and periglacial environments, facies and deposits. Earth-Science Reviews, 24(5): 297~381.
-
Cai Xiongfei, Yang Jie, He Wenjian, Zeng Zuoxun. 2013. A restudy of the upper Sinian Zhengmuguan and Tuerkeng Formation in the Helan Mountains. Journal of Stratigraphy, 37 (3): 377~386(in Chinese with English abstract).
-
Chen Xiaoshuai, Kuang Hongwei, Liu Yongqing, Wang Yuchong, Yang Zhenrui, Vandyk T M, Le Heron D P, Wang Shiyan, Geng Yuansheng, Bai Huaqing, Pen Nan, Xia Xiaoxu. 2020. Subglacial bedforms and landscapes formed by ice sheet of the Ediacaran-Cambrian age in west Henan, North China. Precambrian Research, 344: 105727.
-
Chen Xiaoshuai, Kuang Hongwei, Liu Yongqing, Peng Nan, Wang Yuchong, Qi Kening. 2023. Sedimentary characteristics and evolution of Ediacaran glaciation in western Henan Province, southern North China Craton. Palaeogeography, Palaeoclimatology, Palaeoecology, 632: 111866.
-
Christie-Blick, N Sohl L E, Kennedy M J. 1999. Considering a Neoproterozoic snowball Earth. Science, 284(5417): 1087~1087.
-
Chumakov N M. 2009. The Baykonurian glaciohorizon of the Late Vendian. Stratigraphy and Geological Correlation, 17(4): 373~381.
-
Chumakov N M. 2011a. Glacial deposits of the Baykonur Formation, Kazakhstan and Kyrgyzstan. Geological Society, London, Memoirs, 36 (1): 303~307.
-
Chumakov N M. 2011b. The Neoproterozoic glacial formations of the North and Middle Urals. In: Arnaud E, Halverson G P, Shields-Zhou G, eds. The Geological Record of Neoproterozoic Glaciations. Geological Society, London, Memoirs, 36: 289~296.
-
Condon D, Zhu Maoran, Bowring S, Wang Wei, Yang Aihua, Jin Yugan. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation. Geophysical Journal International, 308: 95~98.
-
Corkeron M L, George A D. 2001. Glacial incursion on a Neoproterozoic carbonate platform in the Kimberley region, Australia. Geological Society of America Bulletin, 113: 1121~1132.
-
Dong Xiaoping, Hu Jianmin, Li Zhenhong, Zhao Yi, Gong Wangbin, Yang Yong. 2017. Provenance of Ediacaran (Sinian)sediments in the Helanshan area, North China Craton: Constraints from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research, 298: 490~511.
-
Etemad-Saeed N, Hosseini-Barzi M, Adabi M H, Miller N R, Sadeghi A, Houshmandzadeh A, Stockli D F. 2016. Evidence for ca. 560 Ma Ediacaran glaciation in the Kahar Formation, central Alborz Mountains, northern Iran. Gondwana Research, 31: 164~183.
-
Eyles N, Eyles C H, Miall A D. 1983. Lithofacies types and vertical profile models: An alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences. Sedimentology, 30(3): 393~410.
-
Fang Ruisen, Yue Liang, Hua Hong, Zhang Zhifei. 2021. First report of the problematic Ediacaran fossil Shaanxilithes from the Jiucheng Member of Zhujiaqing Section in Huize, Yunnan Province. Acta Palaeontologica Sinica, 60(1): 2020035.
-
Gao Zhenjia. 1983. Disscussion about some problems ofglacigenic rocks of Sinian, China. Xinjiang Geology, 1(1): 80~89(in Chinese with English abstract).
-
Gaucher C, Blanco G, Chiglino L, Poiré D, Germs G J. 2008. Acritarchs of Las Ventanas Formation (Ediacaran, Uruguay): Implications for the timing of coeval rifting and glacial events in western Gondwana. Gondwana Research 13(4): 488~501.
-
Ge Xiaohong, Liu Junlai. 2000. Broken “Western China Craton”. Acta Petrologica Sinica, 16 (1): 59~66(in Chinese with English abstract).
-
Germs G J B, Gaucher C. 2012. Nature and Extent of a Late Ediacaran (ca. 547 Ma)glacigenic erosion surface in southern Africa. South African Journal of Geology, 115: 91~102.
-
Gong Zheng, Li Mingsong. 2020. Astrochronology of the Ediacaran Shuram carbon isotope excursion, Oman. Earth and Planetary Science Letters, 547: 116462.
-
Gostin V A, McKirdy D M, Webster L J, Williams G E. 2010. Ediacaran ice-rafting and coeval asteroid impact, South Australia: Insights into the terminal Proterozoic environment. Australian Journal of Earth Sciences, 57: 859~869.
-
Guan Baode, Wu Ritang, Hambrey M J, Geng Wuchen. 1988. Glacial sediments and erosional pavements near the Cambrian-Precambrian boundary in western Henan Province, China. Journal of the Geological Society, 143(2): 311~323.
-
Gumsley A, Manby G, Domańska-Siuda J, Nejbert K, Michalski K. 2020. Caught between two continents: First identification of the Ediacaran central iapetus magmatic province in western Svalbard with palaeogeographic implications during final Rodinia breakup. Precambrian Research, 341: 105622.
-
Han Yigui, Zhao Guochun, Sun Min, Eizenhofer P R. Hou Wenzhu, Zhang Xiaoran, Liu Dongxing, Wang Bo, Zhang Guowei. 2015. Paleozoic accretionary orogenesis in the Paleo-Asian Ocean: Insights from detrital zircons from Silurian to Carboniferous strata at the northwestern margin of the Tarim Craton. Tectonics, 34: 334~351.
-
Hebert C L, Kaufman A J, Penniston-Dorland S C, Martin A J. 2010. Radiometric and stratigraphic constraints on terminal Ediacaran (post-Gaskiers)glaciation and metazoan evolution. Precambrian Research, 182: 402~412.
-
Hoffman P F, Li Zhengxiang. 2009. A palaeogeographic context for Neoproterozoic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277 (3-4): 158~172.
-
Hoffman P F, Halverson G P, Domack E W, Husson J M, Higgins J A, Schrag D P. 2007. Are basal Ediacaran (635 Ma)post-glacial “cap dolostones” diachronous? Earth and Planetary Science Letter, 258: 114~131.
-
Hoffman P F, Kaufman A J, Halverson G P. 1998. Schrag, D. P. A Neoproterozoic Snowball Earth. Science, 281(5381): 1342~1346.
-
Hoffman P F, Macdonald F A. 2010. Sheet-crack cements and early regression in Marinoan (635 Ma)cap dolostones: Regional benchmarks of vanishing ice-sheets? Earth and Planetary Science Letters, 300: 374~384.
-
Hong Qingyu. 1984. Preliminary research on gravity flow sediments of sinian period in several areas, China. Journal of Southwest Petroleum Univerty (Science & Technology Edition), 4: 1~17(in Chinese with English abstract).
-
Hu Bo, Zhai Mingguo, Wu Jialin, Jia Xiaoliang, Zhang Haidong. 2015. Detrital zircons LA-ICP-MS U-Pb ages of Neoproterozoic tillites at the southern margin of North China Craton, and its significance. Acta Mineral Sinica (Supplementary issue), 701.
-
Huang Botao, Wang Guoqiang, Wang Juli, Li Xiangmin, Bu Tao. 2023. Sedimentary age, provenance and tectonic implications of the diamictite in Pochengshan area, Beishan: Constraints from detrital zircon U-Pb dating and Hf isotope. Acta Geologica Sinica, 97(10): 3213~3224 (in Chinese with English abstract).
-
Inglis J D, MacLean J S, Samson S D, D'Lemos R S, Admou H, Hefferan K. 2004. A precise U-Pb zircon age for the Bleida granodiorite, Anti-Atlas, Morocco: Implications for the timing of deformation and terrane assembly in the eastern Anti-Atlas. Journal African Earth Sciences, 39: 277~283
-
Jiang Ganqing, Kennedy M J, Christie-Blick N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426: 822~826.
-
Jiang Ganqing, Kennedy M J, Christie-Blick N, Wu Huaichun, Zhang Shihong. 2006. Stratigraphy, sedimentary structures, and textures of the Late Neoproterozoic doushantuo cap carbonate in south China. Journal of Sedimentary Research, 76: 978~995.
-
Kheraskova T N, Didenko A. 2003. The Vendian-Early Paleozoic history of the continental margin of eastern Paleogondwana, Paleoasian Ocean, and Central Asian foldbelt. Russian Journal of Earth Sciences, 5(3): 165~184.
-
Kuang Hongwei, Liu Yongqing, Peng Nan, Vandyk T M, Le Heron D P, Zhu Zhicai, Bai Huaqing, Wang Yuchong, Wang Zhixin, Zhong Quan, Yu Honglin, Chen Xiaoshuai, Song Changgui, Qi Kening. 2022. Ediacaran cap dolomite of Shennongjia, northern Yangtze Craton, South China. Precambrian Research, 368: 106483.
-
Le Heron D P. 2007. Late Ordovician glacial record of the Anti-Atlas, Morocco. Sedimentary Geology, 201: 93~110.
-
Le Heron D P, Armstrong H A, Wilson C, Howard J P, Gindre L. 2010. Glaciation and deglaciation of the Libyan Desert: The Late Ordovician record. Sedimentary Geology, 223: 100~125.
-
Le Heron D P, Vandyk T M, Wu Guanghui, Li Meng. 2018. New perspectives on the Luoquan glaciation (Ediacaran-Cambrian)of North China. The Depositional Record, 4 (2): 274~292.
-
Le Heron D P, Vandyk T M, Kuang Hongwei, Liu Yongqing, Chen Xiaoshuai, Wang Yuchong, Yang Zhenrui, Sharfenberg L, Davie B, Shields G. 2019. A bird's eye view of an Ediacaran subglacial landscape. Geology, 47: 705~709.
-
Le Heron D P, Busfield M E, Chen Xiaoshuai, Corkeron M, Davies B J, Dietrich P, Ghienn J F, Kettler C, Scharfenberg L, Vandyk T M, Wohlschlägl R. 2022. Newperspectives on glacial geomorphology in Earth's deep time record. Frontiers of Earth Science, 10: 870.
-
Letsch D, Large S J E, Buechi M W, Winkler W, Von Quadt A. 2018. Ediacaran glaciations of the west African craton-evidence from Morocco. Precambrian Research, 310: 17~8.
-
Li Chenqing, Dong Lin, Shen Bing. 2022. Formation of chert breccia from the transitional beddings between Neoproterozoic Jingeryu Formaiton and Cambrian Fujunshan Formation in Xiaweidian section, Beijing. Acta Scientiarum Naturalium Universitatis Pekinensis.
-
Li Jinyi. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Science, 26: 207~224.
-
Li Meng, Vandyk T M, Wu Guanghui, Liu Wei, Paul Le Heron D, Xiao Yang. 2020. A window into the Great Unconformity: Insights from geochemistry and geochronology of Ediacaran glaciogenic rocks in the North China Craton, Journal of Asian Earth Sciences, 194: 104327.
-
Li Wei, Li Daoyuan, Zheng Shudong. 1990. The sedimentary characteristics of the alluvial fan of the underwater off-shore slope, Luoquan Formation in the Yiyang area, Henan Province. Journal of Xi'an College of Geology, 12(3): 32~38(in Chinese with English abstract).
-
Li Zhensheng, Zhao Zhuoya, Li Jianxun, Li Quanzhong, Zhang Jiaodong, Niu Hao. 2018. Provenance analysis of the black clastic rock series at the Cambrian base in the southeastern margin of North China Craton and its constraints on the late Precambrian geologic evolution. Acta Geologica Sinica, 92(9): 1803~1828(in Chinese with English abstract).
-
Li Zhengxiang, Evans D A D, Halverson G P. 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology, 294: 219~232.
-
Li Zhengxiang, Liu Yebo, Ernst R. 2023. A dynamic 2000~540 Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth-Science Reviews, 238: 104336.
-
Linnemann U, Agustín P P, Hofmann M, Dros K, Quesada C, Gerdes A, Marko L, Andreas G, Zieger J, Ulrich J, Krause R, Vickers R P, Horak J. 2018. A ~565 Ma old glaciation in the Ediacaran of peri Gondwanan West Africa. International Journal of Earth Sciences, 107: 885~911.
-
Linnemann U, Hofmann M, Gärtner A, Gärtner J, Zieger J, Krause R, Haenel R, Mende K, Ovtcharova M, Schaltegger U, Vickers-Rich P. 2021. Anupper Ediacaran glacial period in Cadomia: The Granville tillite (Armorican massif)sedimentology, geochronology and provenance. Geological Magazine, 1~15.
-
Lu Songnian, Yu Haifeng, Jin Wei, Li Huaikun, Zheng Jiankang. 2002. Microcontinents on the eastern margin of Tarim paleocontinent. Acta Petorlogica et Mineralogica, 21(4): 317~326(in Chinese with English abstract).
-
Macdonald F A, Strauss J V, Sperling E A, Halverson G P, Narbonne G M, Johnston D T, Kunzmann M, Schrag D P, Higgins J A. 2013. The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and thefirst appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chemical Geology, 362: 250~272.
-
Ma Xiaochen, Wang Jiasheng, Chen Can, Wan Zhou. 2018. Major element compositions and paleoclimatic implications of paleo-Regolith on the top Jingeryu Formation in Fangshan, North China. Earth Science, 43(11): 3853~3872 (in Chinese with English abstract).
-
Mou Yongji. 1983. Origin and age of glacial moraines in the Luoquan Formation. Henan Geology, (2): 35~46(in Chinese).
-
Mu Yongji. 1981. Luoquan tillite of the Sinian System in China. In: Hambrey M J, Harland W B, eds. Earth's Pre-Pleistocene Glacial Record. Cambridge: Cambridge University Press, 402~413.
-
Myrow P M, Kaufman A J. 1999. A newly discovered cap carbonate above Varanger-age glacial deposits in Newfoundland, Canada. Journal of Sedimentary Research, 69 (3): 784~793.
-
Pang Ke, Wu Chengxi, Sun Yunpeng, Ouyang Qing, Yuan Xunlai, Shen Bing, Lang Xianguo, Wang Ruimin, Chen Ze, Zhou Chuanming. 2021. New Ediacara-type fossils and late Ediacaran stratigraphy from the northern Qaidam basin (China): Paleogeographic implications. Geology, 49 (10): 1160~1164.
-
Piper J D A, Zhang Qirui. 1997. Palaeomagnesism of Neoproterozoic glacial rocks of the Huaibei shield, the north China block in Gondwana. Tectophysics, 283: 145~171.
-
Pisarevsky S A, McCausland P J A, Hodych J P, O'Brien S J, Tait JA, Murphy J B. 2012. Paleomagnetic study of the late Neoproterozoic Bull Arm and Crown Hill formation s (Musgravetown Group)of eastern Newfoundland: Implications for Avalonia and West Gondwana paleogeography. In honour of Ward Neale on the theme of Appalachian and Grenvillian geology. Canadian journal of earth sciences, Special Issue: 49: 308~327.
-
Pu J P, Bowring S A, Ramezani J, Myrow P, Raub T D, Landing E, Mills A, Hodgin E, Macdonald F A. 2016. Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44 (11): 955~958.
-
Robert B, Domeier M, Jakob J. 2020. Iapetan oceans: An analog of Tethys? Geology, 48(9): 929~933.
-
Scotese C R. 2016. PALEOMAP Paleo Atlas for GPlates and the Paleo Data Plotter Program, PALEOMAP Project, http: //www. earthbyte. org/paleomap-paleoatlas-forgplates/.
-
Shen Bing, Xiao Shuhai, Zhou Chuanming, Kaufman A J, Yuan Xunlai. 2010. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam basin, NW China: Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event? Precambrian Research, 177 (3-4): 241~252.
-
Shi Shuting, Wang Jinyi, Guo Qiheng, Jin Zhenkui, Zhu Xiaoer, Wang Xinyao, Li Yang, Li Shuo, Ren Ylin, Wang Ling. 2019. Discovery of tillite in the Late Proterozoic at Jixian County of Tianjin, North China. Acta Sedimentologica Sinica, 37(6): 1181~1192.
-
Spence G H, Le Hedron D P, Faichild I J. 2016. Sedimentological perspectives on climatic, atmospheric and environmental change in the Neoproterozoic Era. Sedimentology, 63: 253~306.
-
Sun Yunpeng, Ouyang Qing, Lang Xianguo, Pang Ke, Wu Chengxi, Chen Zhe, Zhou Chuanming. 2023. Global sea-level fall triggered Ediacaran, atmospheric and environmental Chana craton. Earth and Planetary Science Letters, 622: 118411.
-
Sun Yunpeng, Ouyang Qing, Pang Ke, Wu Chengxi, Chen Zhe, Yuan Xunlai, Zhou Chuanming. 2022. Detrital zircon geochronology and stratigraphy of the Proterozoic strata in the Olongbuluke terrane of Northwest China: Implications for the Great Unconformity. Precambrian Research, 376: 106684.
-
Thomas R J, Chevallier L P, Gresse P G, Harmer R E, Eglington B M, Armstrong R A, de Beer C H, Martini J E J, de Kock G S, Macey P H, Ingram B A. 2002. Precambrian evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco. Precambrian Research, 118: 1~57.
-
Thompson M D, Bowring S A. 2000. Age of the Aquantum “tillite”, Boston basin, Massachusetts: U-Pb zircon constraints on terminal Neoproterozoic glaciation. American Journal of Science, 300: 630~655.
-
Vernhet E, Youbi N, Chellai E H, Villeneuve M El, Archi A. 2012. The Bou-Azzer glaciation: Evidence for an Ediacaran glaciation on the west African craton (Anti-Atlas, Morocco). Precambrian Research, 196: 106~112.
-
Wang Mingzhou, Yang Tiefen. 1996. Discussion on the development and genesis of Luoquan Formation in Yiyang County, Henan Province. Journal of Xi'an College of Geology, 18(2): 13~17(in Chinese with English abstract).
-
Wang Ruimin, Shen Bing, Lang Xianguo, Wen Bin, Mitchell R N, Ma Haoran, Yin Zongjun Yin, Peng Yongbo, Liu Yonggang, Zhou Chuanming. 2023a. A great late Ediacaran ice age. National Science Review, doi: 10. 1093/nsr/nwad117.
-
Wang Ruimin, Xing Chaochao, Wen Bin, Wang Xubin, Liu Kunwei, Huang Tianzheng, Zhou Chuanming, Shen Bing. 2023b. The origin of cap carbonate after the Ediacaran glaciations. Global and Planetary Change, https: //doi. org/10. 1016/j. gloplacha. 2023. 104141.
-
Wang Ruimin, Yin Zongjun, Shen Bing. 2023c. A late Ediacaran ice age: The key node in the Earth system evolution, Earth-Science Reviews, https: //doi. org/10. 1016/j. earscirev. 2023. 104610
-
Wang Xin, Zhang Xingliang, Zhang Yuan, Cui Linhao, Li Luoyang. 2021a. New materials reveal Shaanxilithes as a Cloudina-like organism of the late Ediacaran. Precambrian Research, 362: 106277.
-
Wang Xin, Zhang Xingliang, Liu Wei. 2021b. Biostratigraphic constraints on the age of Neoproterozoic glaciation in North China. Journal of Asian Earth Sciences, 219: 1~10.
-
Wen B, Luo C, Li Y, Lin Y. 2022. Late Ediacaran inertial-interchange true polar wander (IITPW)event: A new road to reconcile the enigmatic paleogeography prior to the final assembly of Gondwana. Turkish Journal of Earth Sciences, 31: 425~437.
-
Wu Fuyuan, Wan Bo, Zhao Lei, Xiao Wenjiao, Zhu Rixiang. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36 (6): 1627~1674.
-
Wu Ruitang, Guan Baode. 1988. Glacigenic characteristics of the Luoquan Formation and sediment gravity flow reworking on it. Acta Geologica Sinica, 1(3): 325~339 (in Chinese with English abstract).
-
Wu Ruitang, Guan Baode. 1988. On the glacigene characteristics of the Luoquan Formation and its reworking by gravity flows. Acta Geologica Sinica, 62(1): 78~89(in Chinese with English abstract).
-
Wu Ruitang, Yang Yuqing. 1991. The indicators for recognizing glacial event. Earth Science—Journal of China Universtiy of Geosciences, 16(4): 353~359(in Chinese with English abstract).
-
Xiao Shuhai, Bao Huiming, Wang Haifeng, Kaufman A J, Zhou Chuanming, Li Guoxiang, Yuan Xunlai, Ling Hongfei. 2004. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: Evidence for a post-Marinoan glaciation. Precambrian Research, 130: 1~26.
-
Xiao Wenjiao, Kröner A, Windley B F. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Science, 98: 1185~1188.
-
Xu Bei, Xiao Shuhai, Zou Haibo, Chen Yanjing, Li Zhengxiang, Song Biao, Liu Dunyi, Zhou Chuanming, Yuan Xunlai. 2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China. Precambrian Research, 168 (3-4): 247~258.
-
Xu Bei, Zou Haibo, Chen Yanjing, He Jinyou, Wang Yu. 2013. The Sugetbrak basalts from northwestern Tarim Block of northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic. Precambrian Research, 236: 214~226.
-
Xu Xin, Song Shuguang, Su Li, Li Zhengxiang, Niu Yaoling, Allen M B. 2015. The 600~580 Ma continental rift basalts in North Qilian Shan, northwest China: Links between the Qilian-Qaidam block and SE Australia, and the reconstruction of East Gondwana. Precambrian Research, 257: 47~64.
-
Yang Chuan, Rooney A D, Condon D J, Li Xianhua, Grazhdankin D V, Bowyer F T, Hu Chunlin, Macdonald F A, Zhu Maoran. 2021. The tempo of Ediacaran evolution. Science Advances, (7): eabi9643.
-
Yang Jie, Zeng Zuoxun, Cai Xiongfei, Li Zhiyong, Li Tianbin, Meng Fang, He Wenjian. 2013. Carbon and oxygen isotopes analyses for the Sinian carbonates in the Helan Mountain, North China. Chinese Science Bulletin, 58 (32): 3943~3955.
-
Yang Jie, Lyons T W, Zeng Zuoxun, Odigie K O, Bates S, Hu Lisha. 2019. Geochemical constraints on the origin of Neoproterozoic cap carbonate in the Helan Mountains, North China: Implications for mid-late Ediacaran glaciation? Precambrian Research, 331: 105361.
-
Yang Ruidong, Zhang Chuanlin, Wang Baixun, Luo Xinrong. 2007. Chemostratigraphy and lithological characters of Neoproterozoic cap carbonates from the Kuruktag Mountain, Xinjiang, western China. Chinese Journal of Geochemistry, 26 (2): 132~142.
-
Yang Yuqing, Wu Ruitang. 1992. Underlying ancient ice erosion surface and ice erosion structure of the Luoquan Formation in western Henan. Henan Geology, 10 (4): 282~285(in Chinese).
-
Youbi N, Ernst R E, Soderlund U, Boumehdi M A, Ait Lahna A, Tassinari C C G, El Moume W, Bensalah M K. 2020. The Central Iapetus magmatic province: An updated review and link with the ca. 580 Ma Gaskiers glaciation. In: Adatte T, Bond D P G, Keller G, eds. Mass Extinctions, Volcanism, and Impacts: New developments. Geological Society of America Special Paper 544.
-
Yue Liang, Liu Ziliang, Veerle V, Ma Yongsheng, Chen Hongde, Zhang Chengjian. 2020. Glacial sedimentary sequence and evolution of the Fengtai Formation, southeastern margin of the North China Craton. Geological Review, 66 (2): 307~323.
-
Zhan Sheng, Chen Yan, Xu Bei, Wang Bo, Faure M. 2007. Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim basin (NW China)and their implications to paleogeographic reconstructions and the snowball Earth hypothesis. Precambrian Research, 154: 143~158.
-
Zhang Biyun, Zheng Deshun. 2021. Sedimentological, geochemical, and geochronological constraints on the origin of the Neoproterozoic Luoquan Formation at the southern margin of the North China Craton. International Geology Review, 1~22.
-
Zhang Haijun, Wang Xunlian, Wang Xun, Zhou Hongrui. 2016. U-Pb zircon ages of tuff beds from the Hongzaoshan Formation of the Quanji Group in the north margin of the Qailam basin, NW China, and their gcological significances. Earth Science Frontiers, 23(6): 202~218(in Chinese with English abstract).
-
Zhang Jianxin, Li Huaikun, Meng Fancong, Xiang Zhenqun, Yu Shengyao, Li Jinping. 2011. Polyphase tectonothermal events recorded in“metamorphic basement"from the Altyn Tagh, the southeastern margin of the Tarim basin, western China: Constraint from U-Pb zircon geochronology. Acta Petrologica Sinica, 27(1): 23~46(in Chinese with English abstract).
-
Zhang Sichun, Tang Shangwen. 1982. The characters of tillites of Shangzhangwan Formation, Luonan County at northern slope of Qinlin range. Scientia Geologica Sinica, (4): 371~378(in Chinese with English abstract).
-
Zhang Wenzhi, Li Huaikun, Wang Guanfu, Zhang Jinqi. 2001. Palaeomagnetic study of Neoproterozoic glaciation, eastern China and implication of geology. Progress in Precambrian Research, 22(1): 35~57.
-
Zhang Wenlong, Chen Gang, Zhang Huiruo, Gao Lei, Yang Pu, Shi Xiaolin, Shen Jinjiang. 2016. Detrital zircon U-Pb geochronology from Zhaoling Formation in Tangwangling. Acta Sedimentologica Sinica, 34 (3): 497~505(in Chinese with English abstract).
-
Zhang Zhiliang, Hua Hong, Zhang Zhifei. 2015. Problematic Ediacaranfossil Shanxilithes from the Jiucheng Member of Wangjiawan section in Jinning, Yunnan Province. Acta Palaeontologica Sinica, 54(1): 12~28(in Chinese with English abstract).
-
Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262~286.
-
Zheng Wenwu, Dou Shouchu. 1980. On Features of the glacial deposition and their contrast question of Fentai and Luoquan Formation in the north of Anhui. Journal of Hefei Polytechnic University, 2: 48~74.
-
Zhou Xiwen, Geng Yuansheng. 2009. Metamorphic age of the khondalite series in the Helanshan region: Constraints on the evolution of the western block in the North China Craton. Acta Petrologica Sinica, 25(8): 1843~1852(in Chinese with English abstract).
-
Zhu Maoran, Wang Haifeng. 2011. Neoproterozoic glaciogenic diamictites of the Tarim Block, NW China. Geological Society, London, Memoirs, 36(1): 367~378.
-
Zhu Maoran, Yang Aaihua, Yuan Jingliang, Li Guoxiang, Zhang Junming, Zhao Fangchen, Ahn Sooyue, Miao Lanyun. 2019. Cambrian integrative stratigraphy and time scale of China. Science China Earth Science, 62: 25~60.
-
蔡雄飞, 杨捷, 何文键, 曾佐勋. 2013. 贺兰山震旦系研究的新进展——对正目观组、兔儿坑组的再认识. 地层学杂志, 37 (3): 377~386.
-
高振家. 1983. 关于震旦纪冰成岩的几个问题讨论. 新疆地质, 1(1): 80~89.
-
葛肖虹. 刘俊来. 2000. 被肢解的西域克拉通, 岩石学报, 16 (1)59~66.
-
洪庆玉. 1984. 我国几个地区震旦纪重力流沉积物的初步研究. 西南石油学院学报, 4: 1~17.
-
黄博涛, 王国强, 王居里, 李向民, 卜涛. 2023. 北山造山带破城山地区冰碛岩沉积时代、物源及构造意义: 来自碎屑锆石U-Pb 年代学及Lu-Hf 同位素的约束. 地质学报, 97(10): 3213~3224.
-
李辰卿, 董琳, 沈冰. 2023. 北京下苇甸地区新元古代景儿峪组-寒武纪府君山组界线硅质角砾形成模式.北京大学学报(自然科学版). https: //doi. org/10. 13209/j. 0479-8023. 2023. 017.
-
李威, 李道元, 郑树东. 1990. 宜阳地区罗圈组水下岸坡冲积扇的沉积特征. 西安地质学院学报, 12(3), 32~38.
-
李振生, 赵卓娅, 李建勋, 李全忠, 张交东, 牛浩. 2018. 华北克拉通东南缘寒武系底部黑色碎屑岩系的物源分析及其对晚前寒武纪地质演化的约束. 地质学报, 92 (9): 1803~1828.
-
陆松年, 于海峰, 金巍, 李怀坤, 郑健康. 2002. 塔里木古大陆东缘的微大陆块体群. 岩石矿物学杂志, 21(4): 317~326.
-
马晓晨, 王家生, 陈粲, 王舟. 2018. 华北房山景儿峪组顶部古风化壳常量元素地球化学特征及其古气候意义. 地球科学, 43(11): 3853~3872.
-
牟用吉. 1983. 罗圈组的冰碛成因和时代. 河南地质, (2): 35~46.
-
史书婷, 王金艺, 郭芪恒, 金振奎, 朱小二, 王昕尧, 李阳, 李硕, 任奕霖, 王凌. 2019. 天津蓟县晚元古代冰碛岩的发现. 沉积学报, 37(6): 1181~1192.
-
汪明洲, 杨铁汾. 1996. 宜阳罗圈组的发育特征和成因探讨. 西安工程学院学报, 18(2): 13~17.
-
吴瑞棠, 关保德. 1988. 论罗圈组的冰成特征及重力流改造. 地质学报, 62(1): 78~89.
-
吴瑞棠, 杨玉卿. 1991. 冰川事件的识别标志. 地球科学-中国地质大学学报, 16(4): 353~359.
-
杨玉卿, 吴瑞棠. 1992. 豫西罗圈组下伏古冰蚀面及冰蚀构造. 河南地质, 10 (4): 282~285.
-
张海军, 王训练, 王勋, 周洪瑞. 2016. 柴达木盆地北缘全吉群红藻山组凝灰岩锆石 U-Pb 年龄及其地质意义. 地学前缘, 23(6): 202~218.
-
张建新, 李怀坤, 孟繁聪, 相振群, 于胜尧, 李金平. 2011. 塔里木盆地东南缘( 阿尔金山)“变质基底”记录的多期构造热事件: 锆石U-Pb 年代学的制约. 岩石学报, 27(1): 23~46.
-
张思纯, 唐尚文. 1982. 秦岭北坡洛南地区上张湾组冰碛层岩石特征. 地质科学, (4): 371~378.
-
张文龙, 陈刚, 章辉若, 高磊, 杨甫, 师晓林, 申锦江. 2016. 唐王陵昭陵组砾岩碎屑锆石U-Pb年代学分析. 沉积学报, 34 (3): 497~505.
-
张志亮, 华洪, 张志飞. 2015. 埃迪卡拉纪疑难化石 Shaanxilithes 在云南王家湾剖面的发现及地层意义. 古生物学报, 54(1): 12~28.
-
郑文武, 斗守初, 1980. 论皖北凤台组和罗圈组的冰川沉积特征及其对比问题. 合肥工业大学学报, 2: 48~74.
-
周喜文, 耿元生. 2009. 贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约. 岩石学报, 25(8): 1843~1852.
-
摘要
中国北方从东到西绵延3000 km范围上的华北克拉通、塔里木克拉通及其中间微地块上都保存有埃迪卡拉纪冰川沉积记录,但有关它的年代学、冰川规模、古地理重建和大地构造背景等存有争论。本文基于中国北方埃迪卡拉纪冰碛岩空间分布、地层与沉积层序,沉积环境与沉积相等,结合以往国内外文献,系统分析了埃迪卡拉纪冰川上述有关问题。研究揭示,埃迪卡拉纪时期,国内外应存在年轻于(Gaskiers)580 Ma的冰期;中国北方埃迪卡拉纪冰川时限约562.5~551 Ma,堆积了冰下、冰缘和冰前沉积相(物),构成垂向上(由下至上)从冰下至冰前与海相冰碛物沉积层序,符合大陆冰川(盖)沉积响应样式;此外,国内外埃迪卡拉纪冰碛岩及冰川剥蚀地貌均十分发育;部分冰碛岩之上还可见盖帽白云岩,并呈现与成冰纪盖帽白云岩类似的沉积构造,但彼此碳同位素剖面却不尽相同;本研究推测,埃迪卡拉纪时期,原特提斯洋及周缘大陆(群)可能普遍存在至少是洲际性大陆冰盖,甚至是全球性的冰期。研究认为,埃迪卡拉纪时期的亚洲陆块群应与冈瓦纳大陆缺乏构造亲缘性的若干重要证据。本文研究结果在埃迪卡拉纪大陆及其古地理重建和大地构造背景恢复方面具有重要科学意义。
Abstract
The Ediacaran glacial deposits are developed in the North China Craton, Tarim Craton and the microblocks among them, where they can extend for 3000 km from east to west. However, the chronology, scale of glaciation, paleogeographic reconstruction and tectonic setting are still controversial. Based on the spatial distribution, stratigraphy and sedimentary sequence, sedimentary environment and sedimentary facies of the Ediacaran diamictites in northern China, combined with previous literatures at home and abroad, the above issues related to Ediacaran glaciations are systematically analyzed. This paper revealed that during the Ediacaran, there should have been a glaciation of younger than 580 Ma (Gaskiers)all over the world. The age constraints of the Ediacaran glaciations in northern China were placed between 562.5 Ma and 551 Ma, and the subglacial, periglacial, and proglacial sedimentary facies can be identified; these form the diamictite from subglacial to proglacial, followed by normal marine sedimentary sequences vertically (in ascending order), in line with the sedimentary response pattern of continental glacier (ice sheet). The Ediacaran diamictites and glacial erosional forms are widespread distributed globally, and the cap dolostones can be developed above the diamictites, exhibiting sedimentary structures similar to the Cryogenian cap dolostones, but the carbon isotope characteristics of them are not the same. This paper speculates that the Proto-Tethys Ocean and its surrounding continents may have developed continental ice sheets during the Ediacaran, but there was no affinity between the Asian blocks and the Gondwana supercontinent. The results provide geological evidences for the global paleogeographic reconstruction and tectonic setting restore of the Ediacaran period.
Keywords
Ediacaran ; northern China ; glacial diamictites ; sedimentary facies ; continental ice-sheet ; global ; age