en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

黄施棋,女,1998年生。硕士研究生,主要从事同位素地球化学和矿床学研究。E-mail:1606895149@qq.com。

通讯作者:

田世洪,男,1973年生。研究员,博士生导师,主要从事同位素地球化学和矿床学研究。E-mail:s.h.tian@163.com。

参考文献
Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 7(5): 355~360.
参考文献
Andersen M B, Vance D, Archer C, Anderson R F, Ellwood M J, Allen C S. 2011. The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater. Earth and Planetary Science Letters, 301(1-2): 137~145.
参考文献
Araújo D F, Boaventura G R, Viers J, Mulholland D S, Weiss D, Araújo D, Lima B, Ruiz I, Machado W, Babinski M, Dantas E. 2016. Ion exchange chromatography and mass bias correction for accurate and precise Zn isotope ratio measurements in environmental reference materials by MC-ICP-MS. Journal of the Brazilian Chemical Society, 28(2): 225~235.
参考文献
Archer C, Andersen M B, Cloquet C, Conway T M, Dong Shuofei, Ellwood M, Moore R, Nelson J, Rehkämper M, Rouxel O, Samanta M, Shin K C, Sohrin Y, Takano S, Wasylenki L. 2017. Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. Journal of Analytical Atomic Spectrometry, 32(2): 415~419.
参考文献
Aubaud C, Pineau F, Hekinian R, Javoy M. 2005. Degassing of CO2 and H2O in submarine lavas from the society hotspot. Earth and Planetary Science Letters, 235(3-4): 511~527.
参考文献
Balistrieri L S, Borrok D M, Wanty R B, Ridley W I. 2008. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta, 72(2): 311~328.
参考文献
Bao Zhian, Nie Xiaojuan, Chen Kaiyun, Zong Chunlei, Lv Nan, Yuan Honglin. 2022. Sphalerite and zinc metal nugget reference materials for in situ zinc isotope ratio determination using fsLA-MC-ICP-MS. Geostandards and Geoanalytical Research, 46(3): 433~449.
参考文献
Baumgartner R J, Kunzmann M, Spinks S, Bian Xiaopeng, John S G, Blaikie T N, Hu Siyu. 2021. Zinc isotope composition of the Proterozoic clastic-dominated McArthur River Zn-Pb-Ag deposit, northern Australia. Ore Geology Reviews, 139: 104545.
参考文献
Ben Othman D, Luck J M, Bodinier J L, Arndt N T, Albarède F. 2006. Cu-Zn isotopic variations in the Earth's mantle. Geochimica et Cosmochimica Acta, 70(18): A46.
参考文献
Beunon H, Mattielli N, Doucet L S, Moine B, Debret B. 2020. Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling. Earth-Science Reviews, 205: 103174.
参考文献
Boyle E A, John S, Abouchami W, Adkins J F, Echegoyen-Sanz Y, Ellwood M, Flegal A R, Fornace K, Gallon C, Galer S. 2012. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnology and Oceanography: Methods, 10(9): 653~665.
参考文献
Bridgestock L J, Williams H, Rehkämper M, Larner F, Giscard M D, Hammond S, Coles B, Andreasen R, Wood B J, Theis K J, Smith C L, Benedix G K, Schönbächler M. 2014. Unlocking the zinc isotope systematics of iron meteorites. Earth and Planetary Science Letters, 400: 153~164.
参考文献
Bryan A L, Dong Shuofei, Wilkes E B, Wasylenki L E. 2015. Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength. Geochimica et Cosmochimica Acta, 157: 182~197.
参考文献
Cai Minghai, Peng Zhenan, Hu Zhishu, Li Ye. 2020. Zn, He-Ar and Sr-Nd isotopic compositions of the Tongkeng Tin-polymetallic ore deposit in south China: Implication for ore genesis. Ore Geology Reviews, 124: 103605.
参考文献
Canup R M, Asphaug E. 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412(6848): 708~712.
参考文献
Chen Heng, Savage P S, Teng Fangzhen, Helz R T, Moynier F. 2013. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth and Planetary Science Letters, 369: 34~42.
参考文献
Chen Jiubin, Louvat P, Gaillardet J, Birck J L. 2009. Direct separation of Zn from dilute aqueous solutions for isotope composition determination using multi-collector ICP-MS. Chemical Geology, 259(3-4): 120~130.
参考文献
Chen Lu, Sun Ruoyu, Liu Yi, Xu Hai. 2021. Advances in the isotope geochemistry of copper and zinc in oceans. Advances in Earth Science, 36(6): 592~603 (in Chinese with English abstract).
参考文献
Chen Sha. 2016. Zn isotope analytical method and Zn isotopic fractionation during mantle metasomatism. Master thesis of University of Science and Technology of China (in Chinese with English abstract).
参考文献
Chen Sha, Liu Yuchen, Hu Jingya, Zhang Zhaofeng, Hou Zhenhui, Huang Fang, Yu Huimin. 2016. Zinc isotopic compositions of NIST SRM 683 and whole-rock reference materials. Geostandards and Geoanalytical Research, 40(3): 417~432.
参考文献
Chen Xi, Sageman B B, Yao Hanwei, Liu Sheng'ao, Han Kaibo, Zou Yi, Wang Chengshan. 2021. Zinc isotope evidence for paleoenvironmental changes during Cretaceous Oceanic Anoxic Event 2. Geology, 49(4): 412~416.
参考文献
Cheng Zefeng. 2015. Zinc isotopes and minor elements in Sphalerite from magmatic hydrothermal deposit in the middle-southern part of Da Hinggan Mountains, China. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Choi S H, Liu Sheng'ao. 2022. Zinc isotopic systematics of the Mt. Baekdu and Jeju Island intraplate basalts in Korea, and implications for mantle source lithologies. Lithos, 416: 106659.
参考文献
Conway T M, Rosenberg A D, Adkins J F, John S G. 2013. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Analytica Chimica Acta, 793: 44~52.
参考文献
Conway T M, John S G. 2014. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Global Biogeochemical Cycles, 28(10): 1111~1128.
参考文献
Conway T M, John S G. 2015. The cycling of iron, zinc and cadmium in the North East Pacific Ocean—Insights from stable isotopes. Geochimica et Cosmochimica Acta, 164: 262~283.
参考文献
Dasgupta R, Hirschmann M M, Smith N D. 2007. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island basalts. Journal of Petrology, 48(11): 2093~2124.
参考文献
Dauphas N. 2017. The isotopic nature of the Earth's accreting material through time. Nature, 541(7638): 521~524.
参考文献
Davis F A, Humayun M, Hirschmann M M, Cooper R S. 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochimica et Cosmochimica Acta, 104: 232~260.
参考文献
Day J M D, Moynier F. 2014. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2024): 20130259.
参考文献
Day J M D, Moynier F, Shearer C K. 2017. Late-stage magmatic outgassing from a volatile-depleted Moon. Proceedings of the National Academy of Sciences, 114(36): 9547~9551.
参考文献
Day J M D, Moynier F, Sossi P A, Wang Kun, Meshik A P, Pravdivtseva O V, Pettit D R. 2020a. Moderately volatile element behaviour at high temperature determined from nuclear detonation. Geochemical Perspectives Letters, 13: 54~60.
参考文献
Day J M D, van Kooten E M, Hofmann B A, Moynier F. 2020b. Mare basalt meteorites, magnesian-suite rocks and KREEP reveal loss of zinc during and after lunar formation. Earth and Planetary Science Letters, 531: 115998.
参考文献
Deines P. 2002. The carbon isotope geochemistry of mantle xenoliths. Earth-Science Reviews, 58(3-4): 247~278.
参考文献
Deng Jun, Wang Changming, Bagas L, Selvaraja V, Jeon H, Wu Bin, Yang Lifei. 2017. Insights into ore genesis of the Jinding Zn-Pb deposit, Yunnan Province, China: Evidence from Zn and in-situ S isotopes. Ore Geology Reviews, 90: 943~957.
参考文献
Dhaliwal J K, Day J M D, Moynier F. 2018. Volatile element loss during planetary magma ocean phases. Icarus, 300: 249~260.
参考文献
Dong Hailiang, Huang Liuqin, Zhao Linduo, Zeng Qiang, Liu Xiaolei, Sheng Yizhi, Shi Liang, Wu Geng, Jiang Hongchen, Li Fangru. 2022. A critical review of mineral-microbe interaction and coevolution: Mechanisms and applications. National Science Review, 9(10): 128.
参考文献
Dong Shuofei, Wasylenki L E. 2016. Zinc isotope fractionation during adsorption to calcite at high and low ionic strength. Chemical Geology, 447: 70~78.
参考文献
Doucet L S, Mattielli N, Ionov D A, Debouge W, Golovin A V. 2016. Zn isotopic heterogeneity in the mantle: A melting control? Earth and Planetary Science Letters, 451: 232~240.
参考文献
Doucet L S, Laurent O, Mattielli N, Debouge W. 2018. Zn isotope heterogeneity in the continental lithosphere: New evidence from Archean granitoids of the northern Kaapvaal craton, South Africa. Chemical Geology, 476: 260~271.
参考文献
Druce M, Stirling C H, Rolison J M. 2020. High-precision zinc isotopic measurement of certified reference materials relevant to the environmental, Earth, planetary and biomedical sciences. Geostandards and Geoanalytical Research, 44(4): 711~732.
参考文献
Duan Jilin, Tang Juxing, Lin Bin. 2016. Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, South Tibet: Implications for the source of the ore-forming metals. Ore Geology Reviews, 78: 58~68.
参考文献
Duan Xiaoxia, Zeng Qingdong, Wang Yongbin, Zhou LingLi, Chen Bin. 2017. Genesis of the Pb-Zn deposits of the Qingchengzi ore field, eastern Liaoning, China: Constraints from carbonate LA-ICPMS trace element analysis and C-O-S-Pb isotopes. Ore Geology Reviews, 89: 752~771.
参考文献
Ducher M, Blanchard M, Balan E. 2016. Equilibrium zinc isotope fractionation in Zn-bearing minerals from first-principles calculations. Chemical Geology, 443: 87~96.
参考文献
Fan Tingbin, Li Hao, Xu Xingwang, Dong Lianhui. 2018. Research status and progress of nonsulfide zinc-lead deposit. Northwestern Geology, 51(2): 147~159 (in Chinese with English abstract).
参考文献
Fang Shubin, Huang Jian, Zhang Xingzhao, Ionov D A, Zhao Zifu, Huang Fang. 2022. Zinc isotope fractionation in mantle rocks and minerals, and a revised δ66Zn value for the Bulk Silicate Earth. Geochimica et Cosmochimica Acta, 338: 79~92.
参考文献
Farsang S, Louvel M, Zhao Chaoshuai, Mezouar M, Rosa A D, Widmer R N, Feng Xiaolei, Liu Jin, Redfern S A T. 2021. Deep carbon cycle constrained by carbonate solubility. Nature Communications, 12(1): 1~9.
参考文献
France-Lanord C, Derry L A. 1997. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390(6655): 65~67.
参考文献
Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geoscience, 4(10): 703~706.
参考文献
Fujii T, Moynier F, Blichert-Toft J, Albarède F. 2014. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochimica et Cosmochimica Acta, 140: 553~576.
参考文献
Gagnevin D, Boyce A J, Barrie C D, Menuge J F, Blakeman R J. 2012. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochimica et Cosmochimica Acta, 88: 183~198.
参考文献
Gao Zhaofu, Zhu Xiangkun, Sun Jian, Luo Zhaohua, Bao Chuang, Tang Chao, Ma Jianxiong. 2017. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China. Mineralium Deposita, 53(1): 55~65.
参考文献
Gélabert A, Pokrovsky O S, Viers J, Schott J, Boudou A, Feurtet-Mazel A. 2006. Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation. Geochimica et Cosmochimica Acta, 70(4): 839~857.
参考文献
Gerbode C, Dasgupta R. 2010. Carbonate-fluxed melting of MORB-like pyroxenite at 2. 9 GPa and genesis of HIMU ocean island basalts. Journal of Petrology, 51(10): 2067~2088.
参考文献
Ghidan O Y, Loss R D. 2012. Zinc isotope fractionation analyses by thermal ionization mass spectrometry and a double spiking technique. International Journal of Mass Spectrometry, 309: 79~87.
参考文献
Gou Wenxian, Li Wei, Ji Junfeng, Li Weiqiang. 2018. Zinc isotope fractionation during sorption onto Al Oxides: Atomic level understanding from EXAFS. Environmental Science & Technology, 52(16): 9087~9096.
参考文献
Green T, Green D, Ringwood A E. 1967. The origin of high-alumna basalts and their relationship to quartz tholeiites and alkali basalts. Earth and Planetary Science Letters, 2(1): 41~51.
参考文献
Guinoiseau D, Gelabert A, Moureau J, Louvat P, Benedetti M F. 2016. Zn isotope fractionation during sorption onto kaolinite. Environmental Science & Technology, 50(4): 1844~1852.
参考文献
Guinoiseau D, Bouchez J, Gélabert A, Louvat P, Moreira-Turcq P, Filizola N, Benedetti M F. 2018. Fate of particulate copper and zinc isotopes at the Solimões-Negro river confluence, Amazon basin, Brazil. Chemical Geology, 489: 1~15.
参考文献
Guo Haihao, Xia Ying, Wu Fei, Huang Fang. 2021. Zinc isotopic fractionation between aqueous fluids and silicate magmas: An experimental study. Geochimica et Cosmochimica Acta, 311: 226~237.
参考文献
Harris A W, Kaula W M. 1975. A co-accretional model of satellite formation. Icarus, 24(4): 516~524.
参考文献
Hazen R, Schiffries C. 2013. Why deep carbon? Reviews in Mineralogy and Geochemistry, 75(1): 1~6.
参考文献
He Chengzheng, Xiao Chaoyi, Wen Hanjie, Zhou Ting, Zhu Chuanwei, Fan Haifeng. 2016. Zb-S isotopic compositions of the Tianbaoshan carbonatehosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components. Acta Petrologica Sinica, 32(11): 3394~3406 (in Chinese with English abstract).
参考文献
He Detao, Liu, Yongsheng, Moynier F, Foley S, Chen Chunfei. 2020. Platinum group element mobilization in the mantle enhanced by recycled sedimentary carbonate. Earth and Planetary Science Letters, 541: 116262.
参考文献
He Lianhua, Liu Jihua, Zhang Ying, Gao Jingjing, Zhu Aimei, Wang Hongmin. 2022. Determination of Cu and Zn isotopes in sediments by multi-collector inductively coupled plasma mass spectrometer. Haiyang Xuebao, 44(3): 70~80 (in Chinese with English abstract).
参考文献
Hendry K R, Andersen M B. 2013. The zinc isotopic composition of siliceous marine sponges: Investigating nature's sediment traps. Chemical Geology, 354: 33~41.
参考文献
Herzog G F, Moynier F, Albarède F, Berezhnoy A A. 2009. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. Geochimica et Cosmochimica Acta, 73(19): 5884~5904.
参考文献
Hoffmann T D, Reeksting B J, Gebhard S. 2021. Bacteria-induced mineral precipitation: A mechanistic review. Microbiology, 167(4): 1~13.
参考文献
Hu Yan, Teng Fangzhen. 2019. Optimization of analytical conditions for precise and accurate isotope analyses of Li, Mg, Fe, Cu, and Zn by MC-ICPMS. Journal of Analytical Atomic Spectrometry, 34(2): 338~346.
参考文献
Hu Yan, Teng Fangzhen, Ionov D A. 2020. Magnesium isotopic composition of metasomatized upper sub-arc mantle and its implications to Mg cycling in subduction zones. Geochimica et Cosmochimica Acta, 278: 219~234.
参考文献
Huang Jian, Liu Sheng'ao, Gao Yongjun, Xiao Yilin, Chen Sha. 2016. Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific. Journal of Geophysical Research: Solid Earth, 121(10): 7086~7100.
参考文献
Huang Jian, Chen Sha, Zhang Xingchao, Huang Fang. 2018a. Effects of melt percolation on Zn isotope heterogeneity in the mantle: Constraints from peridotite massifs in Ivrea-Verbano Zone, Italian Alps. Journal of Geophysical Research: Solid Earth, 123(4): 2706~2722.
参考文献
Huang Jian, Zhang Xingchao, Chen Sha, Tang Limen, Wörner G, Yu Huimin, Huang Fang. 2018b. Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting. Geochimica et Cosmochimica Acta, 238: 85~101.
参考文献
Huang Tianyi, Teng Fangzhen, Rudnick R L, Chen Xinyang, Hu Yan, Liu Yongsheng, Wu Fuyuan. 2019. Heterogeneous potassium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 278: 122~136.
参考文献
Huang Yongjian, Wang Chengshan, Gu Jian. 2008. Cretaceous oceanic anoxic events: Research progress and forthcoming prospects. Acta Geologica Sinica, 82(1): 21~30 (in Chinese with English abstract).
参考文献
Inglis E C, Debret B, Burton K W, Millet M A, Pons M L, Dale C W, Bouilhol P, Cooper M, Nowell G M, McCoy-West A J, Williams H M. 2017. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites. Geochemistry, Geophysics, Geosystems, 18(7): 2562~2579.
参考文献
Jacobson S A, Morbidelli A, Raymond S N, O'Brien D P, Walsh K J, Rubie D C. 2014. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature, 508(7494): 84~87.
参考文献
Javoy M, Pineau F, Allegre C J. 1982. Carbon geodynamic cycle. Nature, 300(5888): 171~173. Jiang Yun, Chen Heng, Fegley B, Lodders K, Hsu W, Jacobsen S B, Wang Kun. 2019. Implications of K, Cu and Zn isotopes for the formation of tektites. Geochimica et Cosmochimica Acta, 259: 170~187.
参考文献
Jin Hualong, Wan Shiming. 2019. The mechanism of Cenozoic cooling: A review of research progress. Marine Geology & Quaternary Geology, 39(5): 71~86 (in Chinese with English abstract).
参考文献
Jin Qizhen, Huang Jian, Liu Shaochen, Huang Fang. 2020. Magnesium and zinc isotope evidence for recycled sediments and oceanic crust in the mantle sources of continental basalts from eastern China. Lithos, 370: 105627.
参考文献
John S G, Geis R W, Saito M A, Boyle E A. 2007. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica. Limnology and Oceanography, 52(6): 2710~2714.
参考文献
John S G, Rouxel O J, Craddock P R, Engwall A M, Boyle E A. 2008. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth and Planetary Science Letters, 269(1-2): 17~28.
参考文献
John S G, Conway T M. 2014. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters, 394: 159~167.
参考文献
John S G, Kunzmann M, Townsend E J, Rosenberg A D. 2017. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone. Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 202~208.
参考文献
John S G, Helgoe J, Townsend E. 2018. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific. Marine Chemistry, 201: 256~262.
参考文献
Juillot F, Maréchal C, Ponthieu M, Cacaly S, Morin G, Benedetti M, Hazemann J L, Proux O, Guyot F. 2008. Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite. Geochimica et Cosmochimica Acta, 72(19): 4886~4900.
参考文献
Kato C, Moynier F, Valdes M C, Dhaliwal J K, Day J M D. 2015. Extensive volatile loss during formation and differentiation of the Moon. Nature Communications, 6(1): 1~4.
参考文献
Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H, Okuno M, Kobayashi T. 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proceedings of the National Academy of Sciences, 110(24): 9663~9668.
参考文献
Kelemen P B, Manning C E. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences, 112(30): E3997~E4006.
参考文献
Kelley K, Wilkinson J, Chapman J, Crowther H, Weiss D. 2009. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska. Economic Geology, 104(6): 767~773.
参考文献
Köbberich M, Vance D. 2017. Kinetic control on Zn isotope signatures recorded in marine diatoms. Geochimica et Cosmochimica Acta, 210: 97~113.
参考文献
Köbberich M, Vance D. 2019. Zn isotope fractionation during uptake into marine phytoplankton: Implications for oceanic zinc isotopes. Chemical Geology, 523: 154~161.
参考文献
Kunzmann M, Halverson G P, Sossi P A, Raub T D, Payne J L, Kirby J. 2013. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology, 41(1): 27~30.
参考文献
Le Roux V, Dasgupta R, Lee C T A. 2011. Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 307(3-4): 395~408.
参考文献
Lehmann B, Pašava J, Šebek O, Andronikov A, Frei R, Xu Lingang, Mao Jingwen. 2022. Early Cambrian highly metalliferous black shale in South China: Cu and Zn isotopes and a short review of other non-traditional stable isotopes. Mineralium Deposita, 57: 1167~1187.
参考文献
Lemaitre N, de Souza G F, Archer C, Wang Ruomei, Planquette H, Sarthou G, Vance D. 2020. Pervasive sources of isotopically light zinc in the North Atlantic Ocean. Earth and Planetary Science Letters, 539: 116216.
参考文献
Li Jilei, Klemd R, Gao Jun, Meyer M. 2014. Compositional zoning in dolomite from lawsonite-bearing eclogite (SW Tianshan, China): Evidence for prograde metamorphism during subduction of oceanic crust. American Mineralogist, 99(1): 206~217.
参考文献
Li Jin, Tang Suohan, Zhu Xiangkun, Li Zhihong, Li Shizhen, Yan Bin, Wang Yue, Sun Jian, Shi Yao, Dong Aiguo, Belshaw N S, Zhang Xingchao, Liu Sheng'ao, Liu Jihua, Wang Deli, Jiang Shaoyong, Hou Kejun, Cohen A S. 2018. Basaltic and solution reference materials for iron, copper and zinc isotope measurements. Geostandards and Geoanalytical Research, 43(1): 163~175.
参考文献
Li Jin, Tang Suohan, Ma Jianxiong, Zhu Xiangkun. 2021. Principles and treatment methods for metal isotopes analysis. Rock and Mineral Analysis, 40(5): 627~636 (in Chinese with English abstract).
参考文献
Li Menglun, Liu Sheng'ao, Xue Chunji, Li Dandan. 2019. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria. Geochimica et Cosmochimica Acta, 265: 1~18.
参考文献
Li Zhenli, Ye Lin, Hu Yusi, Huang Zhilong, Wei Chen, Wu Tao. 2020. Origin of the Fule Pb-Zn deposit, Yunnan Province, SW China: Insight from in situ S isotope analysis by NanoSIMS. Geological Magazine, 157(3): 393~404.
参考文献
Liang Lili, Liu Congqiang, Zhu Xiangkun, Ngwenya B T, Wang Zhongliang, Song Liuting, Li Jin. 2019. Zinc isotope characteristics in the biogeochemical cycle as revealed by analysis of suspended particulate matter (SPM) in Aha Lake and Hongfeng Lake. Journal of Earth Science, 31(1): 126~140.
参考文献
Liao Renqiang, Zhu Hongli, Deng Jianghong, Zhang Lipeng, Li He, Li Congying, Liu He, Sun Weidong. 2020. Zinc isotopic systematics of the South China Sea basalts and implications for its behavior during plate subduction. Chemical Geology, 541: 119582.
参考文献
Liao Wenhsuan, Takano S, Yang Shunchung, Huang Kuofang, Sohrin Y, Ho Tungyuan. 2020. Zn isotope composition in the water column of the Northwestern Pacific Ocean: The importance of external sources. Global Biogeochemical Cycles, 34(1): e2019GB006379.
参考文献
Little S H, Vance D, Walker-Brown C, Landing W M. 2014. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta, 125: 673~693.
参考文献
Little S H, Wilson D J, Rehkämper M, Adkins J F, Robinson L F, van de Flierdt T. 2021. Cold-water corals as archives of seawater Zn and Cu isotopes. Chemical Geology, 578: 120304.
参考文献
Liu Chenxiao. 2017. Zn isotope study on the End-Guadalupian mass extinction in the Permian. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Liu Sheng'ao, Wang Zezhou, Li Shuguang, Huang Jina, Yang Wei. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth and Planetary Science Letters, 444: 169~178.
参考文献
Liu Sheng'ao, Wu Huaichun, Shen Shuzhong, Jiang Ganqing, Zhang Shihong, Lv Yiwen, Zhang Hua, Li Shuguang. 2017. Zinc isotope evidence for intensive magmatism immediately before the End-Permian mass extinction. Geology, 45(4): 343~346.
参考文献
Liu Sheng'ao, Li Shuguang. 2019a. Tracing the deep carbon cycle using metal stable isotopes: Opportunities and challenges. Engineering, 5(3): 448~457.
参考文献
Liu Sheng'ao, Liu Pingping, Lv Yiwen, Wang Zezhou, Dai Jingen. 2019b. Cu and Zn isotope fractionation during oceanic alteration: Implications for Oceanic Cu and Zn cycles. Geochimica et Cosmochimica Acta, 257: 191~205.
参考文献
Liu Sheng'ao, Wang Zezhou, Yang Chun, Li Shuguang, Ke Shan. 2020. Mg and Zn isotope evidence for two types of mantle metasomatism and deep recycling of magnesium carbonates. Journal of Geophysical Research: Solid Earth, 125(11): e2020JB020684.
参考文献
Liu Sheng'ao, Qu Yuanru, Wang Zezhou, Li Menglun, Yang Chun, Li Shuguang. 2022. The fate of subducting carbon tracked by Mg and Zn isotopes: A review and new perspectives. Earth-Science Reviews, 228: 104010.
参考文献
Liu Xu. 2017. Development and geological application of MC-ICPMS for analysis and rapid separation of zinc isotopes under pressure. Master thesis of Northwest University (in Chinese with English abstract).
参考文献
Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591(2): 1220~1247.
参考文献
Luck J M, Othman D B, Albarède F. 2005. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et Cosmochimica Acta, 69(22): 5351~5363.
参考文献
Lustrino M, Melluso L, Morra V. 2002. The transition from alkaline to tholeiitic magmas: A case study from the Orosei-orgali Pliocene volcanic district (NE Sardinia, Italy). Lithos, 63: 83~113.
参考文献
Lv Yiwen, Liu Sheng'ao, Zhu Jianming, Li Shuguang. 2018. Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: Diagenesis assessment and implications. Geochimica et Cosmochimica Acta, 239: 330~345.
参考文献
Lv Yiwen, Liu Sheng'ao. 2022. Cu and Zn isotopic evidence for the magnitude of organic burial in the Mesoproterozoic ocean. Journal of Earth Science, 33(1): 92~99.
参考文献
Mahan B, Moynier F, Beck P, Pringle E A, Siebert J. 2018. A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents. Geochimica et Cosmochimica Acta, 220: 19~35.
参考文献
Malusà M, Frezzotti M L, Ferrando S, Brandmayr E, Romanelli F, Panza G. 2018. Active carbon sequestration in the Alpine mantle wedge and implications for long-Term climate trends. Scientific Reports, 8(1): 1~8.
参考文献
Maréchal C N, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156(1-4): 251~273.
参考文献
Maréchal C N, Nicolas E, Douchet C, Albarède F. 2000. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochemistry, Geophysics, Geosystems, 1(5): 1015.
参考文献
Maréchal C N, Albarède F. 2002. Ion-exchange fractionation of copper and zinc isotopes. Geochimica et Cosmochimica Acta, 66(9): 1499~1509.
参考文献
Marković T, Manzoor S, Humphreys-Williams E, Kirk G J D, Vilar R, Weiss D J. 2017. Experimental determination of zinc isotope fractionation in complexes with the phytosiderophore 2'-deoxymugeneic acid (DMA) and its structural analogues, and implications for plant uptake mechanisms. Environmental Science & Technology, 51(1): 98~107.
参考文献
Mason T F D, Weiss D J, Chapman J B, Wilkinson J, Tessalina S G, Spiro B, Horstwood M S A, Spratt J, Coles B J. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221(3-4): 170~187.
参考文献
Matt P, Powell W, Mathur R, deLorraine W F. 2020. Zn-isotopic evidence for fluid-assisted ore remobilization at the Balmat Zinc Mine, NY. Ore Geology Reviews, 116: 103227.
参考文献
Mavromatis V, González A G, Dietzel M, Schott J. 2019. Zinc isotope fractionation during the inorganic precipitation of calcite—Towards a new pH proxy. Geochimica et Cosmochimica Acta, 244: 99~112.
参考文献
McCoy-West A J, Fitton J G, Pons M L, Inglis E C, Williams H M. 2018. The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites. Geochimica et Cosmochimica Acta, 238: 542~562.
参考文献
McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3): 223~253.
参考文献
Mohamed F, Wieser M. 2016. Determiningthe zinc effects on phytoplankton communities' growth in the Open Oceans. American Physical Society, 61.
参考文献
Moore R E, Larner F, Coles B J, Rehkamper M. 2017. High precision zinc stable isotope measurement of certified biological reference materials using the double spike technique and multiple collector-ICP-MS. Analytical and Bioanalytical Chemistry, 409(11): 2941~2950.
参考文献
Morel F M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300 (5621): 944~947.
参考文献
Moynier F, Albarède F, Herzog G F. 2006. Isotopic composition of zinc, copper, and iron in lunar samples. Geochimica et Cosmochimica Acta, 70(24): 6103~6117.
参考文献
Moynier F, Beck P, Jourdan F, Yin Qingzhu, Reimold U, Koeberl C. 2009. Isotopic fractionation of zinc in tektites. Earth and Planetary Science Letters, 277(3-4): 482~489.
参考文献
Moynier F, Vance D, Fujii T, Savage P. 2017. The isotope geochemistry of zinc and copper. Reviews in Mineralogy and Geochemistry, 82(1): 543~600.
参考文献
Müsing K, Clarkson M O, Vance D. 2022. The meaning of carbonate Zn isotope records: Constraints from a detailed geochemical and isotope study of bulk deep-sea carbonates. Geochimica et Cosmochimica Acta, 324: 26~43.
参考文献
Nan Xiaoyun, Yu Huimin, Rudnick R L, Gaschnig R M, Xu Juan, Li Wangye, Zhang Qun, Jin Zhangdong, Li Xianhua, Huang Fang. 2018. Barium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 233: 33~49.
参考文献
Okuneva T G, Karpova S V, Streletskaya M V, Soloshenko N G, Kiseleva D V. 2022. The method for Cu and Zn isotope ratio determination by MC ICP-MS using the AG MP-1 resin. Geodynamics & Tectonophysics, 13(S2): 18.
参考文献
Pan D, Spanu L, Harrison B, Sverjensky D A, Galli G. 2013. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proceedings of the National Academy of Sciences, 110(17): 6646~6650.
参考文献
Paniello R C, Day J M D, Moynier F. 2012. Zinc isotopic evidence for the origin of the Moon. Nature, 490(7420): 376~379.
参考文献
Pašava J, Tornos F, Chrastný V. 2014. Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain. Mineralium Deposita, 49(7): 797~807.
参考文献
Pichat S, Douchet C, Albarède F. 2003. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth and Planetary Science Letters, 210(1-2): 167~178.
参考文献
Pilet S, Baker M B, Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320 (5878): 916~919.
参考文献
Plank T, Manning C E. 2019. Subducting carbon. Nature, 574(7778): 343~352.
参考文献
Pokrovsky O S, Viers J, Freydier R. 2005. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides. Journal of Colloid and Interface Science, 291(1): 192~200.
参考文献
Pons M L, Quitté G, Fujii T, Rosing M T, Reynard B, Moynier F, Douchet C, Albarède F. 2011. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proceedings of the National Academy of Sciences, 108(43): 17639~17643.
参考文献
Pons M L, Debret B, Bouilhol P, Delacour A, Williams H. 2016. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nature Communication, 7(1): 13794.
参考文献
Pringle E A, Moynier F, Beck P, Paniello R, Hezel D C. 2017. The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules. Earth and Planetary Science Letters, 468: 62~71.
参考文献
Qu Yuanru, Liu Sheng'ao, Wu Huaichun, Li Menglun, Tian Hengci. 2022. Tracing carbonate dissolution in subducting sediments by zinc and magnesium isotopes. Geochimica et Cosmochimica Acta, 319: 56~72.
参考文献
Racki G, Rakociński M, Marynowski L, Wignall P B. 2018. Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved? Geology, 46(6): 543~546.
参考文献
Reeder R J, Lamble G M, Northrup P A. 1999. XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite. American Mineralogist, 84(7-8): 1049~1060.
参考文献
Reichow M K, Pringle M S, Al'Mukhamedov A I, Allen M B, Andreichev V L, Buslov M M, Davies C E, Fedoseev G S, Fitton J G, Inger S. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the End-Permian environmental crisis. Earth and Planetary Science Letters, 277(1): 9~20.
参考文献
Ren Bangfang, Ling Wenli, Zhang Junbo, Zhang Yongqinga, Duan Ruichuna. 2007. Analysis methods of zinc isotope and their applications in geology. Geological Science and Technology Information, 26(6): 30~35 (in Chinese with English abstract).
参考文献
Richter F M, Watson E B, Mendybaev R A, Teng F Z, Janney P E. 2008. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 72(1): 206~220.
参考文献
Richter F M, Watson E B, Mendybaev R, Dauphas N, Georg B, Watkins J, Valley J. 2009. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73(14): 4250~4263.
参考文献
Rodovská Z, Magna T, Žák K, Kato C, Savage P S, Moynier F, Skála R, Ježek J. 2017. Implications for behavior of volatile elements during impacts-zinc and copper systematics in sediments from the Ries impact structure and central European tektites. Meteoritics & Planetary Science, 52(10): 2178~2192.
参考文献
Rosca C, König S, Pons M L, Schoenberg R. 2021. Improved protocols for Zn purification and MC-ICP-MS analyses enable determination of small-scale Zn isotope variations. Chemical Geology, 586: 120440.
参考文献
Rosman K. 1972. A survey of the isotopic and elemental abundance of zinc. Geochimica et Cosmochimica Acta, 36(7): 801~819.
参考文献
Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3): 267~267.
参考文献
Rudnick R L, Gao Shan. 2003. Composition of the continental crust. The Crust, 3: 1~64.
参考文献
Rufu R, Aharonson O, Perets H B. 2017. A multiple-impact origin for the Moon. Nature Geoscience, 10(2): 89~94.
参考文献
Samanta M, Ellwood M J, Mortimer G E. 2016. A method for determining the isotopic composition of dissolved zinc in seawater by MC-ICP-MS with a 67Zn-68Zn double spike. Microchemical Journal, 126: 530~537.
参考文献
Samanta M, Ellwood M J, Sinoir M, Hassler C S. 2017. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 192: 1~12.
参考文献
Savage P S, Georg R B, Williams H M, Halliday A N. 2013. The silicon isotope composition of the upper continental crust. Geochimica et Cosmochimica Acta, 109: 384~399.
参考文献
Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy and Geochemistry, 55(1): 65~111.
参考文献
Schilling K, Moore R E T, Sullivan K V, Capper M S, Rehkämper M, Goddard K, Ion C, Coombes R C, Vesty-Edwards L, Lamb A D, Halliday A N, Larner F. 2021. Zinc stable isotopes in urine as diagnostic for cancer of secretory organs. Metallomics, 13(5): mfab020.
参考文献
Schleicher N J, Dong S, Packman H, Little S H, Ochoa Gonzalez R, Najorka J, Sun Y, Weiss D J. 2020. A global assessment of copper, zinc, and lead isotopes in mineral dust sources and aerosols. Frontiers in Earth Science, 8: 167.
参考文献
Sieber M, Conway T M, de Souza G F, Hassler C S, Ellwood M J, Vance D. 2020. Cycling of zinc and its isotopes across multiple zones of the Southern Ocean: Insights from the Antarctic Circumnavigation Expedition. Geochimica et Cosmochimica Acta, 268: 310~324.
参考文献
Sim M S, Bosak T, Ono S. 2011. Large sulfur isotope fractionation does not require disproportionation. Science, 333(6038): 74~77.
参考文献
Sossi P A, Halverson G P, Nebel O, Eggins S M. 2015. Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination. Geostandards and Geoanalytical Research, 39(2): 129~149.
参考文献
Sossi P A, Nebel O, O'Neill H S C, Moynier F. 2018. Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chemical Geology, 477: 73~84.
参考文献
Southam G, Saunders J A. 2005. The geomicrobiology of ore deposits. Economic Geology, 100(6): 1067~1084.
参考文献
Spinks S C, Uvarova Y. 2019. Fractionation of Zn isotopes in terrestrial ferromanganese crusts and implications for tracing isotopically-heterogeneous metal sources. Chemical Geology, 529: 119314.
参考文献
Sullivan K, Moore R, Capper M, Schilling K, Goddard K, Ion L, Layton-Matthews D, Leybourne M, Coles B, Kreissig K, Antsygina O, Coombes R, Larner F, Rehkämper M. 2021. Zinc stable isotope analysis reveals Zn dyshomeostasis in benign tumours, breast cancer, and adjacent histologically normal tissue. Metallomics, 13(6): mfab027.
参考文献
Sweere T C, Dickson A J, Jenkyns H C, Porcelli D, Elrick M, van den Boorn S H J M, Henderson G M. 2018. Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous). Geology, 46(5): 463~466.
参考文献
Sweere T C, Dickson A J, Jenkyns H C, Porcelli D, Henderson G M. 2020. Zinc- and cadmium-isotope evidence for redox-driven perturbations to global micronutrient cycles during Oceanic Anoxic Event 2 (Late Cretaceous). Earth and Planetary Science Letters, 546: 116427.
参考文献
Szynkiewicz A, Borrok D M. 2016. Isotope variations of dissolved Zn in the Rio Grande watershed, USA: The role of adsorption on Zn isotope composition. Earth and Planetary Science Letters, 433: 293~302.
参考文献
Takano S, Tanimizu M, Hirata T, Shin K C, Fukami Y, Suzuki K, Sohrin Y. 2017. A simple and rapid method for isotopic analysis of nickel, copper, and zinc in seawater using chelating extraction and anion exchange. Analytica Chimica Acta, 967: 1~11.
参考文献
Tang Yetao, Cloquet C, Deng Tenghaobo, Sterckeman T, Echevarria G, Yang Wenjun, Morel J L, Qiu Rongliang. 2016. Zinc isotope fractionation in the hyperaccumulator Noccaea caerulescens and the nonaccumulating plant Thlaspi arvense at low and high Zn supply. Environmental Science & Technology, 50(15): 8020~8027.
参考文献
Taylor S R, McLennan S M, McCulloch M T. 1983. Geochemistry of loess, continental crustal composition and crustal model ages. Geochimica et Cosmochimica Acta, 47(11): 1897~1905.
参考文献
Telus M, Dauphas N, Moynier F, Tissot F L H, Teng Fangzhen, Nabelek P I, Craddock P R, Groat L A. 2012. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites. Geochimica et Cosmochimica Acta, 97: 247~265.
参考文献
Teng Fangzhen, Hu Yan, Chauvel C. 2016. Magnesium isotope geochemistry in arc volcanism. Proceedings of the National Academy of Sciences, 113(26): 7082~7087.
参考文献
Tu Yaojen, You Chenfeng, Kuo Tianyue. 2020. Source identification of Zn in Erren River, Taiwan: An application of Zn isotopes. Chemosphere, 248: 126044.
参考文献
Urey H C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed): 562~581.
参考文献
van Kooten E, Moynier F. 2019. Zinc isotope analyses of singularly small samples (<5 ng Zn): Investigating chondrule-matrix complementarity in Leoville. Geochimica et Cosmochimica Acta, 261: 248~268.
参考文献
van Kooten E M M E, Moynier F, Day J M D. 2020. Evidence for transient atmospheres during eruptive outgassing on the Moon. The Planetary Science Journal, 1(3): 67.
参考文献
Vance D, Little S H, Archer C, Cameron V, Andersen M B, Rijkenberg M J A, Lyons T W. 2016. The oceanic budgets of nickel and zinc isotopes: The importance of sulfidic environments as illustrated by the Black Sea. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2081): 20150294.
参考文献
Vance D, de Souza G F, Zhao Ye, Cullen J T, Lohan M C. 2019. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific. Earth and Planetary Science Letters, 525: 115748.
参考文献
Veeramani H, Eagling J, Jamieson-Hanes J H, Kong Lingyi, Ptacek C J, Blowes D W. 2015. Zinc isotope fractionation as an indicator of geochemical attenuation processes. Environmental Science & Technology Letters, 2(11): 314~319.
参考文献
Wang Da, Zheng Youyue, Mathur R, Wu Song. 2018. The Fe-Zn isotopic characteristics and fractionation models: Implications for the genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet. Geofluids, 2018: 2197891.
参考文献
Wang Da, Mathur Ryan, Wu Hongjie, Ren Huan, Ni Jinhai. 2020. The application of Fe-Cu-Zn isotopes in ore deposit research and prospecting exploration. Acta Petrologica Sinica, 36(6): 1684~1704 (in Chinese with English abstract).
参考文献
Wang Ruomei, Archer C, Bowie A R, Vance D. 2019. Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: The impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. Chemical Geology, 511: 452~464.
参考文献
Wang Xun, Liu Sheng'ao, Wang Zhengyong, Chen Daizhao, Zhang Liyu. 2018. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 498: 68~82.
参考文献
Wang Yue, Zhu Xiangkun. 2010. Application of Zn isotopes to study of mineral deposits: A review. Mineral Deposits, 29(5): 843~852 (in Chinese with English abstract).
参考文献
Wang Zezhou. 2019. Tracing the deep carbon cycle using Zn-Mg isotopes. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Wang Zezhou, Liu Sheng'ao, Liu Jingao, Huang Jian, Xiao Yan, Chu Zhuyin, Zhao Xinmiao, Tang Limei. 2017. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle. Geochimica et Cosmochimica Acta, 198: 151~167.
参考文献
Wang Zezhou, Liu Sheng'ao, Chen Lihui, Li Shuguang, Zeng Gang. 2018. Compositional transition in natural alkaline lavas through silica-undersaturated melt-lithosphere interaction. Geology, 46(9): 771~774.
参考文献
Wang Zezhou, Liu Sheng'ao, Liu Zhichao, Zheng Yuanchuan, Wu Fuyuan. 2020. Extreme Mg and Zn isotope fractionation recorded in the Himalayan leucogranites. Geochimica et Cosmochimica Acta, 278: 305~321.
参考文献
Wang Zezhou, Liu Sheng'ao, Rudnick R L, Teng Fangzhen, Wang Shuijiong, Haggerty S E. 2022. Zinc isotope evidence for carbonate alteration of oceanic crustal protoliths of cratonic eclogites. Earth and Planetary Science Letters, 580: 117394.
参考文献
Wang Zhaoxue, Liu Sheng'ao, Li Menglun, Li Shuguang. 2020. Advances on application of zinc isotope as a tracer for deep carbon cycles. Earth Science, 45(6): 1967~1976 (in Chinese with English abstract).
参考文献
Weber T, John S, Tagliabue A, DeVries T. 2018. Biological uptake and reversible scavenging of zinc in the global ocean. Science, 361(6397): 72~76.
参考文献
Wedepohl K. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7): 1217~1232.
参考文献
Wei Gangjian, Huang Fang, Ma Jinlong, Deng Wenfeng, Yu Huimin, Kang Jinting, Chen Xuefei. 2022. Progress of non-traditional stable isotope geochemistry of the past decade in China. Bulletin of Mineralogy, Petrology and Geochemistry, 41(1): 1~44+223 (in Chinese with English abstract).
参考文献
Wilkinson J J. 2014. Sediment-hosted zinc-lead mineralization: Processes and perspectives. Treatise on Geochemistry (Second Edition), 13: 219~249.
参考文献
Wimpenny J, Marks N, Knight K, Rolison J M, Borg L, Eppich G, Badro J, Ryerson F J, Sanborn M, Huyskens M H, Yin Qingzhu. 2019. Experimental determination of Zn isotope fractionation during evaporative loss at extreme temperatures. Geochimica et Cosmochimica Acta, 259: 391~411.
参考文献
Xiang Zuopeng, Li Bo, Wang Xinfu, Tang Guo. 2020. Characteristics of Zn isotopic composition of sphalerite in different lead-zinc deposits. Journal of Kunming University of Science and Technology (Natural Science), 45(1): 32~41 (in Chinese with English abstract).
参考文献
Xing Kaichen. 2020. Palaeoclimate change across the Triassic-Jurassic boundary in the southern Junggar basin: Constraints from the Cu-Zn-Mg. Master thesis of Jilin University (in Chinese with English abstract).
参考文献
Xu Chong, Zhong Hong, Hu Ruizhong, Wen Hanjie, Zhu Weiguang, Bai Zhongjie, Fan Haifeng, Li Fangfang, Zhou Ting. 2019. Sources and ore-forming fluid pathways of carbonate-hosted Pb-Zn deposits in Southwest China: Implications of Pb-Zn-S-Cd isotopic compositions. Mineralium Deposita, 55(3): 491~513.
参考文献
Xu Lijuan, Liu Sheng'ao, Wang Zezhou, Liu Chunyang, Li Shuguang. 2019. Zinc isotopic compositions of migmatites and granitoids from the Dabie Orogen, central China: Implications for zinc isotopic fractionation during differentiation of the continental crust. Lithos, 324: 454~465.
参考文献
Xu Lijuan, Liu Sheng'ao, Li Shuguang. 2021. Zinc isotopic behavior of mafic rocks during continental deep subduction. Geoscience Frontiers, 12(5): 101182.
参考文献
Xu Rong, Liu Yongsheng, Wang Xiaohong, Zong Keqing, Hu Zhaochu, Chen Haihong, Zhou Lian. 2017. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen. Lithos, 274-275: 383~396.
参考文献
Yan Bin, Zhu Xiangkun, He Xuexian, Tang Suohan. 2019. Zn isotopic evolution in early Ediacaran ocean: A global signature. Precambrian Research, 320: 472~483.
参考文献
Yang Chun, Liu Sheng'ao. 2019. Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan large igneous province. Journal of Geophysical Research: Solid Earth, 124(12): 12537~12555.
参考文献
Yang Chun, Liu Sheng'ao, Zhang Long, Wang Zezhou, Liu Pingping, Li Shugang. 2021. Zinc isotope fractionation between Cr-spinel and olivine and its implications for chromite crystallization during magma differentiation. Geochimica et Cosmochimica Acta, 313: 277~294.
参考文献
Yang Jie, Barling J, Siebert C, Fietzke J, Stephens E, Halliday A N. 2017. The molybdenum isotopic compositions of I-, S- and A-type granitic suites. Geochimica et Cosmochimica Acta, 205: 168~186.
参考文献
Yang Yuhan, Zhang Xingchao, Liu Sheng'ao, Zhou Ting, Fan Haifeng, Yu Huimin, Cheng Wenhan, Huang Fang. 2018. Calibrating NIST SRM 683 as a new international reference standard for Zn isotopes. Journal of Analytical Atomic Spectrometry, 33(10): 1777~1783.
参考文献
Yao Hanwei, Chen Xi, Wagreich M, Grasby S E, Liu Sheng'ao, Yin Runsheng, Tostevin R, Lv Yiwen, Gu Xue, Liu Xuan, Wang Chengshan. 2022. Isotopic evidence for changes in the mercury and zinc cycles during Oceanic Anoxic Event 2 in the northwestern Tethys, Austria. Global and Planetary Change, 215: 103881.
参考文献
Ye Naihao, Han Wentao, Toseland A, Wang Yitao, Fan Xiao, Xu Dong, van Oosterhout C, Sea of Change Consortium, Grigoriev I V, Tagliabue A, Zhang Jian, Zhang Yan, Ma Jian, Qiu Huan, Li Youxun, Zhang Xiaowen, Mock T. 2022. The role of zinc in the adaptive evolution of polar phytoplankton. Nature Ecology & Evolution, 6(7): 965~978.
参考文献
You Can. 2020. Single-column Separation of Cu, Fe and Zn from rock matrices and their isotopic composition analysis by MC-ICP-MS. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Zeng Jie, Han Guilin. 2020. Tracing zinc sources with Zn isotope of fluvial suspended particulate matter in Zhujiang River, Southwest China. Ecological Indicators, 118: 106723.
参考文献
Zhai Degao, Williams-Jones A E, Liu Jiajun, Tombros S F, Cook N J. 2018. Mineralogical, fluid inclusion, and multiple isotope (H-O-S-Pb) constraints on the genesis of the Sandaowanzi epithermal Au-Ag-Te deposit, NE China. Economic Geology, 113(6): 1359~1382.
参考文献
Zhang Ganglan, Liu Yongsheng, Moynier F, Zhu Yangtao, Wang Zaicong, Hu Zhaochu, Zhang La, Li Ming, Chen Haihong. 2020. Zinc isotopic composition of the lower continental crust estimated from lower crustal xenoliths and granulite terrains. Geochimica et Cosmochimica Acta, 276: 92~108.
参考文献
Zhang Hongjie, Xiao Chaoyi, Wen Hanjie, Zhu Xiangkun, Ye Lin, Huang Zhilong, Zhou Jiaxi, Fan Haifeng. 2019. Homogeneous Zn isotopic compositions in the Maozu Zn-Pb ore deposit in Yunnan Province, southwestern China. Ore Geology Reviews, 109: 1~10.
参考文献
Zhang Jiaxi, Liu Yun. 2018. Zinc isotope fractionation under vaporization processes and in aqueous solutions. Acta Geochimica, 37(5): 663~675.
参考文献
Zhang Junjun, Dauphas N, Davis A M, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nature Geoscience, 5(4): 251~255.
参考文献
Zhang Ting, Sun Ruoyu, Liu Yi, Chen Lu, Zheng Wang, Liu Congqiang, Chen Jiubin. 2022. Copper and zinc isotope signatures in scleratinian corals: Implications for Cu and Zn cycling in modern and ancient ocean. Geochimica et Cosmochimica Acta, 317: 395~408.
参考文献
Zhang Wen, Hu Zhaochu, Liu Yongsheng, Feng Lanping, Jiang Haishui. 2019. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collector-inductively coupled plasma mass spectrometry. Chemical Geology, 522: 16~25.
参考文献
Zhang Xingchao, Huang Jian, Gong Yingzeng, Zhang Lili, Huang Fang. 2022. Climate influence on zinc isotope variations in a loess-paleosol sequence of the Chinese Loess Plateau. Geochimica et Cosmochimica Acta, 321: 115~132.
参考文献
Zhao Huan. 2021. Zinc isotope fractionation during oceanic crust alteration. Master thesis of Chang'an University (in Chinese with English abstract).
参考文献
Zhao Mingyu, Tarhan L G, Zhang Yiyue, Hood A, Asael D, Reid R P, Planavsky N J. 2021. Evaluation of shallow-water carbonates as a seawater zinc isotope archive. Earth and Planetary Science Letters, 553: 116599.
参考文献
Zhao Ye, Vance D, Abouchami W, De Baar H J W. 2014. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochimica et Cosmochimica Acta, 125(1): 653~672.
参考文献
Zhou Jiaxi, Huang Zhilong, Lv Zhicheng, Zhu Xiangkun, Gao Jianguo, Mirnejad H. 2014a. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, Southwest China. Ore Geology Reviews, 63: 209~225.
参考文献
Zhou Jiaxi, Huang Zhilong, Zhou Meifu, Zhu Xiangkun, Muchez P. 2014b. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China. Ore Geology Reviews, 58: 41~54.
参考文献
Zhu Chuanwei, Liao Shili, Wang Wei, Zhang Yuxu, Yang Tao, Fan Haifeng, Wen Hanjie. 2018. Variations in Zn and S isotope chemistry of sedimentary sphalerite, Wusihe Zn-Pb deposit, Sichuan Province. China. Ore Geology Reviews, 95: 639~648.
参考文献
Zhu Chuanwei, Wang Jian, Zhang Jiawei, Chen Xiaocui, Fan Haifeng, Zhang Yuxu, Yang Tao, Wen Hanjie. 2020. Isotope geochemistry of Zn, Pb and S in the Ediacaran strata hosted Zn-Pb deposits in Southwest China. Ore Geology Reviews, 117: 103274.
参考文献
Zhu Hongli, Du Long, Li Xin, Zhang Zhaofeng, Sun Weidong. 2020. Calcium isotopic fractionation during plate subduction: Constraints from back-arc basin basalts. Geochimica et Cosmochimica Acta, 270: 379~393.
参考文献
Zhu Xiangkun, O'Nions R K, Guo Y, Belshaw N S, Rickard D. 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chemical Geology, 163(1-4): 139~149.
参考文献
Zhu Xiangkun, Wang Yue, Yan Bin, Li Jin, Dong Aiguo, Li Zhihong, Sun Jian. 2013. Developments of non-traditional stable isotope geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651~688 (in Chinese with English abstract).
参考文献
Zhu Yangtao, Liu Yongsheng, Xu Rong, Moynier F, Li Ming, Chen Haihong. 2021. Deciphering the origin of a basanite-alkali basalt-tholeiite suite using Zn isotopes. Chemical Geology, 585: 120585.
参考文献
Zhu Zhiyong, Jiang Shaoyong, Yang Tao, Wei Haizhen. 2015. Improvements in Cu-Zn isotope analysis with MC-ICP-MS: A revisit of chemical purification, mass spectrometry measurement and mechanism of Cu/Zn mass bias decoupling effect. International Journal of Mass Spectrometry, 393: 34~40.
参考文献
陈璐, 孙若愚, 刘羿, 徐海. 2021. 海洋铜锌同位素地球化学研究进展. 地球科学进展, 36(6): 592~603.
参考文献
陈沙. 2016. Zn同位素分析方法及地幔交代过程中Zn同位素分馏. 中国科学技术大学硕士学位论文.
参考文献
程泽锋. 2015. 闪锌矿锌同位素和微量元素在岩浆热液矿床中的初步研究. 中国地质大学 (北京) 硕士学位论文.
参考文献
范廷宾, 李昊, 徐兴旺, 董连慧. 2018. 非硫化物型锌-铅矿床研究现状及其进展. 西北地质, 51(2): 147~159.
参考文献
何承真, 肖朝益, 温汉捷, 周汀, 朱传威, 樊海峰. 2016. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源. 岩石学报, 32(11): 3394~3406.
参考文献
何连花, 刘季花, 张颖, 高晶晶, 朱爱美, 汪虹敏. 2022. 多接收电感耦合等离子体质谱仪测定沉积物中Cu和Zn同位素. 海洋学报, 44(3): 70~80.
参考文献
黄永建, 王成善, 顾健. 2008. 白垩纪大洋缺氧事件: 研究进展与未来展望. 地质学报, 82(1): 21~30.
参考文献
靳华龙, 万世明. 2019. 新生代气候变冷机制研究进展. 海洋地质与第四纪地质, 39(5): 71~86.
参考文献
李津, 唐索寒, 马健雄, 朱祥坤. 2021. 金属同位素质谱分析中样品处理的基本原则与方法. 岩矿测试, 40(5): 627~636.
参考文献
刘晨晓. 2017. 二叠纪瓜德鲁普世末生物大灭绝的Zn同位素研究. 中国地质大学 (北京) 硕士学位论文.
参考文献
刘旭. 2017. 锌同位素MC-ICPMS分析与加压快速分离方法的研发及地质应用. 西北大学硕士学位论文.
参考文献
任邦方, 凌文黎, 张军波, 张永清, 段瑞春. 2007. Zn同位素分析方法及其地质应用. 地质科技情报, 26(6): 30~35.
参考文献
王达, Ryan M, 吴洪杰, 任欢, 倪金海. 2020. Fe-Cu-Zn同位素在矿床学和找矿勘查中的应用. 岩石学报, 36(6): 1684~1704.
参考文献
王跃, 朱祥坤. 2010. 锌同位素在矿床学中的应用: 认识与进展. 矿床地质, 29(5): 843~852.
参考文献
王泽洲. 2019. 深部碳循环的Zn-Mg同位素示踪. 中国地质大学 (北京) 博士学位论文.
参考文献
王照雪, 刘盛遨, 李孟伦, 李曙光. 2020. 深部碳循环的锌同位素示踪研究进展. 地球科学, 45(6): 1967~1976.
参考文献
韦刚健, 黄方, 马金龙, 邓文峰, 于慧敏, 康晋霆, 陈雪霏. 2022. 近十年我国非传统稳定同位素地球化学研究进展. 矿物岩石地球化学通报, 41(1): 1~44+223.
参考文献
向佐朋, 李波, 王新富, 唐果. 2020. 不同类型铅锌矿床中闪锌矿的Zn同位素组成特征. 昆明理工大学学报 (自然科学版), 45(1): 32~41.
参考文献
邢恺晨. 2020. 准噶尔盆地南缘三叠纪-侏罗纪之交的气候变化. 吉林大学硕士学位论文.
参考文献
游灿. 2020. Cu-Fe-Zn单柱分离及其同位素组成MC-ICP-MS分析方法研究. 中国地质大学 (北京) 硕士学位论文.
参考文献
赵欢. 2021. 洋壳蚀变过程中的Zn同位素分馏. 长安大学硕士学位论文.
参考文献
朱祥坤, 王跃, 闫斌, 李津, 董爱国, 李志红, 孙剑. 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651~688.
目录contents

    摘要

    作为“金属稳定同位素家族”中的重要成员之一,锌同位素自20世纪就受到了国际地学界的关注。进入21世纪后,随着多接收电感耦合等离子体质谱仪(MC-ICP-MS)测试技术的发展,锌同位素在地球及行星科学中的应用得到了极大拓展。本文比较全面地总结了锌同位素的标准物质和分析测试方法、自然界主要储库的锌同位素组成、锌同位素在不同地质过程中的行为及分馏机理,以及锌同位素在地球科学研究的新进展,包括:① 示踪再循环沉积碳酸盐和再循环洋壳以及约束玄武岩成分变化机制;② 示踪成矿物质来源、微生物成矿以及指示矿产勘查;③ 揭示月球的起源与演化过程;④ 指示初级生产力和有机质埋藏变化等生物地球化学过程以及揭示生物灭绝机制。未来,随着锌同位素微区原位分析技术的发展,锌同位素必将在地球科学(尤其是矿床学)和生物医学等领域中得到更加深入与广泛的应用。

    Abstract

    As one of the most important members of the metal stable isotope family, zinc isotopes have attracted quite a lot of attention by international scientific community since the last century. In the 21st century, with the development of multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), the applications of zinc isotope have been greatly expanded and deepened in the Earth and planetary science. Here we provide a relatively detailed overview of research on zinc isotopes, including the reference materials and analytical methods of zinc isotopes, the zinc isotope compositions of the main reservoirs in nature, the behavior and fractionation mechanisms of zinc isotopes in different geological processes, and recent advances on zinc isotopes in the four fields of Earth science: ① tracing the deep carbon cycle, recycled oceanic materials and the origin of compositional transition of alkaline basalts; ② tracing the sources of ore-forming material, microbial mineralization, and indicating mineral exploration; ③ unrevealing the origin and evolution of the moon; ④ indicating the primary productivity, biogeochemical processes, and the mechanism of the mass extinction at the end of Permian. In the future, with the development of zinc isotope microarea in situ analysis technology, zinc isotopes will be widely used in geosciences, especially in ore deposits, and biomedical sciences.

  • 锌(Zn)元素位于第四周期第二副族,和其他过渡族金属元素不同,锌在自然界主要以单一氧化态(Zn2+)存在。锌在地壳和地幔中均为微量元素,丰度分别为~72×10-6Rudnick et al.,2003)和~55×10-6McDonough et al.,1995)。锌具有极高的工业价值,在电池制造、钢铁防腐及精密制造等领域都有重要应用。此外,锌还是生命活动必须的微量元素(Maréchal et al.,2000),它对人体蛋白质(如胰岛素和生物酶)的合成、骨骼生长发育和人体免疫功能有着不可或缺的作用,被誉为“生命元素”。锌在自然界中有5种稳定同位素:64Zn、66Zn、67Zn、 68Zn和70Zn,丰度分别为49.2%、27.8%、4.0%、18.4%、0.6%(Rosman,1972)。锌同位素之间最大相对质量差超过9%,在地质过程中能产生显著的质量相关分馏,是潜在的地球化学“示踪剂”。

  • 元素的地球化学性质是其同位素应用研究的基础。锌是中等挥发性元素(半凝聚温度为726 K; Lodders,2003),在高温过程(如星云物质的蒸发和冷凝)中锌同位素往往伴随着强烈分馏(>1‰; Paniello et al.,2012)。锌离子半径(0.074 nm)与镁离子半径(0.072 nm)相近,能以类质同象的形式部分取代镁进入碳酸盐晶格中(Reeder et al.,1999),因而锌在富镁碳酸盐中含量较高,可达~450×10-6Li Jilei et al.,2014),远高于地幔锌的含量(~55×10-6; McDonough et al.,1995),使锌同位素具备示踪深部碳循环的潜力。锌具有亲硫性和亲石性,在部分熔融过程中呈中等不相容性(Chen Heng et al.,2013)。锌元素的地球化学性质决定了锌同位素在地球和行星科学领域有着重要的应用价值。近年来,锌同位素在地球科学各领域中取得了一些重要进展,包括示踪深部碳循环(Liu Sheng'ao et al.,201620202022; Wang Zezhou et al.,2018; 王泽洲,2019; Beunon et al.,2020; 王照雪等,2020; Zhu Yangtao et al.,2021)、成矿物质来源与成矿机制(何承真等,2016; Gao Zhaofu et al.,2017; Wang Da et al.,2018; Li Menglun et al.,2019; Zhang Hongjie et al.,2019; Zhu Chuanwei et al.,2020; 王达等,2020)、行星起源与演化(Paniello et al.,2012; Bridgestock et al.,2014; Day et al.,201420172020b; Kato et al.,2015; Pringle et al.,2017; Jiang Yun et al.,2019; van Kooten et al.,2020)、古环境与古生物的协同演化(Liu Sheng'ao et al.,2017; 刘晨晓,2017; Lv Yiwen et al.,20182022; Sweere et al.,20182020; Wang Xun et al.,2018; 邢恺晨,2020; Chen Xi et al.,2021; Yao Hanwei et al.,2022)。

  • 本文比较系统地总结了锌同位素的标准物质和分析方法、自然界主要储库的锌同位素组成、不同地质过程中锌同位素的分馏机理,并重点介绍了近年来锌同位素在深部碳循环、热液成矿、天体演化以及古环境与古生物协同演化等领域的最新研究进展,最后对锌同位素的研究进行了展望。

  • 1 锌同位素分析方法

  • 1.1 表示方法和标准物质

  • 与其他金属稳定同位素(如锂、钙、镁)类似,锌同位素以相对于标准物质的千分差表示(Moynier et al.,2017)。其表达式为:

  • δ66Zn%=xZn/64Zn样品 /xZn/64Zn标准 -1×1000

  • 式中,x为66、67、68或70。

  • 以往研究多采用JMC-Lyon Zn作为锌同位素测试的标准物质,但JMC-Lyon Zn已停产且几乎耗尽(Archer et al.,2017)。目前,锌同位素标准物质有5种(表1),其中IRMM 3702溶液(δ66Zn=0.27‰±0.03‰)与NIST SRM 683锌块(δ66Zn=0.12‰±0.04‰)具有理想的锌同位素组成、良好的均一性及长期可用性,被推荐为新的标准物质(Araújo et al.,2016; Chen Sha et al.,2016; Yang Yuhan et al.,2018)。

  • 1.2 分析方法

  • 1.2.1 化学分离纯化

  • 自然样品通常含有复杂的基质元素,在上机分析测试锌同位素前需通过化学分离纯化将锌与基质元素有效分离。岩石等固体样品在破碎研磨后,需根据样品性质选择适合的酸(如氢氟酸、盐酸、硝酸、王水)进行消溶,以保证样品完全溶解(Maréchal et al.,1999; 任邦方等,2007; 游灿,2020; 李津等,2021)。海水等液体样品因其锌浓度低,需采用螯合树脂(如Nobias-PA1、Toyopearl AF-Chelate650M)萃取等方法进行浓缩预处理(Samanta et al.,2016; Takano et al.,2017)。

  • 表1 不同标准物质的锌同位素比值

  • Table1 Zinc isotope ratios of different standard materials

  • 样品经预处理后,通常采用强碱性阴离子树脂交换法对锌元素进行分离纯化(Maréchal et al.,1999; Zhu Zhiyong et al.,2015; Druce et al.,2020; Rosca et al.,2021)。目前常用的树脂为AG MP-1(Takano et al.,2017; Li Jin et al.,2018; Druce et al.,2020; Okuneva et al.,2022)和AG1-X8(Sossi et al.,2015; van Kooten et al.,2019; Rosca et al.,2021)。AG MP-1树脂因多孔空间网状立体结构和较高交联度而具有较好的分离效果(游灿,2020)。Maréchal et al.(1999)使用AG MP-1树脂对锌同位素的高精度分析测试做了开拓性工作,以较浓的盐酸(7 mol/L)和过氧化氢(0.001%)的混酸介质上样,并洗掉包括铜在内的杂质元素,然后用稀盐酸(2 mol/L)和过氧化氢(0.001%)的混酸洗掉铁,最后用0.5 mol/L 硝酸洗脱并接收锌。随后众多学者对锌的分离纯化方法进行了完善与改进(Zhu Zhiyong et al.,2015; Araújo et al.,2016; Chen Sha et al.,2016; 何连花等,2022)。Sossi et al.(2015)对比了几种常用树脂的特性,发现AG1-X8较AG MP-1可能具有更好的分离效果。同时,他们也对交换柱的规格做了调整,极大地减小了用酸量和流程空白(Sossi et al.,2015)。

  • 化学纯化后的待测溶液通常会残留少量其他金属元素,这些残留金属元素的含量过高则会对锌同位素的准确测试产生严重影响(Chen Sha et al.,2016; Druce et al.,2020; Rosca et al.,2021)。此外,与其他稳定同位素类似,在离子交换纯化过程中,锌同位素也会发生分馏(Maréchal et al.,2002)。因此,为避免分离过程中产生锌同位素分馏及基质元素的影响,化学纯化流程需满足三点:① 高基质元素去除率; ② 高分离效率; ③ 高回收率(尽可能接近100%)(Maréchal et al.,1999; Chen Jiubin et al.,2009; Chen Sha et al.,2016; Yang Yuhan et al.,2018; Druce et al.,2020; 游灿,2020; Rosca et al.,2021; 李津等,2021)。

  • 1.2.2 质谱分析

  • 早期锌同位素的分析测试主要在热电离质谱仪(thermal ionization mass spectrometry,TIMS)进行,但由于锌的第一电离能较高(9.39 eV; 陈沙,2016),离子化效率低,且在分析过程中轻锌同位素会优先气化而产生严重质量分馏,因此TIMS难以对自然界分馏程度较小的锌同位素进行精确测定(0.1‰~1.0‰,2SD; Rosman,1972; Ghidan et al.,2012)。

  • 随着多接收电感耦合等离子体质谱仪(multi-collector inductively coupled plasma-mass spectrometry,MC-ICP-MS)的问世及广泛应用,锌同位素的测试精度有了大幅提高(可优于0.01‰,2SD; Druce et al.,2020; Rosca et al.,2021)。MC-ICP-MS具有分析速度快、离子化效率高、精度高、灵敏度高(样品量可少至5 ng; van Kooten et al.,2019)等优点。但MC-ICP-MS易受酸度效应、浓度效应、基质效应的影响产生仪器质量歧视效应(Chen Jiubin et al.,2009; 刘旭,2017)。因此,样品溶液与标准溶液间的酸度差和浓度差需控制在适当范围内(Hu Yan et al.,2019),并维持稳定的温度条件(8℃温差可导致0.15‰偏差; Chen Jiubin et al.,2009),以避免对锌同位素分析测试产生影响。

  • 前人研究表明,不同仪器类型及进样方式产生的基质效应程度存在差异(Chen Sha et al.,2016; Druce et al.,2020; Rosca et al.,2021)。例如,Chen Sha et al.(2016)的元素参杂实验表明被测溶液中Ti、Ba、Na、Al等元素含量达到一定程度(Ti/Zn>0.01、Ba/Zn>0.3、Na/Zn>2、Al/Zn>3)会导致δ66Zn发生明显偏移(Neptune Plus湿法); 而Rosca et al.(2021)的研究证明Ti/Zn<0.1不会影响测量结果(Neptune Plus干法)。此外,Druce et al.(2020)利用Nu Plasma HR仪器测试锌同位素过程中发现,化学纯化后溶液中存在少量的Ni和Ge(Ni/Zn>0.02、Ge/Zn>0.001)就能使δ66Zn产生~0.3‰的偏差。

  • 校正测试过程中仪器随时间的漂移及质量歧视效应,通常采用的方法有3种:① 样品-标样间插法(Zhu Xiangkun et al.,2000; Sossi et al.,2015; Hu Yan et al.,2019); ② 内标法(Maréchal et al.,1999; Araújo et al.,2016; Chen Sha et al.,2016); ③ 双稀释剂法(Samanta et al.,2016; Moore et al.,2017; Takano et al.,2017)。样品-标样间插法和内标法难以校正样品在分离纯化过程产生的同位素分馏,测试精度一般可达0.04‰(Druce et al.,2020),而双稀释剂法因可监控分离纯化过程的同位素分馏,可以获得更好的测量精度(可优于0.01‰,2SD; Druce et al.,2020; Rosca et al.,2021)。

  • 2 自然界主要储库的锌同位素组成

  • 自然界不同储库的锌同位素变化极大,尤其是地外样品(陨石、月球)具有较大的锌同位素组成范围(δ66Zn=13.70‰~16.73‰,图1a),相较而言,地球样品的锌同位素组成范围较小(δ66Zn=1.36‰~1.77‰,图1b)。

  • 2.1 天体

  • 天体的锌同位素组成可为太阳系早期的起源与演化过程提供约束,受到科学家的广泛关注。现有研究表明,月球具有自然界最大的锌同位素组成范围(图1a),δ66Zn为13.70‰~9.27‰(Paniello et al.,2012; Day et al.,201420172020b; Kato et al.,2015; van Kooten et al.,2020)。冲击熔融角砾岩(δ66Zn=13.7‰)和亚铁斜长岩(δ66Zn=11.37‰~4.24‰)因富含轻锌同位素的蒸汽冷凝物质而具有极轻的锌同位素组成(Kato et al.,2015; Day et al.,2017)。低钛玄武岩(δ66Zn=3.13‰~1.26‰)和高钛玄武岩(δ66Zn=5.42‰~1.90‰)具有相似的锌同位素组成,指示着月幔的锌同位素组成较为均一(Paniello et al.,2012; Kato et al.,2015; Day et al.,2020b)。相较而言,KREEP岩(δ66Zn=1.30‰)、镁质岩套(δ66Zn=1.89‰~9.27‰)和碱性岩套(δ66Zn=3.04‰)具有较重的锌同位素组成,被认为是月球岩浆洋蒸发过程中轻锌同位素优先丢失导致(Kato et al.,2015; Day et al.,2020b)。

  • 不同类型陨石的锌同位素组成存在明显差异(图1a,δ66Zn=2.65‰~16.73‰),其中碳质球粒陨石锌同位素组成范围最大,δ66Zn为2.65‰~16.73‰(Luck et al.,2005; Bridgestock et al.,2014; Pringle et al.,2017; Mahan et al.,2018); 普通球粒陨石的锌同位素组成范围相对有限,δ66Zn为2.57‰~0.76‰(Bridgestock et al.,2014; Pringle et al.,2017); 顽火辉石球粒陨石具有较普通球粒陨石更重的锌同位素组成(δ66Zn=0.01‰~7.35‰; Moynier et al.,2017)。无球粒陨石的锌同位素变化范围小于球粒陨石(δ66Zn=0.38‰~6.22‰),其中橄辉无球粒陨石的锌同位素最轻,δ66Zn为0.38‰~1.04‰(Moynier et al.,2009),古铜辉长无球粒陨石和钙长无球粒陨石具有相对较重的锌同位素组成,δ66Zn分别为0.94‰~1.60‰和1.60‰~6.22‰(Moynier et al.,2017)。其他陨石的锌同位素整体变化不大,如铁陨石(δ66Zn=0.59‰~3.68‰; Luck et al.,2005; Bridgestock et al.,2014)、玻陨石(δ66Zn=0.39‰~2.49‰; Rodovská et al.,2017; Jiang Yun et al.,2019)和火星陨石(δ66Zn=0.30‰~0.35‰; Herzog et al.,2009; Paniello et al.,2012)。

  • 图1 天体(a)和地球(b)的主要储库的锌同位素组成

  • Fig.1 Zinc isotope compositions of main reservoirs in nature for celestial bodies (a) and the Earth (b)

  • 数据来源:火星陨石(Herzog et al.,2009; Paniello et al.,2012); 玻陨石(Rodovská et al.,2017; Jiang Yun et al.,2019); 铁陨石(Luck et al.,2005; Bridgestock et al.,2014); 无球粒陨石(Moynier et al.,20092017); 顽火辉石球粒陨石(Moynier et al.,2017); 普通球粒陨石(Bridgestock et al.,2014; Pringle et al.,2017); 碳质球粒陨石(Luck et al.,2005; Bridgestock et al.,2014; Pringle et al.,2017; Mahan et al.,2018); 月球(Paniello et al.,2012; Day et al.,201420172020b; Kato et al.,2015; van Kooten et al.,2020); 地幔(Fang Shubin et al.,2022); 洋中脊玄武岩(Wang Zezhou et al.,2017; Huang Jian et al.,2018b; Beunon et al.,2020; Liao Renqiang et al.,2020); 洋岛玄武岩(Wang Zezhou et al.,2017; Huang Jian et al.,2018b; Beunon et al.,2020); 大陆上地壳(Telus et al.,2012; Moynier et al.,2017; Doucet et al.,2018; Lehmann et al.,2022; Zhang Xingchao et al.,2022); 麻粒岩(Zhang Ganglan et al.,2020); 海底热液(John et al.,2008; Conway et al.,2014); 蚀变洋壳(Huang Jian et al.,2016; Liu Sheng'ao et al.,2019b; 赵欢,2021); 贫氧—缺氧沉积物(Conway et al.,2014; Vance et al.,2016); 硅质沉积物(Andersen et al.,2011; Hendry et al.,2013); 铁锰结核(Little et al.,2014); 海洋碳酸盐岩(Pichat et al.,2003; Wang Zezhou et al.,2018; Yan Bin et al.,2019; Zhao Mingyu et al.,2021); 海水(Conway et al.,2015; Vance et al.,2016; Samanta et al.,2017; Liao Wenhsuan et al.,2020; Sieber et al.,2020); 河水(Little et al.,2014; Szynkiewicz et al.,2016; Guinoiseau et al.,2018; Zeng Jie et al.,2020

  • Data sources: martian meteorite (Herzog et al., 2009; Paniello et al., 2012) ; tektite (Rodovská et al., 2017; Jiang Yun et al., 2019) ; iron meteorite (Luck et al., 2005; Bridgestock et al., 2014) ; achondrite (Moynier et al., 2009, 2017) ; enstatite chondrite (Moynier et al., 2017) ; ordinary chondrite (Bridgestock et al., 2014; Pringle et al., 2017) ; carbonaceous chondrite (Luck et al., 2005; Bridgestock et al., 2014; Pringle et al., 2017; Mahan et al., 2018) ; moon (Paniello et al., 2012; Day et al., 2014, 2017, 2020b; Kato et al., 2015; van Kooten et al., 2020) ; mantle (Fang Shubin et al., 2022) ; mid-ocean ridge basalt (Wang Zezhou et al., 2017; Huang Jian et al., 2018b; Beunon et al., 2020; Liao Renqiang et al., 2020) ; ocean island basalt (Wang Zezhou et al., 2017; Huang Jian et al., 2018b; Beunon et al., 2020) ; continental upper crust (Telus et al., 2012; Moynier et al., 2017; Doucet et al., 2018; Lehmann et al., 2022; Zhang Xingchao et al., 2022) ; granulite (Zhang Ganglan et al., 2020) ; seafloor hydrothermal (John et al., 2008; Conway et al., 2014) ; altered oceanic crust (Huang Jian et al., 2016; Liu Sheng'ao et al., 2019b; Zhao Huan, 2021) ; suboxic-anoxic sediment (Conway et al., 2014; Vance et al., 2016) ; siliceous sediment (Andersen et al., 2011; Hendry et al., 2013) ; ferromanganese nodule (Little et al., 2014) ; marine carbonate (Pichat et al., 2003; Wang Zezhou et al., 2018; Yan Bin et al., 2019; Zhao Mingyu et al., 2021) ; seawater (Conway et al., 2015; Vance et al., 2016; Samanta et al., 2017; Liao Wenhsuan et al., 2020; Sieber et al., 2020) ; river water (Little et al., 2014; Szynkiewicz et al., 2016; Guinoiseau et al., 2018; Zeng Jie et al., 2020)

  • 2.2 地幔

  • 地幔样品难以直接获取,因此通常利用经岩浆活动到达地表的地幔物质或者相应熔体(如玄武岩)来推测其同位素组成。锌在熔融过程中会产生锌同位素分馏,因此与玄武岩相比,作为上地幔主要岩石的橄榄岩及由深部地幔高度部分熔融形成的苦橄岩和科马提岩能更好地约束地幔锌同位素组成(Wang Zezhou et al.,2017; McCoy-West et al.,2018; Sossi et al.,2018)。

  • Chen Heng et al.(2013)根据不同地质背景玄武岩和超镁铁质岩样品估算全硅酸盐地球(BSE)锌同位素平均值为0.28‰±0.05‰(2SD)。Doucet et al.(2016)发现蒙古和西伯利亚南部的饱满橄榄岩(δ66Zn=0.30‰±0.03‰)与难熔橄榄岩(δ66Zn=0.14‰±0.03‰)锌同位素组成具有明显差异,据此,他们认为岩石圈地幔锌同位素组成不均一。Wang Zezhou et al.(2017)分析了华北克拉通和大别-苏鲁造山带未交代橄榄岩锌同位素组成(δ66Zn=0.18‰±0.06‰),并通过质量平衡计算出亏损上地幔δ66Zn为0.20‰±0.05‰,低于利用饱满橄榄岩估算的原始上地幔锌同位素组成(δ66Zn=0.30‰±0.07‰; Doucet et al.,2016)。Sossi et al.(2018)利用Balmuccia造山带未交代橄榄岩和太古宙科马提岩锌同位素组成限定了硅酸盐地球锌同位素组成为0.16‰±0.06‰。McCoy-West et al.(2018)根据巴芬岛年轻的未变质苦橄岩(61 Ma)估算了巴芬岛地幔δ66Zn为0.20‰±0.03‰,与未交代的橄榄岩估算的亏损上地幔(Wang Zezhou et al.,2017)和原始地幔(Sossi et al.,2018)δ66Zn估计值近似,反映了自3.5 Ga以来全硅酸盐地球具有相对稳定的锌同位素组成。最近,Fang Shubin et al.(2022)选取了西伯利亚Vitim、蒙古(Tariat和Dariganga)、中国(汉诺坝和芝麻坊)以及前人研究(Wang Zezhou et al.,2017; Huang Jian et al.,2018a)中未受交代作用影响的克拉通和造山带尖晶石橄榄岩和石榴石橄榄岩(δ66Zn=0.13‰~0.26‰),重新估算了硅酸盐地球(BSE)的锌同位素组成为0.19‰±0.08‰(2SD)。此外,他们的研究发现地幔浅部尖晶石橄榄岩(δ66Zn=0.18‰±0.07‰)与地幔深部的石榴石橄榄岩(δ66Zn=0.22‰±0.09‰)、苦橄岩(δ66Zn=0.20‰±0.03‰; McCoy-West et al.,2018)和科马提岩(δ66Zn=0.16‰±0.06‰; Sossi et al.,2018)的锌同位素组成基本一致,表明地幔锌同位素组成在垂直方向上是均匀的。

  • 地幔矿物间的锌同位素分馏是理解地幔锌同位素组成的重要因素,然而,目前关于地幔矿物的锌同位素组成的数据较少。目前已报道的尖晶石橄榄岩、石榴石橄榄岩、深海橄榄岩和非交代橄榄岩中矿物锌同位素数据表明,橄榄石具有最重的锌同位素组成(δ66Zn=0.03‰~0.53‰),铝尖晶石具有相对较重的锌同位素组成(δ66Zn=0.25‰~0.35‰),其次为具有相似锌同位素组成的单斜辉石(δ66Zn=0.05‰~0.30‰)、斜方辉石(δ66Zn=0.06‰~0.28‰)和金云母(δ66Zn=0.05‰~0.20‰),石榴子石的锌同位素组成相对较轻(δ66Zn=0.04‰~0.22‰),铬尖晶石受其化学成分的影响而具有最轻的锌同位素组成(δ66Zn=0.19‰~0.05‰)(Wang Zezhou et al.,2017; Yang Chun et al.,2021; Fang Shubin et al.,2022)。其中,六配位(Zn-O)的橄榄石的锌同位素组成重于四配位的铝尖晶石可能是矿物间的不平衡分馏导致(Fang Shubin et al.,2022)。

  • 最近,Liu Sheng'ao et al.(2019b)利用新鲜的深海橄榄岩锌同位素组成,估算出大洋地幔δ66Zn为0.19‰±0.05‰。Beunon et al.(2020)综合了全球洋中脊玄武岩(MORB)和洋岛玄武岩(OIB)的锌同位素组成,发现MORB锌同位素组成(δ66Zn=0.21‰~0.31‰)略重于亏损地幔(δ66Zn=0.20‰±0.05‰; Wang Zezhou et al.,2017),可归因于地幔熔融过程的锌同位素分馏,而OIB具有更大的锌同位素组成范围(0.16‰~0.40‰),表明其源区有其他成分的加入。

  • 2.3 大陆地壳

  • 细粒碎屑沉积物,如冰碛物、黄土和页岩为大范围出露的大陆上地壳最具代表性物质,是研究大陆上地壳生长和成分演化的理想样品(Taylor et al.,1983; Rudnick et al.,2003)。Zhang Xingchao et al.(2022)利用黄土锌同位素组成估算了上地壳的锌同位素平均值为0.24‰±0.01‰(2SD),与MORB(δ66Zn=0.27‰±0.05‰; Wang Zezhou et al.,2017; Huang Jian et al.,2018b)相近,表明玄武质熔体在分异演化为长英质大陆上地壳过程中并未发生明显的锌同位素分馏。此外,Moynier et al.(2017)统计表明碎屑沉积物具有与黄土相近的锌同位素组成(δ66Zn=0.28‰±0.26‰,n=105,2SD)。

  • 花岗岩是大陆上地壳的主要组成岩石单元(Rudnick et al.,1995; Wedepohl,1995),因而常用于粗略估计上地壳同位素组成(Savage et al.,2013; Yang Jie et al.,2017; Nan Xiaoyun et al.,2018; Huang Tianyi et al.,2019)。Telus et al.(2012)对澳洲东南部拉克伦褶皱带(Lanchlan fold belt)典型A型、I型和S型花岗岩的锌同位素研究发现,S型花岗岩锌同位素组成(δ66Zn=0.12‰~0.49‰)较I型和A型花岗岩变化范围大,其中A型花岗岩锌同位素组成(δ66Zn=0.23‰~0.26‰)相对均一。总体而言,A型、I型和S型花岗岩的平均锌同位素组成为0.26‰±0.18‰(n=19,2SD),该结果与黄土和碎屑沉积物的锌同位素组成基本一致。Doucet et al.(2018)发现不同年龄、构造背景和岩石成因的英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)锌同位素组成(~0.30‰)与现今大陆上地壳锌同位素组成(Zhang Xingchao et al.,2022)相近,表明上地壳自晚太古宙以来具有相对稳定的锌同位素组成。

  • 与上地壳相比,中、下地壳锌同位素研究程度相对较低。Zhang Ganglan et al.(2020)研究发现华北克拉通下地壳包体锌同位素组成(δ66Zn=0.29‰±0.02‰)和太古宙麻粒岩锌同位素组成(δ66Zn=0.28‰±0.04‰)非常接近,表明太古宙和现今大陆下地壳的锌同位素组成基本一致。综合下地壳包体和太古宙麻粒岩样品,他们计算出下地壳平均δ66Zn为0.28‰±0.04‰(2SD)(Zhang Ganglan et al.,2020)。

  • 2.4 水圈

  • 陆地水体(河流、湖泊)的锌同位素组成较为不均一。Little et al.(2014)对全球主要河流锌同位素研究表明,河流锌同位素组成的变化范围可达1‰(δ66Zn=0.12‰~0.88‰)。贵州省阿哈湖和红枫湖流域锌同位素组成的变化范围也超过了0.5‰(δ66Zn=0.29‰~0.27‰; Liang Lili et al.,2019)。Little et al.(2014)根据全球不同地区主要大河流域的锌同位素组成估算了河流平均锌同位素组成为~0.33‰。不同地区的河流因地质构造、季节、气候环境等差异而具有不同的锌同位素组成(Little et al.,2014; Szynkiewicz et al.,2016; Guinoiseau et al.,2018; Liang Lili et al.,2019; Zeng Jie et al.,2020),从温带、亚热带到热带世界主要河流锌同位素组成具有逐渐变轻的趋势(图2),可能反映了气候通过温度、降雨等影响地表物理化学风化强度而间接影响了河流的锌同位素组成,如北美洲里奥格兰德河在高温干旱气候下,风化产生的大量次生黏土矿物通过吸附优先去除重锌同位素,导致河流具有较轻的锌同位素组成(Szynkiewicz et al.,2016)。同一河流不同河岸及河段的锌同位素组成也存在差异,如南美洲亚马逊河流域的内格罗河左岸河水的δ66Zn高于右岸(Guinoiseau et al.,2018); 里奥格兰德河上游河水的δ66Zn(δ66Zn=0.07‰~0.25‰)高于下游(δ66Zn=0.57‰~0.15‰)(Szynkiewicz et al.,2016)。此外,河水锌同位素组成会受人类活动的显著影响,如台湾二仁河受工业废水污染而具有较大的锌同位素组成范围(0.73‰~1.77‰; Tu Yaojen et al.,2020)。

  • 锌作为营养元素,主要富集在深海,呈现出类似于硅酸盐的营养分布(Weber et al.,2018)。锌在海洋的居留时间约为11 ka(Little et al.,2014),远大于海水充分混合所需要的时间(~1 ka),因此海水应该具有均一的锌同位素组成。研究表明现今不同地区(太平洋、大西洋、黑海等)深层海水的锌同位素组成较均一(0.46‰±0.16‰,2SD; Boyle et al.,2012; Conway et al.,20142015; Zhao Ye et al.,2014; Samanta et al.,2017; John et al.,2018; Vance et al.,2019; Wang Ruomei et al.,2019; Lemaitre et al.,2020; Sieber et al.,2020; Müsing et al.,2022),而表层海水具有较大的锌同位素变化范围(δ66Zn=1.10‰~1.28‰; Conway et al.,2014; Vance et al.,20162019; Samanta et al.,2017; Wang Ruomei et al.,2019; Liao Wenhsuan et al.,2020; Sieber et al.,2020)。表层海水锌同位素组成的较大变化主要为多种过程综合影响的结果:生物吸收(John et al.,2014; Samanta et al.,2017)、有机质络合(Köbberich et al.,2017; Wang Ruomei et al.,2019)、颗粒物的吸附清除(John et al.,2014; Köbberich et al.,2019)、河流(δ66Zn=~0.33‰; Little et al.,2014)和气溶胶(δ66Zn=1.36‰~0.78‰; Schleicher et al.,2020)的输入(Liao Wenhsuan et al.,2020)。此外,人类活动也会对浅层海水的锌同位素组成产生较大影响(Little et al.,2021; Müsing et al.,2022)。

  • 图2 不同气候带河流的锌同位素组成

  • Fig.2 Zinc isotopic composition of rivers in different climatic zones

  • 数据来源:里奥格兰德河(Szynkiewicz et al.,2016); 托坎廷斯河(Little et al.,2014); 亚马逊河(Little et al.,2014; Guinoiseau et al.,2018); 尼罗河(Little et al.,2014); 珠江(Zeng Jie et al.,2020); 密苏里河(Little et al.,2014); 长江(Little et al.,2014); 卡利克斯河(Little et al.,2014

  • Data sources: Rio Grande River (Szynkiewicz et al., 2016) ; Tocantins River (Little et al., 2014) ; Amazon River (Little et al., 2014; Guinoiseau et al., 2018) ; Nile River (Little et al., 2014) ; Zhujiang River (Zeng Jie et al., 2020) ; Missouri River (Little et al., 2014) ; Yangtze River (Little et al., 2014) ; Kalix River (Little et al., 2014)

  • 海洋是锌循环的重要场所。全球海洋锌循环过程中,风尘、河流和海底热液作为锌的重要输入端元,输送大量锌离子至海洋,随后部分锌汇集于氧化沉积物、贫氧—缺氧沉积物和蚀变洋壳等端元(陈璐等,2021)。海洋锌的源和汇的同位素组成变化,将动态影响海水中锌同位素组成及其演化。海底热液作为海洋锌的重要输入端元,其锌同位素组成变化范围较大(δ66Zn=0.50‰~1.04‰,图1b; John et al.,20082018; Conway et al.,2014; Lemaitre et al.,2020)。John et al.(2018)利用东太平洋脊热液柱的锌同位素组成计算了热液端元的锌同位素均值(δ66Zn=0.24‰±0.12‰,2SE),低于深层海水锌同位素值(0.46‰±0.16‰,2SD; Müsing et al.,2022)。氧化沉积物、贫氧—缺氧沉积物的锌同位素组成主要受氧化还原环境影响(陈璐等,2021)。在富氧环境下的海洋沉积物主要包括铁锰结核(δ66Zn=0.53‰~1.42‰; Little et al.,2014)、海洋碳酸盐岩(δ66Zn=0.56‰~1.34‰; Pichat et al.,2003; Wang Zezhou et al.,2018; Yan Bin et al.,2019; Zhao Mingyu et al.,2021)以及硅藻蛋白、海绵骨针等生物成因的硅质沉积物(δ66Zn=0.35‰~1.47‰; Andersen et al.,2011; Hendry et al.,2013)。贫氧—缺氧沉积物主要位于大陆边缘和极端缺氧环境(如黑海和波罗的海湾),因自生矿物沉淀而具有较轻的锌同位素组成(δ66Zn=0.80‰~0.32‰,图1b; Conway et al.,2014; Vance et al.,2016)。

  • 蚀变洋壳是海洋体系中锌的主要储库。Huang Jian et al.(2016)分析了东太平洋赤道附近蚀变洋壳的锌同位素组成,发现火山剖面岩石的锌同位素组成变化较小(δ66Zn=0.18‰~0.36‰),且与水岩相互作用指标(Li/Yb)和蚀变温度指标(δ18O)无相关性,反映了低温(<350℃)条件下锌在流体中的低溶解度限制了锌同位素分馏; 深成杂岩具有较大的锌同位素变化范围(δ66Zn=0.19‰~0.55‰)和较低的锌含量、Li/Yb和δ18O值,表明高温蚀变过程可导致显著的锌同位素分馏(Huang Jian et al.,2016)。Liu Sheng'ao et al.(2019b)报道了不同蚀变程度深海橄榄岩的锌同位素组成(δ66Zn=0.12‰~0.62‰),其中大部分蚀变橄榄岩与未蚀变橄榄岩具有相近锌同位素组成,表明蚀变过程中存在较小的锌同位素分馏; 部分样品具有异常高的δ66Zn,可能是次生矿物相优先吸附重锌同位素导致。赵欢(2021)根据南海不同蚀变类型岩石样品的锌同位素组成(δ66Zn=0.02‰~0.38‰)及其所占比例估算蚀变洋壳平均δ66Zn为0.25‰±0.04‰(2SD)。此外,他们的研究发现绿帘石脉锌同位素组成(δ66Zn=0.21‰~0.31‰)与新鲜玄武岩(δ66Zn=0.25‰~0.27‰)相近,而碳酸盐脉的锌同位素组成变化较大(δ66Zn=0.16‰~0.38‰),表明绿帘石化蚀变过程不会发生锌同位素明显分馏,碳酸盐化蚀变过程可能会导致锌同位素明显分馏(赵欢,2021)。

  • 3 锌同位素分馏机理

  • 充分认识锌同位素的分馏机理是将其正确应用到地球化学循环研究的前提,因此前人对不同地质过程中的锌同位素分馏开展了研究,主要包括:矿物间的平衡分馏、吸附过程、生物吸收过程、矿物生长与共沉淀过程、蒸发过程及高温地质过程。

  • 3.1 矿物间的平衡分馏

  • 理解矿物间的同位素平衡分馏是解释各个地质过程中锌同位素分馏的基础。不同矿物间的同位素平衡分馏可以通过简约配分函数比(β因子)确定,两相的平衡分馏系数是其β值之比(Urey,1947)。Fujii et al.(2014)Ducher et al.(2016)基于密度泛函理论的第一性原理分别计算了溶液中的锌配合物和常见含锌矿物的β因子,结果表明同位素平衡时溶液中锌配合物的锌同位素组成由重到轻依次为:ZnCO3>ZnHCO+3>Zn(OH)2>ZnSO4>Zn2+>ZnCl+>ZnCl+3>ZnCl2>ZnCl2-4Fujii et al.,2014); 含锌矿物的锌同位素组成由重到轻依次为:锌铝尖晶石>异极矿>红锌矿>水锌矿>水砷锌矿≈锌铁尖晶石>硫酸锌>闪锌矿>纤锌矿>菱锌矿(Ducher et al.,2016)。他们的研究发现β因子受矿物中锌原子的第一邻近键的键强控制,第一近邻键配位数越大,键长越长,键强越小,相应的β值越小(Fujii et al.,2014; Ducher et al.,2016)。该发现与重同位素倾向富集在较强成键环境中的稳定同位素分馏理论(Schauble,2004)一致。野外观测到的现象也与理论研究相符,例如,Wang Zezhou et al.(2017)研究发现非交代橄榄岩中四配位的铝尖晶石(δ66Zn=0.25‰~0.30‰)比六配位的硅酸盐矿物(δ66Zn=0.11‰~0.24‰)具有更重的锌同位素组成,为矿物间的锌同位素分馏受键强的控制提供了支持。此外,Yang Chun et al.(2021)研究表明矿物间的锌同位素分馏还受到化学成分的控制。他们发现当橄榄岩的铝尖晶石中的铝离子被离子半径较大的铬离子取代时,Cr-O键比原来的Al-O键更长,为维持晶体结构的稳定,四配位的Zn-O键的键长相应增长,键强降低,导致橄榄石中铬尖晶石具有比橄榄石更轻的锌同位素组成(Yang Chun et al.,2021)。

  • 3.2 吸附过程

  • 前人通过大量的实验研究发现,金属氧化物(软锰矿、赤铁矿、水铁矿、刚玉)、金属含氧酸盐(方解石、高岭土)、浮游生物(硅藻)在吸附过程中优先富集重锌同位素(Pokrovsky et al.,2005; Gélabert et al.,2006; John et al.,2007; Balistrieri et al.,2008; Juillot et al.,2008; Bryan et al.,2015; Dong Shuofei et al.,2016; Ducher et al.,2016; Guinoiseau et al.,2016; Tang Yetao et al.,2016; Gou Wenxian et al.,2018)。值得注意的是,Bryan et al.(2015)研究发现实验初期水钠锰矿受同位素动力学效应影响优先富集轻锌同位素,随着时间推移会发生逆转而开始吸附重锌同位素。但对较长时间尺度形成的自然样品而言,这种短暂的动力学影响可忽略。吸附过程的分馏主要受溶解态锌与吸附态锌之间的配位数和键长控制,以氧化铝为例(图3),吸附后锌原子周围的两个氧原子与氧化铝表面的铝原子结合,使Zn-O键的键长发生了变化,从而引起锌同位素分馏(Gou Wenxian et al.,2018)。

  • 图3 溶解态锌被吸附到氧化铝表面的吸附机理模式图(据Gou Wenxian et al.,2018修改)

  • Fig.3 Postulated models of zinc adsorption on aluminum oxide (modified after Gou Wenxian et al., 2018)

  • 3.3 生物吸收过程

  • 生物吸收过程中锌同位素的分馏程度与锌的吸收方式、铁浓度及物种类型有关。John et al.(2007)研究发现,在低Zn2+浓度下生物吸收以高亲合转运方式为主,锌同位素分馏较小(Δ66Zn细胞-培养基=0.20‰); 在高Zn2+浓度下以低亲合转运方式为主,锌同位素分馏较为显著(Δ66Zn细胞-培养基=0.80‰)。Köbberich et al.(2017)通过培养实验分析了铁浓度对不同硅藻吸收过程中锌同位素分馏的影响,T. oceanica在不同铁浓度下表现出相对较小且恒定的锌同位素分馏(Δ66Zn细胞-培养基=0.19‰~0.02‰); 而Chaetocero的锌同位素分馏受铁浓度限制,在高铁浓度下优先吸收轻锌同位素(Δ66Zn细胞-培养基=0.42‰),在低铁浓度下,锌的吸收速率明显降低,优先吸收重锌同位素(Δ66Zn细胞-培养基=0.85‰)。Köbberich et al.(2019)比较了4种蓝藻和3种硅藻吸收过程中的锌同位素分馏行为,除CCMP 2370蓝藻外,其他蓝藻和硅藻优先吸收轻锌同位素(Δ66Zn细胞-培养基=0.49‰~0.09‰)。在实验过程中,Köbberich et al.(2017,2019)通过控制实验条件使锌的迁移不受扩散影响,结合有机质(如乙二胺四乙酸,EDTA,一种有机螯合剂)优先络合重锌同位素(Marković et al.,2017),他们认为实验中观察到的轻锌同位素富集可能很大程度是培养基中EDTA优先与重锌络合使培养液Zn2+富集轻锌导致,而不是细胞主动运输过程中动力学同位素分馏的结果。

  • 3.4 矿物生长与共沉淀过程

  • 实验研究表明,闪锌矿在形成过程中优先富集轻锌同位素(Δ66Zn闪锌矿-溶液=0.30‰),而磷锌矿(Δ66Zn磷锌矿-溶液=0.25‰)和水锌矿(Δ66Zn水锌矿-溶液=0.18‰)则优先富集重锌同位素,这种差异是因为Zn2+在硫化物中呈四配位,而在碳酸盐和磷酸盐中呈四配位和六配位组合(Veeramani et al.,2015)。该实验结果也与实际观测到的现象一致,例如,Gagnevin et al.(2012)在对爱尔兰铅锌矿床中的闪锌矿进行锌同位素研究时发现沿着矿物生长方向锌同位素越来越重。Mavromatis et al.(2019)发现锌和方解石共沉淀过程中发生了显著的锌同位素分馏(Δ66Zn方解石-溶液=0.6‰,pH=6),认为沉淀过程中锌以四面体络合物(如碳酸氢锌水合络离子)的形式被吸附在新生长的方解石表面,该络合物相较于水合锌离子具有更短的键长和更低的配位数,优先富集重锌同位素,而后锌进入方解石晶格中,尽管配位数增加到六,但因未与溶液中的锌进行同位素交换而保持了吸附态的重锌同位素组成。值得指出的是,他们的研究表明,共沉淀过程中方解石的锌同位素分馏程度与流体pH值具有显著相关性,表明天然方解石锌同位素可作为潜在的示踪地质历史时期碳酸盐形成时古环境pH值的指标(Mavromatis et al.,2019)。

  • 3.5 高温蒸发过程

  • 基于玻陨石与核试验或放射性沉降物的熔融玻璃的锌同位素研究表明,在极端高温条件下,锌的蒸发过程中会产生显著的同位素分馏(>1‰; Moynier et al.,2009; Rodovská et al.,2017; Day et al.,2020a)。Zhang Jiaxi et al.(2018)通过理论计算发现,蒸发过程中的锌同位素分馏与动力分馏和平衡分馏有关,且由于锌可以在较低温度蒸发,平衡分馏为锌同位素主要分馏方式,蒸发过程中的锌同位素净分馏可达7‰~7.5‰。为约束蒸发过程中的锌同位素分馏行为,Wimpenny et al.(2019)进行了流纹质和长石质土壤的加热蒸发实验,实验结果证实了蒸发过程中轻锌同位素会优先损失,导致残余物质富集重锌同位素。此外,他们通过元素含量归一化计算了锌同位素的蒸发分馏系数(α),结果表明分馏系数与温度和加热时间无关而与蒸发环境压力有关,在较高压力条件下气相与熔融玻璃间的逆反应抑制了锌同位素分馏,导致地球大气压下锌同位素分馏程度(α=0.99879)小于真空下的理论分馏程度(α=0.985~0.993; Wimpenny et al.,2019)。

  • 3.6 高温地质过程

  • 前人通过大量样品的分析测试及实验模拟发现,锌同位素平衡分馏受温度控制非常明显,在低温地质过程中存在较大的分馏,而在高温地质过程中(板块俯冲、分离结晶、部分熔融)分馏较小(~0.10‰)或不发生有意义的分馏(Chen Heng et al.,2013; Inglis et al.,2017; Wang Zezhou et al.,2017; Huang Jian et al.,2018b; Liao Renqiang et al.,2020)。

  • 为查明俯冲过程中的锌同位素行为,前人对不同地区(阿尔卑斯山脉、大别山、勘察加-阿留申岛弧、南海)俯冲带的变质玄武岩和变质辉长岩等岩体的锌同位素开展研究,发现锌同位素与俯冲成分指标(Ce/Pb、Nb/U、Ba/La、87Sr/86Sr)和流体敏感指标(Rb/TiO2、Ba/Yb)无相关性,表明俯冲变质脱水过程中随流体迁移的锌有限,不足以使锌同位素产生明显分馏(Inglis et al.,2017; Huang Jian et al.,2018b; Liao Renqiang et al.,2020; Xu Lijuan et al.,2021)。

  • 部分熔融和分离结晶过程中锌同位素的行为主要取决于含锌矿物结晶或熔融过程中熔体与矿物之间的分配系数(Doucet et al.,2016)及锌在不同环境介质的配位数(Wang Zezhou et al.,2017),如橄榄石、斜方辉石、单斜辉石的锌均为六配位且分配系数相近(Le Roux et al.,2011),因而橄榄石与辉石间的锌同位素分馏接近于零(Ben Othman et al.,2006; Wang Zezhou et al.,2017); 尖晶石的配位数低于地幔硅酸盐矿物(如橄榄石),且与地幔熔体之间的分配系数(D尖晶石/熔体Zn=5.2)高于地幔硅酸盐矿物(Le Roux et al.,2011; Davis et al.,2013),所以尖晶石具有相对较高的锌含量和较重的锌同位素组成(Wang Zezhou et al.,2017)。因此,这些含重/轻同位素的锌矿物的分离结晶或部分熔融控制着熔体的锌同位素组成。Wang Zezhou et al.(2017)分析发现未交代橄榄岩锌同位素组成(δ66Zn=0.18‰±0.06‰)略轻于MORB和OIB,认为地幔熔融过程存在有限的锌同位素分馏(~0.10‰),其与尖晶石的优先消耗相关。Sossi et al.(2018)通过非模式分离熔融模拟发现高达30%部分熔融仅产生0.08‰的锌同位素分馏。Chen Heng et al.(2013)分析测试了夏威夷和冰岛火山岩(玄武岩-流纹岩)的锌同位素组成,认为橄榄石和铁钛氧化物分离结晶导致了样品表现出的有限锌同位素组成变化(~0.10‰,图4),表明岩浆结晶分异过程中存在微小的锌同位素分馏。此外,勘察加-阿留申岛弧火山岩及南海玄武岩的锌同位素组成与MgO等岩浆分异演化指标无相关性,也证实了岩浆结晶分异过程中存在有限的锌同位素分馏(Huang Jian et al.,2018b; Liao Renqiang et al.,2020)。综上所述,含锌矿物的部分熔融或结晶会影响岩浆分异演化过程的锌同位素分馏,但产生的锌同位素分馏十分有限。

  • 然而,高度分离结晶的伟晶岩和高硅花岗岩具有明显重于玄武岩的锌同位素组成(Telus et al.,2012; Xu Lijuan et al.,2019),异常高δ66Zn特征通常被解释为结晶分异过程中含氯流体出溶导致(Telus et al.,2012; Doucet et al.,2018; Xu Lijuan et al.,2019; Wang Zezhou et al.,2020)。然而,Guo Haihao et al.(2021)实验研究表明,流体锌同位素组成比共存的硅酸盐岩浆重(Δ66Zn流体-岩浆=0.05‰~1.24‰),其锌同位素分馏大小主要取决于熔体的非桥氧数(NBO/T)和岩浆组分的Al/(0.5K+Ca+Fe),而与流体的温度和氯含量无关。他们认为高硅岩石较重的锌同位素组成是由含重锌的出溶流体与围岩反应导致,而不是流体出溶去除了轻锌同位素(Guo Haihao et al.,2021)。

  • 图4 冰岛和夏威夷火山岩锌同位素组成和SiO2含量(据Chen Heng et al.,2013

  • Fig.4 Zinc isotopic composition and SiO2 content of volcanic rocks from Iceland and Hawaii (after Chen Heng et al., 2013)

  • 4 锌同位素在地球科学中的应用

  • 4.1 锌同位素示踪深部碳循环

  • 全球碳循环包含地表碳循环和深部碳循环。地球深部是碳最主要的储库,其碳储量占地球总碳的90%以上(Javoy et al.,1982),因此,地球深部碳循环在全球碳循环中起着主导作用。深部碳循环是指地球表层沉积碳酸盐通过板片俯冲作用进入地球深部,最终通过火山作用以二氧化碳的形式返回地表。从地质历史的角度看,深部碳循环深刻地影响着全球气候。另一方面,经俯冲作用进入地幔的地表碳酸盐也显著影响和改造了地幔的物理化学属性,如氧逸度以及壳-幔的元素活化和迁移行为(He Detao et al.,2020)。综上,深部碳循环是影响地幔物理化学属性的关键因素,同时也在维持全球气候和宜居性中扮演着关键角色(Hazen et al.,2013; Malusa et al.,2018; Plank et al.,2019)。因此,深部碳循环是近年来地球科学和气候学研究的热点问题。

  • 4.1.1 示踪再循环沉积碳酸盐

  • 研究深部碳循环首要的问题是如何鉴别地表的碳通过俯冲作用到达了地球深部。碳同位素应该是示踪碳循环最直接的手段,然而碳是易挥发性元素,碳同位素在岩浆喷发过程中会因去气作用产生强烈分馏(Deines,2002; Aubaud et al.,2005),而难以反映地幔源区的碳同位素组成。此外,碳同位素很难将俯冲引入的无机碳同地幔原生的无机碳区分开来(Deines,2002)。锌同位素则可有效规避这些缺点。如前所述,高温地质过程中锌同位素的分馏程度有限(~0.10‰; Chen Heng et al.,2013; Pons et al.,2016; Inglis et al.,2017; Sossi et al.,2018),远低于沉积碳酸盐(δ66Zn=0.91‰±0.41‰; Pichat et al.,2003)与地幔(δ66Zn=0.19‰±0.08‰; Fang Shubin et al.,2022)之间锌同位素的差值(Δ66Zn沉积碳酸盐-地幔=0.72‰)。此外,锌还可部分替代镁进入镁碳酸盐晶格中(Reeder et al.,1999),从而使富镁碳酸盐的锌含量(~450×10-6; Li Jilei et al.,2014)远远高于地幔的锌含量(~55×10-6; McDonough et al.,1995),少量地表碳酸盐的加入即可使地幔锌同位素产生明显异常。因此,锌同位素可以有效识别被板片俯冲携带至地球深部的地表碳酸盐物质,是示踪地表-深部碳循环的有力地球化学工具(Liu Sheng'ao et al.,201620202022; Beunon et al.,2020)。

  • 玄武岩由地幔部分熔融产生的熔体分异演化而来,出露面积广泛,容易获取,是研究深部碳循环的理想样品。Liu Sheng'ao et al.(2016)对中国东部玄武岩锌同位素的研究发现,<110 Ma玄武岩锌同位素组成(δ66Zn=0.30‰~0.63‰)重于>120 Ma玄武岩(δ66Zn=0.23‰~0.32‰)和地幔(0.19‰±0.08‰; Fang Shubin et al.,2022)(图5),且δ66Zn与部分熔融程度指标(Sm/Yb、Nb/Y、Nb、Zn)、CaO和CaO/Al2O3呈正相关关系,表明其地幔源区有含重锌同位素的碳酸盐岩加入。此外,结合玄武岩的锶同位素(87Sr/86Sr)组成,推测再循环碳酸盐岩主要组分是富镁富锌的白云石与菱镁矿(Liu Sheng'ao et al.,2016)。Choi et al.(2022)发现晚新生代朝鲜白头山和韩国济州岛玄武岩的锌同位素组成(δ66Zn=0.26‰~0.44‰)重于华北克拉通大陆岩石圈地幔(0.19‰±0.08‰; Fang Shubin et al.,2022)(图5),且Zn/Fe与δ66Zn呈负相关关系,与δ26Mg呈正相关关系,混合模拟结果表明其源区至少有三种源岩(碳酸盐化橄榄岩、硅酸盐沉积物和榴辉岩),进一步为亚洲东部新生代玄武岩源区存在再循环碳酸盐岩提供了支持。

  • 如上所述,尽管很多研究都证实了玄武岩地幔源区存在地表碳酸盐,然而板片沉积物来源的碳以何种方式迁移进入地幔楔一直是科学家们关注的重点。自从Frezzotti et al.(2011)在阿尔卑斯超高压岩石中发现流体包裹体中有大量溶解态碳酸盐这一客观事实后,溶解态碳酸盐模型得到了越来越多研究的支持(Frezzotti et al.,2011; Kawamoto et al.,2013; Ague et al.,2014; Farsang et al.,2021),这些研究凸显了溶解态碳酸盐在深部碳循环过程的重要性。然而,在很长一段时间内科学家们并未对溶解态碳酸盐的地球化学特征以及溶解碳酸盐的量进行限定。针对这一问题,最近Qu Yuanru et al.(2022)通过实验系统研究了溶解态碳酸盐的稳定同位素特征,他们发现含碳酸盐沉积物(无碳酸盐溶解)加入会使幔源岩浆出现低δ26Mg和正常δ66Zn的特征(图6,Ⅲ); 若俯冲碳酸盐发生溶解则会出现低δ26Mg和高δ66Zn的特征(即Mg-Zn同位素耦合,图6,Ⅳ)。该研究首次厘定了俯冲带溶解态碳酸盐的Zn-Mg同位素地球化学组成,为溶解态碳酸盐提供了同位素判别依据(Qu Yuanru et al.,2022)。

  • 图5 亚洲东部玄武岩的δ66Zn和锌含量(据Liu Sheng'ao et al.,2016; Choi et al.,2022

  • Fig.5 δ66Zn and Zn concentrations for basalts from eastern Asia (after Liu Sheng'ao et al., 2016; Choi et al., 2022)

  • 图6 δ26Mg和δ66Zn混合模型图(据Qu Yuanru et al.,2022修改)

  • Fig.6 Plots of δ26Mg vs.δ66Zn for the mixing model (modified after Qu Yuanru et al., 2022)

  • 此外,该研究表明锌和镁同位素联合示踪可能是解决这一问题的理想手段,它弥补了单一使用锌、镁同位素的不足,即单一的锌同位素无法区分含碳酸盐沉积物(无碳酸盐溶解)和无碳酸盐沉积物,单一的镁同位素难以区分岩浆源中再生碳酸盐岩与溶解态碳酸盐岩(Qu Yuanru et al.,2022)。不同的同位素体系有着各自的优势和不足,而多元同位素体系的结合能有效地实现优势互补。例如,玄武质熔体在上升过程中会因为化学成分与周围介质不平衡而发生热扩散和化学扩散(Richter et al.,20082009),热扩散和化学扩散都可以使得熔体具有轻的镁同位素组成(Richter et al.,20082009; Wang Zezhou et al.,2022),但结合熔体富集重的锌同位素特征,可以断定地幔源区有地表碳酸盐的贡献而非其他因素导致(Liu Sheng'ao et al.,2019a)。

  • 最近,Liu Sheng'ao et al.(2022)总结归纳了不同地幔深度玄武质熔岩的Mg-Zn同位素组成,据此提出了俯冲碳酸盐岩的三种再循环路径:① 深入弧下地幔的钙质碳酸盐优先溶解,由弧火山作用释放CO2(图7,循环Ⅰ); ② 超临界流体诱导富镁碳酸盐(白云石)溶解并与岩石圈地幔结合,形成具有轻镁同位素组成的钾质熔岩(图7,循环Ⅱ); ③ 富镁碳酸盐(白云石+菱镁矿)循环进入地幔过渡带,由板内火山活动释放出碳(图7,循环Ⅲ)。

  • 然而,目前在岛弧玄武岩中并没有观察到低δ26Mg和高δ66Zn特征(Teng Fangzhen et al.,2016; Wang Zezhou et al.,2017; Huang Jian et al.,2018b; Hu Yan et al.,2020)。这可能被解释为锌、镁同位素对富钙而贫镁、锌的再循环钙碳酸盐(如方解石或文石)溶解不敏感,但岛弧玄武岩中也没有观察到再循环碳酸钙预期的低δ44/40Ca特征(Zhu Hongli et al.,2020)。为何实验研究和热力学模拟所预测的弧下地幔存在大量钙质碳酸盐溶解现象(Frezzotti et al.,2011; Pan et al.,2013; Kelemen et al.,2015)并没有被岛弧玄武岩的锌镁同位素所记录?还是岛弧地幔源区仅有少量碳酸盐溶解?这些再循环碳酸盐的通量如何确定?这些难题有待进一步深入研究。

  • 在幔源岩浆形成过程中可产生与再循环碳酸盐加入相似的重锌同位素异常,也对锌同位素示踪深部碳循环提出了质疑和挑战。一是锌同位素是否能准确示踪再循环碳酸盐?除再循环碳酸盐外,经碳酸盐交代作用形成的碳酸盐化榴辉岩(贫碳)(Wang Zezhou et al.,2022)和俯冲脱水作用释放的富硫酸盐流体(Pons et al.,2016)也具有高δ66Zn特征,因此玄武岩中高δ66Zn异常不能简单归因于再循环碳酸盐,而需考虑碳酸盐化榴辉岩和富硫酸盐流体的影响。此外,不同碳酸盐种类的锌含量具有明显差异,锌同位素对不同碳酸盐示踪的敏感度不同(Liu Sheng'ao et al.,2022),钙质碳酸盐(贫锌)的加入可能不会导致地幔源区的锌同位素发生明显改变。二是再循环碳的定量问题。高温地质过程如板块俯冲脱水、部分熔融过程中产生的微小锌同位素分馏(~0.10‰; Wang Zezhou et al.,2017; Huang Jian et al.,2018b)远小于碳酸盐与地幔间的差值,使锌同位素具有示踪深部碳循环的潜力,但这种微小的锌同位素分馏可能对定量研究岩浆源区的碳通量产生很大影响。同时,在碳酸盐化地幔在熔融、上侵和喷发过程中,二氧化碳可能从岩浆逃逸并和残留在岩浆中的金属离子(如锌)分离,使得锌同位素难以对深部碳循环进行定量研究。

  • 图7 基于Mg-Zn同位素示踪的俯冲带碳酸盐岩循环模型图(据Liu Sheng'ao et al.,2022修改)

  • Fig.7 Mg-Zn isotopic tracer of mantle-derived rocks for carbonate cycle in subduction zones (modified after Liu Sheng'ao et al., 2022)

  • 4.1.2 示踪再循环洋壳

  • 如前所述,新鲜的玄武质洋壳锌同位素组成(δ66Zn=0.28‰±0.03‰; Huang Jian et al.,2016; Inglis et al.,2017; Wang Zezhou et al.,2017)重于地幔(0.19‰±0.08‰; Fang Shubin et al.,2022),且当洋壳发生碳酸盐化蚀变时,其锌同位素组成会明显偏重(Pichat et al.,2003)。因此,可用锌同位素来示踪地幔源区的再循环洋壳物质(Yang Chun et al.,2019; Wang Zezhou et al.,2022)。例如,峨眉山苦橄岩锌同位素组成(δ66Zn=0.26‰~0.34‰)重于地幔橄榄岩(δ66Zn=0.18‰±0.06‰; Wang Zezhou et al.,2017),但与中国东部玄武岩相比其δ66Zn变化范围较小,且δ66Zn与87Sr/86Sr无相关性,表明峨眉山大火成岩省中再循环碳酸盐岩非常有限(Yang Chun et al.,2019)。端元混合模拟表明,峨眉山苦橄岩锌同位素组成可由含~15%再循环洋壳地幔部分熔融形成(Yang Chun et al.,2019)。Beunon et al.(2020)总结了全球大洋玄武岩的锌同位素组成,发现OIB的锌同位素组成(δ66Zn=0.21‰~0.40‰)重于MORB(δ66Zn=0.24‰~0.31‰)和地幔(0.19‰±0.08‰; Fang Shubin et al.,2022),且锌含量与87/86Sr和143/144Nd具有全球相关性,端元混合模拟表明其地幔源区有0.4%~6%含碳榴辉岩洋壳加入。Wang Zezhou et al.(2022)发现西非克拉通低MgO和高MgO榴辉岩(δ66Zn=0.35‰~0.95‰)的δ66Zn均高于MORB(δ66Zn=0.27‰; Wang Zezhou et al.,2017),且与锌含量呈负相关关系,表明其源于碳酸盐化的蚀变洋壳。

  • 4.1.3 约束玄武岩成分变化机制

  • 玄武岩系列岩石从霞石岩、碧玄岩到弱碱性玄武岩再到拉斑玄武岩表现出广泛而连续的化学成分变化,但这种成分变化的成因仍存在争议。传统观点将玄武岩成分变化归因于地幔部分熔融程度的增加(Green et al.,1967; Lustrino et al.,2002),然而,实验研究表明地幔源岩(橄榄岩、辉石岩)不同程度的部分熔融无法再现天然玄武岩中观察到的全部成分(Dasgupta et al.,2007; Gerbode et al.,2010)。近年来一些学者认为玄武岩的成分变化是碳酸盐化硅酸盐熔体和岩石圈地幔反应导致(Pilet et al.,2008; Xu Rong et al.,2017; Wang Zezhou et al.,2018; Zhu Yangtao et al.,2021)。然而,碳酸盐物质是否的确在玄武岩成分变化过程中扮演了重要角色?仅依靠Sr-Nd-Pb等传统放射性同位素不足以识别地幔中再循环碳酸盐和硅酸盐,如4.1.1和4.1.2小节所述,锌同位素是再循环碳酸盐理想“指示剂”,能为玄武岩的成分转变机制提供新的视角。

  • 山东半岛弱碱性玄武岩(碱性橄榄玄武岩和低碱碧玄岩)的锌同位素组成介于强碱性玄武岩(霞石岩和高碱碧玄岩)与地幔之间,且δ66Zn与Na2O+K2O等地幔熔融指标有良好的相关性(图8; Wang Zezhou et al.,2018)。Zn-Sr-Nd同位素及全岩化学分析表明,碳酸盐化地幔熔融只能形成霞石岩—碧玄岩系列,硅不饱和玄武岩熔体需与岩石圈地幔反应才能从碧玄岩过渡到碱性橄榄玄武岩甚至拉斑玄武岩(Wang Zezhou et al.,2018)。Jin Qizhen et al.(2020)发现华南地块高CaO碧玄岩和部分粗面玄武岩具有高δ66Zn、Ca/Al和低δ26Mg、Hf/Hf*及亏损的Sr-Nd同位素组成,表明碳酸盐化橄榄岩是其主要来源。而低CaO玄武岩、部分粗面玄武岩及拉斑玄武岩具有高δ66Zn、Hf/Hf*、Zn/Fe和低δ26Mg、Ca/Al及亏损Sr-Nd同位素组成,表明其源区受到了碳酸盐化榴辉岩的加入(Jin Qizhen et al.,2020)。Zhu Yangtao et al.(2021)发现华北克拉通碧玄岩和碱性玄武岩具有较重的锌同位素组成(δ66Zn=0.32‰~0.46‰),而拉斑玄武岩锌同位素组成相对较轻(δ66Zn=0.28‰±0.04‰)。由于岩浆分异演化过程与硅酸盐物质的混合均不能导致较大的锌同位素分馏,因此碧玄岩和碱性玄武岩的高δ66Zn特征被认为是再循环碳酸盐的加入导致,结合Zn-Sr-Nd同位素混合模拟计算,表明其地幔源区受到了不同比例碳酸盐岩和硅质沉积物的交代(Zhu Yangtao et al.,2021)。因此,随俯冲深度增加,释放出来的碳酸盐增加,硅质沉积物减少,是碧玄岩—碱性玄武岩—拉斑玄武岩成分变化的重要原因(Zhu Yangtao et al.,2021)。综上,锌同位素相关研究为碳酸盐化硅不饱和熔体和岩石圈地幔反应是玄武岩成分变化的主要机制提供了新的证据。

  • 图8 山东半岛碱性玄武岩锌同位素组成与Na2O+K2O 关系图(据Wang Zezhou et al.,2018

  • Fig.8 Relationship between zinc isotopic composition and Na2O+K2O in alkaline basalts from Shandong Peninsula (after Wang Zezhou et al., 2018)

  • 4.2 锌同位素在矿床学方面的应用

  • 成矿物质来源及其成矿过程是矿床研究与矿产勘查中的关键问题。传统研究多借助碳、氧、硫等矿化剂元素的同位素地球化学特征对热液成矿过程进行分析(Duan Xiaoxia et al.,2017; Zhai Degao et al.,2018; Li Zhenli et al.,2020),但这些元素并非成矿元素,其研究结果具有一定的间接性与不确定性(范廷宾等,2018; 王达等,2020)。相较而言,金属稳定同位素,特别是作为重要成矿元素的锌,其同位素可更为准确地对成矿来源及成矿过程进行约束,为矿床研究与矿产勘查提供理论依据,而受到了越来越多矿床地质学家的关注(Deng Jun et al.,2017; Cai Minghai et al.,2020; Matt et al.,2020; 王达等,2020)。

  • 4.2.1 示踪成矿物质来源

  • 不同地质储库的锌同位素组成存在明显差异(图1b),表明锌同位素在成矿溯源方面具有较大潜力(Xu Chong et al.,2019),且较流体包裹体等传统分析手段,锌同位素可为成矿物质来源提供直接证据(王达等,2020)。Duan Jilin et al.(2016)发现藏南扎西康铅锌矿床闪锌矿和方铅矿具有相似的锌同位素组成(δ66Zn=0.03‰~0.28‰),并根据热液流体与硫化物的锌同位素分馏反算出成矿流体的锌同位素组成为0.39‰,与Fe-Mn碳酸盐脉体及基底花岗岩的锌同位素组成(δ66Zn=0.36‰)较为一致,表明成矿物质主要来源于岩浆热液。此外,扎西康铅锌矿床硫化物锌同位素组成变化范围(~0.25‰)稍大于火成岩(~0.16‰)说明有其他物源的加入,结合Pb-S同位素特征可知沉积岩也是成矿物质的重要来源(Duan Jilin et al.,2016)。Cai Minghai et al.(2020)根据铜坑锡多金属矿床闪锌矿较为均一的锌同位素组成(δ66Zn =0.22‰~0.34‰),反算出成矿流体锌同位素组成为0.42‰~0.54‰,与龙箱盖花岗岩锌同位素组成基本一致,表明成矿流体主要来源于岩浆热液。Zhu Chuanwei et al.(2020)对滇黔贵成矿省的天宝山、大梁子、乌斯河矿床开展锌同位素研究,发现闪锌矿的δ66Zn和Cd/Zn呈对数回归关系,通过与其他端元(基底、埃迪卡拉纪沉积物)的锌同位素组成进行对比,他们认为天宝山和乌斯河矿床的锌主要来源于基底和埃迪卡拉纪沉积物,大梁子矿床的锌主要来源于埃迪卡拉纪沉积物及上部沉积岩。向佐朋等(2020)根据δ66Zn和δ34SCDT的关系,总结了不同类型铅锌矿床的成矿物质来源:矽卡岩型铅锌矿床(δ66Zn=0.09‰~0.19‰)主要为岩浆源; 密西西比河谷型(MVT型)铅锌矿床锌同位素变化范围较大(δ66Zn=0.14‰~1.33‰),为多来源的混合; 热液脉型(δ66Zn=0.32‰~0.49‰)和喷流沉积型(SEDEX型)铅锌矿床(δ66Zn=0.00‰~0.60‰)主要为生物源和岩浆源; 砂页岩型铅锌矿床(δ66Zn=0.85‰~0.05‰)主要为生物源。

  • 如上所述,锌同位素可为铅锌矿床的成矿物质来源提供约束。然而,不同地质储库的锌同位素组成间具有重叠的范围(图1b),使得锌同位素的解释出现复杂性和多解性。在成矿运移过程中锌同位素受到多种地质过程的影响,如沉淀过程中的瑞利分馏(Kelley et al.,2009; Gagnevin et al.,2012)、pH值和温度的变化(Mason et al.,2005)、不同性质流体混合(Pašava et al.,2014),因此不能直接使用锌同位素组成范围进行源区示踪,而需结合矿区地质实际情况综合考虑多种因素的影响。

  • 4.2.2 示踪微生物成矿

  • 微生物成矿是近年来地质学、生物学与地球化学等交叉学科的研究热点(Dong Hailiang et al.,2022)。微生物及其代谢产物直接或间接影响着成矿元素的迁移与沉淀,特别是在低温热液金属成矿过程中发挥着重要作用(Southam et al.,2005; Wilkinson,2014; Hoffmann et al.,2021)。前人研究表明,硫同位素可判别微生物是否参与了成矿过程,但无法确定微生物在成矿过程中对金属矿化的具体影响(Sim et al.,2011),而锌作为重要的生命元素,在生物活动过程中表现出显著的同位素分馏(Δ66Zn细胞-培养基=0.85‰; Köbberich et al.,2017),在示踪微生物成矿中具有巨大潜力。

  • 为揭示细菌在成矿作用过程中所扮演的具体角色,Li Menglun et al.(2019)对位于云南三江缝合带的金顶铅锌矿床的原生闪锌矿进行了S-Zn-Cd同位素研究。金顶闪锌矿硫同位素组成(δ34S=48.6‰~7.7‰)表明细菌还原硫酸盐提供了成矿所需的硫,且硫同位素组成越重说明细菌还原硫酸盐的活动性越强(Li Menglun et al.,2019)。金顶矿床闪锌矿具有极轻的锌同位素组成(δ66Zn=0.69‰),且δ66Zn与Zn/Cd呈正相关关系,与δ34S呈负相关关系,反映了成矿早期形成的闪锌矿已具有极轻的锌同位素组成(Li Menglun et al.,2019)。这种异常轻的锌同位素特征可能与较强的细菌代谢活动有关,复杂的有机物被细菌代谢降解为可溶性有机羧酸,而羧酸通常具有极强的络合性,优先和重锌同位素络合,导致成矿流体富集轻锌同位素(Li Menglun et al.,2019)。质量平衡计算表明,需成矿流体中90%的锌与细菌活动产生的有机酸络合才能产生如此轻的锌同位素组成,说明细菌代谢活动在金顶热液金属成矿过程中起着关键作用(Li Menglun et al.,2019)。该研究表明细菌代谢不仅诱导硫酸盐还原产生成矿所需的硫,还直接参与了大型热液系统中成矿金属元素(如锌)的运移,证实了锌同位素可作为示踪微生物成矿的有效工具。

  • 4.2.3 指示矿产勘查

  • 在成矿流体演化过程中,因矿物沉淀优先富集轻锌同位素,从成矿早期到成矿晚期矿物锌同位素组成越来越重(Kelley et al.,2009; 王跃等,2010; Gagnevin et al.,2012; 韦刚健等,2021)。因此,锌同位素组成可反演成矿流体运移,指示矿体的延伸方向,为矿产勘查提供理论依据。程泽锋(2015)对大兴安岭拜仁达坝-维拉斯托热液矿床的锌同位素组成进行分析,发现从拜仁达坝西矿区(δ66Zn=0.20‰~0.25‰)到拜仁达坝东矿区(δ66Zn=0.24‰~0.29‰)再到维拉斯托矿区(δ66Zn=0.23‰~0.40‰),锌同位素组成逐渐变重,表明拜仁达坝西矿区距离热源最近,东矿区次之,维拉斯托矿区处于热源的最远端。Gao Zhaofu et al.(2017)发现东升庙矿床闪锌矿和磁铁矿从西南向东北越来越富集重锌同位素,在空间上与富铜的囊状角砾岩带产状一致,证明锌同位素可作为潜在的勘探找矿的工具。Zhang Hongjie et al.(2019)发现滇黔贵成矿省(SYG)茂租铅锌矿床闪锌矿锌同位素组成(δ66Zn=0.06‰~0.23‰)整体上低于其周围矿床(图9),表明茂租铅锌矿床可能更接近滇黔贵成矿省的成矿中心。Spinks et al.(2019)对西澳大利亚的Prairie-Wolf锌铅矿床矿化区和非矿化区的铁锰结壳开展了锌同位素研究,发现位于铅锌成矿带的铁锰结壳锌同位素组成(δ66Zn=0.04‰~0.24‰)轻于非矿化区的铁锰结壳(δ66Zn=0.00‰~0.84‰),且锌同位素分馏程度(Δ66/64Zn结壳-来源=0.37‰)低于非矿化区上铁锰结壳(Δ66/64Zn结壳-来源=0.54‰),他们认为这种差异是陆相铁锰结壳对不同来源锌的吸附机制不同引起的。因此,陆相铁锰结壳的锌同位素组成可反映其下伏地质体的锌同位素特征,可作为示踪潜在金属矿床的有效工具(Spinks et al.,2019)。然而,Baumgartner et al.(2021)在麦克阿瑟河铅锌银矿床没有观察到明显的锌同位素晕和δ66Zn异常,据此他们认为锌同位素指示矿床勘查中的作用有限。但鉴于他们采样位置距离较近,且并没有分析距离主矿区较远的不含矿岩石的锌同位素组成,锌同位素是否能作为矿产勘探的指标还需要更多工作来予以评估。

  • 图9 茂租铅锌矿床与周围矿床锌同位素组成比较

  • Fig.9 Comparison of zinc isotopic composition between Maozun Pb-Zn deposit and surrounding deposits

  • 数据来源:天桥矿床(Zhou Jiaxi et al.,2014b); 天宝山矿床(何承真等,2016); 乌斯河矿床(Zhu Chuanwei et al.,2018); 杉树林矿床(Zhou Jiaxi et al.,2014a); 板板桥矿床(Zhou Jiaxi et al.,2014b); 茂租矿床(Zhang Hongjie et al.,2019

  • Data sources:Tianqiao deposit (Zhou Jiaxi et al., 2014b) ; Tianbaoshan deposit (He Chengzhen et al., 2016) ; Wusihe deposit (Zhu Chuanwei et al., 2018) ; Shanhsulin deposit (Zhou Jiaxi et al., 2014a) ; Banbanqiao deposit (Zhou Jiaxi et al., 2014b) ; Maozu deposit (Zhang Hongjie et al., 2019)

  • 4.3 锌同位素在天体演化方面的应用

  • 如前所述,锌是中等挥发性元素,具有较低的半凝聚温度(726 K; Lodders,2003),锌同位素在挥发过程中会产生显著分馏(Moynier et al.,2017; Pringle et al.,2017),而在地球高温岩浆过程中的分馏有限(Chen Heng et al.,2013; Inglis et al.,2017; Wang Zezhou et al.,2017; Huang Jian et al.,2018b)。此外,锌同位素组成不受太阳风、宇宙射线辐射等次级效应及氧化还原条件变化的影响(Dhaliwal et al.,2018)。因此,锌同位素是揭示天体起源与演化的理想钥匙。

  • 以月球为例,月球的起源与演化一直是人类密切关注的自然科学基本问题之一。一直以来,这个问题存在着较大的争议,其焦点在于月球是直接由太阳系星云物质凝聚形成(Harris et al.,1975),还是通过“碰撞”从地球分裂形成(Jacobson et al.,2014; Rufu et al.,2017)。元素及同位素可能是解决这些争端的关键。月球与地球相似的氧、钛和硅同位素组成表明两者具有同源性(Zhang Junjun et al.,2012; Dauphas,2017),然而,与地球相比,月球亏损中等挥发性元素(如钾、氯、锌)和挥发分(如H2O、CO2)(Day et al.,20142020b)。深入理解这些挥发分的亏损程度、何时亏损及亏损机制可能为月球形成与演化过程提供新的线索。

  • Moynier et al.(2006)对月壤锌同位素的研究表明锌与其他中等挥发性元素(如钾、镉)一致,在月壤中具有较重的同位素组成(δ66Zn=2.2‰~6.4‰),他们认为是太阳风溅射或微陨石撞击导致轻锌同位素逃逸所致。低钛、高钛月海玄武岩具有较为均一的重锌同位素组成(δ66Zn=1.42‰±0.50‰),表明月球存在全球尺度的锌蒸发事件,而非局部事件(Paniello et al.,2012; Kato et al.,2015),有力地支持了月球的“大碰撞”起源(Canup et al.,2001)。然而,月壳原岩(亚铁斜长岩、镁质岩套、碱性岩套)的锌同位素组成(δ66Zn=3.0‰~6.3‰)重于月海玄武岩,这种不均一性不符合大碰撞蒸发模型,而被解释为月球岩浆洋阶段的蒸发过程导致,晚期形成的月壳相对于早期月海玄武岩富集更重的锌同位素(Kato et al.,2015; Day et al.,2017)。月球岩浆洋的蒸发分馏模拟表明,岩浆洋结晶之前或结晶过程中锌的蒸发可以再现月海玄武岩的重锌同位素特征,为岩浆洋蒸发模型提供进一步支持,但该模拟结果并未排除大碰撞蒸发模型(Dhaliwal et al.,2018)。最近,Day et al.(2020b)对月海玄武岩、陨石及KREEP岩的锌同位素进行研究,发现月海玄武岩的锌损失明显大于陨石和地球,而锌同位素组成(δ66Zn=1.23‰±0.05‰)显著轻于镁质岩套(δ66Zn=2.46‰~9.27‰),表明挥发性元素亏损发生在月球形成的行星过程(“大碰撞”或岩浆洋的分异演化)。然而,代表岩浆洋高分异程度的KREEP岩锌同位素组成(δ66Zn=1.30‰±0.04‰)与月海玄武岩相似,不符合岩浆结晶过程逐渐富集重锌同位素的岩浆洋演化模型,他们认为可能是KREEP岩在形成过程中与镁铁质组分发生了混合导致δ66Zn降低(Day et al.,2020b)。但KREEP岩与月海玄武岩相似的锌同位素组成也可能指示着岩浆洋过程中锌同位素组成没有发生明显变化(Day et al.,2020b; van Kooten et al.,2020)。因此,van Kooten et al.(2020)认为月球形成过程中,岩浆洋顶部停滞的大气抑制了脱气过程的同位素分馏,早期形成的斜长岩与镁质岩套在过量脱气过程中亏损挥发元素并产生同位素分馏,而较晚期形成的月海玄武岩在较高蒸气压下挥发元素(如锌)的同位素分馏受到了抑制。月海玄武岩较镁质岩套和斜长岩有限的锌同位素变化为月球大气的存在提供了重要证据(van Kooten et al.,2020)。

  • 尽管限于目前研究的样本总量和月球相关储库的数据,人们对月球起源与演化的认识还不完善,未来也需要更多的研究工作加以限定,但锌同位素已然为月球的起源与演化提供了全新的角度和证据,在天体地质学领域展现出了巨大的应用潜力。

  • 4.4 锌同位素示踪古环境与生物协同演化

  • 锌同位素在反演古海洋环境变化方面具有以下优势:① 锌是生命必须的营养元素,生物活动会导致锌同位素分馏并被记录在海洋碳酸盐沉积物中,因而海洋碳酸盐的锌同位素组成可示踪海洋初级生产力变化(Maréchal et al.,2000; Morel et al.,2003; 朱祥坤等,2013; Köbberich et al.,2017); ② 海水与源和汇的锌同位素组成差异显著,海水锌同位素变化可指示输入源和汇变化,进而反演古海洋环境和生物协同演化过程(Yan Bin et al.,2019)。

  • 4.4.1 指示初级生产力与有机碳埋藏

  • 海洋初级生产力对深刻理解和研究海洋生态系统及其环境特征、海洋生物地球化学循环以及认识海洋在气候变化中的作用等方面都有着重要意义。Maréchal et al.(2000)对海洋铁锰结核以及海洋沉积物的锌同位素的分析研究认为海洋初级生产力的季节性变化导致了锌同位素的周期性波动,即生物的活动越旺盛,生产力越高,表层海水越亏损轻的锌同位素。他们的研究首次提出了锌同位素是示踪海洋初级生产力的优良工具。随后,Pichat et al.(2003)对东太平洋赤道附近的大洋钻孔沉积物中碳酸盐的锌同位素研究也得到了类似结论,他们认为沉积物中碳酸盐的锌同位素变化与气候变化相关,而气候变化直接控制着海洋生物的繁盛和衰退,因此锌同位素是生物活动的良好指标。Kunzmann et al.(2013)将澳大利亚新元古代盖层白云岩锌同位素的变化趋势(δ66Zn从0.47‰下降至0.07‰再上升至0.87‰)解释为冰期海洋环境演化的两阶段,第一阶段为雪球事件后强烈风化作用将轻锌同位素输送到海洋中,形成重锌同位素相对贫化的海洋表层; 第二阶段高的锌同位素值指示了海洋初级生产力恢复。随后,John et al.(2017)对同一套新元古代盖帽白云岩样品的镉同位素研究也再次证实了雪球事件后海洋初级生产力迅速恢复。最近,Yan Bin et al.(2019)通过对比中国华南新元古代的盖帽碳酸盐和澳大利亚新元古代盖帽碳酸盐的锌同位素组成,发现形成于不同沉积盆地的两个剖面具有相当一致的锌同位素变化规律,表明碳酸盐的锌同位素记录具有全球性,即锌同位素是一个全球古海洋的有效指标。Liu Sheng'ao et al.(2017)根据二叠纪末生物大灭绝后 0.36 Ma 的δ66Zn显著正漂(0.34‰升至1.21‰),认为当时海洋初级生产力处于一个快速的复苏期。

  • 有机碳埋藏是碳循环的重要环节,对全球碳平衡有着重要的意义(France-Lanord et al.,1997; 靳华龙等,2019)。Lv Yiwen et al.(2018)发现华南埃迪卡拉早期碳酸盐岩锌同位素发生了正漂(0.3‰升至1.1‰),且δ66Zn和δ13C呈正相关关系,而87Sr/86Sr相对稳定,指示了有机质埋藏的增加,表明锌同位素具有解读古海洋有机碳埋藏变化的潜力。为定量估计中元古代有机碳埋藏规模,Lv Yiwen et al.(2022)对下马岭组黑色页岩的锌同位素组成进行研究,发现在硫酸盐条件下形成的沉积物锌同位素组成(δ66Zn=0.41‰)重于碎屑沉积物(δ66Zn=0.25‰~0.35‰; Pons et al.,2011),且δ66Zn与Zr/Sc、Ca/Al无相关性,而与Zn/S呈负相关关系,表明黑色页岩重锌同位素特征与碳酸盐岩输入无关而可能是有机质埋藏增加导致。他们进一步利用锌和钼同位素质量平衡对有机质埋藏的量进行估计,结果表明中元古代埋藏有机碳约占现代总碳埋藏量的一半(Lv Yiwen et al.,2022)。

  • 4.4.2 揭示生物灭绝事件机制

  • 二叠纪末期的生物大灭绝是地质历史时期最大规模的一次灭绝事件,关于这次生物大灭绝存在很多推测与假说,其中同期大火成岩省的火山喷发被许多学者认为是主要因素之一(Reichow et al.,2009; Racki et al.,2018)。然而,除了高精度的年龄数据外并无其他直接的地球化学证据。针对这个问题,Liu Sheng'ao et al.(2017)对华南梅山二叠系—三叠系界线(PTB)碳酸盐岩的锌同位素进行分析,发现在物种大灭绝前出现了δ66Zn迅速负移(0.84‰降至0.34‰),表明大量含轻锌同位素的火山灰、热液或大火成岩省强烈风化的输入,为火山活动导致二叠纪末生物大灭绝提供了重要的理论支持。此外,Wang Xun et al.(2018)发现华南付合剖面晚泥盆世弗拉期—法门期边界(Frasnian-Famennian,F-F)碳酸盐岩δ66Zn和87Sr/86Sr的协同正漂是由碳酸盐化大陆风化的输入及气候变冷引起初级生产力增加导致,认为气候变冷导致了海洋底栖生物栖息地减少和浅水热带狭温性动物群消亡,最终造成了F-F生物大灭绝事件。

  • 4.4.3 极端缺氧事件过程中海洋锌循环

  • 海洋营养元素的生物地球化学循环对海洋生物分布与演化具有重要影响,特别是锌在驱动海洋浮游植物物种形成与适应性进化中发挥着重要作用(Mohamed et al.,2016; Ye Naihao et al.,2022),因此,海洋锌循环的深入研究有助于理解地球表层环境与生物协同演化的关系。研究表明锌同位素可示踪海洋锌来源及其通量变化(Conway et al.,2014; Vance et al.,2019),是研究海洋锌循环扰动机制的有效手段。

  • 白垩纪大洋缺氧事件2(Oceanic Anoxic Event 2,OAE 2)是显生宙最极端的碳循环和气候扰动之一(黄永建等,2008),对古环境演变与海洋锌循环关系的探究意义重大。科学家们对西特提斯洋(western Tethys)、西北特提斯洋(northwestern Tethys)、东特提斯洋(eastern Tethys)、北方洋(Boreal)和原北大西洋(proto-North Atlantic)沉积碳酸盐剖面的锌同位素进行了对比研究,发现在OAE 2前所有剖面均出现了锌同位素负漂和Zn/Ca升高(图10),且与锇同位素、汞含量和Δ199Hg异常相关,表明大火成岩省火山活动驱动的大陆风化作用和海水与基性岩相互作用增强,使富集轻锌同位素物质的输入增加,引起了海洋锌循环的全球性扰动(Sweere et al.,20182020; Chen Xi et al.,2021; Yao Hanwei et al.,2022)。随后,原北大西洋和北方海洋出现了锌同位素正漂,并伴随着Mo、TOC(总有机碳)富集与Zn/TOC降低,表明风化作用增强,营养物质输入的增加,刺激了海洋初级生产力的提高,导致有机质埋藏增加(Sweere et al.,20182020)。而特提斯洋锌同位素正漂的缺失反映了有机质埋藏主要集中在大西洋(Sweere et al.,2018; Chen Xi et al.,2021; Yao Hanwei et al.,2022)。

  • 在OAE 2 期间Plenus冷事件(Plenus Cold Event,PCE)中,仅在Eastbourne、Tarfaya、Raia Del Pedale剖面出现了锌同位素再次负漂(图10),同时低MoEF(Mo富集程度)指示了水体为氧化条件,表明PCE期间海洋锌循环扰动并非全球性规模,而只是受区域性水团控制(Sweere et al.,20182020; Yao Hanwei et al.,2022)。这一时期异常的轻锌同位素特征可能是因为来自高纬度寒冷含氧的深水团的进入使北方洋、原北大西洋和西特提斯洋发生海底再氧化,导致富集轻锌同位素的大陆边缘含有机质沉积物规模减小或(以及)好氧生物降解作用的增强引起轻锌从先前埋藏有机质中再活化(Sweere et al.,20182020)。PCE事件之后,所有剖面的锌同位素均恢复到OAE 2之前的水平(图10),说明这一时期海洋初级生产力的恢复并主导了海洋锌循环的变化。综上,结合其他地球化学指标,锌同位素为OAE 2期间海洋锌循环扰动的机制和程度提供了很好的制约。

  • 4.4.4 碳酸盐示踪古海水锌同位素

  • 如上所述,古海洋与古环境研究依赖于地质历史时期保存下来的地质信息记录,海洋碳酸盐岩因具有几乎连续地层信息及丰富的古生物化石而被广泛用于古海洋的应用研究中(John et al.,2017; Liu Sheng'ao et al.,2017; Wang Xun et al.,2018; Chen Xi et al.,2021; Lv Yiwen et al.,2022)。如4.4.1和4.4.2小节所述,海洋碳酸盐物质被用作古海水锌同位素组成的指标,这些应用研究的关键前提是碳酸盐物质准确反映了同时代海水的锌同位素特征。然而,海洋碳酸盐是否能准确反映古海洋的锌同位素组成仍需系统研究评估。

  • 为此,一些学者通过实验模拟了碳酸盐形成过程中吸附锌或锌以类质同象进入碳酸盐晶格中的锌同位素分馏行为。Dong Shuofei et al.(2016)的碳酸钙锌吸附实验研究表明,相较溶解态的锌,吸附态的锌显著富集重锌同位素。随后,无机方解石和锌共沉淀实验(Mavromatis et al.,2019)也得到了类似的结果。Mavromatis et al.(2019)研究发现方解石在沉淀生长过程中与海水间存在较为显著的锌同位素分馏(Δ66Zn方解石-溶液可达+0.6‰),且分馏程度和溶液介质的pH值存在强烈的相关性,表明碳酸盐锌同位素组成还显著受控于环境的酸碱度。

  • 图10 大洋缺氧事件2期间不同海洋沉积剖面碳酸盐锌同位素组成对比

  • Fig.10 Comparison of zinc isotopic compositions from different pelagic sections during oceanic anoxic event 2

  • 数据来源: Rehkogelgraben(Yao Hanwei et al.,2022); Gongzha(Chen Xi et al.,2021); Tarfaya(Sweere et al.,2020); Eastbourne(Sweere et al.,2018); Raia Del Pedale(Sweere et al.,2018); 阴影部分范围引用自Sweere et al.(2018,2020); Chen Xi et al.(2021); Yao Hanwei et al.(2022)

  • Data sources:Rehkogelgraben (Yao Hanwei et al., 2022) ; Gongzha (Chen Xi et al., 2021) ; Tarfaya (Sweere et al., 2020) ; Eastbourne (Sweere et al., 2018) ; Raia Del Pedale (Sweere et al., 2018) ; shaded ranges are quoted from Sweere et al. (2018, 2020) ; Chen Xi et al. (2021) ; Yao Hanwei et al. (2022)

  • 为全面评估不同类型生物成因的碳酸盐与周围浅层海水锌同位素组成之间的关系,Zhao Mingyu et al.(2021)详细研究了巴哈马、巴拿马和波斯湾的碳酸盐物质及其周围海水的锌同位素组成。他们发现骨骼碳酸盐(绿藻、双壳类、腹足类)和微生物碳酸盐(叠层石、丝状蓝藻)的锌同位素组成与海水锌同位素组成在误差范围内一致(图11),可作为海水锌同位素组成的指示剂(Zhao Mingyu et al.,2021)。相较而言,碳酸盐泥具有重锌同位素特征,和海水同位素组成之间存在约0.3‰~0.4‰的偏差(图11),作者推测可能与碳酸盐泥中方解石含量相对较高有关(Zhao Mingyu et al.,2021)。Little et al.(2021)Zhang Ting et al.(2022)研究表明冷水珊瑚和造礁珊瑚与海水之间几乎不存在锌同位素分馏(Δ66Zn珊瑚-海水<0.1‰),且珊瑚具有可精确测定的年龄而比传统碳酸盐岩更具优势,因而是记录(古)海水锌同位素组成的理想样品。Little et al.(2021)Zhang Ting et al.(2022)的研究结果和Mavromatis et al.(2019)的实验模拟结果存在明显偏差,可能是因为:① 天然海水中绝大多数锌是以有机螯合物的形式存在(Marković et al.,2017; Moynier et al.,2017),这种有机螯合物倾向络合重锌同位素(Marković et al.,2017),从而使珊瑚和海水之间并没有产生较大的锌同位素分馏(Little et al.,2021; Zhang Ting et al.,2022); ② 珊瑚钙化流体的pH值上调,随流体pH值的升高,Δ66Zn方解石-溶液呈降低趋势(Mavromatis et al.,2019),最终缩小了珊瑚与海水之间的锌同位素偏差(Zhang Ting et al.,2022)。

  • 上述研究主要针对浅部碳酸盐物质,Müsing et al.(2022)对全新世和晚白垩世的深海碳酸盐沉积物进行了锌同位素研究,发现沉积物中碳酸盐组分的δ66Zn较深部海水重约0.37‰~0.54‰,与共沉淀实验中方解石与溶液锌之间的同位素分馏程度(Δ66Zn方解石-溶液=0.58‰±0.05‰,25℃; Mavromatis et al.,2019)接近。综合来看,以方解石为主要矿物相的碳酸盐岩锌同位素组成较海水重约0.3‰~0.6‰,而以文石为主的碳酸盐岩和海水之间的分馏程度较小(Zhao Mingyu et al.,2021; Müsing et al.,2022),反映了锌进入不同碳酸盐矿物相可能存在多种机制,从而使碳酸盐岩锌同位素并不总是直接反映古海水锌同位素信息(Müsing et al.,2022)。因此,锌被文石吸附并进入晶格内部的微观机制及其对锌同位素分馏的影响还需要更多的研究。

  • 图11 不同类型碳酸盐岩的锌同位素组成(据Zhao Mingyu et al.,2021

  • Fig.11 Zinc isotopic composition of different types of carbonate rocks (after Zhao Mingyu et al., 2021)

  • 值得注意的是,海洋碳酸盐沉积物通常含有硅质碎屑岩和铁锰氧化物,这些物质的锌含量较高,通常会干扰原生碳酸盐的锌同位素信息。因此,在进行分析测试前选用合适的化学淋洗处理流程十分必要。最近,有学者通过对全新世和晚白垩世的碳酸盐沉积物的研究,系统评估了不同的清洗、溶解方式和淋洗试剂对碳酸盐的锌同位素组成的具体影响(Druce et al.2020; Little et al.,2021; Müsing et al.,2022)。这为以后利用海洋碳酸盐沉积物准确重建古海洋环境信息提供了可靠的样品前处理方案。

  • 5 总结与展望

  • 如引言所述,元素的地球化学性质是其同位素应用研究的基础。锌独有的元素性质,使锌同位素在岩石学、矿床学、环境科学、生物地球化学、医学等学科领域都有着重要的应用。本文主要从地质学(岩石学、矿床学、古生物学)和行星科学的角度总结阐述了锌同位素的应用研究进展。最近十多年间,锌同位素在天体演化、古生物与古环境协同演化、矿床学及地球深部碳循环等领域已取得丰硕的研究成果。未来锌同位素在一些交叉学科将有巨大的应用前景,但也仍存在一些问题需要进一步研究:

  • (1)地质过程通常是复杂的、多圈层之间的物理化学过程综合作用的结果,通常单一同位素体系对复杂地质过程的解读往往具有多解性。如4.1.1所述,镁同位素难以区分岩浆源中再生碳酸盐与溶解碳酸盐,而锌镁同位素联合示踪能很好地弥补单一使用镁同位素的不足(Qu Yuanru et al.,2022)。锌同位素与其他同位素体系联用能实现优势互补,可加深我们对地质过程的客观认识,是未来地球科学的研究趋势。

  • (2)尽管海洋碳酸盐已被应用于古海洋的研究中,但仍有一些问题尚不清楚。例如,分别以文石和方解石为主要矿物相的海洋碳酸盐与海水之间有着不同的锌同位素偏差,原因何在?是否与锌进入文石和方解石晶格的机制有关?锌同位素在文石和方解石之间的分馏行为如何?这些问题需要更深入研究。

  • (3)尽管在19世纪人们就认识到锌对人体的重要性,锌在医学上也被广泛应用于健康和疾病的指标变量,然而锌同位素在人体环境的组成与循环的研究程度较低,尚处于起步阶段。目前有研究表明健康细胞和肿瘤细胞之间的锌同位素组成存在显著差异(Schilling et al.,2021; Sullivan et al.,2021)。可以预见,未来锌稳定同位素有望为人体疾病监测提供新的指标。

  • (4)近十多年来,随着激光和MC-ICP-MS的联用,金属稳定同位素的微区原位分析技术得到了飞速发展,例如单矿物原位钙稳定同位素(Zhang Wen et al.,2019)分析已经得以实现,然而目前原位锌同位素的相关研究仍然较少,目前仅有一篇相关研究(Bao Zhian et al.,2022)。富锌矿物(如闪锌矿)的原位锌同位素技术的开发与应用必将为岩石学、矿物学和矿床学带来新的发展机遇。

  • 致谢:衷心感谢审稿专家和编辑部老师对本文提出的宝贵意见!

  • 参考文献

    • Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 7(5): 355~360.

    • Andersen M B, Vance D, Archer C, Anderson R F, Ellwood M J, Allen C S. 2011. The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater. Earth and Planetary Science Letters, 301(1-2): 137~145.

    • Araújo D F, Boaventura G R, Viers J, Mulholland D S, Weiss D, Araújo D, Lima B, Ruiz I, Machado W, Babinski M, Dantas E. 2016. Ion exchange chromatography and mass bias correction for accurate and precise Zn isotope ratio measurements in environmental reference materials by MC-ICP-MS. Journal of the Brazilian Chemical Society, 28(2): 225~235.

    • Archer C, Andersen M B, Cloquet C, Conway T M, Dong Shuofei, Ellwood M, Moore R, Nelson J, Rehkämper M, Rouxel O, Samanta M, Shin K C, Sohrin Y, Takano S, Wasylenki L. 2017. Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. Journal of Analytical Atomic Spectrometry, 32(2): 415~419.

    • Aubaud C, Pineau F, Hekinian R, Javoy M. 2005. Degassing of CO2 and H2O in submarine lavas from the society hotspot. Earth and Planetary Science Letters, 235(3-4): 511~527.

    • Balistrieri L S, Borrok D M, Wanty R B, Ridley W I. 2008. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta, 72(2): 311~328.

    • Bao Zhian, Nie Xiaojuan, Chen Kaiyun, Zong Chunlei, Lv Nan, Yuan Honglin. 2022. Sphalerite and zinc metal nugget reference materials for in situ zinc isotope ratio determination using fsLA-MC-ICP-MS. Geostandards and Geoanalytical Research, 46(3): 433~449.

    • Baumgartner R J, Kunzmann M, Spinks S, Bian Xiaopeng, John S G, Blaikie T N, Hu Siyu. 2021. Zinc isotope composition of the Proterozoic clastic-dominated McArthur River Zn-Pb-Ag deposit, northern Australia. Ore Geology Reviews, 139: 104545.

    • Ben Othman D, Luck J M, Bodinier J L, Arndt N T, Albarède F. 2006. Cu-Zn isotopic variations in the Earth's mantle. Geochimica et Cosmochimica Acta, 70(18): A46.

    • Beunon H, Mattielli N, Doucet L S, Moine B, Debret B. 2020. Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling. Earth-Science Reviews, 205: 103174.

    • Boyle E A, John S, Abouchami W, Adkins J F, Echegoyen-Sanz Y, Ellwood M, Flegal A R, Fornace K, Gallon C, Galer S. 2012. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnology and Oceanography: Methods, 10(9): 653~665.

    • Bridgestock L J, Williams H, Rehkämper M, Larner F, Giscard M D, Hammond S, Coles B, Andreasen R, Wood B J, Theis K J, Smith C L, Benedix G K, Schönbächler M. 2014. Unlocking the zinc isotope systematics of iron meteorites. Earth and Planetary Science Letters, 400: 153~164.

    • Bryan A L, Dong Shuofei, Wilkes E B, Wasylenki L E. 2015. Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength. Geochimica et Cosmochimica Acta, 157: 182~197.

    • Cai Minghai, Peng Zhenan, Hu Zhishu, Li Ye. 2020. Zn, He-Ar and Sr-Nd isotopic compositions of the Tongkeng Tin-polymetallic ore deposit in south China: Implication for ore genesis. Ore Geology Reviews, 124: 103605.

    • Canup R M, Asphaug E. 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412(6848): 708~712.

    • Chen Heng, Savage P S, Teng Fangzhen, Helz R T, Moynier F. 2013. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth and Planetary Science Letters, 369: 34~42.

    • Chen Jiubin, Louvat P, Gaillardet J, Birck J L. 2009. Direct separation of Zn from dilute aqueous solutions for isotope composition determination using multi-collector ICP-MS. Chemical Geology, 259(3-4): 120~130.

    • Chen Lu, Sun Ruoyu, Liu Yi, Xu Hai. 2021. Advances in the isotope geochemistry of copper and zinc in oceans. Advances in Earth Science, 36(6): 592~603 (in Chinese with English abstract).

    • Chen Sha. 2016. Zn isotope analytical method and Zn isotopic fractionation during mantle metasomatism. Master thesis of University of Science and Technology of China (in Chinese with English abstract).

    • Chen Sha, Liu Yuchen, Hu Jingya, Zhang Zhaofeng, Hou Zhenhui, Huang Fang, Yu Huimin. 2016. Zinc isotopic compositions of NIST SRM 683 and whole-rock reference materials. Geostandards and Geoanalytical Research, 40(3): 417~432.

    • Chen Xi, Sageman B B, Yao Hanwei, Liu Sheng'ao, Han Kaibo, Zou Yi, Wang Chengshan. 2021. Zinc isotope evidence for paleoenvironmental changes during Cretaceous Oceanic Anoxic Event 2. Geology, 49(4): 412~416.

    • Cheng Zefeng. 2015. Zinc isotopes and minor elements in Sphalerite from magmatic hydrothermal deposit in the middle-southern part of Da Hinggan Mountains, China. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Choi S H, Liu Sheng'ao. 2022. Zinc isotopic systematics of the Mt. Baekdu and Jeju Island intraplate basalts in Korea, and implications for mantle source lithologies. Lithos, 416: 106659.

    • Conway T M, Rosenberg A D, Adkins J F, John S G. 2013. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Analytica Chimica Acta, 793: 44~52.

    • Conway T M, John S G. 2014. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Global Biogeochemical Cycles, 28(10): 1111~1128.

    • Conway T M, John S G. 2015. The cycling of iron, zinc and cadmium in the North East Pacific Ocean—Insights from stable isotopes. Geochimica et Cosmochimica Acta, 164: 262~283.

    • Dasgupta R, Hirschmann M M, Smith N D. 2007. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island basalts. Journal of Petrology, 48(11): 2093~2124.

    • Dauphas N. 2017. The isotopic nature of the Earth's accreting material through time. Nature, 541(7638): 521~524.

    • Davis F A, Humayun M, Hirschmann M M, Cooper R S. 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochimica et Cosmochimica Acta, 104: 232~260.

    • Day J M D, Moynier F. 2014. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2024): 20130259.

    • Day J M D, Moynier F, Shearer C K. 2017. Late-stage magmatic outgassing from a volatile-depleted Moon. Proceedings of the National Academy of Sciences, 114(36): 9547~9551.

    • Day J M D, Moynier F, Sossi P A, Wang Kun, Meshik A P, Pravdivtseva O V, Pettit D R. 2020a. Moderately volatile element behaviour at high temperature determined from nuclear detonation. Geochemical Perspectives Letters, 13: 54~60.

    • Day J M D, van Kooten E M, Hofmann B A, Moynier F. 2020b. Mare basalt meteorites, magnesian-suite rocks and KREEP reveal loss of zinc during and after lunar formation. Earth and Planetary Science Letters, 531: 115998.

    • Deines P. 2002. The carbon isotope geochemistry of mantle xenoliths. Earth-Science Reviews, 58(3-4): 247~278.

    • Deng Jun, Wang Changming, Bagas L, Selvaraja V, Jeon H, Wu Bin, Yang Lifei. 2017. Insights into ore genesis of the Jinding Zn-Pb deposit, Yunnan Province, China: Evidence from Zn and in-situ S isotopes. Ore Geology Reviews, 90: 943~957.

    • Dhaliwal J K, Day J M D, Moynier F. 2018. Volatile element loss during planetary magma ocean phases. Icarus, 300: 249~260.

    • Dong Hailiang, Huang Liuqin, Zhao Linduo, Zeng Qiang, Liu Xiaolei, Sheng Yizhi, Shi Liang, Wu Geng, Jiang Hongchen, Li Fangru. 2022. A critical review of mineral-microbe interaction and coevolution: Mechanisms and applications. National Science Review, 9(10): 128.

    • Dong Shuofei, Wasylenki L E. 2016. Zinc isotope fractionation during adsorption to calcite at high and low ionic strength. Chemical Geology, 447: 70~78.

    • Doucet L S, Mattielli N, Ionov D A, Debouge W, Golovin A V. 2016. Zn isotopic heterogeneity in the mantle: A melting control? Earth and Planetary Science Letters, 451: 232~240.

    • Doucet L S, Laurent O, Mattielli N, Debouge W. 2018. Zn isotope heterogeneity in the continental lithosphere: New evidence from Archean granitoids of the northern Kaapvaal craton, South Africa. Chemical Geology, 476: 260~271.

    • Druce M, Stirling C H, Rolison J M. 2020. High-precision zinc isotopic measurement of certified reference materials relevant to the environmental, Earth, planetary and biomedical sciences. Geostandards and Geoanalytical Research, 44(4): 711~732.

    • Duan Jilin, Tang Juxing, Lin Bin. 2016. Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, South Tibet: Implications for the source of the ore-forming metals. Ore Geology Reviews, 78: 58~68.

    • Duan Xiaoxia, Zeng Qingdong, Wang Yongbin, Zhou LingLi, Chen Bin. 2017. Genesis of the Pb-Zn deposits of the Qingchengzi ore field, eastern Liaoning, China: Constraints from carbonate LA-ICPMS trace element analysis and C-O-S-Pb isotopes. Ore Geology Reviews, 89: 752~771.

    • Ducher M, Blanchard M, Balan E. 2016. Equilibrium zinc isotope fractionation in Zn-bearing minerals from first-principles calculations. Chemical Geology, 443: 87~96.

    • Fan Tingbin, Li Hao, Xu Xingwang, Dong Lianhui. 2018. Research status and progress of nonsulfide zinc-lead deposit. Northwestern Geology, 51(2): 147~159 (in Chinese with English abstract).

    • Fang Shubin, Huang Jian, Zhang Xingzhao, Ionov D A, Zhao Zifu, Huang Fang. 2022. Zinc isotope fractionation in mantle rocks and minerals, and a revised δ66Zn value for the Bulk Silicate Earth. Geochimica et Cosmochimica Acta, 338: 79~92.

    • Farsang S, Louvel M, Zhao Chaoshuai, Mezouar M, Rosa A D, Widmer R N, Feng Xiaolei, Liu Jin, Redfern S A T. 2021. Deep carbon cycle constrained by carbonate solubility. Nature Communications, 12(1): 1~9.

    • France-Lanord C, Derry L A. 1997. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390(6655): 65~67.

    • Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geoscience, 4(10): 703~706.

    • Fujii T, Moynier F, Blichert-Toft J, Albarède F. 2014. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochimica et Cosmochimica Acta, 140: 553~576.

    • Gagnevin D, Boyce A J, Barrie C D, Menuge J F, Blakeman R J. 2012. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochimica et Cosmochimica Acta, 88: 183~198.

    • Gao Zhaofu, Zhu Xiangkun, Sun Jian, Luo Zhaohua, Bao Chuang, Tang Chao, Ma Jianxiong. 2017. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China. Mineralium Deposita, 53(1): 55~65.

    • Gélabert A, Pokrovsky O S, Viers J, Schott J, Boudou A, Feurtet-Mazel A. 2006. Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation. Geochimica et Cosmochimica Acta, 70(4): 839~857.

    • Gerbode C, Dasgupta R. 2010. Carbonate-fluxed melting of MORB-like pyroxenite at 2. 9 GPa and genesis of HIMU ocean island basalts. Journal of Petrology, 51(10): 2067~2088.

    • Ghidan O Y, Loss R D. 2012. Zinc isotope fractionation analyses by thermal ionization mass spectrometry and a double spiking technique. International Journal of Mass Spectrometry, 309: 79~87.

    • Gou Wenxian, Li Wei, Ji Junfeng, Li Weiqiang. 2018. Zinc isotope fractionation during sorption onto Al Oxides: Atomic level understanding from EXAFS. Environmental Science & Technology, 52(16): 9087~9096.

    • Green T, Green D, Ringwood A E. 1967. The origin of high-alumna basalts and their relationship to quartz tholeiites and alkali basalts. Earth and Planetary Science Letters, 2(1): 41~51.

    • Guinoiseau D, Gelabert A, Moureau J, Louvat P, Benedetti M F. 2016. Zn isotope fractionation during sorption onto kaolinite. Environmental Science & Technology, 50(4): 1844~1852.

    • Guinoiseau D, Bouchez J, Gélabert A, Louvat P, Moreira-Turcq P, Filizola N, Benedetti M F. 2018. Fate of particulate copper and zinc isotopes at the Solimões-Negro river confluence, Amazon basin, Brazil. Chemical Geology, 489: 1~15.

    • Guo Haihao, Xia Ying, Wu Fei, Huang Fang. 2021. Zinc isotopic fractionation between aqueous fluids and silicate magmas: An experimental study. Geochimica et Cosmochimica Acta, 311: 226~237.

    • Harris A W, Kaula W M. 1975. A co-accretional model of satellite formation. Icarus, 24(4): 516~524.

    • Hazen R, Schiffries C. 2013. Why deep carbon? Reviews in Mineralogy and Geochemistry, 75(1): 1~6.

    • He Chengzheng, Xiao Chaoyi, Wen Hanjie, Zhou Ting, Zhu Chuanwei, Fan Haifeng. 2016. Zb-S isotopic compositions of the Tianbaoshan carbonatehosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components. Acta Petrologica Sinica, 32(11): 3394~3406 (in Chinese with English abstract).

    • He Detao, Liu, Yongsheng, Moynier F, Foley S, Chen Chunfei. 2020. Platinum group element mobilization in the mantle enhanced by recycled sedimentary carbonate. Earth and Planetary Science Letters, 541: 116262.

    • He Lianhua, Liu Jihua, Zhang Ying, Gao Jingjing, Zhu Aimei, Wang Hongmin. 2022. Determination of Cu and Zn isotopes in sediments by multi-collector inductively coupled plasma mass spectrometer. Haiyang Xuebao, 44(3): 70~80 (in Chinese with English abstract).

    • Hendry K R, Andersen M B. 2013. The zinc isotopic composition of siliceous marine sponges: Investigating nature's sediment traps. Chemical Geology, 354: 33~41.

    • Herzog G F, Moynier F, Albarède F, Berezhnoy A A. 2009. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. Geochimica et Cosmochimica Acta, 73(19): 5884~5904.

    • Hoffmann T D, Reeksting B J, Gebhard S. 2021. Bacteria-induced mineral precipitation: A mechanistic review. Microbiology, 167(4): 1~13.

    • Hu Yan, Teng Fangzhen. 2019. Optimization of analytical conditions for precise and accurate isotope analyses of Li, Mg, Fe, Cu, and Zn by MC-ICPMS. Journal of Analytical Atomic Spectrometry, 34(2): 338~346.

    • Hu Yan, Teng Fangzhen, Ionov D A. 2020. Magnesium isotopic composition of metasomatized upper sub-arc mantle and its implications to Mg cycling in subduction zones. Geochimica et Cosmochimica Acta, 278: 219~234.

    • Huang Jian, Liu Sheng'ao, Gao Yongjun, Xiao Yilin, Chen Sha. 2016. Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific. Journal of Geophysical Research: Solid Earth, 121(10): 7086~7100.

    • Huang Jian, Chen Sha, Zhang Xingchao, Huang Fang. 2018a. Effects of melt percolation on Zn isotope heterogeneity in the mantle: Constraints from peridotite massifs in Ivrea-Verbano Zone, Italian Alps. Journal of Geophysical Research: Solid Earth, 123(4): 2706~2722.

    • Huang Jian, Zhang Xingchao, Chen Sha, Tang Limen, Wörner G, Yu Huimin, Huang Fang. 2018b. Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting. Geochimica et Cosmochimica Acta, 238: 85~101.

    • Huang Tianyi, Teng Fangzhen, Rudnick R L, Chen Xinyang, Hu Yan, Liu Yongsheng, Wu Fuyuan. 2019. Heterogeneous potassium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 278: 122~136.

    • Huang Yongjian, Wang Chengshan, Gu Jian. 2008. Cretaceous oceanic anoxic events: Research progress and forthcoming prospects. Acta Geologica Sinica, 82(1): 21~30 (in Chinese with English abstract).

    • Inglis E C, Debret B, Burton K W, Millet M A, Pons M L, Dale C W, Bouilhol P, Cooper M, Nowell G M, McCoy-West A J, Williams H M. 2017. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites. Geochemistry, Geophysics, Geosystems, 18(7): 2562~2579.

    • Jacobson S A, Morbidelli A, Raymond S N, O'Brien D P, Walsh K J, Rubie D C. 2014. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature, 508(7494): 84~87.

    • Javoy M, Pineau F, Allegre C J. 1982. Carbon geodynamic cycle. Nature, 300(5888): 171~173. Jiang Yun, Chen Heng, Fegley B, Lodders K, Hsu W, Jacobsen S B, Wang Kun. 2019. Implications of K, Cu and Zn isotopes for the formation of tektites. Geochimica et Cosmochimica Acta, 259: 170~187.

    • Jin Hualong, Wan Shiming. 2019. The mechanism of Cenozoic cooling: A review of research progress. Marine Geology & Quaternary Geology, 39(5): 71~86 (in Chinese with English abstract).

    • Jin Qizhen, Huang Jian, Liu Shaochen, Huang Fang. 2020. Magnesium and zinc isotope evidence for recycled sediments and oceanic crust in the mantle sources of continental basalts from eastern China. Lithos, 370: 105627.

    • John S G, Geis R W, Saito M A, Boyle E A. 2007. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica. Limnology and Oceanography, 52(6): 2710~2714.

    • John S G, Rouxel O J, Craddock P R, Engwall A M, Boyle E A. 2008. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth and Planetary Science Letters, 269(1-2): 17~28.

    • John S G, Conway T M. 2014. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters, 394: 159~167.

    • John S G, Kunzmann M, Townsend E J, Rosenberg A D. 2017. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone. Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 202~208.

    • John S G, Helgoe J, Townsend E. 2018. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific. Marine Chemistry, 201: 256~262.

    • Juillot F, Maréchal C, Ponthieu M, Cacaly S, Morin G, Benedetti M, Hazemann J L, Proux O, Guyot F. 2008. Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite. Geochimica et Cosmochimica Acta, 72(19): 4886~4900.

    • Kato C, Moynier F, Valdes M C, Dhaliwal J K, Day J M D. 2015. Extensive volatile loss during formation and differentiation of the Moon. Nature Communications, 6(1): 1~4.

    • Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H, Okuno M, Kobayashi T. 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proceedings of the National Academy of Sciences, 110(24): 9663~9668.

    • Kelemen P B, Manning C E. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences, 112(30): E3997~E4006.

    • Kelley K, Wilkinson J, Chapman J, Crowther H, Weiss D. 2009. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska. Economic Geology, 104(6): 767~773.

    • Köbberich M, Vance D. 2017. Kinetic control on Zn isotope signatures recorded in marine diatoms. Geochimica et Cosmochimica Acta, 210: 97~113.

    • Köbberich M, Vance D. 2019. Zn isotope fractionation during uptake into marine phytoplankton: Implications for oceanic zinc isotopes. Chemical Geology, 523: 154~161.

    • Kunzmann M, Halverson G P, Sossi P A, Raub T D, Payne J L, Kirby J. 2013. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology, 41(1): 27~30.

    • Le Roux V, Dasgupta R, Lee C T A. 2011. Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 307(3-4): 395~408.

    • Lehmann B, Pašava J, Šebek O, Andronikov A, Frei R, Xu Lingang, Mao Jingwen. 2022. Early Cambrian highly metalliferous black shale in South China: Cu and Zn isotopes and a short review of other non-traditional stable isotopes. Mineralium Deposita, 57: 1167~1187.

    • Lemaitre N, de Souza G F, Archer C, Wang Ruomei, Planquette H, Sarthou G, Vance D. 2020. Pervasive sources of isotopically light zinc in the North Atlantic Ocean. Earth and Planetary Science Letters, 539: 116216.

    • Li Jilei, Klemd R, Gao Jun, Meyer M. 2014. Compositional zoning in dolomite from lawsonite-bearing eclogite (SW Tianshan, China): Evidence for prograde metamorphism during subduction of oceanic crust. American Mineralogist, 99(1): 206~217.

    • Li Jin, Tang Suohan, Zhu Xiangkun, Li Zhihong, Li Shizhen, Yan Bin, Wang Yue, Sun Jian, Shi Yao, Dong Aiguo, Belshaw N S, Zhang Xingchao, Liu Sheng'ao, Liu Jihua, Wang Deli, Jiang Shaoyong, Hou Kejun, Cohen A S. 2018. Basaltic and solution reference materials for iron, copper and zinc isotope measurements. Geostandards and Geoanalytical Research, 43(1): 163~175.

    • Li Jin, Tang Suohan, Ma Jianxiong, Zhu Xiangkun. 2021. Principles and treatment methods for metal isotopes analysis. Rock and Mineral Analysis, 40(5): 627~636 (in Chinese with English abstract).

    • Li Menglun, Liu Sheng'ao, Xue Chunji, Li Dandan. 2019. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria. Geochimica et Cosmochimica Acta, 265: 1~18.

    • Li Zhenli, Ye Lin, Hu Yusi, Huang Zhilong, Wei Chen, Wu Tao. 2020. Origin of the Fule Pb-Zn deposit, Yunnan Province, SW China: Insight from in situ S isotope analysis by NanoSIMS. Geological Magazine, 157(3): 393~404.

    • Liang Lili, Liu Congqiang, Zhu Xiangkun, Ngwenya B T, Wang Zhongliang, Song Liuting, Li Jin. 2019. Zinc isotope characteristics in the biogeochemical cycle as revealed by analysis of suspended particulate matter (SPM) in Aha Lake and Hongfeng Lake. Journal of Earth Science, 31(1): 126~140.

    • Liao Renqiang, Zhu Hongli, Deng Jianghong, Zhang Lipeng, Li He, Li Congying, Liu He, Sun Weidong. 2020. Zinc isotopic systematics of the South China Sea basalts and implications for its behavior during plate subduction. Chemical Geology, 541: 119582.

    • Liao Wenhsuan, Takano S, Yang Shunchung, Huang Kuofang, Sohrin Y, Ho Tungyuan. 2020. Zn isotope composition in the water column of the Northwestern Pacific Ocean: The importance of external sources. Global Biogeochemical Cycles, 34(1): e2019GB006379.

    • Little S H, Vance D, Walker-Brown C, Landing W M. 2014. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta, 125: 673~693.

    • Little S H, Wilson D J, Rehkämper M, Adkins J F, Robinson L F, van de Flierdt T. 2021. Cold-water corals as archives of seawater Zn and Cu isotopes. Chemical Geology, 578: 120304.

    • Liu Chenxiao. 2017. Zn isotope study on the End-Guadalupian mass extinction in the Permian. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Liu Sheng'ao, Wang Zezhou, Li Shuguang, Huang Jina, Yang Wei. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth and Planetary Science Letters, 444: 169~178.

    • Liu Sheng'ao, Wu Huaichun, Shen Shuzhong, Jiang Ganqing, Zhang Shihong, Lv Yiwen, Zhang Hua, Li Shuguang. 2017. Zinc isotope evidence for intensive magmatism immediately before the End-Permian mass extinction. Geology, 45(4): 343~346.

    • Liu Sheng'ao, Li Shuguang. 2019a. Tracing the deep carbon cycle using metal stable isotopes: Opportunities and challenges. Engineering, 5(3): 448~457.

    • Liu Sheng'ao, Liu Pingping, Lv Yiwen, Wang Zezhou, Dai Jingen. 2019b. Cu and Zn isotope fractionation during oceanic alteration: Implications for Oceanic Cu and Zn cycles. Geochimica et Cosmochimica Acta, 257: 191~205.

    • Liu Sheng'ao, Wang Zezhou, Yang Chun, Li Shuguang, Ke Shan. 2020. Mg and Zn isotope evidence for two types of mantle metasomatism and deep recycling of magnesium carbonates. Journal of Geophysical Research: Solid Earth, 125(11): e2020JB020684.

    • Liu Sheng'ao, Qu Yuanru, Wang Zezhou, Li Menglun, Yang Chun, Li Shuguang. 2022. The fate of subducting carbon tracked by Mg and Zn isotopes: A review and new perspectives. Earth-Science Reviews, 228: 104010.

    • Liu Xu. 2017. Development and geological application of MC-ICPMS for analysis and rapid separation of zinc isotopes under pressure. Master thesis of Northwest University (in Chinese with English abstract).

    • Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591(2): 1220~1247.

    • Luck J M, Othman D B, Albarède F. 2005. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et Cosmochimica Acta, 69(22): 5351~5363.

    • Lustrino M, Melluso L, Morra V. 2002. The transition from alkaline to tholeiitic magmas: A case study from the Orosei-orgali Pliocene volcanic district (NE Sardinia, Italy). Lithos, 63: 83~113.

    • Lv Yiwen, Liu Sheng'ao, Zhu Jianming, Li Shuguang. 2018. Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: Diagenesis assessment and implications. Geochimica et Cosmochimica Acta, 239: 330~345.

    • Lv Yiwen, Liu Sheng'ao. 2022. Cu and Zn isotopic evidence for the magnitude of organic burial in the Mesoproterozoic ocean. Journal of Earth Science, 33(1): 92~99.

    • Mahan B, Moynier F, Beck P, Pringle E A, Siebert J. 2018. A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents. Geochimica et Cosmochimica Acta, 220: 19~35.

    • Malusà M, Frezzotti M L, Ferrando S, Brandmayr E, Romanelli F, Panza G. 2018. Active carbon sequestration in the Alpine mantle wedge and implications for long-Term climate trends. Scientific Reports, 8(1): 1~8.

    • Maréchal C N, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156(1-4): 251~273.

    • Maréchal C N, Nicolas E, Douchet C, Albarède F. 2000. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochemistry, Geophysics, Geosystems, 1(5): 1015.

    • Maréchal C N, Albarède F. 2002. Ion-exchange fractionation of copper and zinc isotopes. Geochimica et Cosmochimica Acta, 66(9): 1499~1509.

    • Marković T, Manzoor S, Humphreys-Williams E, Kirk G J D, Vilar R, Weiss D J. 2017. Experimental determination of zinc isotope fractionation in complexes with the phytosiderophore 2'-deoxymugeneic acid (DMA) and its structural analogues, and implications for plant uptake mechanisms. Environmental Science & Technology, 51(1): 98~107.

    • Mason T F D, Weiss D J, Chapman J B, Wilkinson J, Tessalina S G, Spiro B, Horstwood M S A, Spratt J, Coles B J. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221(3-4): 170~187.

    • Matt P, Powell W, Mathur R, deLorraine W F. 2020. Zn-isotopic evidence for fluid-assisted ore remobilization at the Balmat Zinc Mine, NY. Ore Geology Reviews, 116: 103227.

    • Mavromatis V, González A G, Dietzel M, Schott J. 2019. Zinc isotope fractionation during the inorganic precipitation of calcite—Towards a new pH proxy. Geochimica et Cosmochimica Acta, 244: 99~112.

    • McCoy-West A J, Fitton J G, Pons M L, Inglis E C, Williams H M. 2018. The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites. Geochimica et Cosmochimica Acta, 238: 542~562.

    • McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3): 223~253.

    • Mohamed F, Wieser M. 2016. Determiningthe zinc effects on phytoplankton communities' growth in the Open Oceans. American Physical Society, 61.

    • Moore R E, Larner F, Coles B J, Rehkamper M. 2017. High precision zinc stable isotope measurement of certified biological reference materials using the double spike technique and multiple collector-ICP-MS. Analytical and Bioanalytical Chemistry, 409(11): 2941~2950.

    • Morel F M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300 (5621): 944~947.

    • Moynier F, Albarède F, Herzog G F. 2006. Isotopic composition of zinc, copper, and iron in lunar samples. Geochimica et Cosmochimica Acta, 70(24): 6103~6117.

    • Moynier F, Beck P, Jourdan F, Yin Qingzhu, Reimold U, Koeberl C. 2009. Isotopic fractionation of zinc in tektites. Earth and Planetary Science Letters, 277(3-4): 482~489.

    • Moynier F, Vance D, Fujii T, Savage P. 2017. The isotope geochemistry of zinc and copper. Reviews in Mineralogy and Geochemistry, 82(1): 543~600.

    • Müsing K, Clarkson M O, Vance D. 2022. The meaning of carbonate Zn isotope records: Constraints from a detailed geochemical and isotope study of bulk deep-sea carbonates. Geochimica et Cosmochimica Acta, 324: 26~43.

    • Nan Xiaoyun, Yu Huimin, Rudnick R L, Gaschnig R M, Xu Juan, Li Wangye, Zhang Qun, Jin Zhangdong, Li Xianhua, Huang Fang. 2018. Barium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 233: 33~49.

    • Okuneva T G, Karpova S V, Streletskaya M V, Soloshenko N G, Kiseleva D V. 2022. The method for Cu and Zn isotope ratio determination by MC ICP-MS using the AG MP-1 resin. Geodynamics & Tectonophysics, 13(S2): 18.

    • Pan D, Spanu L, Harrison B, Sverjensky D A, Galli G. 2013. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proceedings of the National Academy of Sciences, 110(17): 6646~6650.

    • Paniello R C, Day J M D, Moynier F. 2012. Zinc isotopic evidence for the origin of the Moon. Nature, 490(7420): 376~379.

    • Pašava J, Tornos F, Chrastný V. 2014. Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain. Mineralium Deposita, 49(7): 797~807.

    • Pichat S, Douchet C, Albarède F. 2003. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth and Planetary Science Letters, 210(1-2): 167~178.

    • Pilet S, Baker M B, Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320 (5878): 916~919.

    • Plank T, Manning C E. 2019. Subducting carbon. Nature, 574(7778): 343~352.

    • Pokrovsky O S, Viers J, Freydier R. 2005. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides. Journal of Colloid and Interface Science, 291(1): 192~200.

    • Pons M L, Quitté G, Fujii T, Rosing M T, Reynard B, Moynier F, Douchet C, Albarède F. 2011. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proceedings of the National Academy of Sciences, 108(43): 17639~17643.

    • Pons M L, Debret B, Bouilhol P, Delacour A, Williams H. 2016. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nature Communication, 7(1): 13794.

    • Pringle E A, Moynier F, Beck P, Paniello R, Hezel D C. 2017. The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules. Earth and Planetary Science Letters, 468: 62~71.

    • Qu Yuanru, Liu Sheng'ao, Wu Huaichun, Li Menglun, Tian Hengci. 2022. Tracing carbonate dissolution in subducting sediments by zinc and magnesium isotopes. Geochimica et Cosmochimica Acta, 319: 56~72.

    • Racki G, Rakociński M, Marynowski L, Wignall P B. 2018. Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved? Geology, 46(6): 543~546.

    • Reeder R J, Lamble G M, Northrup P A. 1999. XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite. American Mineralogist, 84(7-8): 1049~1060.

    • Reichow M K, Pringle M S, Al'Mukhamedov A I, Allen M B, Andreichev V L, Buslov M M, Davies C E, Fedoseev G S, Fitton J G, Inger S. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the End-Permian environmental crisis. Earth and Planetary Science Letters, 277(1): 9~20.

    • Ren Bangfang, Ling Wenli, Zhang Junbo, Zhang Yongqinga, Duan Ruichuna. 2007. Analysis methods of zinc isotope and their applications in geology. Geological Science and Technology Information, 26(6): 30~35 (in Chinese with English abstract).

    • Richter F M, Watson E B, Mendybaev R A, Teng F Z, Janney P E. 2008. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 72(1): 206~220.

    • Richter F M, Watson E B, Mendybaev R, Dauphas N, Georg B, Watkins J, Valley J. 2009. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73(14): 4250~4263.

    • Rodovská Z, Magna T, Žák K, Kato C, Savage P S, Moynier F, Skála R, Ježek J. 2017. Implications for behavior of volatile elements during impacts-zinc and copper systematics in sediments from the Ries impact structure and central European tektites. Meteoritics & Planetary Science, 52(10): 2178~2192.

    • Rosca C, König S, Pons M L, Schoenberg R. 2021. Improved protocols for Zn purification and MC-ICP-MS analyses enable determination of small-scale Zn isotope variations. Chemical Geology, 586: 120440.

    • Rosman K. 1972. A survey of the isotopic and elemental abundance of zinc. Geochimica et Cosmochimica Acta, 36(7): 801~819.

    • Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3): 267~267.

    • Rudnick R L, Gao Shan. 2003. Composition of the continental crust. The Crust, 3: 1~64.

    • Rufu R, Aharonson O, Perets H B. 2017. A multiple-impact origin for the Moon. Nature Geoscience, 10(2): 89~94.

    • Samanta M, Ellwood M J, Mortimer G E. 2016. A method for determining the isotopic composition of dissolved zinc in seawater by MC-ICP-MS with a 67Zn-68Zn double spike. Microchemical Journal, 126: 530~537.

    • Samanta M, Ellwood M J, Sinoir M, Hassler C S. 2017. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 192: 1~12.

    • Savage P S, Georg R B, Williams H M, Halliday A N. 2013. The silicon isotope composition of the upper continental crust. Geochimica et Cosmochimica Acta, 109: 384~399.

    • Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy and Geochemistry, 55(1): 65~111.

    • Schilling K, Moore R E T, Sullivan K V, Capper M S, Rehkämper M, Goddard K, Ion C, Coombes R C, Vesty-Edwards L, Lamb A D, Halliday A N, Larner F. 2021. Zinc stable isotopes in urine as diagnostic for cancer of secretory organs. Metallomics, 13(5): mfab020.

    • Schleicher N J, Dong S, Packman H, Little S H, Ochoa Gonzalez R, Najorka J, Sun Y, Weiss D J. 2020. A global assessment of copper, zinc, and lead isotopes in mineral dust sources and aerosols. Frontiers in Earth Science, 8: 167.

    • Sieber M, Conway T M, de Souza G F, Hassler C S, Ellwood M J, Vance D. 2020. Cycling of zinc and its isotopes across multiple zones of the Southern Ocean: Insights from the Antarctic Circumnavigation Expedition. Geochimica et Cosmochimica Acta, 268: 310~324.

    • Sim M S, Bosak T, Ono S. 2011. Large sulfur isotope fractionation does not require disproportionation. Science, 333(6038): 74~77.

    • Sossi P A, Halverson G P, Nebel O, Eggins S M. 2015. Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination. Geostandards and Geoanalytical Research, 39(2): 129~149.

    • Sossi P A, Nebel O, O'Neill H S C, Moynier F. 2018. Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chemical Geology, 477: 73~84.

    • Southam G, Saunders J A. 2005. The geomicrobiology of ore deposits. Economic Geology, 100(6): 1067~1084.

    • Spinks S C, Uvarova Y. 2019. Fractionation of Zn isotopes in terrestrial ferromanganese crusts and implications for tracing isotopically-heterogeneous metal sources. Chemical Geology, 529: 119314.

    • Sullivan K, Moore R, Capper M, Schilling K, Goddard K, Ion L, Layton-Matthews D, Leybourne M, Coles B, Kreissig K, Antsygina O, Coombes R, Larner F, Rehkämper M. 2021. Zinc stable isotope analysis reveals Zn dyshomeostasis in benign tumours, breast cancer, and adjacent histologically normal tissue. Metallomics, 13(6): mfab027.

    • Sweere T C, Dickson A J, Jenkyns H C, Porcelli D, Elrick M, van den Boorn S H J M, Henderson G M. 2018. Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous). Geology, 46(5): 463~466.

    • Sweere T C, Dickson A J, Jenkyns H C, Porcelli D, Henderson G M. 2020. Zinc- and cadmium-isotope evidence for redox-driven perturbations to global micronutrient cycles during Oceanic Anoxic Event 2 (Late Cretaceous). Earth and Planetary Science Letters, 546: 116427.

    • Szynkiewicz A, Borrok D M. 2016. Isotope variations of dissolved Zn in the Rio Grande watershed, USA: The role of adsorption on Zn isotope composition. Earth and Planetary Science Letters, 433: 293~302.

    • Takano S, Tanimizu M, Hirata T, Shin K C, Fukami Y, Suzuki K, Sohrin Y. 2017. A simple and rapid method for isotopic analysis of nickel, copper, and zinc in seawater using chelating extraction and anion exchange. Analytica Chimica Acta, 967: 1~11.

    • Tang Yetao, Cloquet C, Deng Tenghaobo, Sterckeman T, Echevarria G, Yang Wenjun, Morel J L, Qiu Rongliang. 2016. Zinc isotope fractionation in the hyperaccumulator Noccaea caerulescens and the nonaccumulating plant Thlaspi arvense at low and high Zn supply. Environmental Science & Technology, 50(15): 8020~8027.

    • Taylor S R, McLennan S M, McCulloch M T. 1983. Geochemistry of loess, continental crustal composition and crustal model ages. Geochimica et Cosmochimica Acta, 47(11): 1897~1905.

    • Telus M, Dauphas N, Moynier F, Tissot F L H, Teng Fangzhen, Nabelek P I, Craddock P R, Groat L A. 2012. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites. Geochimica et Cosmochimica Acta, 97: 247~265.

    • Teng Fangzhen, Hu Yan, Chauvel C. 2016. Magnesium isotope geochemistry in arc volcanism. Proceedings of the National Academy of Sciences, 113(26): 7082~7087.

    • Tu Yaojen, You Chenfeng, Kuo Tianyue. 2020. Source identification of Zn in Erren River, Taiwan: An application of Zn isotopes. Chemosphere, 248: 126044.

    • Urey H C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed): 562~581.

    • van Kooten E, Moynier F. 2019. Zinc isotope analyses of singularly small samples (<5 ng Zn): Investigating chondrule-matrix complementarity in Leoville. Geochimica et Cosmochimica Acta, 261: 248~268.

    • van Kooten E M M E, Moynier F, Day J M D. 2020. Evidence for transient atmospheres during eruptive outgassing on the Moon. The Planetary Science Journal, 1(3): 67.

    • Vance D, Little S H, Archer C, Cameron V, Andersen M B, Rijkenberg M J A, Lyons T W. 2016. The oceanic budgets of nickel and zinc isotopes: The importance of sulfidic environments as illustrated by the Black Sea. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2081): 20150294.

    • Vance D, de Souza G F, Zhao Ye, Cullen J T, Lohan M C. 2019. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific. Earth and Planetary Science Letters, 525: 115748.

    • Veeramani H, Eagling J, Jamieson-Hanes J H, Kong Lingyi, Ptacek C J, Blowes D W. 2015. Zinc isotope fractionation as an indicator of geochemical attenuation processes. Environmental Science & Technology Letters, 2(11): 314~319.

    • Wang Da, Zheng Youyue, Mathur R, Wu Song. 2018. The Fe-Zn isotopic characteristics and fractionation models: Implications for the genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet. Geofluids, 2018: 2197891.

    • Wang Da, Mathur Ryan, Wu Hongjie, Ren Huan, Ni Jinhai. 2020. The application of Fe-Cu-Zn isotopes in ore deposit research and prospecting exploration. Acta Petrologica Sinica, 36(6): 1684~1704 (in Chinese with English abstract).

    • Wang Ruomei, Archer C, Bowie A R, Vance D. 2019. Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: The impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. Chemical Geology, 511: 452~464.

    • Wang Xun, Liu Sheng'ao, Wang Zhengyong, Chen Daizhao, Zhang Liyu. 2018. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 498: 68~82.

    • Wang Yue, Zhu Xiangkun. 2010. Application of Zn isotopes to study of mineral deposits: A review. Mineral Deposits, 29(5): 843~852 (in Chinese with English abstract).

    • Wang Zezhou. 2019. Tracing the deep carbon cycle using Zn-Mg isotopes. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Wang Zezhou, Liu Sheng'ao, Liu Jingao, Huang Jian, Xiao Yan, Chu Zhuyin, Zhao Xinmiao, Tang Limei. 2017. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle. Geochimica et Cosmochimica Acta, 198: 151~167.

    • Wang Zezhou, Liu Sheng'ao, Chen Lihui, Li Shuguang, Zeng Gang. 2018. Compositional transition in natural alkaline lavas through silica-undersaturated melt-lithosphere interaction. Geology, 46(9): 771~774.

    • Wang Zezhou, Liu Sheng'ao, Liu Zhichao, Zheng Yuanchuan, Wu Fuyuan. 2020. Extreme Mg and Zn isotope fractionation recorded in the Himalayan leucogranites. Geochimica et Cosmochimica Acta, 278: 305~321.

    • Wang Zezhou, Liu Sheng'ao, Rudnick R L, Teng Fangzhen, Wang Shuijiong, Haggerty S E. 2022. Zinc isotope evidence for carbonate alteration of oceanic crustal protoliths of cratonic eclogites. Earth and Planetary Science Letters, 580: 117394.

    • Wang Zhaoxue, Liu Sheng'ao, Li Menglun, Li Shuguang. 2020. Advances on application of zinc isotope as a tracer for deep carbon cycles. Earth Science, 45(6): 1967~1976 (in Chinese with English abstract).

    • Weber T, John S, Tagliabue A, DeVries T. 2018. Biological uptake and reversible scavenging of zinc in the global ocean. Science, 361(6397): 72~76.

    • Wedepohl K. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7): 1217~1232.

    • Wei Gangjian, Huang Fang, Ma Jinlong, Deng Wenfeng, Yu Huimin, Kang Jinting, Chen Xuefei. 2022. Progress of non-traditional stable isotope geochemistry of the past decade in China. Bulletin of Mineralogy, Petrology and Geochemistry, 41(1): 1~44+223 (in Chinese with English abstract).

    • Wilkinson J J. 2014. Sediment-hosted zinc-lead mineralization: Processes and perspectives. Treatise on Geochemistry (Second Edition), 13: 219~249.

    • Wimpenny J, Marks N, Knight K, Rolison J M, Borg L, Eppich G, Badro J, Ryerson F J, Sanborn M, Huyskens M H, Yin Qingzhu. 2019. Experimental determination of Zn isotope fractionation during evaporative loss at extreme temperatures. Geochimica et Cosmochimica Acta, 259: 391~411.

    • Xiang Zuopeng, Li Bo, Wang Xinfu, Tang Guo. 2020. Characteristics of Zn isotopic composition of sphalerite in different lead-zinc deposits. Journal of Kunming University of Science and Technology (Natural Science), 45(1): 32~41 (in Chinese with English abstract).

    • Xing Kaichen. 2020. Palaeoclimate change across the Triassic-Jurassic boundary in the southern Junggar basin: Constraints from the Cu-Zn-Mg. Master thesis of Jilin University (in Chinese with English abstract).

    • Xu Chong, Zhong Hong, Hu Ruizhong, Wen Hanjie, Zhu Weiguang, Bai Zhongjie, Fan Haifeng, Li Fangfang, Zhou Ting. 2019. Sources and ore-forming fluid pathways of carbonate-hosted Pb-Zn deposits in Southwest China: Implications of Pb-Zn-S-Cd isotopic compositions. Mineralium Deposita, 55(3): 491~513.

    • Xu Lijuan, Liu Sheng'ao, Wang Zezhou, Liu Chunyang, Li Shuguang. 2019. Zinc isotopic compositions of migmatites and granitoids from the Dabie Orogen, central China: Implications for zinc isotopic fractionation during differentiation of the continental crust. Lithos, 324: 454~465.

    • Xu Lijuan, Liu Sheng'ao, Li Shuguang. 2021. Zinc isotopic behavior of mafic rocks during continental deep subduction. Geoscience Frontiers, 12(5): 101182.

    • Xu Rong, Liu Yongsheng, Wang Xiaohong, Zong Keqing, Hu Zhaochu, Chen Haihong, Zhou Lian. 2017. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen. Lithos, 274-275: 383~396.

    • Yan Bin, Zhu Xiangkun, He Xuexian, Tang Suohan. 2019. Zn isotopic evolution in early Ediacaran ocean: A global signature. Precambrian Research, 320: 472~483.

    • Yang Chun, Liu Sheng'ao. 2019. Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan large igneous province. Journal of Geophysical Research: Solid Earth, 124(12): 12537~12555.

    • Yang Chun, Liu Sheng'ao, Zhang Long, Wang Zezhou, Liu Pingping, Li Shugang. 2021. Zinc isotope fractionation between Cr-spinel and olivine and its implications for chromite crystallization during magma differentiation. Geochimica et Cosmochimica Acta, 313: 277~294.

    • Yang Jie, Barling J, Siebert C, Fietzke J, Stephens E, Halliday A N. 2017. The molybdenum isotopic compositions of I-, S- and A-type granitic suites. Geochimica et Cosmochimica Acta, 205: 168~186.

    • Yang Yuhan, Zhang Xingchao, Liu Sheng'ao, Zhou Ting, Fan Haifeng, Yu Huimin, Cheng Wenhan, Huang Fang. 2018. Calibrating NIST SRM 683 as a new international reference standard for Zn isotopes. Journal of Analytical Atomic Spectrometry, 33(10): 1777~1783.

    • Yao Hanwei, Chen Xi, Wagreich M, Grasby S E, Liu Sheng'ao, Yin Runsheng, Tostevin R, Lv Yiwen, Gu Xue, Liu Xuan, Wang Chengshan. 2022. Isotopic evidence for changes in the mercury and zinc cycles during Oceanic Anoxic Event 2 in the northwestern Tethys, Austria. Global and Planetary Change, 215: 103881.

    • Ye Naihao, Han Wentao, Toseland A, Wang Yitao, Fan Xiao, Xu Dong, van Oosterhout C, Sea of Change Consortium, Grigoriev I V, Tagliabue A, Zhang Jian, Zhang Yan, Ma Jian, Qiu Huan, Li Youxun, Zhang Xiaowen, Mock T. 2022. The role of zinc in the adaptive evolution of polar phytoplankton. Nature Ecology & Evolution, 6(7): 965~978.

    • You Can. 2020. Single-column Separation of Cu, Fe and Zn from rock matrices and their isotopic composition analysis by MC-ICP-MS. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Zeng Jie, Han Guilin. 2020. Tracing zinc sources with Zn isotope of fluvial suspended particulate matter in Zhujiang River, Southwest China. Ecological Indicators, 118: 106723.

    • Zhai Degao, Williams-Jones A E, Liu Jiajun, Tombros S F, Cook N J. 2018. Mineralogical, fluid inclusion, and multiple isotope (H-O-S-Pb) constraints on the genesis of the Sandaowanzi epithermal Au-Ag-Te deposit, NE China. Economic Geology, 113(6): 1359~1382.

    • Zhang Ganglan, Liu Yongsheng, Moynier F, Zhu Yangtao, Wang Zaicong, Hu Zhaochu, Zhang La, Li Ming, Chen Haihong. 2020. Zinc isotopic composition of the lower continental crust estimated from lower crustal xenoliths and granulite terrains. Geochimica et Cosmochimica Acta, 276: 92~108.

    • Zhang Hongjie, Xiao Chaoyi, Wen Hanjie, Zhu Xiangkun, Ye Lin, Huang Zhilong, Zhou Jiaxi, Fan Haifeng. 2019. Homogeneous Zn isotopic compositions in the Maozu Zn-Pb ore deposit in Yunnan Province, southwestern China. Ore Geology Reviews, 109: 1~10.

    • Zhang Jiaxi, Liu Yun. 2018. Zinc isotope fractionation under vaporization processes and in aqueous solutions. Acta Geochimica, 37(5): 663~675.

    • Zhang Junjun, Dauphas N, Davis A M, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nature Geoscience, 5(4): 251~255.

    • Zhang Ting, Sun Ruoyu, Liu Yi, Chen Lu, Zheng Wang, Liu Congqiang, Chen Jiubin. 2022. Copper and zinc isotope signatures in scleratinian corals: Implications for Cu and Zn cycling in modern and ancient ocean. Geochimica et Cosmochimica Acta, 317: 395~408.

    • Zhang Wen, Hu Zhaochu, Liu Yongsheng, Feng Lanping, Jiang Haishui. 2019. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collector-inductively coupled plasma mass spectrometry. Chemical Geology, 522: 16~25.

    • Zhang Xingchao, Huang Jian, Gong Yingzeng, Zhang Lili, Huang Fang. 2022. Climate influence on zinc isotope variations in a loess-paleosol sequence of the Chinese Loess Plateau. Geochimica et Cosmochimica Acta, 321: 115~132.

    • Zhao Huan. 2021. Zinc isotope fractionation during oceanic crust alteration. Master thesis of Chang'an University (in Chinese with English abstract).

    • Zhao Mingyu, Tarhan L G, Zhang Yiyue, Hood A, Asael D, Reid R P, Planavsky N J. 2021. Evaluation of shallow-water carbonates as a seawater zinc isotope archive. Earth and Planetary Science Letters, 553: 116599.

    • Zhao Ye, Vance D, Abouchami W, De Baar H J W. 2014. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochimica et Cosmochimica Acta, 125(1): 653~672.

    • Zhou Jiaxi, Huang Zhilong, Lv Zhicheng, Zhu Xiangkun, Gao Jianguo, Mirnejad H. 2014a. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, Southwest China. Ore Geology Reviews, 63: 209~225.

    • Zhou Jiaxi, Huang Zhilong, Zhou Meifu, Zhu Xiangkun, Muchez P. 2014b. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China. Ore Geology Reviews, 58: 41~54.

    • Zhu Chuanwei, Liao Shili, Wang Wei, Zhang Yuxu, Yang Tao, Fan Haifeng, Wen Hanjie. 2018. Variations in Zn and S isotope chemistry of sedimentary sphalerite, Wusihe Zn-Pb deposit, Sichuan Province. China. Ore Geology Reviews, 95: 639~648.

    • Zhu Chuanwei, Wang Jian, Zhang Jiawei, Chen Xiaocui, Fan Haifeng, Zhang Yuxu, Yang Tao, Wen Hanjie. 2020. Isotope geochemistry of Zn, Pb and S in the Ediacaran strata hosted Zn-Pb deposits in Southwest China. Ore Geology Reviews, 117: 103274.

    • Zhu Hongli, Du Long, Li Xin, Zhang Zhaofeng, Sun Weidong. 2020. Calcium isotopic fractionation during plate subduction: Constraints from back-arc basin basalts. Geochimica et Cosmochimica Acta, 270: 379~393.

    • Zhu Xiangkun, O'Nions R K, Guo Y, Belshaw N S, Rickard D. 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chemical Geology, 163(1-4): 139~149.

    • Zhu Xiangkun, Wang Yue, Yan Bin, Li Jin, Dong Aiguo, Li Zhihong, Sun Jian. 2013. Developments of non-traditional stable isotope geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651~688 (in Chinese with English abstract).

    • Zhu Yangtao, Liu Yongsheng, Xu Rong, Moynier F, Li Ming, Chen Haihong. 2021. Deciphering the origin of a basanite-alkali basalt-tholeiite suite using Zn isotopes. Chemical Geology, 585: 120585.

    • Zhu Zhiyong, Jiang Shaoyong, Yang Tao, Wei Haizhen. 2015. Improvements in Cu-Zn isotope analysis with MC-ICP-MS: A revisit of chemical purification, mass spectrometry measurement and mechanism of Cu/Zn mass bias decoupling effect. International Journal of Mass Spectrometry, 393: 34~40.

    • 陈璐, 孙若愚, 刘羿, 徐海. 2021. 海洋铜锌同位素地球化学研究进展. 地球科学进展, 36(6): 592~603.

    • 陈沙. 2016. Zn同位素分析方法及地幔交代过程中Zn同位素分馏. 中国科学技术大学硕士学位论文.

    • 程泽锋. 2015. 闪锌矿锌同位素和微量元素在岩浆热液矿床中的初步研究. 中国地质大学 (北京) 硕士学位论文.

    • 范廷宾, 李昊, 徐兴旺, 董连慧. 2018. 非硫化物型锌-铅矿床研究现状及其进展. 西北地质, 51(2): 147~159.

    • 何承真, 肖朝益, 温汉捷, 周汀, 朱传威, 樊海峰. 2016. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源. 岩石学报, 32(11): 3394~3406.

    • 何连花, 刘季花, 张颖, 高晶晶, 朱爱美, 汪虹敏. 2022. 多接收电感耦合等离子体质谱仪测定沉积物中Cu和Zn同位素. 海洋学报, 44(3): 70~80.

    • 黄永建, 王成善, 顾健. 2008. 白垩纪大洋缺氧事件: 研究进展与未来展望. 地质学报, 82(1): 21~30.

    • 靳华龙, 万世明. 2019. 新生代气候变冷机制研究进展. 海洋地质与第四纪地质, 39(5): 71~86.

    • 李津, 唐索寒, 马健雄, 朱祥坤. 2021. 金属同位素质谱分析中样品处理的基本原则与方法. 岩矿测试, 40(5): 627~636.

    • 刘晨晓. 2017. 二叠纪瓜德鲁普世末生物大灭绝的Zn同位素研究. 中国地质大学 (北京) 硕士学位论文.

    • 刘旭. 2017. 锌同位素MC-ICPMS分析与加压快速分离方法的研发及地质应用. 西北大学硕士学位论文.

    • 任邦方, 凌文黎, 张军波, 张永清, 段瑞春. 2007. Zn同位素分析方法及其地质应用. 地质科技情报, 26(6): 30~35.

    • 王达, Ryan M, 吴洪杰, 任欢, 倪金海. 2020. Fe-Cu-Zn同位素在矿床学和找矿勘查中的应用. 岩石学报, 36(6): 1684~1704.

    • 王跃, 朱祥坤. 2010. 锌同位素在矿床学中的应用: 认识与进展. 矿床地质, 29(5): 843~852.

    • 王泽洲. 2019. 深部碳循环的Zn-Mg同位素示踪. 中国地质大学 (北京) 博士学位论文.

    • 王照雪, 刘盛遨, 李孟伦, 李曙光. 2020. 深部碳循环的锌同位素示踪研究进展. 地球科学, 45(6): 1967~1976.

    • 韦刚健, 黄方, 马金龙, 邓文峰, 于慧敏, 康晋霆, 陈雪霏. 2022. 近十年我国非传统稳定同位素地球化学研究进展. 矿物岩石地球化学通报, 41(1): 1~44+223.

    • 向佐朋, 李波, 王新富, 唐果. 2020. 不同类型铅锌矿床中闪锌矿的Zn同位素组成特征. 昆明理工大学学报 (自然科学版), 45(1): 32~41.

    • 邢恺晨. 2020. 准噶尔盆地南缘三叠纪-侏罗纪之交的气候变化. 吉林大学硕士学位论文.

    • 游灿. 2020. Cu-Fe-Zn单柱分离及其同位素组成MC-ICP-MS分析方法研究. 中国地质大学 (北京) 硕士学位论文.

    • 赵欢. 2021. 洋壳蚀变过程中的Zn同位素分馏. 长安大学硕士学位论文.

    • 朱祥坤, 王跃, 闫斌, 李津, 董爱国, 李志红, 孙剑. 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651~688.

  • 参考文献

    • Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience, 7(5): 355~360.

    • Andersen M B, Vance D, Archer C, Anderson R F, Ellwood M J, Allen C S. 2011. The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater. Earth and Planetary Science Letters, 301(1-2): 137~145.

    • Araújo D F, Boaventura G R, Viers J, Mulholland D S, Weiss D, Araújo D, Lima B, Ruiz I, Machado W, Babinski M, Dantas E. 2016. Ion exchange chromatography and mass bias correction for accurate and precise Zn isotope ratio measurements in environmental reference materials by MC-ICP-MS. Journal of the Brazilian Chemical Society, 28(2): 225~235.

    • Archer C, Andersen M B, Cloquet C, Conway T M, Dong Shuofei, Ellwood M, Moore R, Nelson J, Rehkämper M, Rouxel O, Samanta M, Shin K C, Sohrin Y, Takano S, Wasylenki L. 2017. Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. Journal of Analytical Atomic Spectrometry, 32(2): 415~419.

    • Aubaud C, Pineau F, Hekinian R, Javoy M. 2005. Degassing of CO2 and H2O in submarine lavas from the society hotspot. Earth and Planetary Science Letters, 235(3-4): 511~527.

    • Balistrieri L S, Borrok D M, Wanty R B, Ridley W I. 2008. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta, 72(2): 311~328.

    • Bao Zhian, Nie Xiaojuan, Chen Kaiyun, Zong Chunlei, Lv Nan, Yuan Honglin. 2022. Sphalerite and zinc metal nugget reference materials for in situ zinc isotope ratio determination using fsLA-MC-ICP-MS. Geostandards and Geoanalytical Research, 46(3): 433~449.

    • Baumgartner R J, Kunzmann M, Spinks S, Bian Xiaopeng, John S G, Blaikie T N, Hu Siyu. 2021. Zinc isotope composition of the Proterozoic clastic-dominated McArthur River Zn-Pb-Ag deposit, northern Australia. Ore Geology Reviews, 139: 104545.

    • Ben Othman D, Luck J M, Bodinier J L, Arndt N T, Albarède F. 2006. Cu-Zn isotopic variations in the Earth's mantle. Geochimica et Cosmochimica Acta, 70(18): A46.

    • Beunon H, Mattielli N, Doucet L S, Moine B, Debret B. 2020. Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling. Earth-Science Reviews, 205: 103174.

    • Boyle E A, John S, Abouchami W, Adkins J F, Echegoyen-Sanz Y, Ellwood M, Flegal A R, Fornace K, Gallon C, Galer S. 2012. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnology and Oceanography: Methods, 10(9): 653~665.

    • Bridgestock L J, Williams H, Rehkämper M, Larner F, Giscard M D, Hammond S, Coles B, Andreasen R, Wood B J, Theis K J, Smith C L, Benedix G K, Schönbächler M. 2014. Unlocking the zinc isotope systematics of iron meteorites. Earth and Planetary Science Letters, 400: 153~164.

    • Bryan A L, Dong Shuofei, Wilkes E B, Wasylenki L E. 2015. Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength. Geochimica et Cosmochimica Acta, 157: 182~197.

    • Cai Minghai, Peng Zhenan, Hu Zhishu, Li Ye. 2020. Zn, He-Ar and Sr-Nd isotopic compositions of the Tongkeng Tin-polymetallic ore deposit in south China: Implication for ore genesis. Ore Geology Reviews, 124: 103605.

    • Canup R M, Asphaug E. 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412(6848): 708~712.

    • Chen Heng, Savage P S, Teng Fangzhen, Helz R T, Moynier F. 2013. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth and Planetary Science Letters, 369: 34~42.

    • Chen Jiubin, Louvat P, Gaillardet J, Birck J L. 2009. Direct separation of Zn from dilute aqueous solutions for isotope composition determination using multi-collector ICP-MS. Chemical Geology, 259(3-4): 120~130.

    • Chen Lu, Sun Ruoyu, Liu Yi, Xu Hai. 2021. Advances in the isotope geochemistry of copper and zinc in oceans. Advances in Earth Science, 36(6): 592~603 (in Chinese with English abstract).

    • Chen Sha. 2016. Zn isotope analytical method and Zn isotopic fractionation during mantle metasomatism. Master thesis of University of Science and Technology of China (in Chinese with English abstract).

    • Chen Sha, Liu Yuchen, Hu Jingya, Zhang Zhaofeng, Hou Zhenhui, Huang Fang, Yu Huimin. 2016. Zinc isotopic compositions of NIST SRM 683 and whole-rock reference materials. Geostandards and Geoanalytical Research, 40(3): 417~432.

    • Chen Xi, Sageman B B, Yao Hanwei, Liu Sheng'ao, Han Kaibo, Zou Yi, Wang Chengshan. 2021. Zinc isotope evidence for paleoenvironmental changes during Cretaceous Oceanic Anoxic Event 2. Geology, 49(4): 412~416.

    • Cheng Zefeng. 2015. Zinc isotopes and minor elements in Sphalerite from magmatic hydrothermal deposit in the middle-southern part of Da Hinggan Mountains, China. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Choi S H, Liu Sheng'ao. 2022. Zinc isotopic systematics of the Mt. Baekdu and Jeju Island intraplate basalts in Korea, and implications for mantle source lithologies. Lithos, 416: 106659.

    • Conway T M, Rosenberg A D, Adkins J F, John S G. 2013. A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry. Analytica Chimica Acta, 793: 44~52.

    • Conway T M, John S G. 2014. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Global Biogeochemical Cycles, 28(10): 1111~1128.

    • Conway T M, John S G. 2015. The cycling of iron, zinc and cadmium in the North East Pacific Ocean—Insights from stable isotopes. Geochimica et Cosmochimica Acta, 164: 262~283.

    • Dasgupta R, Hirschmann M M, Smith N D. 2007. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island basalts. Journal of Petrology, 48(11): 2093~2124.

    • Dauphas N. 2017. The isotopic nature of the Earth's accreting material through time. Nature, 541(7638): 521~524.

    • Davis F A, Humayun M, Hirschmann M M, Cooper R S. 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochimica et Cosmochimica Acta, 104: 232~260.

    • Day J M D, Moynier F. 2014. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2024): 20130259.

    • Day J M D, Moynier F, Shearer C K. 2017. Late-stage magmatic outgassing from a volatile-depleted Moon. Proceedings of the National Academy of Sciences, 114(36): 9547~9551.

    • Day J M D, Moynier F, Sossi P A, Wang Kun, Meshik A P, Pravdivtseva O V, Pettit D R. 2020a. Moderately volatile element behaviour at high temperature determined from nuclear detonation. Geochemical Perspectives Letters, 13: 54~60.

    • Day J M D, van Kooten E M, Hofmann B A, Moynier F. 2020b. Mare basalt meteorites, magnesian-suite rocks and KREEP reveal loss of zinc during and after lunar formation. Earth and Planetary Science Letters, 531: 115998.

    • Deines P. 2002. The carbon isotope geochemistry of mantle xenoliths. Earth-Science Reviews, 58(3-4): 247~278.

    • Deng Jun, Wang Changming, Bagas L, Selvaraja V, Jeon H, Wu Bin, Yang Lifei. 2017. Insights into ore genesis of the Jinding Zn-Pb deposit, Yunnan Province, China: Evidence from Zn and in-situ S isotopes. Ore Geology Reviews, 90: 943~957.

    • Dhaliwal J K, Day J M D, Moynier F. 2018. Volatile element loss during planetary magma ocean phases. Icarus, 300: 249~260.

    • Dong Hailiang, Huang Liuqin, Zhao Linduo, Zeng Qiang, Liu Xiaolei, Sheng Yizhi, Shi Liang, Wu Geng, Jiang Hongchen, Li Fangru. 2022. A critical review of mineral-microbe interaction and coevolution: Mechanisms and applications. National Science Review, 9(10): 128.

    • Dong Shuofei, Wasylenki L E. 2016. Zinc isotope fractionation during adsorption to calcite at high and low ionic strength. Chemical Geology, 447: 70~78.

    • Doucet L S, Mattielli N, Ionov D A, Debouge W, Golovin A V. 2016. Zn isotopic heterogeneity in the mantle: A melting control? Earth and Planetary Science Letters, 451: 232~240.

    • Doucet L S, Laurent O, Mattielli N, Debouge W. 2018. Zn isotope heterogeneity in the continental lithosphere: New evidence from Archean granitoids of the northern Kaapvaal craton, South Africa. Chemical Geology, 476: 260~271.

    • Druce M, Stirling C H, Rolison J M. 2020. High-precision zinc isotopic measurement of certified reference materials relevant to the environmental, Earth, planetary and biomedical sciences. Geostandards and Geoanalytical Research, 44(4): 711~732.

    • Duan Jilin, Tang Juxing, Lin Bin. 2016. Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit, South Tibet: Implications for the source of the ore-forming metals. Ore Geology Reviews, 78: 58~68.

    • Duan Xiaoxia, Zeng Qingdong, Wang Yongbin, Zhou LingLi, Chen Bin. 2017. Genesis of the Pb-Zn deposits of the Qingchengzi ore field, eastern Liaoning, China: Constraints from carbonate LA-ICPMS trace element analysis and C-O-S-Pb isotopes. Ore Geology Reviews, 89: 752~771.

    • Ducher M, Blanchard M, Balan E. 2016. Equilibrium zinc isotope fractionation in Zn-bearing minerals from first-principles calculations. Chemical Geology, 443: 87~96.

    • Fan Tingbin, Li Hao, Xu Xingwang, Dong Lianhui. 2018. Research status and progress of nonsulfide zinc-lead deposit. Northwestern Geology, 51(2): 147~159 (in Chinese with English abstract).

    • Fang Shubin, Huang Jian, Zhang Xingzhao, Ionov D A, Zhao Zifu, Huang Fang. 2022. Zinc isotope fractionation in mantle rocks and minerals, and a revised δ66Zn value for the Bulk Silicate Earth. Geochimica et Cosmochimica Acta, 338: 79~92.

    • Farsang S, Louvel M, Zhao Chaoshuai, Mezouar M, Rosa A D, Widmer R N, Feng Xiaolei, Liu Jin, Redfern S A T. 2021. Deep carbon cycle constrained by carbonate solubility. Nature Communications, 12(1): 1~9.

    • France-Lanord C, Derry L A. 1997. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390(6655): 65~67.

    • Frezzotti M L, Selverstone J, Sharp Z D, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geoscience, 4(10): 703~706.

    • Fujii T, Moynier F, Blichert-Toft J, Albarède F. 2014. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochimica et Cosmochimica Acta, 140: 553~576.

    • Gagnevin D, Boyce A J, Barrie C D, Menuge J F, Blakeman R J. 2012. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochimica et Cosmochimica Acta, 88: 183~198.

    • Gao Zhaofu, Zhu Xiangkun, Sun Jian, Luo Zhaohua, Bao Chuang, Tang Chao, Ma Jianxiong. 2017. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China. Mineralium Deposita, 53(1): 55~65.

    • Gélabert A, Pokrovsky O S, Viers J, Schott J, Boudou A, Feurtet-Mazel A. 2006. Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation. Geochimica et Cosmochimica Acta, 70(4): 839~857.

    • Gerbode C, Dasgupta R. 2010. Carbonate-fluxed melting of MORB-like pyroxenite at 2. 9 GPa and genesis of HIMU ocean island basalts. Journal of Petrology, 51(10): 2067~2088.

    • Ghidan O Y, Loss R D. 2012. Zinc isotope fractionation analyses by thermal ionization mass spectrometry and a double spiking technique. International Journal of Mass Spectrometry, 309: 79~87.

    • Gou Wenxian, Li Wei, Ji Junfeng, Li Weiqiang. 2018. Zinc isotope fractionation during sorption onto Al Oxides: Atomic level understanding from EXAFS. Environmental Science & Technology, 52(16): 9087~9096.

    • Green T, Green D, Ringwood A E. 1967. The origin of high-alumna basalts and their relationship to quartz tholeiites and alkali basalts. Earth and Planetary Science Letters, 2(1): 41~51.

    • Guinoiseau D, Gelabert A, Moureau J, Louvat P, Benedetti M F. 2016. Zn isotope fractionation during sorption onto kaolinite. Environmental Science & Technology, 50(4): 1844~1852.

    • Guinoiseau D, Bouchez J, Gélabert A, Louvat P, Moreira-Turcq P, Filizola N, Benedetti M F. 2018. Fate of particulate copper and zinc isotopes at the Solimões-Negro river confluence, Amazon basin, Brazil. Chemical Geology, 489: 1~15.

    • Guo Haihao, Xia Ying, Wu Fei, Huang Fang. 2021. Zinc isotopic fractionation between aqueous fluids and silicate magmas: An experimental study. Geochimica et Cosmochimica Acta, 311: 226~237.

    • Harris A W, Kaula W M. 1975. A co-accretional model of satellite formation. Icarus, 24(4): 516~524.

    • Hazen R, Schiffries C. 2013. Why deep carbon? Reviews in Mineralogy and Geochemistry, 75(1): 1~6.

    • He Chengzheng, Xiao Chaoyi, Wen Hanjie, Zhou Ting, Zhu Chuanwei, Fan Haifeng. 2016. Zb-S isotopic compositions of the Tianbaoshan carbonatehosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components. Acta Petrologica Sinica, 32(11): 3394~3406 (in Chinese with English abstract).

    • He Detao, Liu, Yongsheng, Moynier F, Foley S, Chen Chunfei. 2020. Platinum group element mobilization in the mantle enhanced by recycled sedimentary carbonate. Earth and Planetary Science Letters, 541: 116262.

    • He Lianhua, Liu Jihua, Zhang Ying, Gao Jingjing, Zhu Aimei, Wang Hongmin. 2022. Determination of Cu and Zn isotopes in sediments by multi-collector inductively coupled plasma mass spectrometer. Haiyang Xuebao, 44(3): 70~80 (in Chinese with English abstract).

    • Hendry K R, Andersen M B. 2013. The zinc isotopic composition of siliceous marine sponges: Investigating nature's sediment traps. Chemical Geology, 354: 33~41.

    • Herzog G F, Moynier F, Albarède F, Berezhnoy A A. 2009. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. Geochimica et Cosmochimica Acta, 73(19): 5884~5904.

    • Hoffmann T D, Reeksting B J, Gebhard S. 2021. Bacteria-induced mineral precipitation: A mechanistic review. Microbiology, 167(4): 1~13.

    • Hu Yan, Teng Fangzhen. 2019. Optimization of analytical conditions for precise and accurate isotope analyses of Li, Mg, Fe, Cu, and Zn by MC-ICPMS. Journal of Analytical Atomic Spectrometry, 34(2): 338~346.

    • Hu Yan, Teng Fangzhen, Ionov D A. 2020. Magnesium isotopic composition of metasomatized upper sub-arc mantle and its implications to Mg cycling in subduction zones. Geochimica et Cosmochimica Acta, 278: 219~234.

    • Huang Jian, Liu Sheng'ao, Gao Yongjun, Xiao Yilin, Chen Sha. 2016. Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific. Journal of Geophysical Research: Solid Earth, 121(10): 7086~7100.

    • Huang Jian, Chen Sha, Zhang Xingchao, Huang Fang. 2018a. Effects of melt percolation on Zn isotope heterogeneity in the mantle: Constraints from peridotite massifs in Ivrea-Verbano Zone, Italian Alps. Journal of Geophysical Research: Solid Earth, 123(4): 2706~2722.

    • Huang Jian, Zhang Xingchao, Chen Sha, Tang Limen, Wörner G, Yu Huimin, Huang Fang. 2018b. Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting. Geochimica et Cosmochimica Acta, 238: 85~101.

    • Huang Tianyi, Teng Fangzhen, Rudnick R L, Chen Xinyang, Hu Yan, Liu Yongsheng, Wu Fuyuan. 2019. Heterogeneous potassium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 278: 122~136.

    • Huang Yongjian, Wang Chengshan, Gu Jian. 2008. Cretaceous oceanic anoxic events: Research progress and forthcoming prospects. Acta Geologica Sinica, 82(1): 21~30 (in Chinese with English abstract).

    • Inglis E C, Debret B, Burton K W, Millet M A, Pons M L, Dale C W, Bouilhol P, Cooper M, Nowell G M, McCoy-West A J, Williams H M. 2017. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites. Geochemistry, Geophysics, Geosystems, 18(7): 2562~2579.

    • Jacobson S A, Morbidelli A, Raymond S N, O'Brien D P, Walsh K J, Rubie D C. 2014. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature, 508(7494): 84~87.

    • Javoy M, Pineau F, Allegre C J. 1982. Carbon geodynamic cycle. Nature, 300(5888): 171~173. Jiang Yun, Chen Heng, Fegley B, Lodders K, Hsu W, Jacobsen S B, Wang Kun. 2019. Implications of K, Cu and Zn isotopes for the formation of tektites. Geochimica et Cosmochimica Acta, 259: 170~187.

    • Jin Hualong, Wan Shiming. 2019. The mechanism of Cenozoic cooling: A review of research progress. Marine Geology & Quaternary Geology, 39(5): 71~86 (in Chinese with English abstract).

    • Jin Qizhen, Huang Jian, Liu Shaochen, Huang Fang. 2020. Magnesium and zinc isotope evidence for recycled sediments and oceanic crust in the mantle sources of continental basalts from eastern China. Lithos, 370: 105627.

    • John S G, Geis R W, Saito M A, Boyle E A. 2007. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica. Limnology and Oceanography, 52(6): 2710~2714.

    • John S G, Rouxel O J, Craddock P R, Engwall A M, Boyle E A. 2008. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth and Planetary Science Letters, 269(1-2): 17~28.

    • John S G, Conway T M. 2014. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth and Planetary Science Letters, 394: 159~167.

    • John S G, Kunzmann M, Townsend E J, Rosenberg A D. 2017. Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone. Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 202~208.

    • John S G, Helgoe J, Townsend E. 2018. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific. Marine Chemistry, 201: 256~262.

    • Juillot F, Maréchal C, Ponthieu M, Cacaly S, Morin G, Benedetti M, Hazemann J L, Proux O, Guyot F. 2008. Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite. Geochimica et Cosmochimica Acta, 72(19): 4886~4900.

    • Kato C, Moynier F, Valdes M C, Dhaliwal J K, Day J M D. 2015. Extensive volatile loss during formation and differentiation of the Moon. Nature Communications, 6(1): 1~4.

    • Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H, Okuno M, Kobayashi T. 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proceedings of the National Academy of Sciences, 110(24): 9663~9668.

    • Kelemen P B, Manning C E. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences, 112(30): E3997~E4006.

    • Kelley K, Wilkinson J, Chapman J, Crowther H, Weiss D. 2009. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska. Economic Geology, 104(6): 767~773.

    • Köbberich M, Vance D. 2017. Kinetic control on Zn isotope signatures recorded in marine diatoms. Geochimica et Cosmochimica Acta, 210: 97~113.

    • Köbberich M, Vance D. 2019. Zn isotope fractionation during uptake into marine phytoplankton: Implications for oceanic zinc isotopes. Chemical Geology, 523: 154~161.

    • Kunzmann M, Halverson G P, Sossi P A, Raub T D, Payne J L, Kirby J. 2013. Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology, 41(1): 27~30.

    • Le Roux V, Dasgupta R, Lee C T A. 2011. Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 307(3-4): 395~408.

    • Lehmann B, Pašava J, Šebek O, Andronikov A, Frei R, Xu Lingang, Mao Jingwen. 2022. Early Cambrian highly metalliferous black shale in South China: Cu and Zn isotopes and a short review of other non-traditional stable isotopes. Mineralium Deposita, 57: 1167~1187.

    • Lemaitre N, de Souza G F, Archer C, Wang Ruomei, Planquette H, Sarthou G, Vance D. 2020. Pervasive sources of isotopically light zinc in the North Atlantic Ocean. Earth and Planetary Science Letters, 539: 116216.

    • Li Jilei, Klemd R, Gao Jun, Meyer M. 2014. Compositional zoning in dolomite from lawsonite-bearing eclogite (SW Tianshan, China): Evidence for prograde metamorphism during subduction of oceanic crust. American Mineralogist, 99(1): 206~217.

    • Li Jin, Tang Suohan, Zhu Xiangkun, Li Zhihong, Li Shizhen, Yan Bin, Wang Yue, Sun Jian, Shi Yao, Dong Aiguo, Belshaw N S, Zhang Xingchao, Liu Sheng'ao, Liu Jihua, Wang Deli, Jiang Shaoyong, Hou Kejun, Cohen A S. 2018. Basaltic and solution reference materials for iron, copper and zinc isotope measurements. Geostandards and Geoanalytical Research, 43(1): 163~175.

    • Li Jin, Tang Suohan, Ma Jianxiong, Zhu Xiangkun. 2021. Principles and treatment methods for metal isotopes analysis. Rock and Mineral Analysis, 40(5): 627~636 (in Chinese with English abstract).

    • Li Menglun, Liu Sheng'ao, Xue Chunji, Li Dandan. 2019. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria. Geochimica et Cosmochimica Acta, 265: 1~18.

    • Li Zhenli, Ye Lin, Hu Yusi, Huang Zhilong, Wei Chen, Wu Tao. 2020. Origin of the Fule Pb-Zn deposit, Yunnan Province, SW China: Insight from in situ S isotope analysis by NanoSIMS. Geological Magazine, 157(3): 393~404.

    • Liang Lili, Liu Congqiang, Zhu Xiangkun, Ngwenya B T, Wang Zhongliang, Song Liuting, Li Jin. 2019. Zinc isotope characteristics in the biogeochemical cycle as revealed by analysis of suspended particulate matter (SPM) in Aha Lake and Hongfeng Lake. Journal of Earth Science, 31(1): 126~140.

    • Liao Renqiang, Zhu Hongli, Deng Jianghong, Zhang Lipeng, Li He, Li Congying, Liu He, Sun Weidong. 2020. Zinc isotopic systematics of the South China Sea basalts and implications for its behavior during plate subduction. Chemical Geology, 541: 119582.

    • Liao Wenhsuan, Takano S, Yang Shunchung, Huang Kuofang, Sohrin Y, Ho Tungyuan. 2020. Zn isotope composition in the water column of the Northwestern Pacific Ocean: The importance of external sources. Global Biogeochemical Cycles, 34(1): e2019GB006379.

    • Little S H, Vance D, Walker-Brown C, Landing W M. 2014. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta, 125: 673~693.

    • Little S H, Wilson D J, Rehkämper M, Adkins J F, Robinson L F, van de Flierdt T. 2021. Cold-water corals as archives of seawater Zn and Cu isotopes. Chemical Geology, 578: 120304.

    • Liu Chenxiao. 2017. Zn isotope study on the End-Guadalupian mass extinction in the Permian. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Liu Sheng'ao, Wang Zezhou, Li Shuguang, Huang Jina, Yang Wei. 2016. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China. Earth and Planetary Science Letters, 444: 169~178.

    • Liu Sheng'ao, Wu Huaichun, Shen Shuzhong, Jiang Ganqing, Zhang Shihong, Lv Yiwen, Zhang Hua, Li Shuguang. 2017. Zinc isotope evidence for intensive magmatism immediately before the End-Permian mass extinction. Geology, 45(4): 343~346.

    • Liu Sheng'ao, Li Shuguang. 2019a. Tracing the deep carbon cycle using metal stable isotopes: Opportunities and challenges. Engineering, 5(3): 448~457.

    • Liu Sheng'ao, Liu Pingping, Lv Yiwen, Wang Zezhou, Dai Jingen. 2019b. Cu and Zn isotope fractionation during oceanic alteration: Implications for Oceanic Cu and Zn cycles. Geochimica et Cosmochimica Acta, 257: 191~205.

    • Liu Sheng'ao, Wang Zezhou, Yang Chun, Li Shuguang, Ke Shan. 2020. Mg and Zn isotope evidence for two types of mantle metasomatism and deep recycling of magnesium carbonates. Journal of Geophysical Research: Solid Earth, 125(11): e2020JB020684.

    • Liu Sheng'ao, Qu Yuanru, Wang Zezhou, Li Menglun, Yang Chun, Li Shuguang. 2022. The fate of subducting carbon tracked by Mg and Zn isotopes: A review and new perspectives. Earth-Science Reviews, 228: 104010.

    • Liu Xu. 2017. Development and geological application of MC-ICPMS for analysis and rapid separation of zinc isotopes under pressure. Master thesis of Northwest University (in Chinese with English abstract).

    • Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591(2): 1220~1247.

    • Luck J M, Othman D B, Albarède F. 2005. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et Cosmochimica Acta, 69(22): 5351~5363.

    • Lustrino M, Melluso L, Morra V. 2002. The transition from alkaline to tholeiitic magmas: A case study from the Orosei-orgali Pliocene volcanic district (NE Sardinia, Italy). Lithos, 63: 83~113.

    • Lv Yiwen, Liu Sheng'ao, Zhu Jianming, Li Shuguang. 2018. Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: Diagenesis assessment and implications. Geochimica et Cosmochimica Acta, 239: 330~345.

    • Lv Yiwen, Liu Sheng'ao. 2022. Cu and Zn isotopic evidence for the magnitude of organic burial in the Mesoproterozoic ocean. Journal of Earth Science, 33(1): 92~99.

    • Mahan B, Moynier F, Beck P, Pringle E A, Siebert J. 2018. A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents. Geochimica et Cosmochimica Acta, 220: 19~35.

    • Malusà M, Frezzotti M L, Ferrando S, Brandmayr E, Romanelli F, Panza G. 2018. Active carbon sequestration in the Alpine mantle wedge and implications for long-Term climate trends. Scientific Reports, 8(1): 1~8.

    • Maréchal C N, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156(1-4): 251~273.

    • Maréchal C N, Nicolas E, Douchet C, Albarède F. 2000. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochemistry, Geophysics, Geosystems, 1(5): 1015.

    • Maréchal C N, Albarède F. 2002. Ion-exchange fractionation of copper and zinc isotopes. Geochimica et Cosmochimica Acta, 66(9): 1499~1509.

    • Marković T, Manzoor S, Humphreys-Williams E, Kirk G J D, Vilar R, Weiss D J. 2017. Experimental determination of zinc isotope fractionation in complexes with the phytosiderophore 2'-deoxymugeneic acid (DMA) and its structural analogues, and implications for plant uptake mechanisms. Environmental Science & Technology, 51(1): 98~107.

    • Mason T F D, Weiss D J, Chapman J B, Wilkinson J, Tessalina S G, Spiro B, Horstwood M S A, Spratt J, Coles B J. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221(3-4): 170~187.

    • Matt P, Powell W, Mathur R, deLorraine W F. 2020. Zn-isotopic evidence for fluid-assisted ore remobilization at the Balmat Zinc Mine, NY. Ore Geology Reviews, 116: 103227.

    • Mavromatis V, González A G, Dietzel M, Schott J. 2019. Zinc isotope fractionation during the inorganic precipitation of calcite—Towards a new pH proxy. Geochimica et Cosmochimica Acta, 244: 99~112.

    • McCoy-West A J, Fitton J G, Pons M L, Inglis E C, Williams H M. 2018. The Fe and Zn isotope composition of deep mantle source regions: Insights from Baffin Island picrites. Geochimica et Cosmochimica Acta, 238: 542~562.

    • McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3): 223~253.

    • Mohamed F, Wieser M. 2016. Determiningthe zinc effects on phytoplankton communities' growth in the Open Oceans. American Physical Society, 61.

    • Moore R E, Larner F, Coles B J, Rehkamper M. 2017. High precision zinc stable isotope measurement of certified biological reference materials using the double spike technique and multiple collector-ICP-MS. Analytical and Bioanalytical Chemistry, 409(11): 2941~2950.

    • Morel F M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300 (5621): 944~947.

    • Moynier F, Albarède F, Herzog G F. 2006. Isotopic composition of zinc, copper, and iron in lunar samples. Geochimica et Cosmochimica Acta, 70(24): 6103~6117.

    • Moynier F, Beck P, Jourdan F, Yin Qingzhu, Reimold U, Koeberl C. 2009. Isotopic fractionation of zinc in tektites. Earth and Planetary Science Letters, 277(3-4): 482~489.

    • Moynier F, Vance D, Fujii T, Savage P. 2017. The isotope geochemistry of zinc and copper. Reviews in Mineralogy and Geochemistry, 82(1): 543~600.

    • Müsing K, Clarkson M O, Vance D. 2022. The meaning of carbonate Zn isotope records: Constraints from a detailed geochemical and isotope study of bulk deep-sea carbonates. Geochimica et Cosmochimica Acta, 324: 26~43.

    • Nan Xiaoyun, Yu Huimin, Rudnick R L, Gaschnig R M, Xu Juan, Li Wangye, Zhang Qun, Jin Zhangdong, Li Xianhua, Huang Fang. 2018. Barium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 233: 33~49.

    • Okuneva T G, Karpova S V, Streletskaya M V, Soloshenko N G, Kiseleva D V. 2022. The method for Cu and Zn isotope ratio determination by MC ICP-MS using the AG MP-1 resin. Geodynamics & Tectonophysics, 13(S2): 18.

    • Pan D, Spanu L, Harrison B, Sverjensky D A, Galli G. 2013. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proceedings of the National Academy of Sciences, 110(17): 6646~6650.

    • Paniello R C, Day J M D, Moynier F. 2012. Zinc isotopic evidence for the origin of the Moon. Nature, 490(7420): 376~379.

    • Pašava J, Tornos F, Chrastný V. 2014. Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain. Mineralium Deposita, 49(7): 797~807.

    • Pichat S, Douchet C, Albarède F. 2003. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth and Planetary Science Letters, 210(1-2): 167~178.

    • Pilet S, Baker M B, Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320 (5878): 916~919.

    • Plank T, Manning C E. 2019. Subducting carbon. Nature, 574(7778): 343~352.

    • Pokrovsky O S, Viers J, Freydier R. 2005. Zinc stable isotope fractionation during its adsorption on oxides and hydroxides. Journal of Colloid and Interface Science, 291(1): 192~200.

    • Pons M L, Quitté G, Fujii T, Rosing M T, Reynard B, Moynier F, Douchet C, Albarède F. 2011. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life. Proceedings of the National Academy of Sciences, 108(43): 17639~17643.

    • Pons M L, Debret B, Bouilhol P, Delacour A, Williams H. 2016. Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones. Nature Communication, 7(1): 13794.

    • Pringle E A, Moynier F, Beck P, Paniello R, Hezel D C. 2017. The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules. Earth and Planetary Science Letters, 468: 62~71.

    • Qu Yuanru, Liu Sheng'ao, Wu Huaichun, Li Menglun, Tian Hengci. 2022. Tracing carbonate dissolution in subducting sediments by zinc and magnesium isotopes. Geochimica et Cosmochimica Acta, 319: 56~72.

    • Racki G, Rakociński M, Marynowski L, Wignall P B. 2018. Mercury enrichments and the Frasnian-Famennian biotic crisis: A volcanic trigger proved? Geology, 46(6): 543~546.

    • Reeder R J, Lamble G M, Northrup P A. 1999. XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite. American Mineralogist, 84(7-8): 1049~1060.

    • Reichow M K, Pringle M S, Al'Mukhamedov A I, Allen M B, Andreichev V L, Buslov M M, Davies C E, Fedoseev G S, Fitton J G, Inger S. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the End-Permian environmental crisis. Earth and Planetary Science Letters, 277(1): 9~20.

    • Ren Bangfang, Ling Wenli, Zhang Junbo, Zhang Yongqinga, Duan Ruichuna. 2007. Analysis methods of zinc isotope and their applications in geology. Geological Science and Technology Information, 26(6): 30~35 (in Chinese with English abstract).

    • Richter F M, Watson E B, Mendybaev R A, Teng F Z, Janney P E. 2008. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 72(1): 206~220.

    • Richter F M, Watson E B, Mendybaev R, Dauphas N, Georg B, Watkins J, Valley J. 2009. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73(14): 4250~4263.

    • Rodovská Z, Magna T, Žák K, Kato C, Savage P S, Moynier F, Skála R, Ježek J. 2017. Implications for behavior of volatile elements during impacts-zinc and copper systematics in sediments from the Ries impact structure and central European tektites. Meteoritics & Planetary Science, 52(10): 2178~2192.

    • Rosca C, König S, Pons M L, Schoenberg R. 2021. Improved protocols for Zn purification and MC-ICP-MS analyses enable determination of small-scale Zn isotope variations. Chemical Geology, 586: 120440.

    • Rosman K. 1972. A survey of the isotopic and elemental abundance of zinc. Geochimica et Cosmochimica Acta, 36(7): 801~819.

    • Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3): 267~267.

    • Rudnick R L, Gao Shan. 2003. Composition of the continental crust. The Crust, 3: 1~64.

    • Rufu R, Aharonson O, Perets H B. 2017. A multiple-impact origin for the Moon. Nature Geoscience, 10(2): 89~94.

    • Samanta M, Ellwood M J, Mortimer G E. 2016. A method for determining the isotopic composition of dissolved zinc in seawater by MC-ICP-MS with a 67Zn-68Zn double spike. Microchemical Journal, 126: 530~537.

    • Samanta M, Ellwood M J, Sinoir M, Hassler C S. 2017. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 192: 1~12.

    • Savage P S, Georg R B, Williams H M, Halliday A N. 2013. The silicon isotope composition of the upper continental crust. Geochimica et Cosmochimica Acta, 109: 384~399.

    • Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy and Geochemistry, 55(1): 65~111.

    • Schilling K, Moore R E T, Sullivan K V, Capper M S, Rehkämper M, Goddard K, Ion C, Coombes R C, Vesty-Edwards L, Lamb A D, Halliday A N, Larner F. 2021. Zinc stable isotopes in urine as diagnostic for cancer of secretory organs. Metallomics, 13(5): mfab020.

    • Schleicher N J, Dong S, Packman H, Little S H, Ochoa Gonzalez R, Najorka J, Sun Y, Weiss D J. 2020. A global assessment of copper, zinc, and lead isotopes in mineral dust sources and aerosols. Frontiers in Earth Science, 8: 167.

    • Sieber M, Conway T M, de Souza G F, Hassler C S, Ellwood M J, Vance D. 2020. Cycling of zinc and its isotopes across multiple zones of the Southern Ocean: Insights from the Antarctic Circumnavigation Expedition. Geochimica et Cosmochimica Acta, 268: 310~324.

    • Sim M S, Bosak T, Ono S. 2011. Large sulfur isotope fractionation does not require disproportionation. Science, 333(6038): 74~77.

    • Sossi P A, Halverson G P, Nebel O, Eggins S M. 2015. Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination. Geostandards and Geoanalytical Research, 39(2): 129~149.

    • Sossi P A, Nebel O, O'Neill H S C, Moynier F. 2018. Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chemical Geology, 477: 73~84.

    • Southam G, Saunders J A. 2005. The geomicrobiology of ore deposits. Economic Geology, 100(6): 1067~1084.

    • Spinks S C, Uvarova Y. 2019. Fractionation of Zn isotopes in terrestrial ferromanganese crusts and implications for tracing isotopically-heterogeneous metal sources. Chemical Geology, 529: 119314.

    • Sullivan K, Moore R, Capper M, Schilling K, Goddard K, Ion L, Layton-Matthews D, Leybourne M, Coles B, Kreissig K, Antsygina O, Coombes R, Larner F, Rehkämper M. 2021. Zinc stable isotope analysis reveals Zn dyshomeostasis in benign tumours, breast cancer, and adjacent histologically normal tissue. Metallomics, 13(6): mfab027.

    • Sweere T C, Dickson A J, Jenkyns H C, Porcelli D, Elrick M, van den Boorn S H J M, Henderson G M. 2018. Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous). Geology, 46(5): 463~466.

    • Sweere T C, Dickson A J, Jenkyns H C, Porcelli D, Henderson G M. 2020. Zinc- and cadmium-isotope evidence for redox-driven perturbations to global micronutrient cycles during Oceanic Anoxic Event 2 (Late Cretaceous). Earth and Planetary Science Letters, 546: 116427.

    • Szynkiewicz A, Borrok D M. 2016. Isotope variations of dissolved Zn in the Rio Grande watershed, USA: The role of adsorption on Zn isotope composition. Earth and Planetary Science Letters, 433: 293~302.

    • Takano S, Tanimizu M, Hirata T, Shin K C, Fukami Y, Suzuki K, Sohrin Y. 2017. A simple and rapid method for isotopic analysis of nickel, copper, and zinc in seawater using chelating extraction and anion exchange. Analytica Chimica Acta, 967: 1~11.

    • Tang Yetao, Cloquet C, Deng Tenghaobo, Sterckeman T, Echevarria G, Yang Wenjun, Morel J L, Qiu Rongliang. 2016. Zinc isotope fractionation in the hyperaccumulator Noccaea caerulescens and the nonaccumulating plant Thlaspi arvense at low and high Zn supply. Environmental Science & Technology, 50(15): 8020~8027.

    • Taylor S R, McLennan S M, McCulloch M T. 1983. Geochemistry of loess, continental crustal composition and crustal model ages. Geochimica et Cosmochimica Acta, 47(11): 1897~1905.

    • Telus M, Dauphas N, Moynier F, Tissot F L H, Teng Fangzhen, Nabelek P I, Craddock P R, Groat L A. 2012. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites. Geochimica et Cosmochimica Acta, 97: 247~265.

    • Teng Fangzhen, Hu Yan, Chauvel C. 2016. Magnesium isotope geochemistry in arc volcanism. Proceedings of the National Academy of Sciences, 113(26): 7082~7087.

    • Tu Yaojen, You Chenfeng, Kuo Tianyue. 2020. Source identification of Zn in Erren River, Taiwan: An application of Zn isotopes. Chemosphere, 248: 126044.

    • Urey H C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed): 562~581.

    • van Kooten E, Moynier F. 2019. Zinc isotope analyses of singularly small samples (<5 ng Zn): Investigating chondrule-matrix complementarity in Leoville. Geochimica et Cosmochimica Acta, 261: 248~268.

    • van Kooten E M M E, Moynier F, Day J M D. 2020. Evidence for transient atmospheres during eruptive outgassing on the Moon. The Planetary Science Journal, 1(3): 67.

    • Vance D, Little S H, Archer C, Cameron V, Andersen M B, Rijkenberg M J A, Lyons T W. 2016. The oceanic budgets of nickel and zinc isotopes: The importance of sulfidic environments as illustrated by the Black Sea. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2081): 20150294.

    • Vance D, de Souza G F, Zhao Ye, Cullen J T, Lohan M C. 2019. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific. Earth and Planetary Science Letters, 525: 115748.

    • Veeramani H, Eagling J, Jamieson-Hanes J H, Kong Lingyi, Ptacek C J, Blowes D W. 2015. Zinc isotope fractionation as an indicator of geochemical attenuation processes. Environmental Science & Technology Letters, 2(11): 314~319.

    • Wang Da, Zheng Youyue, Mathur R, Wu Song. 2018. The Fe-Zn isotopic characteristics and fractionation models: Implications for the genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit in southern Tibet. Geofluids, 2018: 2197891.

    • Wang Da, Mathur Ryan, Wu Hongjie, Ren Huan, Ni Jinhai. 2020. The application of Fe-Cu-Zn isotopes in ore deposit research and prospecting exploration. Acta Petrologica Sinica, 36(6): 1684~1704 (in Chinese with English abstract).

    • Wang Ruomei, Archer C, Bowie A R, Vance D. 2019. Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: The impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry. Chemical Geology, 511: 452~464.

    • Wang Xun, Liu Sheng'ao, Wang Zhengyong, Chen Daizhao, Zhang Liyu. 2018. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 498: 68~82.

    • Wang Yue, Zhu Xiangkun. 2010. Application of Zn isotopes to study of mineral deposits: A review. Mineral Deposits, 29(5): 843~852 (in Chinese with English abstract).

    • Wang Zezhou. 2019. Tracing the deep carbon cycle using Zn-Mg isotopes. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Wang Zezhou, Liu Sheng'ao, Liu Jingao, Huang Jian, Xiao Yan, Chu Zhuyin, Zhao Xinmiao, Tang Limei. 2017. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle. Geochimica et Cosmochimica Acta, 198: 151~167.

    • Wang Zezhou, Liu Sheng'ao, Chen Lihui, Li Shuguang, Zeng Gang. 2018. Compositional transition in natural alkaline lavas through silica-undersaturated melt-lithosphere interaction. Geology, 46(9): 771~774.

    • Wang Zezhou, Liu Sheng'ao, Liu Zhichao, Zheng Yuanchuan, Wu Fuyuan. 2020. Extreme Mg and Zn isotope fractionation recorded in the Himalayan leucogranites. Geochimica et Cosmochimica Acta, 278: 305~321.

    • Wang Zezhou, Liu Sheng'ao, Rudnick R L, Teng Fangzhen, Wang Shuijiong, Haggerty S E. 2022. Zinc isotope evidence for carbonate alteration of oceanic crustal protoliths of cratonic eclogites. Earth and Planetary Science Letters, 580: 117394.

    • Wang Zhaoxue, Liu Sheng'ao, Li Menglun, Li Shuguang. 2020. Advances on application of zinc isotope as a tracer for deep carbon cycles. Earth Science, 45(6): 1967~1976 (in Chinese with English abstract).

    • Weber T, John S, Tagliabue A, DeVries T. 2018. Biological uptake and reversible scavenging of zinc in the global ocean. Science, 361(6397): 72~76.

    • Wedepohl K. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7): 1217~1232.

    • Wei Gangjian, Huang Fang, Ma Jinlong, Deng Wenfeng, Yu Huimin, Kang Jinting, Chen Xuefei. 2022. Progress of non-traditional stable isotope geochemistry of the past decade in China. Bulletin of Mineralogy, Petrology and Geochemistry, 41(1): 1~44+223 (in Chinese with English abstract).

    • Wilkinson J J. 2014. Sediment-hosted zinc-lead mineralization: Processes and perspectives. Treatise on Geochemistry (Second Edition), 13: 219~249.

    • Wimpenny J, Marks N, Knight K, Rolison J M, Borg L, Eppich G, Badro J, Ryerson F J, Sanborn M, Huyskens M H, Yin Qingzhu. 2019. Experimental determination of Zn isotope fractionation during evaporative loss at extreme temperatures. Geochimica et Cosmochimica Acta, 259: 391~411.

    • Xiang Zuopeng, Li Bo, Wang Xinfu, Tang Guo. 2020. Characteristics of Zn isotopic composition of sphalerite in different lead-zinc deposits. Journal of Kunming University of Science and Technology (Natural Science), 45(1): 32~41 (in Chinese with English abstract).

    • Xing Kaichen. 2020. Palaeoclimate change across the Triassic-Jurassic boundary in the southern Junggar basin: Constraints from the Cu-Zn-Mg. Master thesis of Jilin University (in Chinese with English abstract).

    • Xu Chong, Zhong Hong, Hu Ruizhong, Wen Hanjie, Zhu Weiguang, Bai Zhongjie, Fan Haifeng, Li Fangfang, Zhou Ting. 2019. Sources and ore-forming fluid pathways of carbonate-hosted Pb-Zn deposits in Southwest China: Implications of Pb-Zn-S-Cd isotopic compositions. Mineralium Deposita, 55(3): 491~513.

    • Xu Lijuan, Liu Sheng'ao, Wang Zezhou, Liu Chunyang, Li Shuguang. 2019. Zinc isotopic compositions of migmatites and granitoids from the Dabie Orogen, central China: Implications for zinc isotopic fractionation during differentiation of the continental crust. Lithos, 324: 454~465.

    • Xu Lijuan, Liu Sheng'ao, Li Shuguang. 2021. Zinc isotopic behavior of mafic rocks during continental deep subduction. Geoscience Frontiers, 12(5): 101182.

    • Xu Rong, Liu Yongsheng, Wang Xiaohong, Zong Keqing, Hu Zhaochu, Chen Haihong, Zhou Lian. 2017. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen. Lithos, 274-275: 383~396.

    • Yan Bin, Zhu Xiangkun, He Xuexian, Tang Suohan. 2019. Zn isotopic evolution in early Ediacaran ocean: A global signature. Precambrian Research, 320: 472~483.

    • Yang Chun, Liu Sheng'ao. 2019. Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan large igneous province. Journal of Geophysical Research: Solid Earth, 124(12): 12537~12555.

    • Yang Chun, Liu Sheng'ao, Zhang Long, Wang Zezhou, Liu Pingping, Li Shugang. 2021. Zinc isotope fractionation between Cr-spinel and olivine and its implications for chromite crystallization during magma differentiation. Geochimica et Cosmochimica Acta, 313: 277~294.

    • Yang Jie, Barling J, Siebert C, Fietzke J, Stephens E, Halliday A N. 2017. The molybdenum isotopic compositions of I-, S- and A-type granitic suites. Geochimica et Cosmochimica Acta, 205: 168~186.

    • Yang Yuhan, Zhang Xingchao, Liu Sheng'ao, Zhou Ting, Fan Haifeng, Yu Huimin, Cheng Wenhan, Huang Fang. 2018. Calibrating NIST SRM 683 as a new international reference standard for Zn isotopes. Journal of Analytical Atomic Spectrometry, 33(10): 1777~1783.

    • Yao Hanwei, Chen Xi, Wagreich M, Grasby S E, Liu Sheng'ao, Yin Runsheng, Tostevin R, Lv Yiwen, Gu Xue, Liu Xuan, Wang Chengshan. 2022. Isotopic evidence for changes in the mercury and zinc cycles during Oceanic Anoxic Event 2 in the northwestern Tethys, Austria. Global and Planetary Change, 215: 103881.

    • Ye Naihao, Han Wentao, Toseland A, Wang Yitao, Fan Xiao, Xu Dong, van Oosterhout C, Sea of Change Consortium, Grigoriev I V, Tagliabue A, Zhang Jian, Zhang Yan, Ma Jian, Qiu Huan, Li Youxun, Zhang Xiaowen, Mock T. 2022. The role of zinc in the adaptive evolution of polar phytoplankton. Nature Ecology & Evolution, 6(7): 965~978.

    • You Can. 2020. Single-column Separation of Cu, Fe and Zn from rock matrices and their isotopic composition analysis by MC-ICP-MS. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Zeng Jie, Han Guilin. 2020. Tracing zinc sources with Zn isotope of fluvial suspended particulate matter in Zhujiang River, Southwest China. Ecological Indicators, 118: 106723.

    • Zhai Degao, Williams-Jones A E, Liu Jiajun, Tombros S F, Cook N J. 2018. Mineralogical, fluid inclusion, and multiple isotope (H-O-S-Pb) constraints on the genesis of the Sandaowanzi epithermal Au-Ag-Te deposit, NE China. Economic Geology, 113(6): 1359~1382.

    • Zhang Ganglan, Liu Yongsheng, Moynier F, Zhu Yangtao, Wang Zaicong, Hu Zhaochu, Zhang La, Li Ming, Chen Haihong. 2020. Zinc isotopic composition of the lower continental crust estimated from lower crustal xenoliths and granulite terrains. Geochimica et Cosmochimica Acta, 276: 92~108.

    • Zhang Hongjie, Xiao Chaoyi, Wen Hanjie, Zhu Xiangkun, Ye Lin, Huang Zhilong, Zhou Jiaxi, Fan Haifeng. 2019. Homogeneous Zn isotopic compositions in the Maozu Zn-Pb ore deposit in Yunnan Province, southwestern China. Ore Geology Reviews, 109: 1~10.

    • Zhang Jiaxi, Liu Yun. 2018. Zinc isotope fractionation under vaporization processes and in aqueous solutions. Acta Geochimica, 37(5): 663~675.

    • Zhang Junjun, Dauphas N, Davis A M, Leya I, Fedkin A. 2012. The proto-Earth as a significant source of lunar material. Nature Geoscience, 5(4): 251~255.

    • Zhang Ting, Sun Ruoyu, Liu Yi, Chen Lu, Zheng Wang, Liu Congqiang, Chen Jiubin. 2022. Copper and zinc isotope signatures in scleratinian corals: Implications for Cu and Zn cycling in modern and ancient ocean. Geochimica et Cosmochimica Acta, 317: 395~408.

    • Zhang Wen, Hu Zhaochu, Liu Yongsheng, Feng Lanping, Jiang Haishui. 2019. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collector-inductively coupled plasma mass spectrometry. Chemical Geology, 522: 16~25.

    • Zhang Xingchao, Huang Jian, Gong Yingzeng, Zhang Lili, Huang Fang. 2022. Climate influence on zinc isotope variations in a loess-paleosol sequence of the Chinese Loess Plateau. Geochimica et Cosmochimica Acta, 321: 115~132.

    • Zhao Huan. 2021. Zinc isotope fractionation during oceanic crust alteration. Master thesis of Chang'an University (in Chinese with English abstract).

    • Zhao Mingyu, Tarhan L G, Zhang Yiyue, Hood A, Asael D, Reid R P, Planavsky N J. 2021. Evaluation of shallow-water carbonates as a seawater zinc isotope archive. Earth and Planetary Science Letters, 553: 116599.

    • Zhao Ye, Vance D, Abouchami W, De Baar H J W. 2014. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochimica et Cosmochimica Acta, 125(1): 653~672.

    • Zhou Jiaxi, Huang Zhilong, Lv Zhicheng, Zhu Xiangkun, Gao Jianguo, Mirnejad H. 2014a. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, Southwest China. Ore Geology Reviews, 63: 209~225.

    • Zhou Jiaxi, Huang Zhilong, Zhou Meifu, Zhu Xiangkun, Muchez P. 2014b. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China. Ore Geology Reviews, 58: 41~54.

    • Zhu Chuanwei, Liao Shili, Wang Wei, Zhang Yuxu, Yang Tao, Fan Haifeng, Wen Hanjie. 2018. Variations in Zn and S isotope chemistry of sedimentary sphalerite, Wusihe Zn-Pb deposit, Sichuan Province. China. Ore Geology Reviews, 95: 639~648.

    • Zhu Chuanwei, Wang Jian, Zhang Jiawei, Chen Xiaocui, Fan Haifeng, Zhang Yuxu, Yang Tao, Wen Hanjie. 2020. Isotope geochemistry of Zn, Pb and S in the Ediacaran strata hosted Zn-Pb deposits in Southwest China. Ore Geology Reviews, 117: 103274.

    • Zhu Hongli, Du Long, Li Xin, Zhang Zhaofeng, Sun Weidong. 2020. Calcium isotopic fractionation during plate subduction: Constraints from back-arc basin basalts. Geochimica et Cosmochimica Acta, 270: 379~393.

    • Zhu Xiangkun, O'Nions R K, Guo Y, Belshaw N S, Rickard D. 2000. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chemical Geology, 163(1-4): 139~149.

    • Zhu Xiangkun, Wang Yue, Yan Bin, Li Jin, Dong Aiguo, Li Zhihong, Sun Jian. 2013. Developments of non-traditional stable isotope geochemistry. Bulletin of Mineralogy, Petrology and Geochemistry, 32(6): 651~688 (in Chinese with English abstract).

    • Zhu Yangtao, Liu Yongsheng, Xu Rong, Moynier F, Li Ming, Chen Haihong. 2021. Deciphering the origin of a basanite-alkali basalt-tholeiite suite using Zn isotopes. Chemical Geology, 585: 120585.

    • Zhu Zhiyong, Jiang Shaoyong, Yang Tao, Wei Haizhen. 2015. Improvements in Cu-Zn isotope analysis with MC-ICP-MS: A revisit of chemical purification, mass spectrometry measurement and mechanism of Cu/Zn mass bias decoupling effect. International Journal of Mass Spectrometry, 393: 34~40.

    • 陈璐, 孙若愚, 刘羿, 徐海. 2021. 海洋铜锌同位素地球化学研究进展. 地球科学进展, 36(6): 592~603.

    • 陈沙. 2016. Zn同位素分析方法及地幔交代过程中Zn同位素分馏. 中国科学技术大学硕士学位论文.

    • 程泽锋. 2015. 闪锌矿锌同位素和微量元素在岩浆热液矿床中的初步研究. 中国地质大学 (北京) 硕士学位论文.

    • 范廷宾, 李昊, 徐兴旺, 董连慧. 2018. 非硫化物型锌-铅矿床研究现状及其进展. 西北地质, 51(2): 147~159.

    • 何承真, 肖朝益, 温汉捷, 周汀, 朱传威, 樊海峰. 2016. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源. 岩石学报, 32(11): 3394~3406.

    • 何连花, 刘季花, 张颖, 高晶晶, 朱爱美, 汪虹敏. 2022. 多接收电感耦合等离子体质谱仪测定沉积物中Cu和Zn同位素. 海洋学报, 44(3): 70~80.

    • 黄永建, 王成善, 顾健. 2008. 白垩纪大洋缺氧事件: 研究进展与未来展望. 地质学报, 82(1): 21~30.

    • 靳华龙, 万世明. 2019. 新生代气候变冷机制研究进展. 海洋地质与第四纪地质, 39(5): 71~86.

    • 李津, 唐索寒, 马健雄, 朱祥坤. 2021. 金属同位素质谱分析中样品处理的基本原则与方法. 岩矿测试, 40(5): 627~636.

    • 刘晨晓. 2017. 二叠纪瓜德鲁普世末生物大灭绝的Zn同位素研究. 中国地质大学 (北京) 硕士学位论文.

    • 刘旭. 2017. 锌同位素MC-ICPMS分析与加压快速分离方法的研发及地质应用. 西北大学硕士学位论文.

    • 任邦方, 凌文黎, 张军波, 张永清, 段瑞春. 2007. Zn同位素分析方法及其地质应用. 地质科技情报, 26(6): 30~35.

    • 王达, Ryan M, 吴洪杰, 任欢, 倪金海. 2020. Fe-Cu-Zn同位素在矿床学和找矿勘查中的应用. 岩石学报, 36(6): 1684~1704.

    • 王跃, 朱祥坤. 2010. 锌同位素在矿床学中的应用: 认识与进展. 矿床地质, 29(5): 843~852.

    • 王泽洲. 2019. 深部碳循环的Zn-Mg同位素示踪. 中国地质大学 (北京) 博士学位论文.

    • 王照雪, 刘盛遨, 李孟伦, 李曙光. 2020. 深部碳循环的锌同位素示踪研究进展. 地球科学, 45(6): 1967~1976.

    • 韦刚健, 黄方, 马金龙, 邓文峰, 于慧敏, 康晋霆, 陈雪霏. 2022. 近十年我国非传统稳定同位素地球化学研究进展. 矿物岩石地球化学通报, 41(1): 1~44+223.

    • 向佐朋, 李波, 王新富, 唐果. 2020. 不同类型铅锌矿床中闪锌矿的Zn同位素组成特征. 昆明理工大学学报 (自然科学版), 45(1): 32~41.

    • 邢恺晨. 2020. 准噶尔盆地南缘三叠纪-侏罗纪之交的气候变化. 吉林大学硕士学位论文.

    • 游灿. 2020. Cu-Fe-Zn单柱分离及其同位素组成MC-ICP-MS分析方法研究. 中国地质大学 (北京) 硕士学位论文.

    • 赵欢. 2021. 洋壳蚀变过程中的Zn同位素分馏. 长安大学硕士学位论文.

    • 朱祥坤, 王跃, 闫斌, 李津, 董爱国, 李志红, 孙剑. 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651~688.