en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

毛景文,男,1956年生。中国工程院院士,主要从事成矿规律和矿床模型研究工作。E-mail:jingwenmao@263.net。

参考文献
Amaral G, Bushee J, Cordani U G, Kawashita K, Reynolds J H. 1967. Potassium-argon ages of alkaline rocks from southern Brazil. Geochimica et Cosmochimica Acta, 31(2): 117~142.
参考文献
Andrade F R D, Möller P, Lüders V, Dulski P, Gilg H A. 1999. Hydrothermal rare earth elements mineralization in the Barra do Itapirapuã carbonatite, southern Brazil: behaviour of selected trace elements and stable isotopes (C, O). Chemical Geology, 155(1): 91~113.
参考文献
Baatar M, Ochir G, Kynicky J, Iizumi S, Comin-Chiaramonti P. 2013. Some notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu alkaline complexes, southern Mongolia. International Journal of Geosciences, 4(8): 1200~1214.
参考文献
Badarch G, Cunningham W D, Windley B F. 2003. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of central Asia. Journal of Asian Earth Sciences. 21(1): 87~110.
参考文献
Bai Ge, Wu Chengyu, Ding Xiaoshi, Yuan Zhongxin, Huang Dianhao, Wang Peihua. 1989. The forming condition and distribution law of ionic type rare-earth ore deposit in Nanling region. Beijing: Bulletin of Institute of Mineral Deposits (in Chinese).
参考文献
Balaram V. 2019. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4): 1285~1303.
参考文献
Bao Jiabao, Zhang Lianbao, Wang Hezhong, Chen Juxing. 1996. The Discovery History of Mineral Deposits of China—Volume of Jiangxi Province. Beijing: Geological Publication House, 155~158 (in Chinese).
参考文献
Bao Zhiwei, Zhao Zhenhua. 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews, 33(3): 519~535.
参考文献
Barbosa E S R, Brod J A, Junqueira-Brod T C, Dantas E L, Cordeiro P F de O, Gomide C S. 2012. Bebedourite from its type area (Salitre I complex): a key petrogenetic series in the Late-Cretaceous Alto Paranaíba kamafugite-carbonatite-phoscorite association, Central Brazil. Lithos, 144-145: 56~72.
参考文献
Batapola N M, Dushyantha N P, Premasiri H M R, Abeysinghe A M K B, Rohitha L P S, Ratnayake N P, Dissanayake D M D O K, Ilankoon I M S K, Dharmaratne P G R. 2020. A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka. Journal of Asian Earth Sciences, 200: 104475.
参考文献
Bell K. 1998. Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks—a brief review. Journal of Petrology, 39(11-12): 1987~1996.
参考文献
Bell K, Simonetti A. 2010. Source of parental melts to carbonatites-critical isotopic constraints. Mineralogy and Petrology, 98(1): 77~89.
参考文献
Bern C R, Yesavage T, Foley N K. 2017. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: an effect of hydrothermal alteration. Journal of Geochemical Exploration, 172: 29~40.
参考文献
Borst A M, Smith M P, Finch A A, Estrade G, Villanova-de-Benavent C, Nason P, Marquis E, Horsburgh N J, Goodenough K M, Xu C, Kynický J, Geraki K. 2020. Adsorption of rare earth elements in regolith-hosted clay deposits. Nature Communications, 11(1): 4386.
参考文献
Cassidy K F, Towner R R, Ewers G R. 1997. Rare earth elements in Australia. Australian Geological Survey Organisation and Bureau of Resources Sciences, Canberra, Australia, Commercial-In-Confidence Report, November 1997.
参考文献
Castor S B. 2008. The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. The Canadian Mineralogist, 46(4): 779~806.
参考文献
Castor S B, Nason G W. 2004. Mountain pass rare earth deposit, California. In: Castor S B, Papke K G, Meeuwig R O, eds. Proceeding of 39th Forum on the Geology of Industrial Minerals. Nevada Bureau of Mines and Geology, Special Publications, 33: 68~81.
参考文献
Castor S B, Hedrick J B. 2006. Rare earth elements. Industrial Minerals and Rocks, 769~792.
参考文献
Chai Donghao, Qu Zhiming, Chen Hancheng, Cai Feng. 2001. New discovery and industrial significance of rare and rare-earth elements in Shanxi bauxite. Light Metals, (6): 6~11(in Chinese with English abstract).
参考文献
Chakhmouradian A R, Zaitsev A N. 2012. Rare earth mineralization in igneous rocks: sources and processes. Elements, 8(5): 347~353.
参考文献
Chau N D, Jadwiga P, Piestrzyński A, Duong V H, Phon L K, Pawel J. 2017. General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam. Vietnam Journal of Earth Sciences, 39(1): 14~26.
参考文献
Chen Daiyan, Wang Hua. 1997. A study on REE geochemistry of some bauxite deposits in Guizhou. Guizhou Geology, 14(2): 132~144(in Chinese with English abstract).
参考文献
Cheng Zhiguo, Zhang Zhaochong, Aibai A, Kong Weiliang, Holtz F. 2018. The role of magmatic and post-magmatic hydrothermal processes on rare-earth element mineralization: a study of the Bachu carbonatites from the Tarim Large Igneous Province, NW China. Lithos, 314-315: 71~87.
参考文献
Cordeiro P F d O, Brod J A, Palmieri M, de Oliveira C G, Barbosa E S R, Santos R V, Gaspar J C, Assis L C. 2011. The Catalão I niobium deposit, central Brazil: resources, geology and pyrochlore chemistry. Ore Geology Reviews, 41(1): 112~121.
参考文献
Dai Shifeng, Ren Deyi, Zhou Yiping, Vladimir V S, Li Dahua, Zhang Mingquan, James C H, Colin R W, Wang Xibo, Zhao L, Song Xiaolin. 2014. Coal-hosted rare metal deposits: genetic types, modes of occurrence, and utilization evaluation. Journal of China Coal Society, 39(8): 1707~1715(in Chinese with English abstract).
参考文献
Deng Wei, Wen Hanjie, Du Shengjiang, Ling Kunyue, Fan Haifeng, Zhu Chuanwei, Luo Chongguang, Yang Yang. 2022. Provenance of Late Permian Nb-Zr-REE-Ga enrichment in western Guizhou: implications for the waning volcanism of Emeishan large igneous province. Ore Geology Reviews, 150: 105160.
参考文献
Doroshkevich A G, Viladkar S G, Ripp G S, Burtseva M V. 2009. Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. The Canadian Mineralogist, 47(5): 1105~1116.
参考文献
Dostal J, Verplanck P L, Hitzman M W. 2016. Rare-metal deposits associated with alkaline/peralkaline igneous rocks. In: Verplank P L, Hizman M W, eds. Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Reviews in Economic Geology, 18: 33~54.
参考文献
Dushyantha N, Batapola N, Ilankoon I M S K, Rohitha S, Premasiri R, Abeysinghe B, Ratnayake N, Dissanayake K. 2020. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122: 103521.
参考文献
Emsbo P, McLaughlin P I, Breit G N, du Bray E A, Koenig A E. 2015. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Research, 27(2): 776~785.
参考文献
Emsbo P, McLaughlin P I, Bray E A d, Anderson E D, Vandenbroucke T R A, Zielinski R A, Verplanck P L, Hitzman M W. 2016. Rare earth elements in sedimentary phosphorite deposits: a global assessment. Society of Economic Geologists, (18): 101~113.
参考文献
Fan Hongrui, Hu Fangfang, Yang Kuifeng, Pirajno F, Liu Xuan, Wang Kaiyi. 2014. Integrated U-Pb and Sm-Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan Obo REE deposit, northern China. Ore Geology Reviews, 63: 510~519.
参考文献
Fan Hongrui, Niu Hecai, Li Xiaochun, Yang Kuifeng, Yang Zhanfeng, Wang Qiwei. 2020. The types, ore genesis and resource perspective of endogenic REE deposits in China. Chinese Science Bulletin, 65(33): 3778~3793 (in Chinese with English abstract).
参考文献
Frost B R, Frost C D. 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49(11): 1955~1969.
参考文献
Gerel O, Munkhtsengel B, Enkhtuvshin H, Iizumi S. 2005. Mushgai Khudag and Bayan Khoshuu volcanic-plutonic alkaline complexes with REE±Ta, Nb, Fe carbonatite mineralization. In: Seltmann R, Ger-el O, Kirwin D J, eds. Geodynamics Metallogeny of Mongolia with a Special Emphasis on Copper Gold Deposits. IAGOD Guide-book Series, 11: 215~221.
参考文献
German C R, Holliday B P, Elderfield H. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553~3558. Gomes C B, Ruperti E, Morbidelli L. 1990. Carbonatite complexes from Brazil: a review. Journal of South American Earth Sciences, 3(1): 51~63.
参考文献
Guo Zhengfu, Hertogen J, Liu Jiaqi, PasteelS P, Boven A, Punzalan L, He Huaiyu, Luo Xiangjun, Zhang Wenhua. 2005. Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis. Journal of Petrology, 46(1): 33~78.
参考文献
Gupta C, Krishnamurthy N. 2005. Extractive metallurgy of rare earths CRC press. Boca Raton, Florida, 65: 70~75.
参考文献
Halter W E, Webster J D. 2004. The magmatic to hydrothermal transition and its bearing on ore-forming systems. Chemical Geology, 210(1): 1~6.
参考文献
Harmer R E, Nex P A M. 2016. Rare earth deposits of Africa. International Union of Geological Sciences, 39(2): 381~406.
参考文献
Hong Jun, Ji Wenhua, Yang Xiaoyong, Khan T, Wang Rui, Li Wenyuan, Zhang Huishan. 2019. Origin of a Miocene alkaline-carbonatite complex in the Dunkeldik area of Pamir, Tajikistan: petrology, geochemistry, LA-ICP-MS zircon U-Pb dating, and Hf isotope analysis. Ore Geology Reviews, 107: 820~836.
参考文献
Hou Zengqian, Tian Shihong, Yuan Zhongxin, Xie Yuling, Yin Shuping, Yi Longsheng, Fei Hongcai, Yang Zhiming. 2006. The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication. Earth and Planetary Science Letters, 244(1): 234~250.
参考文献
Hu Peng. 2009. Development and utilization status of rare earth resources in foreign countries. World Nonferrous Metals, 9: 72~74(in Chinese with English abstract).
参考文献
Huang Dianhao, Wang Yichang, Nie Fengjun, Jiang Xiujie. 1985. A new type of molybdenum deposit—geological characteristics and metal-logenic mechanism of the Huanglongpu carbonatite vein-type of molybdenum(lead) deposit, Shanxi. Acta Geologica Sinica, 59(3): 241~257+275 (in Chinese with English abstract).
参考文献
Huang Dianhao, Wu Chengyu, Han Jiuzhu. 1988. REE geochemistry and mineralization characteristics of the Zudong and Guanxi granites, Jiangxi Province. Acta Geologica Sinica, 62(4): 311~328 (in Chinese with English abstract).
参考文献
Huang He, Zhang Zhaochong, Santosh M, Zhang Dongyang. 2014. Geochronology, geochemistry and metallogenic implications of the Boziguo'er rare metal-bearing peralkaline granitic intrusion in south Tianshan, NW China. Ore Geology Reviews, 61: 157~174.
参考文献
Huang Hui, Pan Jiayong, Hong Binyue, Kang Qingqing, Zhong Fujun. 2020. EPMA chemical U-Th-Pb dating of uraninite in Huayangchuan U-polymetallic deposit of Shaanxi Province and its geological significance. Mineral Deposits, 39(2): 351~368 (in Chinese with English abstract).
参考文献
Huang Yufeng, He Hongping, Liang Xiaoliang, Bao Zhiwei, Tan Wei, Ma Lingya, Zhu Jianxi, Huang Jian, Wang Heng. 2021. Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China. Ore Geology Reviews, 135: 104173.
参考文献
Hutchinson M, Slezak P, Wendlandt R, Hitzman M. 2022. Rare earth element enrichment in the weathering profile of the Bull Hill carbonatite at Bear Lodge, Wyoming, USA. Economic Geology, 117(4): 813~831.
参考文献
Jackson W D, Christiansen G. 1993. International strategic minerals inventory summary report: rare-earth oxides. Circular 930-N. US Geological Survey, Reston, VA, 68.
参考文献
Jia Yuheng, Liu Yan. 2020. Factors controlling the generation and diversity of giant carbonatite-related rare earth element deposits: insights from the Mianning-Dechang belt. Ore Geology Reviews, 121: 103472.
参考文献
Johnson J P, Cross K C. 1995. U-Pb geochronological constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Economic Geology, 90(5): 1046~1063.
参考文献
Jones A P, Genge M, Carmody L. 2013. Carbonate melts and carbonatites. Reviews in Mineralogy and Geochemistry, 75(1): 289~322.
参考文献
Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H. 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4(8): 535~539.
参考文献
Kim N, Cheong A Cs, Yi K, Jeong Y J, Koh S M. 2016. Post-collisional carbonatite-hosted rare earth element mineralization in the Hongcheon area, central Gyeonggi massif, Korea: ion microprobe monazite U-Th-Pb geochronology and Nd-Sr isotope geochemistry. Ore Geology Reviews, 79: 78~87.
参考文献
Konopleva N G, Ivanyuk G Y, Pakhomovsky Y A, Yakovenchuk V N, Mikhailova Y A, Selivanova E A. 2015. Typochemistry of rinkite and products of its alteration in the Khibiny Alkaline pluton, Kola Peninsula. Geology of Ore Deposits, 57(7): 614~625.
参考文献
Kovalenko V I, Tsaryeva G M, Goreglyad A V, Yarmolyuk V V, Troitsky V A, Hervig R L, Farmer G L. 1995. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Economic Geology, 90(3): 530~547.
参考文献
Kovalenko V I, Yarmolyuk V V, Kovach V P, Kotov A B, Kozakov I K, Salnikova E B, Larin A M. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. Journal of Asian Earth Sciences, 23(5): 605~627.
参考文献
Lan Tingguang, Fan Hongrui, Hu Fangfang, Yang Kuifeng, Wang Yong. 2011. Genesis of the Weishan REE deposit, Shandong Province: evidences from Rb-Sr isochron age, LA-MC-ICP-MS Nd isotopic compositions and fluid inclusions. Geochimica, 40(5): 428~442 (in Chinese with English abstract).
参考文献
Le Maitre R W. 2002. Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press.
参考文献
Lehmann B, Nakai Si, Höhndorf A, Brinckmann J, Dulski P, Hein U F, Masuda A. 1994. REE mineralization at Gakara, Burundi: evidence for anomalous upper mantle in the western Rift Valley. Geochimica et Cosmochimica Acta, 58(2): 985~992.
参考文献
Li Jiankang, Yuan Zhongxin, Bai Ge, Chen Yuchuan, Wang Denghong, Ying Llijuan, Zhang Jian. 2009. Ore-forming fluid evolvement and its controlling to REE (Ag) mineralizing in the Weishan deposit, Shandong. Journal of Mineralogy and Petrology, 29(3): 60~68 (in Chinese with English abstract).
参考文献
Li Xiaochun, Zhou Meifu, Li Shihu, Zhang Xiaoran, Fan Hongrui, Groves D I, Xuan Dac N. 2022. An unusual early eocene, syncollisional carbonatite complex and related rare earth element deposit in the India-Asia collision zone, northwestern Vietnam. Economic Geology, doi. org/10. 5382/econgeo. 4969.
参考文献
Li Y H M, Zhao W W, Zhou Meifu. 2017. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model. Journal of Asian Earth Sciences, 148: 65~95.
参考文献
Linnen R, Samson I, Williams-Jones A, Chakhmouradian A. 2014. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. Treatise on Geochemistry (Second Edition), 13: 543~568.
参考文献
Linnen R L, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen R L, Samson I M, eds. Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada, GAC, Short Course, 45~67.
参考文献
Liu Rong, Wang Rucheng, Lu Xiancai, Li Juan. 2016. Nano-sized rare earth minerals from granite-related weathering-type REE deposits in southern Jiangxi. Acta Petrologica et Mineralogica, 35(4): 617~626 (in Chinese with English abstract).
参考文献
Liu Peng, Gu Xiangping, Zhang Wenlan, Hu Huan, Chen Xiaodan, Wang Xiaolin, Song Wenlei, Yu Miao, Nigel J C. 2022. Jingwenite-(Y) from the Yushui Cu deposit, South China: the first occurrence of a V-HREE-bearing silicate mineral. American Mineralogist, doi. org/10. 2138/am-2022-8373.
参考文献
Liu Yan, Chen Zhenyu, Yang Zhusen, Sun Xiang, Zhu Zhimin, Zhang Qichao. 2015a. Mineralogical and geochemical studies of brecciated ores in the Dalucao REE deposit, Sichuan Province, southwestern China. Ore Geology Reviews, 70: 613~636.
参考文献
Liu Yan, Hou Zengqian, Tian Shihong, Zhang Qichao, Zhu Zhimin, Liu Jianhui. 2015b. Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan Province, southwestern China: constraints on the giant REE mineralization belt and its regional geological setting. Ore Geology Reviews, 64: 554~568.
参考文献
Long K R. 2011. The future of rare earth elements—will these high-tech industry elements continue in short supply? US Geological Survey.
参考文献
Long K R, Van Gosen B S, Foley N K, Cordier D. 2012. The principal rare earth elements depositsof the United States: a summary of domestic deposits and a global perspective. Scientific Investigations Report No. 2010-5220 (U. S. Geological Survey, Reston, VA, 2010) Available at http: //pubs. usgs. gov/sir/2010/5220/.
参考文献
Lu Lei, Wang Denghong, Wang Chenghui, Zhao Zhi, Feng Wenjie, Xu Xiaochun, Yu Feng. 2019. Mineralization regularity of ion-adsorption type REE deposits on Lincang granite in Yunnan Province. Acta Geologica Sinica, 93(6): 1466~1478(in Chinese with English abstract).
参考文献
Mancheri N A, Sprecher B, Bailey G, Ge J, Tukker A. 2019. Effect of Chinese policies on rare earth supply chain resilience. Resources, Conservation and Recycling, 142: 101~112.
参考文献
Mao Jingwen, Pirajno F, Cook N. 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings—an introduction to the special issue. Ore Geology Reviews, 43(1): 1~7.
参考文献
Mao Jingwen, Zhou Zhenhua, Feng Yuchuan, Wang Yitian, Zhang Changqing, Peng Huijuan, Yu Miao. 2012. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting. Geology in China, 39(6): 1437~1471 (in Chinese with English abstract).
参考文献
Mao Jingwen, Yang Zongxi, Xie Guiqing, Yuan Shunda, Zhou Zhenhua. 2019a. Critical minerals: international trends and thinking. Mineral Deposits, 38(4): 689~698 (in Chinese with English abstract).
参考文献
Mao Jingwen, Yuan Shunda, Xie Guiqing, Song Shiwei, Zhou Qi, Gao Yongbao, Liu Xiang, Fu Xiaofang, Cao Jing, Zeng Zailin, Li Tongguo, Fan Xiyin. 2019b. New advances on metallogenic studies and exploration on critical minerals of China in 21st century. Mineral Deposits, 38(5): 935~969 (in Chinese with English abstract).
参考文献
Mao Jingwen, Liu Peng, Goldfarb R J, Goryachev N A, Pirajno F, Zheng Wei, Zhou Meifu, Zhao Chao, Xie Guiqing, Yuan Shunda, Liu Min. 2021. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia. Ore Geology Reviews, 136: 104270.
参考文献
Martin L H J, Schmidt M W, Mattsson H B, Guenther D. 2013. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1~3 GPa. Journal of Petrology, 54(11): 2301~2338.
参考文献
Martin R F, De Vito C. 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. The Canadian Mineralogist, 43(6): 2027~2048.
参考文献
McLemore V T. 2015. Rare earth elements (REE) deposits in New Mexico: update. New Mexico Geology, 37(3): 59~69.
参考文献
Mentani T. 2012. So-called “ion-adsorption type” REE deposits found in weathered crust of ilmenite-series granite in northern Vietnam: Master thesis of University of Tokyo.
参考文献
Neary C R, Highley D E. 1984. The economic importance of the rare earth elements. In: Henderson P, ed. Developments in Geochemistry. Amsterdam: Elsevier, 423~466.
参考文献
Ngwenya B T. 1994. Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: processes at the fluid/rock interface. Geochimica et Cosmochimica Acta, 58(9): 2061~2072.
参考文献
Oreskes N, Einaudi M T. 1990. Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia. Economic Geology, 85(1): 1~28.
参考文献
Orris G J, Grauch, R I. 2002. Rare earth element mines, deposits and occurrences. US Department of the Interior, US Geological Survey.
参考文献
Padrones J T, Imai A, Takahashi R. 2017. Geochemical behavior of rare earth elements in weathered granitic rocks in northern Palawan, Philippines. Resource Geology, 67(3): 231~253.
参考文献
Palmieri M, Brod J A, Cordeiro P, Gaspar J C, Barbosa P A R, de Assis L C, Junqueira-Brod T C, Silva S, Milanezi B P, Machado S A, Jácomo M H. 2022. The carbonatite-related Morro do Padre Niobium deposit, Catalão II Complex, central Brazil. Economic Geology, 117(7): 1497~1520.
参考文献
Platt R G. 1996. Nepheline syenite complexes—an overview. Mineralogical Association of Canada Short Course Notes, 24: 63~99.
参考文献
Preinfalk C, Morteani G. 1989. The industrial applications of rare earth elements. In: Möller P, Černý P, Saupé F, eds. Lanthanides, Tantalum and Niobium. Berlin: Springer, 359~370.
参考文献
Preiss W V. 2000. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Research, 100(1): 21~63.
参考文献
Qiu Wen. 2017. Longyan Wanan rare earth mining area metamorphic rock weathering crust ion adsorption type rare earth ore and its prospecting significance. World Nonferrous Metals, (4): 242~244(in Chinese with English abstract).
参考文献
Research and Markets. 2019. Research Report on China’s Rare Earth Industry, 2019-2023. https: //www. researchandmarkets. com/reports/4771561/research-report-on-chinasrare-earth-industry (accessed 27. 09. 2019).
参考文献
Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology, 37(3): 247~250.
参考文献
Rocha A, Schissel D, Sprecher A, de Tarso P, Goode J. 2013. Process Development for the Serra Verde Weathered Crust Elution-deposited Rare Earth Deposit in Brazil, in Rare Earth Elements—Proceedings of the 52nd Conference of Metallurgists (COM 2013). In: London I, Goode J, Moldoveanu G, Rayat M, eds. Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum (MetSoc-CIM), Montreal, Canada.
参考文献
Roden M F, Murthy V R, Gaspar J C. 1985. Sr and Nd isotopic composition of the Jacupiranga carbonatite. Journal of Geology, 93(2): 212~220.
参考文献
Salvi S, Williams-Jones A E. 1990. The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: evidence from fluid inclusions. Geochimica et Cosmochimica Acta, 54(9): 2403~2418.
参考文献
Salvi S, Williams-Jones A. 1996. The role of Hydrothermal processes in concentrating HFSE in the Strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Acta, 60: 1917~1932.
参考文献
Salvi S, Williams-Jones A E, Linnen R, Samson I. 2005. Alkaline granite-syenite deposits. Geological Association of Canada Short Course Notes, 17: 315~341.
参考文献
Samson I M, Wood S A. 2005. The rare earth elements: behaviour in hydrothermal fluids and concentration in hydrothermal mineral deposits, exclusive of alkaline settings. In: Linnen R L, Samson I M, eds. Rare Element Geochemistry and Mineral Deposits. Geological Association of Canada, GAC Short Course Notes, 17. Geological Association of Canada, Ottawa, 269~297.
参考文献
Sanematsu K, Murakami H, Watanabe Y, Duangsurigna S, Siphandone V. 2009. Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in central and southern Laos. Bulletin of the Geological Survey of Japan, 60(11-12): 527~558.
参考文献
Sanematsu K, Kon Y, Imai A, Watanabe K, Watanabe Y. 2013. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Mineralium Deposita, 48(4): 437~451.
参考文献
Sanematsu K, Watanabe Y, Verplanck PL, Hitzman MW. 2016. Characteristics and genesis of ion adsorption-type rare earth element deposits, rare earth and critical elements in ore deposits. Society of Economic Geologists, 55~79.
参考文献
Sengupta D, Gosen B S V, Verplanck P L, Hitzman M W. 2016. Placer-type rare earth element deposits, rare earth and critical elements in ore deposits. Society of Economic Geologists, 18: 81~100.
参考文献
Seredin V V. 1996. Rare earth element-bearing coals from the Russian Far East deposits. International Journal of Coal Geology, 30(1): 101~129.
参考文献
Seredin V V, Dai Shifeng. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94: 67~93.
参考文献
Shi Zhemin, Li Xiaoyu. 1995. The discovery and its significance of Dalucao ore deposit of REE in Dechang. Acta Geologica Sichuan, 15(3): 216~218(in Chinese with English abstract).
参考文献
Smith M P, Campbell L S, Kynicky J. 2015. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: multistage processes and outstanding questions. Ore Geology Reviews, 64: 459~476.
参考文献
Stein H J, Markey R J, Morgan J W, Du A, Sun Y. 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China. Economic Geology, 92(7-8): 827~835.
参考文献
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific.
参考文献
Terry F. 2019. 2019 Rare Earths Rarely So Strategic [WWW Document]. Semicond. Dig.
参考文献
Tohar S Z, Yunus M Y M. 2020. Mineralogy and BCR sequential leaching of ion-adsorption type REE: a novelty study at Johor, Malaysia. Physics and Chemistry of the Earth, Parts A/B/C, 120: 102947.
参考文献
Torró L, Proenza J A, Aiglsperger T, Bover-Arnal T, Villanova-de-Benavent C, Rodríguez-García D, Ramírez A, Rodríguez J, Mosquea L A, Salas R. 2017. Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic. Ore Geology Reviews, 89: 114~131.
参考文献
Veksler I V. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chemical Geology, 210(1): 7~31.
参考文献
Veksler I V, Lentz D, Webster J. 2006. Parental magmas of plutonic carbonatites, carbonate-silicate immiscibility and decarbonation reactions: evidence from melt and fluid inclusions. Mineralogical Association of Canada Short Course, Montreal, Quebec, 36: 123~149.
参考文献
Veksler I V, Dorfman A M, Dulski P, Kamenetsky V S, Danyushevsky L V, Jeffries T, Dingwell D B. 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica et Cosmochimica Acta, 79: 20~40.
参考文献
Verplanck P L, Mariano A N, Mariano A Jr, Verplanck P L, Hitzman M W. 2016. Rare earth element ore geology of carbonatites, rare earth and critical elements in ore deposits. Society of Economic Geologists, 18: 5~32.
参考文献
Vladykin N V. 2009. Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves. Russian Geology and Geophysics, 50(12): 1119~1128.
参考文献
Voncken J H L. 2016. The Rare Earth Elements: an Introduction. Switzerland: Springer.
参考文献
Wall F. 2020. Rare Earth Elements. Nottingham: Elsevier.
参考文献
Walters A, Lusty P, Chetwyn C, Hill A. 2010, Rare earth elements, mineral profile series: United Kingdom. British Geological Survey, 53.
参考文献
Wan Defang, Tian Shihong. 2004. Stable isotope evidence of deep source ore-forming fluid in the Dalucao REE deposit of the Panxi rift. Acta Geoscientica Sinica, 25(2): 161~164(in Chinese with English abstract).
参考文献
Wang Denghong, Yang Jianmin, Yan Shenghao, Xu Jue, Chen Yuchuan, Pu Guangping, Luo Yaonan. 2001. A special orogenic-type rare earth element deposit in Maoniuping, Sichuan, China: geology and geochemistry. Resource Geology, 51(3): 177~188.
参考文献
Wang Denghong, Zhao Zhi, Yu Yang, Wang Chenghui, Dai Jingjing, Sun Yan, Zhao Ting, Li Jiankang, Huang Fan, Chen Zhenyu, Zeng Zailin, Deng Maochun, Zhou Xinyong, Huang Huagu, Zhou Hui, Feng Wenjie. 2017. A review of the achievenens in the survey and study of ion-absorption type REE deposits in China. Acta Geoscientica Sinica, 38(3): 317~325 (in Chinese with English abstract).
参考文献
Wang Fenlian, He Gaowen, Sun Xiaoming, Yang Yang, Zhao Taiping. 2016. The host of REE+Y elements in deep-sea sediments from the Pacific Ocean. Acta Petrologica Sinica, 32(7): 2057~2068 (in Chinese with English abstract).
参考文献
Wang Jiaying, Li Zhidan, Zhang Qi, Li Chao, Xie Yu, Li Guangyao, Zeng Wei, Ding Ning. 2020. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating. Acta Geologica Sinica, 94(10): 2946~2964 (in Chinese with English abstract).
参考文献
Wang Qingfei, Deng Jun, Liu Xuefei, Zhang Qizuan, Sun Silei, Jiang Chengzhu, Zhou Fang. 2010. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, west Guangxi, China. Journal of Asian Earth Sciences, 39(6): 701~712.
参考文献
Wang Xuetian, Shao Longyi, Eriksson K A, Yan Zhiming, Wang Jumin, Li Hui, Zhou Ruxian, Lu Jing. 2020. Evolution of a plume-influenced source-to-sink system: an example from the coupled central Emeishan large igneous province and adjacent western Yangtze cratonic basin in the Late Permian, SW China. Earth-Science Reviews, 207: 103224.
参考文献
Wang Xueqiu, Zhou Jian, Zhang Bimin, Liu Dongsheng, Xu Shanfa, Wang Wei, Wang Qiang, Qiao Yu, Xie Mingjun, Liu Futian, Chi Qinghua, Liu Yuheng, Hu Qinghai, Yan Taotao, Li Ruihong, Tian Mi, Wu Hui, Liu Hanliang, Liu Qingqing. 2022. Finding and implication of an undiscovered giant deposit of ion-adsorption rare earth elements in Honghe, South Yunnan, China. Acta Geoscientica Sinica, 43(4): 509~519 (in Chinese with English abstract).
参考文献
Wang Zhen, Zhao Zhi, Zou Xinyong, Chen Zhenyu, Tu Xuejing. 2018. Petrogeochemical characteristics and metallogenetic potential of epimetamorphic rocks in South Jiangxi Province. Rock and Mineral Analysis, 37(1): 96~107 (in Chinese with English abstract).
参考文献
Wang Zhen, Chen Zhenyu, Zhao Zhi, Chen Binfeng, Zou Xinyong. 2019. REE mineral and geochemical characteristics of Neoproterozoic metamorphic rocks in South Jiangxi Province. Mineral Deposits, 38(4): 837~850 (in Chinese with English abstract).
参考文献
Winter J D. 2001. An introduction to igneous and metamorphic petrology. New Jersey, Prentice Hall, 697.
参考文献
Williams-Jones A E, Migdisov A A, Samson I M. 2012. Hydrothermal mobilisation of the rare earth elements—a tale of “Ceria” and “Yttria”. Elements, 8(5): 355~360.
参考文献
Witt W K, Hammond D P, Hughes M. 2019. Geology of the Ngualla carbonatite complex, Tanzania, and origin of the weathered Bastnaesite zone REE ore. Ore Geology Reviews, 105: 28~54.
参考文献
Wu Bin, Wang Rucheng, Liu Xiaodong, Guo Guolin, Song Zhentao. 2018. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic-hydrothermal evolution. Acta Petrologica Sinica, 34(6): 1741~1757(in Chinese with English abstract).
参考文献
Wu Chengyu, Huang Dianhao, Guo Zhongxun. 1989. REE geochemistry in the weathering process of granites in Longnan county, Jiangxi Province. Acta Geologica Sinica, 63(4): 349~362+387~388 (in Chinese with English abstract).
参考文献
Wu Chengyu, Lu Hailong, Xu Lleiming, Hou Lei. 1993. A preliminary study on modes of occurrence of ree earth elements in the tropical subtropical weathering crust of Nanling region. Mineral Deposits, 12(4): 297~307 (in Chinese with English abstract).
参考文献
Wu Chengyu, Yuan Zhongxin, Bai Ge. 1996. Rare earth deposits in China. In: Jones A P, Williams C T, Wall F, eds. Rare Earth Minerals: Chemistry, Origin and Ore Deposits: Mineralogical Society Series, 7. London: Chapman and Hall, 105~150.
参考文献
Wu Fuyuan, Yang Yueheng, Marks M A W, Liu Zhichao, Zhou Qin, Ge Wenchun, Yang Jingsui, Zhao Zifu, Mitchell R H, Markl G. 2010. In situ U-Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1): 8~34.
参考文献
Wu Taotao, Chai Lu, Bao Qingzhong, Zhou Yongheng, Wu Datian, Liu Jinlong. 2018. Geological features and resource potential of rare earth minerals in Mogolia. China Mining Magazine, 27(5): 82~87 (in Chinese with English abstract).
参考文献
Woolley A R, Kjarsgaard B. 2004. Carbonatites of the world: map and database. Geological Survey of Canada, Open File Report 5796.
参考文献
Xie Yuling, Yin Shuping, Xu Jiuhua, Chen Wei, Yi Longsheng. 2006. A study on the fluids in carbonatite of the Mianning-Dechang REE metallogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 25(1): 66~74 (in Chinese with English abstract).
参考文献
Xie Yuling, Hou Zengqian, Goldfarb R J, Guo X, Wang L, Verplanck P L, Hitzman M W. 2016. Rare earth element deposits in China, rare earth and critical elements in ore deposits. Society of Economic Geologists, 18: 115~136.
参考文献
Xie Yuling, Verplanck P L, Hou Zengqian, Zhong Richeng. 2019. Rare earth element deposits in China: a review and new understandings. Society of Economic Geologists Special Publications, 22: 509~552.
参考文献
Xie Yuling, Xia Jiaming, Cui Kai, Qu Yunwei, Liang Pei, Zhong Richen. 2020. Rare earth elements deposits in China: spatio-temporal distribution and ore-forming processes. Chinese Science Bulletin, 65(33): 3794~3808 (in Chinese with English abstract).
参考文献
Xu Cheng, Song Wenlei, Qi Liang, Wang Linjun. 2009. Geochemical characteristics and tectonic setting of ore-bearing carbonatites in Huanglongpu Mo ore field. Acta Petrologica Sinica, 25(2): 422~430 (in Chinese with English abstract).
参考文献
Xu Cheng, Kynicky J, Chakhmouradian A R, Campbell I H, Allen C M. 2010a. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China. Lithos, 118(1): 145~155.
参考文献
Xu Cheng, Wang Linjun, Song Wenlei, Wu Min. 2010b. Carbonatites in China: a review for genesis and mineralization. Geoscience Frontiers, 1(1): 105~114.
参考文献
Xu Cheng, Chakhmouradian A R, Taylor R N, Kynicky J, Li Wenbo, Song Wenlei, Fletcher I R. 2014. Origin of carbonatites in the south Qinling orogen: implications for crustal recycling and timing of collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143: 189~206.
参考文献
Xu Cheng, Song Wenlei, He Chen, Wang Lize. 2015. The overview of the distribution, type and genesis of the exogeneticrare earth elements (REE) deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 34(2): 234~241(in Chinese with English abstract).
参考文献
Xu Cheng, Kynický J, Smith M P, Kopriva A, Brtnický M, Urubek T, Yang Yueheng, Zhao Zangzheng, He Chen, Song Wenlei. 2017. Origin of heavy rare earth mineralization in South China. Nature Communications, 8(1): 14598.
参考文献
Xu Ying, Dai Zongming, Gong Daxing, Hui Bo. 2018. Study on the occurrence status of rare earth elements in Permian Xuanwei Formation in Guizhou Province. Mineral Comprehensive Utilization, (6): 90~94(in Chinese with English abstract).
参考文献
Yang Juncheng, Wang Fenglin, Li Desheng, Fei Yongchu, Wang Lin. 2004. Investigation on occurrence and trend of rare and rare-earth elements associated in bauxite. Mining & Metallurgy, 13: 89~92 (in Chinese with English abstract).
参考文献
Yang Kuifeng, Fan Hongrui, Santosh M, Hu Fangfang, Wang Kaiyi. 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: constraints for the mechanism of super accumulation of rare earth elements. Ore Geology Reviews, 40(1): 122~131.
参考文献
Yang Meijun, Liang Xiaoling, Ma Lingya, Huang Jian, He Hongping, Zhu Jianxi. 2019. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite. Chemical Geology, 525: 210~217.
参考文献
Yang Ruidong, Gao Hui, Wang Qiang, Bao Shen. 2005. Rare earth accumulation of Early Cambrian Gezhongwu Formation phosphorous rocks in Sanjia, Zhijin county, Guizhou Province, China. Journal of the Chinese Rare Earth Society, (6): 742~748(in Chinese with English abstract).
参考文献
Yang Ruidong, Wang Wei, Bao Miao, Wang Qiang, Wei Huairui. 2006. Geochemical character of rare earth mineral from the top of Permian basalt, Hezhang county, Guizhou Province. Mineral Deposits, 25(S1): 205~208(in Chinese with English abstract).
参考文献
Yang Wubin, Niu Hecai, Hollings P, Zurevinski S E, Li Ningbo. 2017. The role of recycled oceanic crust in the generation of alkaline A-type granites. Journal of Geophysical Research: Solid Earth, 122(12): 9775~9783.
参考文献
Yang Wubin, Niu Hecai, Li Ningbo, Hollings P, Zurevinski S, Xing Changming. 2020. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: implications for rare metal mineralization. Lithos, 105411: 358~359.
参考文献
Yang Xiaoyong, Lai Xiaodong, Ren Yisu, Ling Mingxing, Liu Yulong, Liu Jianyong. 2015. Geological characteristics and their scientific problems of the Bayan Obo Fe-REE-Nb deposit: discussion on the origin of Bayan Obo super-large deposit. Acta Geologica Sinica, 89(12): 2323~2350 (in Chinese with English abstract).
参考文献
Yang Yueqing, Hu Chongsheng, Luo Zhanming. 1981. Geological characteristic of mineralization of rare earth deposit of the ion-absorption type and ther prospecting direction. Bulletin of the Chinese Academy of Geological Sciences, 2(1): 102~118 (in Chinese with English abstract).
参考文献
Yang Zhuming. 1987. A study on clay minerals from the REE-rich weathered crust developed on the Longnan granite in Jiangxi. Chinese Journal of Geology, (1): 70~80+103 (in Chinese with English abstract).
参考文献
Ye Xiantao, Zhu Weiguang, Zhong Hong, He Defeng, Ren Tao, Bai Zhongjie, Fan Hongpeng, Hu Wenjun. 2013. Zircon U-Pb and chalcopyrite Re-Os geochronology, REE geochemistry of the Yinachang Fe-Cu-REE deposit in Yunnan Province and its geological significance. Acta Petrologica Sinica, 29(4): 1167~1186(in Chinese with English abstract).
参考文献
Ying Yuancan, Chen Wei, Lu Jue, Jiang Shaoyong, Yang Yueheng. 2017. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos, 290-291: 159~171.
参考文献
Yu Xuefeng, Tang Haosheng, Han Zuozhen, Li Changyou. 2010. Geological characteristics and origin of rare earth elements deposits related with alkaline rock in the Chishan-Longbaoshan area, Shandong Province. Acta Geologica Sinica, 84(3): 407~417 ( in Chinese with English abstract).
参考文献
Yuan Zhongxin, Bai Ge. 2001. Temporal and spatial distribution of endogenic rare andrare earth mineral deposits of China. Mineral Deposits, 20(4): 347~354 (in Chinese with English abstract).
参考文献
Yuan Zhongxin, Li Jiankang, Wang Denghong, Zheng Guodong, Lou Debo, Chen Zhenghui, Zhao Zhi, Yu Yang. 2012. Metallogenic Regularity of REE Ore Deposits in China. Beijing: Geological Publishing House (in Chinese).
参考文献
Zhang Jie, Sun Chuanmin, Gong Meiling, Zhang Qin, Chen Dailiang, Chen Jiyan. 2007. Geochemical characteristics and occurrence states of the REE elements of the phosphorite in Xinhua, Zhijin, Guizhou. Chinese Rare Earths, 28(1): 75~79 (in Chinese with English abstract).
参考文献
Zhang Peishan. 1989. A study on the genetic classification of rare earth mineral deposits of China. Scientia Geologica Sinica, 24: 26~32 (in Chinese with English abstract).
参考文献
Zhang Shuanhong, Zhao Yue, Liu Yongsheng. 2017. A precise zircon Th-Pb age of carbonatite sills from the world’s largest Bayan Obo deposit: implications for timing and genesis of REE-Nb mineralization. Precambrian Research, 291: 202~219.
参考文献
Zhang Ting, Wang Chuansheng, Yao Zhongyou, Qiao Meiping, Ma Na, Xiao E. 2014. Types and metallogenic characteristics of rare earth deposits in Australia. Geological Bulletin of China, 33(2-3): 187~193 (in Chinese with English abstract).
参考文献
Zhang Wei, Chen W T, Gao Jianfeng, Chen Huakai, Li Jinghui. 2019. Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: in-situ U-Th-Pb dating of bastnäsite and monazite. Mineralium Deposita, 54(8): 1265~1280.
参考文献
Zhang Zhuhai. 1990. A study on weathering crust ion adsorption type REE deposits, South China. Contributions to Geology and Mineral Resources Research, 5(1): 57~71 (in Chinese with English abstract).
参考文献
Zhao Zhi, Wang Denghong, Chen Zhenhui, Chen Zhenyu. 2017. Progress of research on metallogenic regularity of ion-adsorption type REE deposit in the Nanling range. Acta Geologica Sinica, 91(12): 2814~2827 (in Chinese with English abstract).
参考文献
Zhou Baolu, Li Zhongxue, Zhao Yiqing, Zhang Cong, Wei Yixin. 2016. Rare Earth Elements supply vs. clean energy technologies: new problems to be solve. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 32(4): 29~44.
参考文献
Zhou Baolu, Li Zhongxue, Chen Congcong. 2017. Global potential of rare earth resources and rare earth demand from clean technologies. Minerals, 7(11): 203.
参考文献
Zhou Meifu, Li Xinxi, Wang Zhenchao, Li Xiaochun, Liu Jiacheng. 2020. The genesis of regolith-hosted rare earth element and scandium deposits: current understanding and outlook to future prospecting. Science Bulletin, 65(33): 3809~3824 (in Chinese with English abstract).
参考文献
Zhou Tiancheng, Shi Xuefa, Huang Mu, Yu Miao, Bi Dongjie, Ren Xiangwen, Liu Jihua, Zhu Aimei, Fang Xishan, Shi Meijuan. 2021. Genesis of REY-rich deep-sea sediments in the Tiki basin, eastern South Pacific Ocean: evidence from geochemistry, mineralogy and isotope systematics. Ore Geology Reviews, 138: 104330.
参考文献
Zhu Rixiang, Fan Hongrui, Li Jianwei, Meng Qingren, Li Shengrong, Zeng Qingdong. 2015. Decratonic gold deposits. Science China Earth Sciences, 58(9): 1523~1537.
参考文献
Zhu Yusheng, Yang Jinhui, Sun Jinfeng, Zhang Jiheng, Wu Fuyuan. 2016. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: mineralogical and geochemical evidence from the Saima alkaline complex, NE China. Journal of Asian Earth Sciences, 117: 184~207.
参考文献
白鸽, 吴澄宇, 丁孝石, 袁忠信, 黄典豪, 王佩华. 1989. 南岭地区离子型稀土矿床形成条件和分布规律. 北京: 地质矿产部矿床地质研究所.
参考文献
包家宝, 张莲宝, 王和中, 陈聚兴. 1996. 中国矿床发现史(江西卷). 北京: 地质出版社, 155~158.
参考文献
柴东浩, 屈值明, 陈汉成, 柴峰. 2001. 山西铝土矿中稀有稀土元素的新发现及工业意义. 轻金属, 6: 6~11.
参考文献
陈代演, 王华. 1997. 贵州若干铝土矿床的稀土元素地球化学研究. 贵州地质, 14(2): 132~144.
参考文献
代世峰, 任徳贻, 周义平, VSeredin V, 李大华, 张名泉, Hower J C, Ward C R, 王西勃, 赵蕾, 宋晓林. 2014. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价. 煤炭学报, 39(8): 1707~1715.
参考文献
范宏瑞, 牛贺才, 李晓春, 杨奎锋, 杨占峰, 王其伟. 2020. 中国内生稀土矿床类型、成矿规律与资源展望. 科学通报, 65(33): 3778~3793.
参考文献
胡鹏. 2009. 国外稀土资源开发与利用现状. 世界有色金属, (9): 72~74.
参考文献
黄典豪, 王义昌, 聂凤军, 江秀杰. 1985. 一种新的钼矿床类型——陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制. 地质学报, 59(3): 241~257+275.
参考文献
黄典豪, 吴澄宇, 韩久竹. 1988. 江西足洞和关西花岗岩的稀土元素地球化学及矿化特征. 地质学报, 62(4): 311~328.
参考文献
黄卉, 潘家永, 洪斌跃, 康清清, 钟福军. 2020. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义. 矿床地质, 39(2): 351~368.
参考文献
蓝廷广, 范宏瑞, 胡芳芳, 杨奎锋, 王永. 2011. 山东微山稀土矿矿床成因: 来自云母Rb-Sr年龄、激光Nd同位素及流体包裹体的证据. 地球化学, 40(5): 428~442.
参考文献
李建康, 袁忠信, 白鸽, 陈毓川, 王登红, 应立娟, 张建. 2009. 山东微山稀土矿床成矿流体的演化及对成矿的制约. 矿物岩石, 29(3): 60~68.
参考文献
刘容, 王汝成, 陆现彩, 李娟. 2016. 赣南花岗岩风化壳型稀土矿床中纳米级稀土矿物的研究. 岩石矿物学杂志, 35(4): 617~626.
参考文献
陆蕾, 王登红, 王成辉, 赵芝, 冯文杰, 徐晓春, 于沨. 2019. 云南临沧花岗岩中离子吸附型稀土矿床的成矿规律. 地质学报, 93(6): 1466~1478.
参考文献
毛景文, 周振华, 丰成友, 王义天, 张长青, 彭惠娟, 于淼. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景. 中国地质, 39(6): 1437~1471.
参考文献
毛景文, 杨宗喜, 谢桂青, 袁顺达, 周振华. 2019a. 关键矿产——国际动向与思考. 矿床地质, 38(4): 689~698.
参考文献
毛景文, 袁顺达, 谢桂青, 宋世伟, 周琦, 高永宝, 刘翔, 付小方, 曹晶, 曾载淋, 李通国, 樊锡银. 2019b. 21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935~969.
参考文献
丘文. 2017. 龙岩市万安稀土矿区变质岩风化壳离子吸附型稀土矿的发现及其找矿意义. 世界有色金属, (4): 242~244.
参考文献
施泽民, 李小渝. 1995. 德昌大陆槽稀土矿床的发现及其意义. 四川地质学报, (3): 216~218.
参考文献
万德芳, 田世洪. 2004. 攀西大陆槽稀土矿床深源成矿流体的稳定同位素证据. 地球学报, (2): 161~164.
参考文献
王登红, 赵芝, 于扬, 王成辉, 代晶晶, 孙艳, 赵汀, 李建康, 黄凡, 陈振宇, 曾载淋, 邓茂春, 邹新勇, 黄华谷, 周辉, 冯文杰. 2017. 我国离子吸附型稀土矿产科学研究和调查评价新进展. 地球学报, 38(3): 317~325.
参考文献
王汾连, 何高文, 孙晓明, 杨阳, 赵太平. 2016. 太平洋富稀土深海沉积物中稀土元素赋存载体研究. 岩石学报, 32(7): 2057~2068.
参考文献
王佳营, 李志丹, 张祺, 李超, 谢瑜, 李光耀, 曾威, 丁宁. 2020. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据. 地质学报, 94(10): 2946~2964.
参考文献
王学求, 周建, 张必敏, 刘东盛, 徐善法, 王玮, 王强, 乔宇, 谢明君, 刘福田, 迟清华, 刘昱恒, 胡庆海, 严桃桃, 李瑞红, 田密, 吴慧, 刘汉粮, 柳青青. 2022. 云南红河州超大规模离子吸附型稀土矿的发现及其意义. 地球学报, 43(4): 509~519.
参考文献
王臻, 赵芝, 邹新勇, 陈振宇, 涂雪静. 2018. 赣南浅变质岩岩石地球化学特征及稀土成矿潜力研究. 岩矿测试, 37(1): 96~107.
参考文献
王臻, 陈振宇, 赵芝, 陈斌峰, 邹新勇. 2019. 赣南新元古代变质岩稀土矿物及其地球化学特征. 矿床地质, 38(4): 837~850.
参考文献
邬斌, 王汝成, 刘晓东, 郭国林, 宋振涛. 2018. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义. 岩石学报, 34(6): 1741~1757.
参考文献
吴澄宇, 黄典豪, 郭中勋. 1989. 江西龙南地区花岗岩风化壳中稀土元素的地球化学研究. 地质学报, 63(4): 349~362+387~388.
参考文献
吴澄宇, 卢海龙, 徐磊明, 侯磊. 1993. 南岭热带—亚热带风化壳中稀土元素赋存形式的初步研究. 矿床地质, 12(4): 297~307.
参考文献
吴涛涛, 柴璐, 鲍庆中, 周永恒, 吴大天, 刘金龙. 2018. 蒙古国稀土矿地质特征及资源潜力. 中国矿业, 27(5): 82~87.
参考文献
谢玉玲, 尹淑苹, 徐九华, 陈伟, 衣龙升. 2006. 冕宁-德昌稀土成矿带碳酸岩流体研究. 矿物岩石地球化学通报, (1): 66~74.
参考文献
谢玉玲, 夏加明, 崔凯, 曲云伟, 梁培, 钟日晨. 2020. 中国碳酸岩型稀土矿床: 时空分布与成矿过程. 科学通报, 65(33): 3794~3808.
参考文献
刑永辉, 马云良. 2019. 云南新营盘地区新发现离子吸附型稀土矿. 中国地质调查成果快讯, 5(103-104): 7~10.
参考文献
徐莺, 戴宗明, 龚大兴, 惠博. 2018. 贵州某地二叠系宣威组富稀土岩系稀土元素赋存状态研究. 矿产综合利用, (6): 90~94+101.
参考文献
许成, 宋文磊, 漆亮, 王林均. 2009. 黄龙铺钼矿田含矿碳酸岩地球化学特征及其形成构造背景. 岩石学报, 25(2): 422~430.
参考文献
许成, 宋文磊, 何晨, 王丽泽. 2015. 外生稀土矿床的分布、类型和成因概述. 矿物岩石地球化学通报, 34(2): 234~241.
参考文献
杨军臣, 王凤玲, 李德胜, 费涌初, 王玲. 2004. 铝土矿中伴生稀有稀土元素赋存状态及走向查定. 矿冶, 13(2): 89~92.
参考文献
杨瑞东, 高慧, 王强, 鲍淼. 2005. 贵州织金三甲寒武系戈仲伍组含磷岩系稀土富集规律研究. 中国稀土学报, (6): 742~748.
参考文献
杨瑞东, 王伟, 鲍淼, 王强, 魏怀瑞. 2006. 贵州赫章二叠系玄武岩顶部稀土矿床地球化学特征. 矿床地质, 25(S1): 205~208.
参考文献
杨晓勇, 赖小东, 任伊苏, 凌明星, 刘玉龙, 柳建勇. 2015. 白云鄂博铁-稀土-铌矿床地质特征及其研究中存在的科学问题——兼论白云鄂博超大型矿床的成因. 地质学报, 89(12): 2323~2350.
参考文献
杨岳清, 胡淙声, 罗展明. 1981. 离子吸附型稀土矿床成矿地质特征及找矿方向. 中国地质科学院矿床地质研究所文集, 2(1): 102~118.
参考文献
杨主明. 1987. 江西龙南花岗岩稀土风化壳中黏土矿物的研究. 地质科学, (1): 70~80+103.
参考文献
叶现韬, 朱维光, 钟宏, 何德锋, 任涛, 柏中杰, 范宏鹏, 胡文俊. 2013. 云南武定迤纳厂Fe-Cu-REE矿床的锆石U-Pb和黄铜矿Re-Os年代学、稀土元素地球化学及其地质意义. 岩石学报, 29(4): 1167~1186.
参考文献
于学峰, 唐好生, 韩作振, 李长有. 2010. 山东郗山-龙宝山地区与碱性岩有关的稀土矿床地质特征及成因. 地质学报, 84(3): 407~417.
参考文献
袁忠信, 白鸽. 2001. 中国内生稀有稀土矿床的时空分布. 矿床地质, 20(4): 347~354.
参考文献
袁忠信, 李建康, 王登红, 郑国栋, 娄德波, 陈郑辉, 赵芝, 于扬. 2012. 中国稀土矿床成矿规律. 北京: 地质出版社.
参考文献
张杰, 孙传敏, 龚美菱, 张覃, 陈代良, 陈吉艳. 2007. 贵州织金含稀土生物屑磷块岩稀土元素赋存状态研究. 稀土, 28(1): 75~79.
参考文献
张培善. 1989. 中国稀土矿床成因类型. 地质科学, (1): 26~32.
参考文献
张婷, 汪传胜, 姚仲友, 乔美萍, 马娜, 肖娥. 2014. 澳大利亚稀土矿床主要类型及其成矿特征. 地质通报, 33(2-3): 187~193.
参考文献
张祖海. 1990. 华南风化壳离子吸附型稀土矿床. 地质找矿论丛, (1): 57~71.
参考文献
赵芝, 王登红, 陈郑辉, 陈振宇. 2017. 南岭离子吸附型稀土矿床成矿规律研究新进展. 地质学报, 91(12): 2814~2827.
参考文献
中国科学院地球化学研究所. 1988. 白云鄂博矿床地球化学. 北京: 科学出版社.
参考文献
周美夫, 李欣禧, 王振朝, 李晓春, 刘嘉成. 2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望. 科学通报, 65(33): 3809~3824.
参考文献
祝向平, 张彬. 2019. 云南腾冲-陇川地区新发现一批中大型离子吸附型稀土矿. 中国地质调查成果快讯, 5(103-104): 1~6.
目录contents

    摘要

    本文介绍了全球稀土资源供需历史、现状和对未来的展望。从矿床成因视角切入,将稀土矿床分为内生和外生两大类型,其中内生稀土矿床包括碳酸岩型、碱性岩型、碱性岩型-碳酸岩型、氧化铁铜金型、热液脉型,外生稀土矿床包括风化壳离子吸附型、沉积岩型、沉积矿产(煤矿、铝土矿和沉积磷矿)伴生型、砂矿和现代海洋底部含稀土的锰结核、结壳和软泥型。归纳总结了主要类型矿床的基本特点和时空分布;认为内生稀土矿床产出于四类构造环境,包括裂谷环境、碰撞后伸展环境、大陆碰撞环境和后俯冲伸展环境;从构造演化入手,探讨了在外生与内生地质过程中稀土元素的迁移和富集规律,建立了涵盖主要矿床类型的构造-成矿模型。

    Abstract

    This paper introduces the global supply and demand history of rare earth resources. According to the ore genesis, the REE deposits can be divided into endogenic and exogenic types. The endogenic REE deposits include carbonate type, alkaline rock type, alkaline rock-carbonate type, iron oxide Cu-Au type, and hydrothermal vein type. The exogenic REE deposits include weathering crust ion-adsorption type, sedimentary rock type, sedimentary mineral (coal, bauxite, and sedimentary phosphate) associated type, placer-type, and modern varied oceanic sedimentary type ores. The basic characteristics and spatial and temporal distribution of the main REE deposit types are summarized in the text. The endogenic REE deposits form in four of tectonic environments, including rift environment, post-collision extension environment, continental collision environment and post-subduction extension environment. Based on the tectonic evolution, the migration and enrichment regularity of REEs in the endogenic and exogenic geological processes are discussed.

  • 稀土元素于18世纪在瑞典发现,包括15种镧系元素(Preinfalk and Morteani,1989; Voncken,2016)。按照国际纯粹与应用化学联合会(IUPAC)的建议,稀土元素族包括钇、钪和镧系15种元素,共17种元素(Taylor and McClennan,1985; Samson and Wood,2005; Castor and Hedrick,2006; McLemore,2015)。稀土元素其实并不稀少,它们是一组亲石元素,在地壳的丰度达220×10-6,整体高于碳元素(200×10-6),其中铈元素丰度高于铜元素丰度。部分稀土元素用途广泛,例如,在工业上,稀土比我们通常所知道铜、钴、铅和锡元素的用途更多(Gupta and Krishnamurthy,2005)。迄今,自然界已经发现250多种稀土矿物(Dushyantha et al.,2020),具有工业用途的矿物仅10余种,包括含铈族矿物:氟碳铈矿、氟碳铈钙矿和独居石; 含钐和钆族矿物:黑稀金矿和硅铍钇矿; 含钇族稀土矿物:氟碳钙钇矿、磷钇矿、褐钇铌矿; 其中最常见矿物有独居石、氟碳铈矿和磷钇矿。

  • 美欧西方国家提出了“关键矿产”的新概念,其核心就是认为以稀土元素为代表的某些小矿种对于高科技产业发展具有举足轻重的作用,这类矿产在西方国家较为短缺,而在中国相对丰富,他们认为这对于其发展存在被“卡脖子”的可能性(毛景文等,2019a)。自从“关键矿产”新概念提出以来,全球掀起了稀土矿产研究和找矿勘查的新热潮,在国外不仅重启新一轮稀土矿产找矿勘查,而且出现诸多研究新成果。本文对全球稀土资源进行系统地总结研究,并在前人工作基础上进行成矿作用分类和内生矿床成矿背景的厘定。

  • 1 稀土资源供需特点与展望

  • 随着经济增长和稀土新用途的开发,过去几十年市场对稀土的需求快速上升。随着彩色电视投入市场,20世纪60年代曾经历过稀土需求的首次快速增长期。1953年市场仅消耗1000 t稀土,1997年达到6.6万t(Zhou Baolu et al.,2016)。稀土元素矿物具有不同的晶体结构,导致其具有独特的化学、物理、磁性和发光特性。近些年稀土元素在现代高技术领域用途广泛,例如,充电电池、自动催化转化器、超级磁铁、LED照明、荧光材料和太阳能电池板(Balaram,2019)。正是因为在高科技、军事和绿色技术应用的巨大消耗,导致过去20年全球对于稀土的需求不断增加(Mancheri et al.,2019)。从2010年到2018年,全球生产REO产量从10万t增长到20万t,Terry(2019)预测到2025年将增加到25万t; 不过,据悉迄今REO产量已经达到25万t,仍在持续上升。

  • 根据美国地质调查局(2022)发布的数据及白云鄂博最近资料,全球稀土储量分布比例为:中国 57.7%,越南11.5%,巴西11%,俄罗斯11%,印度 3.6%,澳大利亚2.1%,美国、加拿大、南非、坦桑尼亚和格林兰岛均<1%(图1a); 全球稀土产量分布比例为:中国61%,美国16%,缅甸9%,澳大利亚8%,泰国3%,马达加斯加、印度和俄罗斯各1%(图1b)。迄今,开采中的矿山主要有我国内蒙古白云鄂博、川西牦牛坪和大陆槽、山东郗山(或者称为微山)以及我国南岭地区风化壳型重稀土矿,美国的Mountain Pass和Saint Honoré,西澳大利亚的Mount Weld,南非的Palabora,巴西的Araxá和Catalão以及俄罗斯的Lovozero。其他国家(如印度)以生产砂矿为主,缅甸生产风化壳离子吸附型重稀土矿和砂矿。

  • 我国2021年规定稀土矿生产指标为16.5万t,其中1.9万t为风化壳型重稀土矿(由于生态环保问题,未开采)。据说,中国稀土集团成立后,正在恢复生产。目前,我国牦牛坪年产3万t,大陆槽年产1万t左右,郗山年产小于1万t,白云鄂博年产9~10万t,其余来自再回收利用形成的产能。美国Mountain Pass矿山年产4.3万t,目前由我国四川盛和资源控股股份有限公司包销矿石。澳大利亚Mount Weld年产2万t,开采出矿石后,运输到马来西亚进行分选。此外,永磁材料中95%的稀土可以循环利用,这将是稀土资源保障的另一条重要途径(与中国稀土协会杨文浩秘书长的个人交流,2022)。

  • 从历史发展来看,全球稀土资源供给的变化趋势正如Long(2011)的统计所示:在1965年以前主要利用砂矿中的稀土; 1965~1990年主要是美国Mountain Pass稀土矿山提供资源,并在1990年达到最高峰,占全球40%; 之后进入中国主导世纪。也正是由于中国稀土大量廉价出口,导致美国Mountain Pass稀土矿山在2002年停产,直到2009年重启。根据美国地质调查局2021年的统计数据,20世纪80年代初以来到现在,我国是全球稀土矿的主要供给国家,尽管2010年之后我国供给的比例在逐渐降低(图2)。事实上,我国2010年开始对稀土生产进行规划和限制,实行配额制,由此引致国际稀土价格上扬。于是,国外开始新一轮稀土资源找矿勘查,并取得一些进展,例如,新探明矿床有美国的Dotson和Bear Lodge,加拿大的Hoidas Lake和瑞典的Norra Kǎrr等(McLemore,2015; Balaram,2019)。吴涛涛等(2018)通过对蒙古国稀土矿产资料收集,并结合美国地质调查局的有关信息,认为蒙古国潜在稀土资源量为3100万t,将占全球的20%,仅次于占29%的我国。总体来讲,稀土仍然是需求量有限的小矿种,尽管在全球已经发现851处稀土矿床和矿化点,但大多数尚未进行系统勘查。目前,轻稀土矿和重稀土钇供应充足,由于Gd、Tb和Dy等需求量激增,是找矿勘查的主要目标。

  • 图1 全球稀土资源储量(a)和产量(b)饼图(据美国地质调查局2022年数据及白云鄂博最近资料绘制)

  • Fig.1 Pie charts of REE resource reserve (a) and output (b) (data sources from the United States Geological Survey and the latest data of the Bayan Obode posit, 2022)

  • 随着中国科技水平的提升,中国不仅出口精矿,而且生产初级稀土产品,例如永磁、催化剂、发光和抛光材料,还瞄准高科技工业,尤其是全球稀土应用前景可期的可再生能源工业(Research and Markets,2019)。截止到2019年10月,中国获得25911件有关稀土材料的专利,而美国、日本和欧盟仅分别为9810件,13920件和7280件。所以,可以认为中国有望成为与稀土有关新兴技术的领先国家(Dushyantha et al.,2020)。

  • 图2 自从20世纪80年代以来中国、美国和其他国家生产稀土资源量分布图(由范宏瑞2020年提供的资料)

  • Fig.2 REE production variation diagram for China, the United States, and other countries since the1980s (data sources are provided by Fan Hongrui, 2020)

  • 2 稀土矿产的分类

  • 根据地质过程和成因,对稀土矿床进行分类,有助于发现新的矿床以及采矿、选矿和冶炼的可行性评价。前人在该方面已经进行了大量尝试,提出了多种分类方案。例如,Neary and Highley(1984)把世界上主要的稀土矿床简单地分为5类:碱性岩和碳酸岩、岩脉、砂矿、磷灰石和其他类型。张培善(1989)根据成矿条件,将我国稀土矿床划分为10种成因类型: ① 花岗岩、碱性花岗岩、花岗闪长岩、钠长石化花岗岩型; ② 碱性岩型; ③ 火成碳酸岩型; ④ 矽卡岩型; ⑤ 伟晶岩型; ⑥ 变质岩和沉积变质碳酸盐岩型; ⑦ 热液交代和热液脉型; ⑧ 沉积岩型; ⑨ 稀土砂矿型; ⑩ 花岗岩类风化壳型。Wu Chengyu et al.(1996)按照岩石类型将稀土矿床分为10个种类,包括:碳酸岩、石英正长岩、碱性花岗岩、碱性杂岩、碱性伟晶岩、变质岩、磷、铝土矿、红土风化壳和砂矿。Cassidy et al.(1997)基于矿床中稀土元素成分的相对富集程度对世界稀土矿床进行分类。袁忠信和白鸽(2001)将我国内生稀土矿床分为8种类型,即碱性岩型(包括碳酸岩型)、花岗岩型、伟晶岩型、矽卡岩或者条纹岩型、石英脉型、浅粒岩型、混合岩型和酸性火山岩及细晶岩型,其中以碱性岩型、花岗岩型和伟晶岩型为主。美国地质调查局Long et al.(2012)将稀土矿床分为过碱性火成岩、碳酸岩、铁氧化物铜金矿、伟晶岩、斑岩型钼矿、变质岩、残留的层状磷块岩、古砂矿和现代砂矿,共9类,再进一步划分为34个亚类。英国地质调查局Walters et al.(2010)把稀土矿床大致分为2类:① 与岩浆和热液有关的原生矿床(碳酸岩、碱性火成岩、铁稀土和与碱性火成岩无关的热液); ② 通过沉积和风化富集的次生矿床(海洋砂矿、冲积砂矿、古砂矿和含有红土的离子吸附黏土)。许成等(2015)针对外生稀土矿床开展总结研究,将其分为残-坡积、(河流)冲积和海滨砂矿,碳酸盐岩风化壳型和花岗岩风化壳型。Wall(2020)将稀土矿分为碳酸岩型、碱性岩型、砂矿、离子吸附型、热液脉型、火成岩/变质岩独居石型、海底沉积型、火成岩和沉积岩磷矿伴生、铝土矿中伴生和镉矿床中伴生。

  • 尽管有多种分类方案,总体从形成地质过程来讲,可以将稀土矿床归纳为内生和外生(或者表生)两大类型,并且进一步可以分为10种。内生稀土矿床包括碳酸岩型、碱性岩型、碱性岩型-碳酸岩型、氧化铁铜金型、热液脉型,外生稀土矿床包括风化壳离子吸附型、沉积岩型、沉积矿产(煤矿、铝土矿和沉积磷矿)伴生型、砂矿和现代海洋底部软泥型。其中部分风化壳离子吸附型属于重稀土矿,其余均为轻稀土为主的矿床。

  • 迄今为止,在全球探明的稀土矿床和矿点有851处(Orris and Grauch,2002; Zhou Baolu et al.,2017),主要矿床空间分布如图3所示,但绝大多数资源量局限于20个已经探明的矿床(表1),并且主要集中在前11个大型-超大型矿床(图4)。在20个矿床中,作为伴生组分的REE在Olympic Dam矿山,由于其品位过低,在现有经济和技术条件下尚未回收利用; 另外,庙垭、Songwe、Strange lake、Kvanefjeld、Dubbo Zirconia、Lovozero、Wet Mountains和Brown Range这些低品位REE矿床在目前也难以利用。如果不考虑目前是否可利用,按照主要矿床探明的资源量计算,全球共8100万t,其中碳酸岩型54.9%,碱性岩型-碳酸岩型12.7%,碱性岩型(包括碱性花岗岩型)18.8%,IOCG型12.4%和热液型1.2%。由于砂矿缺少资源量以及其他类型矿床资源量数据少(包括风化壳离子吸附型矿产),未参加统计。Xie Yuling et al.(2016)统计结果表明我国碳酸岩和碱性岩型占全国稀土矿的97.4%,风化壳离子吸附型仅占0.96%,其余类型占0.64%。在一些矿床中,碳酸岩型与碱性岩型相伴产出(例如,郗山、牦牛坪、大陆槽、庙垭和Mountain Pass),两者都是成矿的主岩,过去不同研究者按照自己的理解将其划为碳酸岩型或者碱性岩型,此次将其称之为碱性岩-碳酸岩型。如果矿区内以碳酸岩为主,也有一系列碱性岩墙出现,仍然称之碳酸岩型,白云鄂博就是一个典例。碳酸岩型矿床遭受风化后在浅表形成红土型矿产(例如,澳大利亚的Mount Weld和坦桑尼亚的Ngualla就是典型代表),仍然将其命名为碳酸岩型; 在该类矿床中,上部的红土型矿石品位高,而下部原生矿的品位明显变低。在以碱性岩为主的矿区,尽管也出现一些碳酸岩墙,仍然称之为碱性岩型。事实上,碱性岩和碳酸岩均来自地幔,是伸展环境的产物,两者具有同源性,不少研究者将其归为一类也具有科学依据。

  • 表1 全球主要稀土矿床一览表

  • Table1 The major REE deposits around the world

  • 2.1 碳酸岩型和碳酸岩-碱性岩型稀土矿床

  • 碳酸岩是一种富碳酸盐矿物的火成岩,从深部侵位于地壳凝固而形成。碳酸岩含50%以上的火成碳酸盐矿物,例如,方解石和白云石,其SiO2含量通常低于20%(Le Maitre,2002; Chakhmouradian and Zaitsev,2012; 范宏瑞等,2020)。与碳酸岩有关的稀土矿具有岩浆型和热液型两种认识,从流体包裹体温度和成分方面都有一定证据。氟碳铈矿、磷灰石、独居石、褐帘石、韭闪石和氟碳钙铈矿是通常可见的含REE矿物,其中氟碳铈矿最为常见。碳酸岩型矿石以富LREE为主(Smith et al.,2015),除了南极洲大陆以外,全球已知有500多处碳酸岩的露头(Woolley and Kjarsgaard,2004)。内蒙古白云鄂博是一个典型的碳酸岩型REE矿床,其规模在全球位居第一; 坦桑尼亚的Ngualla矿床(Witt et al.,2019)和澳大利亚Mt Weld(Wall,2020)同样是典型的碳酸岩型REE矿床,尽管两者浅部已经风化,而且风化壳中REE含量明显增加。中国科学院地球化学研究所(1988)将白云鄂博REE矿石分为6类,即:萤石型Nb-REE-Fe矿石、霓辉石型Nb-REE-Fe矿石、钠闪石型Nb-REE-Fe矿石、黑云母型Nb-REE-Fe矿石、白云石型Nb-REE-Fe矿石和块状Nb-REE-Fe矿石,各类矿石稀土含量不同,但其稀土配分曲线高度一致,表现为以高度富Ce和相对富La和Nd为特征,尽管Sm、Gd和Y较其他元素略有富集。近几年学术界热议在白云鄂博寻找中重稀土矿的可能性,目前深部钻探岩芯分析资料表明,矿体从浅表到深部,稀土元素总量降低,但HREE/LREE比例没有明显变化。尽管有人估算白云鄂博中重稀土含量约占稀土总含量的2%,但目前生产过程回收率仅为0.01%。除了这几个大型-超大型碳酸岩稀土矿床外,还有更多小矿床和矿化露头,例如,赞比亚东北部的Nkombwa Hill稀土矿化点,其主岩以铁白云石和白云石碳酸岩为主,成岩时代为新元古代(Harmer and Nex,2016)。

  • Fig.3 Global distribution map of major REE resources. (compiled after Kato et al., 2011; Dostal, 2016; Sengupta and Gosen, 2016; Borst et al., 2020; Dushyantha et al., 2020; Fan Hongrui et al., 2020; Zhou Tiancheng et al., 2021; Gong Daxing et al., 2022)

  • 图4 世界11个大型稀土矿床资源量柱状图(资料来源见表1,其中部分矿床抑或由于品位低抑或仅为伴生组分,尚不能开采)

  • Fig.4 Histogram of the11 large REE deposits around the world (data sources are listed in Table1, REE resources in some of the deposits cannot be mined due to their low REE grade or REEs present as associated components)

  • 在一些主要REE矿床(包括Mountain Pass、Bear Lodge、牦牛坪、大陆槽、郗山和庙垭)中,碱性岩与碳酸岩同时存在,但主要矿体和矿化发育于碳酸岩体中,研究发现碱性岩与碳酸岩同源。通常将这些矿床也归为碳酸岩有关的REE矿床(Xie Yuling et al.,20162019; Batapola et al.,2020; 范宏瑞等,2020; Jia Yuheng and Liu Yan,2020)。例如,在美国加利福尼亚Sulphide Queen碳酸岩体含有Mountain Pass REE矿体,呈板状,中等倾斜,与同样体积、同一方向的碱性岩体相伴,两者形成时代均为1.4 Ga,矿区内还发育有大量碳酸岩墙和碱性岩墙,尽管两者之间的关系尚不清楚(Castor,2008)。在美国怀俄明州Bear Lodge碱性杂岩(主要由粗面岩、响岩和正长岩组成)中沿早第三纪Bull Hill火山角砾岩筒发育一系列碳酸岩网脉,并伴生有稀土矿化,探明储量近50万t,品位3.05%,且在浅表经过风化作用后形成风化壳型稀土矿(Hutchinson et al.,2022),有意义的是该稀土矿中主要含稀土矿物是黄碳锶钠石。在庙垭稀土-铌矿中,主体侵入岩是正长岩,含矿碳酸岩呈网脉状或者岩墙(脉状)侵入岩体内,含稀土矿物为铁铌矿、富铌金红石、独居石、氟碳铈矿和直氟碳钙铈矿(Xu Cheng et al.,2010a)。微山-莱芜-淄博白垩纪稀土矿带位于郯庐断裂带西侧,250 km长和150 km宽,NNE走向,区内发现100多条碳酸岩墙和多个碱性岩杂岩体(Xie Yuling et al.,2016)。在该带中碱性岩与碳酸岩同时存在,碱性岩出露面积大,例如,在郗山矿区碱性杂岩出露面积为0.3 km2,而含稀土的脉状、网脉状碳酸岩叠加在碱性杂岩和太古宙变质杂岩之上,少量呈浸染状或者在角砾岩之间呈胶结物; 稀土矿物主要有氟碳铈矿、氟碳铈镧矿、氟碳钙铈矿,铈磷灰石、铈镧霓辉石、独居石和褐帘石,往往与萤石、石英、重晶石、方解石、白云母、钠长石和霓辉石等脉石矿物共生(李建康等,2009; 于学峰等,2010)。

  • 大陆槽稀土矿床的工业稀土矿物为单一氟碳铈矿,脉石矿物主要有锶重晶石、钡天青石、萤石、霓辉石、方解石、毒重石,起初被认为是与霓辉正长斑岩有成因联系(施泽民和李小渝,1995),万德芳和田世洪(2004)通过流体包裹体研究,认为其属于与碱性杂岩有关的热液脉型轻稀土矿床。Liu Yan et al.(2015a)在正长岩体中发现有少量的碳酸岩小岩团或小岩株,通过与牦牛坪等矿床对比,确定其为碳酸岩有关的稀土矿床,属于川西冕宁-德昌碳酸岩稀土矿带的组成部分(谢玉玲等,2006; Xie Yuling et al.,20162019; 范宏瑞等,2020)。

  • 除了上述的几个代表性矿床之外,还有更多的规模较小的矿床和矿化点,例如,塔吉克斯坦帕米尔高原的Dunkeldik矿(Hong Jun et al.,2019),印度Amba Dongar萤石-稀土矿(Doroshkevich et al.,2009),巴西南部沿Ribeira河流分布的一组稀土矿(Andrade et al.,1999)以及沿东非裂谷发育的一系列碳酸岩-碱性岩有关的热液型稀土矿,其中最主要的含稀土矿物是氟碳铈矿和独居石(Lehmann et al.,1994)。

  • 在东秦岭地区探明的几个富含REE的碳酸岩型钼铀矿床和铀铌矿床,例如,黄龙铺、黄水庵和华阳川等,这些矿床均形成于三叠纪,REE资源作为伴生组分尚未回收利用。事实上,这些矿床中所有成矿元素品位都比较低,开发利用难度大,但具有重要的成因意义。

  • 2.2 碱性岩有关稀土矿

  • 在全球范围内,碱性岩有关的稀土矿在资源量方面仅次于碳酸岩型。这类稀土矿床成因上有岩浆型和热液型两种成因认识,与之有关的岩石包括碱性岩和过碱性花岗岩类(Dostal et al.,2016)。范宏瑞等(2020)将碱性岩-碱性花岗岩型稀土矿床成矿特征概述为:① 绝大多数与高分异碱性岩(如霞石正长岩和碱性花岗岩等)密切相关,无碳酸岩组合。岩体由多个分异相带组成,或构成碱性岩杂岩体; ② 该类型矿床富含中-重稀土,且通常伴生有Zr、Nb、Ta等高场强元素矿化; ③ 岩体普遍经历过强烈的岩浆期后热液交代作用,其经济矿物多为热液交代成因。

  • 在世界上已发现许多富稀土的碱性岩和碱性花岗岩,例如,俄罗斯科拉半岛的Lovozero和Khibiny稀土矿、格林兰岛南部与Ilímaussaq碱性岩体有关的Kvanefjeld、Sørensen和Zone3稀土矿、加拿大的Kipawa、Red Wine、Strange Lake和Thor Lake稀土矿以及澳大利亚的Toongi稀土矿、瑞典的Norra Kärr稀土矿、美国阿拉斯加的Bokan Mountain稀土矿、纳米比亚Amis杂岩体碱性花岗岩中的Zr-Nb-REE矿床、尼日利亚中部Ring杂岩体碱性花岗岩中的Nb-U矿床、摩洛哥Tamazeght碱性花岗岩中的Zr-REE矿床、蒙古西部Khaldzan-Buregtey碱性花岗岩中的Zr-Nb-Ta-REE矿床等。由于碱性岩有关矿床的矿石品位较低,通常在1%左右,因此,仅有一处位于俄罗斯科拉半岛的矿床在进行小规模开采。在多数矿床中,稀土仅是伴生组分,主要组分通常是Zr、Nb、U、Ti,甚至P。Castor(2008)认为过碱性岩有关的稀土矿床往往富含钇、重稀土和锆,将来此类矿床的开采可能主要依赖于锆的市场。

  • Konopleva et al.(2015)报道在俄罗斯科拉半岛与Khibiny碱性岩体有关的磷灰石-霞石矿不仅为俄罗斯提供95%磷和54%铝,还有70%稀土和10%钛,有意义的是在该区最主要的稀土矿物是褐硅铈矿。再如,蒙古泥盆纪(390~380 Ma)的Khaldzan-Buregtey碱性花岗岩富含多种稀有和稀土元素,包括Zr(5.3%)、Nb(0.8%)、REE(0.4%)、Y(0.3%),还有Be、Sn、Rb等(Kovalenko et al.,2015)。在格陵兰岛南部,在中元古代Ilímaussaq碱性岩杂岩体中探明三个稀土矿床(表1),与成矿有关岩石为铁钠闪石异霞正长岩和霓石异霞正长岩,在这些矿床中异性石和斯坦硅石是两种最主要的含稀土元素矿物,探明的稀土氧化物总量(TREO)为1114万t,平均品位1.1%。尽管以轻稀土为主,但重稀土占到11.5%,该矿床将成为离子吸附型重稀土矿之外的最主要重稀土资源(胡泽松,2022,个人交流)。

  • 在我国,先后发现了几个与碱性岩-碱性花岗岩有关的稀土矿化点及少数矿床,主要有内蒙古扎鲁特巴尔哲(801)碱性花岗岩体中的超大型Zr-REE-Nb矿床(Yang Wubin et al.,2020)、新疆拜城波孜果尔碱性花岗岩中的超大型Nb-Ta-REE-Zr矿床(Huang He et al.,2014)、辽宁凤城赛马碱性杂岩体中的大型U-REE矿床(邬斌等,2018)。在这三个矿床中,赛马和波孜果尔的稀土为伴生组分,而且品位低。巴尔哲是一个典型碱性岩类有关的稀土矿床,但探明储量仅10000 t TREO@1.0%,18000 t ZrO2@1.84%和26000 t Nb2O5@0.26%,铌达到中型规模,稀土和锆均为小型,值得指出得是在稀土矿中HREE达到34%(邬斌等,2018)。该矿床与成矿有关的侵入岩为白垩纪(123.7±0.9 Ma)过碱性花岗岩,主要含稀土矿物有锆石、兴安石、独居石、烧绿石和褐钇铌矿。

  • 2.3 沉积型稀土矿产

  • 沉积型稀土矿产可分为现代沉积型和沉积岩型,前者又分为陆相冲积相砂矿、海滨相砂矿和深海沉积矿产。在美国Mountain Pass碱性岩-碳酸岩稀土矿发现之前,稀土资源主要来自于砂矿,以往在中国、朝鲜半岛、马来西亚、泰国、澳大利亚、新西兰、印度、斯里兰卡、美国、巴西和赞比亚开采砂矿,迄今在印度、斯里兰卡、泰国、巴西、西澳大利亚和马达加斯加滨海仍然在开采(Sengupta and Gosen,2016)。由于抗风化能力强,独居石、烧绿石、锆石、钛铁矿和金红石往往在滨海富集,其来源主要是花岗岩和片麻岩等。

  • 深海锰结核、铁锰壳和深海沉积物是潜在的稀土来源,而且重稀土比例高于碳酸岩型矿石。Kato et al.(2011)对东南太平洋2037件深海沉积物的稀土元素开展测试分析,发现稀土含量达到1000×10-6~2230×10-6,其中重稀土含量达到200×10-6~430×10-6,中重稀土/轻稀土比值大于华南离子吸附型矿石的比值,将来有望成为中重稀土的重要接替资源。美国地质调查局发现东北太平洋Clarion-Clipperton锰结核带和中太平洋铁锰结壳带中稀土含量可达800×10-6~2500×10-6,推测其所拥有的稀土资源量可以达到大陆稀土矿产的10%。东南太平洋Tiki盆地中钻探岩芯(编号:S028GC23)的测试显示稀土含量为1136×10-6~2213×10-6,平均1857×10-6,并且稀土元素主要富集在褐黑色-黑色沸石黏土层,稀土含量与P2O5成正比,与铈异常成反比(Zhou Tiancheng et al.,2021)。王汾连等(2016)研究认为磷灰石是整个沸石黏土中稀土元素的主要赋存载体。

  • 在《贵州1∶20万威宁幅区域地质调查报告》(贵州省地质矿产局,1972)中提及威宁县鹿房宣威组底部发现有富稀土矿化层,且伴生有Ga、U、Th、Nb。杨瑞东等(2006)报道贵州西部毕节地区赫章二叠系玄武岩顶部灰白色高岭石黏土岩中的稀土总量RE2O3品位为0.023%~0.22%,既富轻稀土铈和钕,也富含钇,矿体分布广,层位稳定,矿层厚度3~4 m,是一个远景资源量很大的稀土矿床。龚大兴等(2022)研究发现沉积型稀土中∑REE的Pr占4.98%,Nd占15.01%,Tb占0.52%,Dy占2.83%,累计达23.34%。最近中国地质科学院综合利用研究所、中国科学院地球化学研究所和贵州省地质矿产局等单位正在开展进一步地质调查,初步厘定矿化区在平面上主要分布在四川省南部金阳-沐川一带以南,云南省东部昭通-宣威-曲靖一线以东,至贵州西部赫章-六盘水一线以西的地区。垂向上,由底部峨眉山玄武岩向上,依次为紫红色含铁质黏土岩(玄武岩古风化壳)→部分剖面底部及层间见一套典型的河道相砾岩及砂岩→浅灰色黏土岩→灰白色铝土质黏土岩→灰绿色粉砂质黏土岩→浅灰色、土黄色粉砂岩,间夹有少量薄层炭质黏土岩,中部浅灰色黏土岩及灰白色铝土质黏土岩中稀土含量最高(龚大兴等,2022)。研究发现宣威组稀土异常出现在高岭石质黏土岩中,高岭石含量介于60%~80%(徐莺等,2018),但又不同于离子吸附型矿床,稀土元素并不是以离子交换和配位络合吸附于高岭石、埃洛石表面(Yang Meijun et al.,2019)。

  • 在沉积磷矿、铝土矿和煤层中,或多或少普遍含有稀土元素,部分层位和区段已经达到工业开采品位,但是否能够开发利用,仍然具有挑战性。稀土作为磷块岩中的伴生组分,Emsbo et al.(2016)总结认为全球每年开采的磷矿中伴生56000 t稀土,其中包括重稀土23000 t,但都没有回收利用,尽管利用现代技术几乎可以实现100%浸出。我国贵州省和云南省磷块岩(杨瑞东等,2005; 张杰等,2007)富含稀土,例如贵州织金新华含稀土白云质磷块岩中ΣREE为251×10-6~974×10-6,平均615×10-6张杰等,2007)。富REE磷块岩常以生物碎屑、泥晶及藻屑结构为主,其他矿物有白云石、方解石、石英、黏土矿物、闪锌矿、锐钛矿及黄铁矿等。山西省一些铝土矿中REE含量最高可达2268×10-6,一般为700×10-6~1300×10-6柴东浩等,2001),主要赋存于水硬铝石等含铝矿物和高岭石、伊利石等铝硅酸盐矿物中(杨军臣等,2004)。在广西曲阳的铝土矿中,还发现了独立稀土矿物,如氟碳钙铈矿和水磷铈矿(Wang Qingfei et al.,2010)。

  • 煤矿伴生的稀土元素也是潜在的有用资源,在中国、美国、俄罗斯和保加利亚等国报道某些煤层富含稀土资源(代世峰等,2014)。俄罗斯远东和其他地区的一些新生代盆地的煤层中发现REE含量可达0.03%~0.1%,高出正常煤层REE含量的5~20倍,褐煤通常富含稀土元素,在一些煤矿层的顶板和底板岩石也往往是稀土元素的富集层位,煤灰中的REE甚至富集到0.1%~0.5%,REE主要呈吸附态(吸附在有机物和黏土颗粒上)和细粒自生矿物产出(Seredin,1996; Seredin and Dai,2012)。在澳大利亚,在沉积盆地中已知的伴生稀土矿床分为磷块岩、褐煤和不整合相关型3种类型,其资源量不足全国的1%。与磷块岩有关的稀土矿床集中在Georgina盆地,约有20个已知的中寒武世早期的磷块岩矿床; 尤克拉盆地与砂岩中的褐煤多金属铀矿床有关的稀土矿,其稀土仅赋存于矿化的褐煤中; Birrindudu盆地中的Killi Hills铀-稀土远景区为不整合相关型(张婷等,2014)。事实上,磷块岩通常伴生有大量的稀土元素,Emsbo et al.(2016)统计全球磷块岩中蕴藏着7000多万吨稀土,其中重稀土达3000多万吨,中国、美国和摩洛哥是全球三大磷矿资源拥有国家,其中稀土含量也独占鳌头。

  • 2.4 离子吸附型稀土矿

  • 离子吸附型稀土矿是全球重稀土和钇的最重要来源,是我国地质工作者于20世纪在江西省龙南地区发现的一种特殊类型矿床,以足洞(当时命名701)为代表(包家宝等,1996),随后在南岭地区不断有新发现。在20世纪(主要集中在80~90年代)共探明90余处离子吸附型矿床,主要分布在赣南、粤北、闽西和湘南地区,个别在桂东北和滇西(Xie Yuling et al.,2019)。最近,周美夫等(2020)统计我国南方有150多处离子吸附型稀土矿。近10年以来,随着国际上对关键矿产的关注,在国内掀起了新一轮寻找稀土矿的热潮,在滇西腾冲、临沧地区和浙江省南部庆元县新发现一批花岗岩风化壳型稀土矿,在赣南宁都县和浙西遂昌县分别探明了葛藤嘴和大柘两个以浅变质岩为主岩的风化壳离子吸附型稀土矿床,而且在这两个省的前寒武纪浅变质岩中进一步找矿的潜力很大(王登红等,2017; 赵芝等,2017; 王臻等,20182019; 毛景文等,2019b)。丘文(2017)报道在福建省龙岩市万安矿区,花岗岩和变质岩经过风化作用都能形成离子吸附型稀土矿。王学求等(2022)报道在云南省红河州也发现具有超大规模前景的离子吸附型稀土矿,赋矿围岩主要是一套变质程度不同的岩层,其中原岩推测为酸性火山岩类,整体上以轻稀土为主。目前江西地勘局在赣南地区正在开展以花岗岩风化形成的离子吸附型重稀土矿为目标的找矿勘查工作,探明了安远县石头坪和赣县夏湖-大埠两个大型-超大型矿床,进一步勘查正在进行之中。

  • 不仅在我国华南和西南地区发育有离子吸附型稀土矿,在东南亚地区发现越来越多的该类矿床,风化壳离子吸附型稀土矿成矿带与东南亚两大锡矿成矿带相吻合,西矿带从我国腾冲向南延伸到缅甸东南部和泰国西北角,原岩是晚白垩世含锡花岗岩; 东矿带从我国滇西临沧-景洪,向南延伸到老挝、泰国、马来西亚到印度尼西亚锡岛群岛,原岩是晚三叠世含锡花岗岩。由于缺少系统勘查,仅仅有一些零星报道。Sanematsu et al.(2009)研究发现在老挝花岗岩(主要为黑云母角闪石花岗闪长岩和黑云母花岗岩)风化壳离子吸附型稀土矿广泛发育,其中含有大量以高岭石和伊利石为代表的黏土矿物,但绝大部分REE含量尚未达到工业要求,仅在中北部Attapu和东南部Xaisomboun地区发现有离子吸附型轻稀土矿。Tohar and Yunus(2020)报道马来西亚Besar、Tengah和Hujung三个岛上发育9处风化壳离子吸附型矿化地,风化带分为土壤(soil)、腐泥岩(saprolite)和腐岩(saprock),腐泥岩是主要含矿层,通常厚度为2~4.5 m,含稀土总量0.12%~0.23%。泰国Phuket是有名的锡矿产区,Sanematsu et al.(2013)报道该区Beach花岗岩风化壳厚12 m,上半部从地表到4.5 m深度,稀土含量达0.02%~0.05%,其中34%~68%呈离子吸附态; 下半部4.5~12 m厚,具有Ce负异常,稀土含量达0.06%~0.11%,其中53%~78%呈离子吸附态。缅甸东部(主要在Kachin州东部和Shan州北部)是一个重要的晚白垩世锡矿带,其中有不少由高分异花岗岩风化形成的离子吸附型HREE矿,而且在断续开采,但迄今缺少有关地质资料的报道。在越南北部Lao Cai省Ben Den地区也发现有7 m至20多米厚的离子吸附型REE矿剖面。在Nui Phao钨多金属矿集区,由三叠纪花岗岩风化形成了三个离子吸附型REE矿,有10 m厚风化剖面(Mentani,2012)。该风化花岗岩中度富集HREE,平均REE品位0.055%,其中离子吸附态为67%(Mentani,2012)。菲律宾巴拉旺岛的晚白垩世Daroctan和中新世Kapoas花岗岩体具有高钾钙碱性特点,风化壳富集轻稀土元素。Padrones et al.(2017)研究发现在风化壳中,重稀土元素被吸附在蛭石表面,Kapoas花岗岩体的稀土元素主要赋存在独居石和褐帘石中,而Daroctan花岗岩体风化壳中53%~74%稀土元素可以被淋浸出,因此,后者有望成为工业性矿床。

  • 我国华南和东南亚地区风化壳离子吸附型稀土矿以重稀土为主,也有部分轻稀土。近些年报道在其他地区也发现有离子吸附型稀土矿。例如,非洲的Malawi、马达加斯加北部的Ambohimirahavavy、南美洲Serra Verde和Ptinga,以及美国东南部Liberty Hill(Sanematsu et al.,2016; Borst et al.,2020)。Serra Verde稀土矿位于巴西的Goiás省,风化花岗岩剖面厚度6 m,除了铈以外,其他浸出的稀土含量达50%,其中重稀土和钇为38%(Rocha et al.,2013)。在年降水量约1500 mm、年平均温度为17℃的环境,美国东南部卡莱罗纳州海西期中粗粒黑云母-角闪石花岗岩及少量黑云母花岗岩经历风化作用形成7 m厚的风化壳剖面,面积达400 km2,离子吸附型稀土和钇含量为0.058%,其中77%集中在腐泥岩(Bern et al.,2017)。

  • 此外,还有一些规模小的热液型稀土矿,热液来源不明确。例如,澳大利亚北领地的Nolans稀土矿与磷和铀伴生,矿体产在变质花岗岩体中,平面上呈扁平状,倾向北北西,倾角65°~90°,厚75 m,矿石矿物主要为富钍独居石和含氟的磷灰石(胡鹏,2009)。Liu Peng et al.(2022)报道在玉水铜矿区上石炭统碳酸盐岩与下石炭统砂岩的不整合界面发现有重稀土矿化层,并伴生有铀和钒,成矿时代为晚三叠世,明显被晚侏罗世岩浆热液有关的铜矿化切割和穿插。初步推测这些重稀土矿可能由华南地区加里东期广泛发育的后碰撞高分异花岗岩发生风化剥蚀,并在陆间盆地或者边缘海沉积形成。该发现在华南地区指示出一个探寻重稀土矿的新方向。

  • 3 成矿环境及成矿机制

  • 内生与外生稀土成矿是两个截然不同的成矿系统,离子吸附型矿床具有特殊性,三者成矿环境、过程及机制差异大,分别进行讨论。

  • 3.1 外生稀土矿成矿环境及成矿机制

  • 外生稀土矿成矿环境可以分为三种,分别为海相、陆相和风化淋滤-次生富集。海相稀土矿又可以进一步分为滨海砂矿、近海磷块岩伴生、深海锰结核和沉积软泥四类。滨海砂矿主要出现于河流入海口附近,其稀土矿物来源于河流流域的火成岩和中高级变质岩,尤其是花岗岩类及相应的火山岩、碱性岩-碳酸岩及相应的火山岩。含稀土矿物以独居石[(Ce,La,Nd,Th)PO4]为主,其次是磷钇矿(YPO4)和锆石,海浪、水流、潮汐和风力等导致矿物按照粒度和比重进行分选富集,这些含稀土副矿物往往与金红石、钛铁矿,甚至锡石一起堆积,形成几千米宽度和长度的矿层,因而具有工业价值。

  • 普遍认为磷块岩是海相沉积产物,其稀土元素配分图与现代大洋沉积物类似,对于其成矿过程已经提出多种模式,尚未形成共识。Emsbo et al.(2015)通过大量文献的总结,提出主要是由铁锰氢氧化物携带的稀土元素通过吸附作用进入海水,然后逐渐成为海底沉积物的组成部分。German et al.(1991)研究发现在缺氧环境有利于稀土元素富集,富集程度高达十倍。

  • 远离大陆的深海软泥稀土元素富集区与δ3He高异常值相吻合,由此推测可能是沿太平洋洋中脊和Juan de Fuca洋脊热液柱远距离扩散的结果,由铁氢氧化物从海水中捕获稀土元素而沉淀(Kato et al.,2011)。另一方面,通常从超基性岩→基性岩→中性岩→酸性岩→碱性岩,稀土元素总含量逐渐增加,说明地幔并不富集稀土元素,因此也不排除大陆来源的重稀土元素以某种形式发生远距离迁移。深海含稀土锰结核和富钴锰结壳的成因也有较大争议,有深海陆源沉积和海底热液沉淀两种认识,有些富钴锰结壳直接覆盖在磷块岩之上,有海底不断下沉的趋势。

  • 在河流环境,富稀土的重矿物在河流拐弯处的斜坡处往往富集成砂矿。煤层和铝土矿中的稀土元素通常属于陆相沉积产物,陈代演和王华(1997)不仅发现黔中-川南铝土矿中富有稀土元素,而且认为无论是产于寒武系高台组和娄山关群白云岩侵蚀面上的沉积型硬水铝石铝土矿床(林歹、长冲河、小山坝),还是产于下奥陶统桐梓组黏土岩、白云岩侵蚀面上的沉积型硬水铝石铝土矿床,其产出层位均为下石炭统九架炉组,成矿时代均为早石炭世。这与山西省广泛发育的铝土矿相同,产于不整合界面,这些稀土元素与铝土矿都是原岩风化、淋滤、抑或原地残积抑或曾经历搬运作用,最终沉积而成。南美多米尼亚共和国正在开采的Las Mercedes铝土矿中稀土元素含量均匀,平均1530×10-6,稀土矿物为方铈矿和富钍独居石,其物质来源于早期铝土矿的风化和淋滤后再沉积而成,而最原始的铝土矿具有混合的物质来源,是由碳酸盐岩和富铁镁质火成岩经过风化沉积而形成(Torró et al.,2017)。黔滇川地区二叠系宣威组稀土元素的异常富集区空间上出现在峨眉山大火成岩省(ELIP)东侧,时间上在其之后。已有的大量研究证实宣威组的物质来源为西侧的剥蚀区,沉积记录呈现出完整的物质来源和河流沉积系统(Wang Xuetian et al.,2020; 龚大兴等,2022; Deng Wei et al.,2022)。富稀土黏土岩的稀土配分整体为“右倾型”,且表现出明显的负Eu异常,剖面中贫稀土岩层的稀土配分亦表现出相同的特征,揭示富稀土黏土岩与宣威组或有相同的物源区,即西侧的大火成岩省是剥蚀区。关于陆相成煤盆地中的稀土元素来源和成矿机制,Seredin and Dai(2012)总结出四种类型,即:① 陆源型:由水流把稀土元素带入盆地; ② 火山灰来源型:酸性和碱性火山灰直接落入盆地或者从酸性和碱性火山凝灰岩中淋滤出后再搬运沉积; ③ 渗透或者地下水驱动型; ④ 热液型:煤层联通含矿热液和深部流体。后两种类型属于推测,需要更多证据给予支持。

  • 3.2 风化壳离子吸附型稀土矿形成机制

  • 当1969年在赣南发现和鉴别出花岗岩风化壳离子吸附型REE矿之后,大批研究工作迅速开展,并取得了明显成果。研究表明离子吸附型稀土矿主要发育于热带和亚热带地区,海拔不高于550 m(吴澄宇等,19891993; 张祖海,1990),氟碳铈矿、褐帘石、异性石和榍石等含稀土矿物在风化壳中可以风化分解,解析出来的稀土元素能被黏土矿物(高岭石、埃洛石、蒙脱石和三水铝石等)的表面所吸附(杨岳清等,1981; 杨主明,1987),而独居石、锆石和烧绿石等抗化学风化能力强,通常不是离子吸附型稀土矿的物质来源(Sanematsu et al.,2016)。在南岭地区广泛发育离子吸附型稀土矿,鉴别出重稀土和轻稀土两种类型,通过系统研究提出了足洞式(重稀土)和河岭式(轻稀土)矿床(杨岳清等,1981; 黄典豪等,1988; 袁忠信等,2012)。吴澄宇等(1989)将风化壳离子吸附型稀土矿剖面划分出表土层、全风化层、半风化层和微风化层或者基岩层。表层的黏土矿物为高岭石-埃洛石-三水铝石,富含有机质,介质为弱酸性(pH=4.4~5.2),REE淋滤为主,铈呈氧化物滞留,多数REE以残留副矿物存在,浸出率仅17%~20%; 全风化层以埃洛石-高岭石为主,环境变为中酸性(pH=5.5~6),REE以吸附状态在黏土矿物中大大富集,可交换部分达48%~86%,铈呈强烈负异常; 半风化层中黏土矿物组合为埃洛石-高岭石-蒙脱石,尽管pH值进一步增高(达6.3),但风化作用减弱,黏土含量大大降低,REE前缘尚未达到,大部分REE保存于未分解的副矿物及造岩矿物中。

  • 近十多年以来,稀土作为关键矿产,在投入资金开展找矿勘查的同时,形成了一批研究新成果,风化壳离子吸附型稀土矿的成矿机理研究也得到全面深化。尽管各地风化壳的厚度不等(5~25 m),但剖面的分层大致相似,矿物组合分带及地球化学特点基本一致,与吴澄宇等(1989)早期提出的分层大同小异。例如,Bao Zhiwei and Zhao Zhenhua(2008)将其分为红土层(A),风化层(B)和风化前缘层(C)。Li et al.(2017)重新研究了赣南足洞风化壳剖面,划分为A、B和C三个层,A层是腐殖质带,B层包括上部的黏土带和下部全风化带(富矿层),C层包括上部的半风化带(贫矿层)和过渡带,最下部为原岩。Sanematsu et al.(2016)将剖面自上而下划分为贫矿淋滤带(其中最上部是土壤)、离子吸附型REE堆积带(富矿层),弱风化花岗岩带到原岩,而Tohar and Yunus(2020)在研究马来西亚离子吸附型REE矿时,将剖面描述为土壤,腐泥岩(富矿层),腐岩(贫矿层)到原岩。研究结果认为在土壤和风化岩石中离子吸附型稀土主要依赖于吸附物质的属性、pH值和离子吸附强度。东南亚各地与华南相同,高岭石和埃洛石是吸附稀土元素的主要黏土矿物。高岭石或者埃洛石有两种类型离子交换,导致Al3+代替Si4+的同质交换。Li et al.(2017)研究发现,在风化壳上部通常显示明显Ce正异常并不是过去推测的含铈矿物以残留物形式存在,而是由于Ce3+氧化成Ce4+,然后以方铈矿形式沉淀,这一结果得到场发射扫描电镜和透射电镜研究所证实,矿物粒度细微,属于纳米级(刘容等,2016)。另一方面,Xu Cheng et al.(2017)提出另一个模式,认为来自俯冲板片以高氧化态和富REE为特征的富水和碳酸盐流体通过交代花岗岩,导致Ce3+氧化成Ce4+,而不影响其他REE,由此形成了具Ce负异常的富HREE磷酸盐和碳酸盐。风化剖面继承了花岗岩的REE特征,反映出Ce亏损和其他REE的富集。

  • 风化形成的离子吸附型HREE矿的原岩通常为高分异的过铝质或者偏铝质花岗岩类,岩性为黑云母二长花岗岩、二云母花岗岩及少量白云母花岗岩; 离子吸附型轻稀土矿原岩为流纹岩、变质岩和分异程度低的花岗岩类,例如,角闪黑云母花岗岩和似斑状粗粒黑云母花岗岩; 在滇西地区已发现和探明稀土矿以轻稀土为主,原岩为似斑状钾长石花岗岩和斑状黑云母二长花岗岩(祝向平等,2019; 陆蕾等,2019; 刑永辉等,2019)。这些岩石显示出高分异的特点,但形成以轻稀土为主的矿床,究其原因很可能是因为地处1000 m以上的高山区,风化程度不高,其中含有较多难以风化的富轻稀土矿物,如独居石。至于为什么变质岩风化后能形成离子吸附型REE矿?王臻(2018)研究表明赣南前寒武纪浅变质岩(包括变砂岩类、板岩类、千枚岩类、片岩类和变质凝灰岩类)的REE含量为220×10-6~446×10-6白鸽等(1989)研究表明,在矿物组合易风化的条件下,南岭地区基岩稀土丰度大于150×10-6就可形成离子吸附型稀土矿化。不同类型浅变质岩的稀土配分模式显示出相似性,均属轻稀土富集型,并具有不同程度的Eu、Ce亏损。值得指出的是形成离子吸附型REE矿的变质岩的风化过程、特点和环境与花岗质岩石基本相同,不同的是吸附REE离子的黏土矿物是伊利石、高岭石和水云母(王臻等,2019; Huang Yufeng et al.,2021)。Huang Yufeng et al.(2021)研究表明这类离子吸附型稀土矿的REE含量为1000×10-6左右,其中70%~80%可以淋滤出。

  • 3.3 内生稀土矿产成矿环境及成矿机制

  • 碱性岩和碳酸岩通常形成于伸展环境,尤其是碱性杂岩是非造山环境形成的标志性岩石组合。从目前的全球稀土矿分布来看,主要产于四类构造环境,包括裂谷环境、碰撞后伸展环境、大陆碰撞环境和后俯冲伸展环境(图5)。

  • 图5 稀土元素地球化学循环和主要类型矿床形成构造环境模型图

  • Fig.5 Schematic diagram illustrating the geochemical circulation of REEs and tectonic settings of major REE deposit types

  • 3.3.1 裂谷成矿环境

  • 裂谷环境是内生稀土矿床最常见的一种构造背景,诸多矿床与超大陆裂解关系密切,例如,白云鄂博超大型REE-Fe-Nb矿产于华北克拉通北缘中元代裂陷槽,与成矿有关的碳酸岩及碱性岩墙和基性岩墙中的锆石和斜锆石U-Pb年龄为1.32~1.30 Ga,被认为与哥伦比亚超大陆裂解事件密切相关(Yang Kuifeng et al.,2011; Fan Hongrui et al.,2014; Zhang Shuanhong et al.,2017); 位于扬子地块西缘的云南武定迤纳厂Fe-Cu-REE与形成时代为1.7 Ga的岩浆活动有关,同样被认为与哥伦比亚超大陆裂解事件有关(叶现韬等,2013)。奥林匹克坝Cu-Au-U-REE矿位于南北向托伦兹枢纽带中元古代陆生裂谷带(Preiss,2000),Johnson and Cross(1995)通过对矿区内矿体围岩、矿体及有关岩墙群进行了系统的同位素测年,得到围岩花岗岩的锆石U-Pb同位素年龄为1588±4 Ma,矿床核心部位的赤铁矿-石英角砾岩年龄为1597±8 Ma,长英质的岩墙年龄为1592±8~1584±20 Ma,表明成矿作用也发生于哥伦比亚超大陆裂解时期。

  • 大西洋由大裂谷逐渐扩张而形成,在开裂早期于两岸均留有痕迹。在巴西东南部形成了两条重要的稀土-铌-磷矿带,其一是Alto Paranaíba火成岩省,表现为一个北西走向的碱性杂岩带,包括碱性岩、碳酸岩、金云母岩和金伯利岩等,各个杂岩体呈不连续状分布,从西北向东南依次分布Catalão I、Catalão II、Serra Negra、Salitre I、Salitre II、Salitre III、Araxá、和Tapira(Gomes et al.,1990; Barbosa et al.,2012),这些杂岩体也伴随着大量铌、磷和稀土矿形成,其中Catalão I和Catalão II是全球最大的铌矿,成岩成矿时代为90~80 Ma(Cordeiro et al.,2011; Barbosa et al.,2012; Palmieri et al.,2022); 其二是早白垩世Ponta Grossa碱性岩-碳酸岩省,其中伴随与碱性岩-碳酸岩有关的一系列稀土矿产,包括巴西南部沿Ribeira河流分布的一组稀土矿(Barra do Itapirapuã、Itapirapuã、Mato Preto、Banhadão、Barra do Teixeira、Sete Quedas、Tunas、Jacupiranga、Juquiá、Cananéia; Andrade et al.,1999),其形成时代为131~127 Ma(Amaral et al.,1967; Roden et al.,1985)。

  • 东非大裂谷横穿赞比亚、坦桑尼亚、扎伊尔、布隆迪、喀麦隆和乌干达,沿着该大裂谷发育有一系列碱性杂岩、碳酸岩和基性-超基性岩墙,目前缺少精确年龄资料,过去数据表明存在新元古代和白垩纪两期成岩事件(Lehmann et al.,1994),但多数人认为那些与碳酸岩或者碱性岩-碳酸岩有关的稀土矿形成于早白垩世,时代为138~116 Ma(Ngwenya,1994),与大西洋裂开早期时间基本一致,稀土成矿作用与碳酸岩关系密切。

  • 3.3.2 碰撞后成矿环境

  • 在大陆碰撞晚期或者后期,通常形成一系列碱性岩、碳酸岩和基性岩墙,部分碱性岩、碱性花岗岩和碳酸岩伴随着稀土矿化。例如,横贯我国北方、俄罗斯远东、中亚到乌拉尔的一个复合造山带,曾在志留纪—早泥盆世和晚二叠世—早三叠世发生过两次碰撞后伸展事件。

  • 蒙古稀土矿产资源十分丰富,但勘查程度很低,美国地质调查局完成的矿产资源潜力评价表明,蒙古的稀土资源将占到全球的20%(吴涛涛等,2018)。横贯东西的主线性构造(Main Mongolian Lineament)将蒙古分为南北蒙古。在北蒙古西北地区的图瓦-库古苏尔是一个与碱性岩-碳酸岩有关的稀土矿带,该带中部北区属于俄罗斯,西部被阿尔泰造山带所截断。Kovalenko et al.(1995)发现其中的Khaldzan-Buregtey过碱性花岗岩与铌-锆-稀土矿有关,其形成时代为390~380 Ma,可能属于原特提斯洋闭合后碰撞伸展期的产物。

  • 南蒙古地层主要是早—中古生代的弧火山岩和火山沉积岩以及志留纪—泥盆纪碳酸盐岩和陆相火山沉积岩(Badarch et al.,2003),碱性岩-碳酸岩带沿东西戈壁天山造山带分布,受一组构造控制。这些碱性岩-碳酸岩杂岩主要由正长岩质侵入岩和火山岩以及碳酸岩墙组成,并伴随着稀土-铌矿化。尽管其成岩成矿时代有一些晚中生代的信息,但大多数学者认为形成于三叠纪(244 Ma; Baatar et al.,2013),通常认为是后碰撞软流圈地幔物质上涌导致富集岩石圈地幔熔融的产物(Kovalenko et al.,2004; Gerel et al.,2005; Vladykin et al.,2009)。事实上,该带属于我国北方或者中亚古特提斯洋闭合后碰撞的产物,向东和向西延伸到我国境内,在我国东部有辽宁省凤城赛马碱性杂岩体中的大型U-REE矿床,成岩成矿时代为230~224 Ma(Wu Fuyuan et al.,2010Zhu Yusheng et al.,2016); 向西到南天山拜城波孜果尔碱性花岗岩中的超大型Nb-Ta-REE-Zr矿床和巴楚与镁质碳酸岩有关的稀土矿,两者的成岩成矿时代分别为290 Ma 和284~272 Ma(Huang He et al.,2014; Cheng Zhiguo et al.,2018)。这组成岩成矿时代表明从西向东后碰撞时代逐渐变新,这与构造学家提出的北方或者中亚碰撞造山由西向东呈剪刀式闭合的认识相吻合。

  • 横贯我国中部的秦岭-昆仑也是一个复合造山带,迄今未见有原特提斯洋闭合后碰撞有关的稀土矿。Ying Yuancan et al.(2017)Zhang Wei et al.(2019)在庙垭稀土-铌矿区中鉴定出421~414 Ma和231~206 Ma 两个时代成岩成矿的复合叠加,并诠释分别为古特提斯洋开裂和后碰撞期的产物,但如何进一步划分同一矿区不同期次岩浆岩和各自的矿化系统,仍然需要进一步工作。近些年,在包括秦岭在内的东亚地区发现越来越多与古特提斯洋闭合后碰撞有关钼矿、金矿和稀土多金属矿(毛景文等,2012),其中秦岭地区三叠纪碱性岩、碳酸岩和基性岩墙广泛发育分布,部分碳酸岩与钼-铅-稀土矿(黄龙铺和黄水庵)、铀-铌-稀土矿(华阳川)和稀土-铌矿(庙垭),它们的成矿时代分别为221 Ma(Stein et al.,1997)和220 Ma(黄卉等,2020),222.5~220 Ma(王佳营等,2020; 黄卉等,2020)和234~206 Ma(Ying Yuancan et al.,2017; 范宏瑞等,2020)。在朝鲜半岛中部Gyeonggi地块Hongcheon地区发现有长2 km,宽20~50 m的碳酸岩脉群,伴随着铁-稀土矿化,其成岩成矿时代为233~227 Ma(Kim et al.,2016),应属于秦岭-大别造山带的东延部分,同为碰撞后所形成。

  • 3.3.3 碰撞成矿环境

  • 大陆碰撞或者地体拼接是一个长期过程,由于挤压造山过程与风化剥蚀同时进行,因此在碰撞过程形成的矿产资源很难保存,通常看到的是碰撞后的产物。印度大陆与欧亚大陆的碰撞仍然在进行之中,尚未在主碰撞带见有稀土矿,但在欧亚大陆东部边缘发育有27~12 Ma的牦牛坪-大陆槽碱性岩-碳酸岩有关的稀土矿带(Wang Denghong et al.,2001; Liu Yan et al.,2015b)以及越南北部Dong Pao矿集区,该矿集区包括与碱性岩-碳酸岩有关的Dong Pao,北Nam Xe和南Nam Xe三个轻稀土矿,以及Muong Hum和Yen Phu两个风化壳型重稀土矿,空间上位于河内西北部。越南北部Dong Pao矿集区夹持于哀牢山-红河断裂和松马(Song Ma)缝合带之间,受控于走滑拉分断裂系统(Chau et al.,2017)。Li Xiaochun et al.(2022)用锆石和氟碳铈矿Th-U-Pb方法测定Dong Pao稀土矿成岩成矿时代为52~51 Ma。Guo Zhengfu et al.(2005)Hou Zengqian et al.(2006)认为哀牢山左旋走滑断裂带的运动和先前存在的穿岩石圈断裂系统引发前期俯冲板片的重熔,并提供了岩浆上升的通道,形成了西藏高原东侧碱质岩浆系统和有关的碱性岩-碳酸岩稀土矿。此外,在西藏高原西部的帕米尔高原,沿NW走向的Karakorum走滑断裂发育有塔吉克斯坦Dunkeldik地区形成于11 Ma的碱性岩-碳酸岩及有关的稀土矿化(Hong Jun et al.,2019),该带向南部和北部延伸到我国新疆境内。尽管研究程度较低,其成矿环境与牦牛坪-大陆槽成矿带具有类似性。

  • 3.3.4 后俯冲成矿环境

  • Richards(2009)提出后俯冲斑岩铜金矿和浅成低温热液型金矿概念,但其中真正内涵是后碰撞而非后俯冲成矿背景。Mao Jingwen et al.(2011)研究发现欧亚大陆东部边缘在白垩纪古太平洋板块由北西向斜俯冲转向沿大陆边缘呈北北东向走滑,引发大陆出现大面积伸展,形成一系列走滑拉分盆地和变质核杂岩,在盆地、变质核杂岩或者盆地边缘的拆离断层出现大规模成矿作用,形成脉状金矿,玢岩铁矿,斑岩-矽卡岩型铜金、铜钼和钼矿,斑岩型和脉状钨锡矿,以及浅成低温热液型金矿和银金矿。Mao Jingwen et al.(2021)将这种类型的成矿背景定义为后俯冲成矿,Zhu Rixiang et al.(2015)将华北克拉通地区白垩纪脉状金矿定义为“克拉通破坏型金矿”,认为是俯冲板块后撤所引起。无论是俯冲板片转向还是后撤,均表明由挤压环境转变为伸展环境,这种后俯冲可能是西大洋板片俯冲过程的一种特殊演化阶段,值得在古造山带中鉴别类似的成矿环境。鲁西郗山-龙宝山稀土矿带位于郯庐断裂带西侧的变质核杂岩内,其中有一系列北西走向的隆起和凹陷,北东走向的碱性岩体、碳酸岩体、煌斑岩岩墙、中酸性岩体广泛发育,其成岩成矿时代约为120 Ma(蓝廷广等,2011),与胶东地区的金矿时代相一致。该稀土成矿带与内蒙大兴安岭地区的巴尔哲碱性岩型稀土矿成矿时代也基本相同(123.7±0.9 Ma; 邬斌等,2018),均表现为后俯冲的产物。

  • 3.3.5 内生稀土矿成矿机制

  • 上述四类内生稀土矿床的成矿环境均显示出伸展或者裂陷,与成矿有关的岩石是碱性岩、碳酸岩或者两者岩石类型共存,其成矿过程和成矿机制相类似或者几乎相同。关于此类岩石组合和稀土矿床的物质来源和形成机制,已经有较多研究(Xu Cheng et al.,2010b; Dostal,2016; Verplanck et al.,2016; 范宏瑞等,2020; 谢玉玲等,2020),在此进行简述。

  • 通常认为霞石正长岩、正长岩和碱性花岗岩通过减压由含霞石玄武质或者玄武质母体岩浆分异而形成(Platt,1996; Winter,2001; Frost and Frost,2008)。Dostal(2016)认为在该过程中母体流体驱向低温残余流体,并富含碱质、硅质和铝质,形成响岩质、粗面岩质和过碱质花岗岩浆。与碱性岩有关的稀土矿成因有岩浆和热液两种认识,也有人认为两者兼有(例如,Salvi and Williams-Jones,19901996; Halter and Webster,2004; Veksler,2004; Linnen and Cuney,2005; Salvi et al.,2005; Huang He et al.,2014; Yang Wubin et al.,2020)。岩浆成因模型认为稀土和稀有金属富集主要是通过大量的结晶分异所致,例如,Huang He et al.(2014)明确指出岩浆期后的蚀变对形成波孜果儿铌、钽和稀土矿并未起到关键作用; 但是,从野外观察可见,几乎所有的矿化总是伴随围岩蚀变。通常成矿系统含有大量的挥发组分,例如,Yang Wubin et al.(2020)在研究巴尔哲Zr-REE-Nb-Y矿时发现成矿以热液过程为主,广泛发育交代作用,包括钠长石化、霓辉石化、赤铁矿化和硅化,可见霓辉石和独居石-(Ce)交代钠闪石,兴安石-(Y)交代烧绿石等现象,表明出在亚固相线条件下热液矿物的再平衡。

  • 如前所述,部分稀土矿化与碳酸岩(例如,白云鄂博,Mount Weld和Ngualla)或者碱性岩(例如,Ilímaussaq和Lovozero)具有密切的成因联系,但在更多矿区可见碳酸岩与碱性岩同时出现,主要矿体抑或在碳酸岩中抑或在碱性岩中,到目前为止,碳酸岩与碱性岩之间的关系尚是一个科学之谜。Martin and De Vito(2005)Linnen et al.(2014)认为在伸展环境下,两种岩浆的差别在于地幔富CO2流体导致形成碳酸岩浆,而地幔富水流体将导致A型花岗岩形成。另一方面,多数研究人员认为碱性岩浆通过结晶分异作用或者流体不混溶形成碳酸岩浆(例如,Bell,1998; Jones et al.,2013)。碳酸盐-硅酸盐流体不混溶已经被大量研究证明或者实验证实(例如,Veksler,2004; Veksler et al.,20062012; Jones et al.,2013; Martin et al.,2013)。Veksler et al.(2012)通过实验研究,评价了稀土元素和高场强元素在碱性岩浆与不混溶的碳酸岩浆中的分配,证明在适量磷、氟和氯存在的条件下,这些元素并不能十分显著地进入碳酸岩浆,只有在大量碱性岩浆-碳酸岩浆通过结晶分异作用后,才可能形成稀有和稀土金属碳酸岩型矿床。

  • 对于碳酸型稀土矿成因仍然存在岩浆型和热液型的争论,例如,许成等(2009)根据高Sr和REE含量和初始火成碳酸岩的C、O同位素组成,认为东秦岭黄龙铺钼-铅-稀土矿属于岩浆成因,而黄典豪等(1985)通过流体包裹体和硫、碳、氧、锶、铅同位素和稀土元素地球化学研究,明确为一种碳酸岩脉型高中温热液矿床,并提出成矿模式。范宏瑞等(2020)认为稀土元素在岩浆演化晚期富集后,还需要在出溶的成矿流体中进一步迁移和富集,才能形成工业矿体。尽管碳酸岩岩浆演化造成了晚期碳酸岩浆中稀土的富集和少量的稀土矿化(如庙垭),但主要的稀土矿化,特别是富稀土的氟碳酸盐矿物沉淀发生在碳酸岩流体阶段,表明在碳酸岩熔体-流体转化过程中稀土主要富集在碳酸岩流体中(谢玉玲等,2020)。在所有与碱性岩有关的稀土矿床中也有热液活动的痕迹,热液导致REE、HFSE、U和Th活化,随即在附近再交代沉淀成矿。在活化过程,LREE运移的距离比HREE远一些(Williams-Jones et al.,2012)。Salvi and Williams-Jones(1996)推测热液再活化往往发生在比较低的温度(≤350℃)。这些认识可以很好地解释为什么在碳酸岩型和碱性岩型稀土矿床中普遍出现热液碳酸盐矿物、萤石、硫酸盐矿物、金云母、钾长石、钠长石、钠闪石和霓辉石等。例如,在白云鄂博矿区,广泛发育钠化(钠闪石化、钠长石化、钠辉石化)、氟化(萤石化)、云母化(黑云母化、金云母化)和菱铁矿化,在霓辉石颗粒之间经常形成浸染状的磷灰石、萤石、氟碳铈矿及独居石等矿物(杨晓勇等,2015)。

  • 挥发组分对于成矿具有重要作用,与各类岩浆活动有关的成矿作用均显示出明显的蚀变作用,虽然不同类型矿床有关的蚀变类型有所不同。事实证明,在蚀变过程挥发组分起到关键作用,与碱性岩和碳酸岩有关稀土矿也不例外。通常认为碱性岩浆相对贫水并表现为还原性,当其经历过强烈的分异作用后,将在最晚期变成水饱和流体(Salvi and Williams-Jones,2005; Frost and Frost,2008)。最终富水流体携带不相容元素(包括REE、HFSE、Th和U)以及CO2、SO4、CH4、Cl和F等挥发组分和碱质元素等离开岩浆母体,通过交代和沉淀形成矿床。最近有现代碳酸岩浆喷溢的视频报道,但喷溢出的不是岩浆而是流体,类似流体一样的“岩浆”不可能发生结晶分异作用,实际上就是碳酸岩或者碱性岩结晶晚期分异出大量富水和CO2等的流体,由此也可以很好地解释为什么大量碳酸岩REE矿表现为脉状、网脉状和角砾状结构。

  • 如前所述,碱性岩、碱性花岗岩和碳酸岩均来自于地幔,钕和铪同位素特征也反映为地幔来源。世界上很多碳酸岩具有与洋岛玄武岩(OIB)极其类似的Sr-Nd-Pb同位素和稀有气体同位素特征,据此,Bell and Simonetti(2010)提出碳酸岩起源于岩石圈地幔以下高U/Pb值地幔(HIMU)和EMI富集地幔端元的混合源区。从谢玉玲等(2020)制作的我国主要碳酸岩型稀土矿的(87Sr/86Sr)iNdt)图中可以看出,庙垭碳酸岩和白云鄂博赋矿碳酸岩的组分位于原始地幔演化区,接近于高U/Pb比值地幔(HIMU),其成因可能是由于蚀变的洋壳进入地幔并与之混合,相比庙垭,白云鄂博赋矿碳酸岩在形成过程地壳物质加入相对较多。而牦牛坪-大陆槽矿带中的牦牛坪、大陆槽、里庄和木落寨以及山东省郗山明显具有EMII富集地幔特点,而东秦岭黄龙铺和黄水庵碳酸岩均显示出EMI富集地幔特点。Yang Wubin et al.(2017)对内蒙古巴尔哲和邻近的早白垩世碱性花岗岩体的源区性质开展研究,也获得相似的发现,即巴尔哲地区锆石原位O-Hf同位素数据显示,其δ18O值(1.8‰~5.1‰)明显低于地幔锆石值,εHft)值(+1.5~+17)变化范围较大且低于亏损地幔值。这表明该地区早白垩世碱性花岗岩源区可能存在一个蚀变洋壳组分和一个来自于富集地幔端元组分的混合。

  • 3.4 稀土元素地球化学循环与成矿模型

  • 稀土元素在地球丰度高,在地球化学循环的各个主要环节都可以形成稀土矿床(图5)。火成岩(尤其是碱性岩、碳酸岩和花岗质岩石)、变质岩、沉积岩以及早期形成的各种类型稀土矿和稀土富集矿化体在风化剥蚀、运移和再富集过程,形成了多种类型表生稀土矿床,包括以轻稀土为主的滨海砂矿和浅海环境磷块岩、深海锰(钴)结核和结壳、以重稀土为主的深海软泥型矿床,尽管后两者仍有陆源与海底热液沉积的成因争议。高分异花岗岩在热带和亚热带地区通过风化淋滤和次生富集,形成中重稀土为主的稀土矿,而结晶分异程度较低花岗岩、流纹岩和变质岩在相同的气候条件形成轻稀土矿。这种类型矿床和矿化体在遭受风化剥蚀过程中,除了部分通过次生富集成为离子吸附型矿床之外,其他则汇入河流进入大海,极少部分有可能形成河湖相砂矿。除此之外,大火成岩省、富含稀土和稀散元素的铝土矿和煤矿的风化剥蚀也是REE再循环和富集成矿的重要来源。

  • 另一方面,随着板块俯冲把滨海砂矿、浅海沉积磷块岩、深海锰(钴)结核和结壳以及其中富含的轻稀土和深海富重稀土软泥一并带入软流圈。在软流圈演化过程中,碱质元素(K和Na)、不相容元素(Zr、Nb、Ta、Hf、Be、U和Th等)、稀土元素和挥发组分(F、CO2、Cl等)往往会涌向上部压力减小部位,在适宜环境(例如,裂谷、后俯冲伸展、挤压碰撞带边侧的走滑拉分盆地、碰撞后伸展区等)向上涌动,并在地壳浅部定位,甚至喷出到地表。在浅部岩浆房,通过结晶分异作用,挥发组分和矿质元素进一步富集,在碱性岩浆演化晚期形成低品位稀土矿,并伴随着广泛的围岩蚀变。尽管不排除有单独的碳酸岩浆存在和成矿,在碱性岩浆演化晚期,如果岩浆房有足够多的CO2和Ca、Mg等元素,将出现碳酸岩浆。稀土元素、不相容元素和挥发组分在碳酸岩浆中富集,抑或形成流体在岩浆房上部形成脉状、网脉状矿石,抑或通过含矿岩浆的进一步分异演化,直接凝固成矿体。总体来看,碳酸岩型矿床(包括碳酸岩)稀土含量明显普遍高于碱性岩有关的矿床,表明了从后者到前者成矿物质进一步发生富集。

  • 致谢:在研究过程得到赵超和王鹏博士、康洪英女士的协助,成文后得到谢玉玲和范宏瑞两位专家的悉心审阅,他们提出的宝贵和建设性意见,对于提高本文的质量获益匪浅,在此一并致以诚挚谢意!

  • 注释

  • ❶ 龚大兴,田恩源,肖斌,惠博,赖杨,徐璐,王晓慧,徐莺,秦建华,颜世强,周家云,黄庆,何良伦,覃英,张嘉玮.2022. 川滇黔相邻区沉积型稀土的发现及意义. 矿床地质(投稿中).

  • 参考文献

    • Amaral G, Bushee J, Cordani U G, Kawashita K, Reynolds J H. 1967. Potassium-argon ages of alkaline rocks from southern Brazil. Geochimica et Cosmochimica Acta, 31(2): 117~142.

    • Andrade F R D, Möller P, Lüders V, Dulski P, Gilg H A. 1999. Hydrothermal rare earth elements mineralization in the Barra do Itapirapuã carbonatite, southern Brazil: behaviour of selected trace elements and stable isotopes (C, O). Chemical Geology, 155(1): 91~113.

    • Baatar M, Ochir G, Kynicky J, Iizumi S, Comin-Chiaramonti P. 2013. Some notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu alkaline complexes, southern Mongolia. International Journal of Geosciences, 4(8): 1200~1214.

    • Badarch G, Cunningham W D, Windley B F. 2003. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of central Asia. Journal of Asian Earth Sciences. 21(1): 87~110.

    • Bai Ge, Wu Chengyu, Ding Xiaoshi, Yuan Zhongxin, Huang Dianhao, Wang Peihua. 1989. The forming condition and distribution law of ionic type rare-earth ore deposit in Nanling region. Beijing: Bulletin of Institute of Mineral Deposits (in Chinese).

    • Balaram V. 2019. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4): 1285~1303.

    • Bao Jiabao, Zhang Lianbao, Wang Hezhong, Chen Juxing. 1996. The Discovery History of Mineral Deposits of China—Volume of Jiangxi Province. Beijing: Geological Publication House, 155~158 (in Chinese).

    • Bao Zhiwei, Zhao Zhenhua. 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews, 33(3): 519~535.

    • Barbosa E S R, Brod J A, Junqueira-Brod T C, Dantas E L, Cordeiro P F de O, Gomide C S. 2012. Bebedourite from its type area (Salitre I complex): a key petrogenetic series in the Late-Cretaceous Alto Paranaíba kamafugite-carbonatite-phoscorite association, Central Brazil. Lithos, 144-145: 56~72.

    • Batapola N M, Dushyantha N P, Premasiri H M R, Abeysinghe A M K B, Rohitha L P S, Ratnayake N P, Dissanayake D M D O K, Ilankoon I M S K, Dharmaratne P G R. 2020. A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka. Journal of Asian Earth Sciences, 200: 104475.

    • Bell K. 1998. Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks—a brief review. Journal of Petrology, 39(11-12): 1987~1996.

    • Bell K, Simonetti A. 2010. Source of parental melts to carbonatites-critical isotopic constraints. Mineralogy and Petrology, 98(1): 77~89.

    • Bern C R, Yesavage T, Foley N K. 2017. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: an effect of hydrothermal alteration. Journal of Geochemical Exploration, 172: 29~40.

    • Borst A M, Smith M P, Finch A A, Estrade G, Villanova-de-Benavent C, Nason P, Marquis E, Horsburgh N J, Goodenough K M, Xu C, Kynický J, Geraki K. 2020. Adsorption of rare earth elements in regolith-hosted clay deposits. Nature Communications, 11(1): 4386.

    • Cassidy K F, Towner R R, Ewers G R. 1997. Rare earth elements in Australia. Australian Geological Survey Organisation and Bureau of Resources Sciences, Canberra, Australia, Commercial-In-Confidence Report, November 1997.

    • Castor S B. 2008. The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. The Canadian Mineralogist, 46(4): 779~806.

    • Castor S B, Nason G W. 2004. Mountain pass rare earth deposit, California. In: Castor S B, Papke K G, Meeuwig R O, eds. Proceeding of 39th Forum on the Geology of Industrial Minerals. Nevada Bureau of Mines and Geology, Special Publications, 33: 68~81.

    • Castor S B, Hedrick J B. 2006. Rare earth elements. Industrial Minerals and Rocks, 769~792.

    • Chai Donghao, Qu Zhiming, Chen Hancheng, Cai Feng. 2001. New discovery and industrial significance of rare and rare-earth elements in Shanxi bauxite. Light Metals, (6): 6~11(in Chinese with English abstract).

    • Chakhmouradian A R, Zaitsev A N. 2012. Rare earth mineralization in igneous rocks: sources and processes. Elements, 8(5): 347~353.

    • Chau N D, Jadwiga P, Piestrzyński A, Duong V H, Phon L K, Pawel J. 2017. General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam. Vietnam Journal of Earth Sciences, 39(1): 14~26.

    • Chen Daiyan, Wang Hua. 1997. A study on REE geochemistry of some bauxite deposits in Guizhou. Guizhou Geology, 14(2): 132~144(in Chinese with English abstract).

    • Cheng Zhiguo, Zhang Zhaochong, Aibai A, Kong Weiliang, Holtz F. 2018. The role of magmatic and post-magmatic hydrothermal processes on rare-earth element mineralization: a study of the Bachu carbonatites from the Tarim Large Igneous Province, NW China. Lithos, 314-315: 71~87.

    • Cordeiro P F d O, Brod J A, Palmieri M, de Oliveira C G, Barbosa E S R, Santos R V, Gaspar J C, Assis L C. 2011. The Catalão I niobium deposit, central Brazil: resources, geology and pyrochlore chemistry. Ore Geology Reviews, 41(1): 112~121.

    • Dai Shifeng, Ren Deyi, Zhou Yiping, Vladimir V S, Li Dahua, Zhang Mingquan, James C H, Colin R W, Wang Xibo, Zhao L, Song Xiaolin. 2014. Coal-hosted rare metal deposits: genetic types, modes of occurrence, and utilization evaluation. Journal of China Coal Society, 39(8): 1707~1715(in Chinese with English abstract).

    • Deng Wei, Wen Hanjie, Du Shengjiang, Ling Kunyue, Fan Haifeng, Zhu Chuanwei, Luo Chongguang, Yang Yang. 2022. Provenance of Late Permian Nb-Zr-REE-Ga enrichment in western Guizhou: implications for the waning volcanism of Emeishan large igneous province. Ore Geology Reviews, 150: 105160.

    • Doroshkevich A G, Viladkar S G, Ripp G S, Burtseva M V. 2009. Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. The Canadian Mineralogist, 47(5): 1105~1116.

    • Dostal J, Verplanck P L, Hitzman M W. 2016. Rare-metal deposits associated with alkaline/peralkaline igneous rocks. In: Verplank P L, Hizman M W, eds. Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Reviews in Economic Geology, 18: 33~54.

    • Dushyantha N, Batapola N, Ilankoon I M S K, Rohitha S, Premasiri R, Abeysinghe B, Ratnayake N, Dissanayake K. 2020. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122: 103521.

    • Emsbo P, McLaughlin P I, Breit G N, du Bray E A, Koenig A E. 2015. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Research, 27(2): 776~785.

    • Emsbo P, McLaughlin P I, Bray E A d, Anderson E D, Vandenbroucke T R A, Zielinski R A, Verplanck P L, Hitzman M W. 2016. Rare earth elements in sedimentary phosphorite deposits: a global assessment. Society of Economic Geologists, (18): 101~113.

    • Fan Hongrui, Hu Fangfang, Yang Kuifeng, Pirajno F, Liu Xuan, Wang Kaiyi. 2014. Integrated U-Pb and Sm-Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan Obo REE deposit, northern China. Ore Geology Reviews, 63: 510~519.

    • Fan Hongrui, Niu Hecai, Li Xiaochun, Yang Kuifeng, Yang Zhanfeng, Wang Qiwei. 2020. The types, ore genesis and resource perspective of endogenic REE deposits in China. Chinese Science Bulletin, 65(33): 3778~3793 (in Chinese with English abstract).

    • Frost B R, Frost C D. 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49(11): 1955~1969.

    • Gerel O, Munkhtsengel B, Enkhtuvshin H, Iizumi S. 2005. Mushgai Khudag and Bayan Khoshuu volcanic-plutonic alkaline complexes with REE±Ta, Nb, Fe carbonatite mineralization. In: Seltmann R, Ger-el O, Kirwin D J, eds. Geodynamics Metallogeny of Mongolia with a Special Emphasis on Copper Gold Deposits. IAGOD Guide-book Series, 11: 215~221.

    • German C R, Holliday B P, Elderfield H. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553~3558. Gomes C B, Ruperti E, Morbidelli L. 1990. Carbonatite complexes from Brazil: a review. Journal of South American Earth Sciences, 3(1): 51~63.

    • Guo Zhengfu, Hertogen J, Liu Jiaqi, PasteelS P, Boven A, Punzalan L, He Huaiyu, Luo Xiangjun, Zhang Wenhua. 2005. Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis. Journal of Petrology, 46(1): 33~78.

    • Gupta C, Krishnamurthy N. 2005. Extractive metallurgy of rare earths CRC press. Boca Raton, Florida, 65: 70~75.

    • Halter W E, Webster J D. 2004. The magmatic to hydrothermal transition and its bearing on ore-forming systems. Chemical Geology, 210(1): 1~6.

    • Harmer R E, Nex P A M. 2016. Rare earth deposits of Africa. International Union of Geological Sciences, 39(2): 381~406.

    • Hong Jun, Ji Wenhua, Yang Xiaoyong, Khan T, Wang Rui, Li Wenyuan, Zhang Huishan. 2019. Origin of a Miocene alkaline-carbonatite complex in the Dunkeldik area of Pamir, Tajikistan: petrology, geochemistry, LA-ICP-MS zircon U-Pb dating, and Hf isotope analysis. Ore Geology Reviews, 107: 820~836.

    • Hou Zengqian, Tian Shihong, Yuan Zhongxin, Xie Yuling, Yin Shuping, Yi Longsheng, Fei Hongcai, Yang Zhiming. 2006. The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication. Earth and Planetary Science Letters, 244(1): 234~250.

    • Hu Peng. 2009. Development and utilization status of rare earth resources in foreign countries. World Nonferrous Metals, 9: 72~74(in Chinese with English abstract).

    • Huang Dianhao, Wang Yichang, Nie Fengjun, Jiang Xiujie. 1985. A new type of molybdenum deposit—geological characteristics and metal-logenic mechanism of the Huanglongpu carbonatite vein-type of molybdenum(lead) deposit, Shanxi. Acta Geologica Sinica, 59(3): 241~257+275 (in Chinese with English abstract).

    • Huang Dianhao, Wu Chengyu, Han Jiuzhu. 1988. REE geochemistry and mineralization characteristics of the Zudong and Guanxi granites, Jiangxi Province. Acta Geologica Sinica, 62(4): 311~328 (in Chinese with English abstract).

    • Huang He, Zhang Zhaochong, Santosh M, Zhang Dongyang. 2014. Geochronology, geochemistry and metallogenic implications of the Boziguo'er rare metal-bearing peralkaline granitic intrusion in south Tianshan, NW China. Ore Geology Reviews, 61: 157~174.

    • Huang Hui, Pan Jiayong, Hong Binyue, Kang Qingqing, Zhong Fujun. 2020. EPMA chemical U-Th-Pb dating of uraninite in Huayangchuan U-polymetallic deposit of Shaanxi Province and its geological significance. Mineral Deposits, 39(2): 351~368 (in Chinese with English abstract).

    • Huang Yufeng, He Hongping, Liang Xiaoliang, Bao Zhiwei, Tan Wei, Ma Lingya, Zhu Jianxi, Huang Jian, Wang Heng. 2021. Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China. Ore Geology Reviews, 135: 104173.

    • Hutchinson M, Slezak P, Wendlandt R, Hitzman M. 2022. Rare earth element enrichment in the weathering profile of the Bull Hill carbonatite at Bear Lodge, Wyoming, USA. Economic Geology, 117(4): 813~831.

    • Jackson W D, Christiansen G. 1993. International strategic minerals inventory summary report: rare-earth oxides. Circular 930-N. US Geological Survey, Reston, VA, 68.

    • Jia Yuheng, Liu Yan. 2020. Factors controlling the generation and diversity of giant carbonatite-related rare earth element deposits: insights from the Mianning-Dechang belt. Ore Geology Reviews, 121: 103472.

    • Johnson J P, Cross K C. 1995. U-Pb geochronological constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Economic Geology, 90(5): 1046~1063.

    • Jones A P, Genge M, Carmody L. 2013. Carbonate melts and carbonatites. Reviews in Mineralogy and Geochemistry, 75(1): 289~322.

    • Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H. 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4(8): 535~539.

    • Kim N, Cheong A Cs, Yi K, Jeong Y J, Koh S M. 2016. Post-collisional carbonatite-hosted rare earth element mineralization in the Hongcheon area, central Gyeonggi massif, Korea: ion microprobe monazite U-Th-Pb geochronology and Nd-Sr isotope geochemistry. Ore Geology Reviews, 79: 78~87.

    • Konopleva N G, Ivanyuk G Y, Pakhomovsky Y A, Yakovenchuk V N, Mikhailova Y A, Selivanova E A. 2015. Typochemistry of rinkite and products of its alteration in the Khibiny Alkaline pluton, Kola Peninsula. Geology of Ore Deposits, 57(7): 614~625.

    • Kovalenko V I, Tsaryeva G M, Goreglyad A V, Yarmolyuk V V, Troitsky V A, Hervig R L, Farmer G L. 1995. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Economic Geology, 90(3): 530~547.

    • Kovalenko V I, Yarmolyuk V V, Kovach V P, Kotov A B, Kozakov I K, Salnikova E B, Larin A M. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. Journal of Asian Earth Sciences, 23(5): 605~627.

    • Lan Tingguang, Fan Hongrui, Hu Fangfang, Yang Kuifeng, Wang Yong. 2011. Genesis of the Weishan REE deposit, Shandong Province: evidences from Rb-Sr isochron age, LA-MC-ICP-MS Nd isotopic compositions and fluid inclusions. Geochimica, 40(5): 428~442 (in Chinese with English abstract).

    • Le Maitre R W. 2002. Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press.

    • Lehmann B, Nakai Si, Höhndorf A, Brinckmann J, Dulski P, Hein U F, Masuda A. 1994. REE mineralization at Gakara, Burundi: evidence for anomalous upper mantle in the western Rift Valley. Geochimica et Cosmochimica Acta, 58(2): 985~992.

    • Li Jiankang, Yuan Zhongxin, Bai Ge, Chen Yuchuan, Wang Denghong, Ying Llijuan, Zhang Jian. 2009. Ore-forming fluid evolvement and its controlling to REE (Ag) mineralizing in the Weishan deposit, Shandong. Journal of Mineralogy and Petrology, 29(3): 60~68 (in Chinese with English abstract).

    • Li Xiaochun, Zhou Meifu, Li Shihu, Zhang Xiaoran, Fan Hongrui, Groves D I, Xuan Dac N. 2022. An unusual early eocene, syncollisional carbonatite complex and related rare earth element deposit in the India-Asia collision zone, northwestern Vietnam. Economic Geology, doi. org/10. 5382/econgeo. 4969.

    • Li Y H M, Zhao W W, Zhou Meifu. 2017. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model. Journal of Asian Earth Sciences, 148: 65~95.

    • Linnen R, Samson I, Williams-Jones A, Chakhmouradian A. 2014. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. Treatise on Geochemistry (Second Edition), 13: 543~568.

    • Linnen R L, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen R L, Samson I M, eds. Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada, GAC, Short Course, 45~67.

    • Liu Rong, Wang Rucheng, Lu Xiancai, Li Juan. 2016. Nano-sized rare earth minerals from granite-related weathering-type REE deposits in southern Jiangxi. Acta Petrologica et Mineralogica, 35(4): 617~626 (in Chinese with English abstract).

    • Liu Peng, Gu Xiangping, Zhang Wenlan, Hu Huan, Chen Xiaodan, Wang Xiaolin, Song Wenlei, Yu Miao, Nigel J C. 2022. Jingwenite-(Y) from the Yushui Cu deposit, South China: the first occurrence of a V-HREE-bearing silicate mineral. American Mineralogist, doi. org/10. 2138/am-2022-8373.

    • Liu Yan, Chen Zhenyu, Yang Zhusen, Sun Xiang, Zhu Zhimin, Zhang Qichao. 2015a. Mineralogical and geochemical studies of brecciated ores in the Dalucao REE deposit, Sichuan Province, southwestern China. Ore Geology Reviews, 70: 613~636.

    • Liu Yan, Hou Zengqian, Tian Shihong, Zhang Qichao, Zhu Zhimin, Liu Jianhui. 2015b. Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan Province, southwestern China: constraints on the giant REE mineralization belt and its regional geological setting. Ore Geology Reviews, 64: 554~568.

    • Long K R. 2011. The future of rare earth elements—will these high-tech industry elements continue in short supply? US Geological Survey.

    • Long K R, Van Gosen B S, Foley N K, Cordier D. 2012. The principal rare earth elements depositsof the United States: a summary of domestic deposits and a global perspective. Scientific Investigations Report No. 2010-5220 (U. S. Geological Survey, Reston, VA, 2010) Available at http: //pubs. usgs. gov/sir/2010/5220/.

    • Lu Lei, Wang Denghong, Wang Chenghui, Zhao Zhi, Feng Wenjie, Xu Xiaochun, Yu Feng. 2019. Mineralization regularity of ion-adsorption type REE deposits on Lincang granite in Yunnan Province. Acta Geologica Sinica, 93(6): 1466~1478(in Chinese with English abstract).

    • Mancheri N A, Sprecher B, Bailey G, Ge J, Tukker A. 2019. Effect of Chinese policies on rare earth supply chain resilience. Resources, Conservation and Recycling, 142: 101~112.

    • Mao Jingwen, Pirajno F, Cook N. 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings—an introduction to the special issue. Ore Geology Reviews, 43(1): 1~7.

    • Mao Jingwen, Zhou Zhenhua, Feng Yuchuan, Wang Yitian, Zhang Changqing, Peng Huijuan, Yu Miao. 2012. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting. Geology in China, 39(6): 1437~1471 (in Chinese with English abstract).

    • Mao Jingwen, Yang Zongxi, Xie Guiqing, Yuan Shunda, Zhou Zhenhua. 2019a. Critical minerals: international trends and thinking. Mineral Deposits, 38(4): 689~698 (in Chinese with English abstract).

    • Mao Jingwen, Yuan Shunda, Xie Guiqing, Song Shiwei, Zhou Qi, Gao Yongbao, Liu Xiang, Fu Xiaofang, Cao Jing, Zeng Zailin, Li Tongguo, Fan Xiyin. 2019b. New advances on metallogenic studies and exploration on critical minerals of China in 21st century. Mineral Deposits, 38(5): 935~969 (in Chinese with English abstract).

    • Mao Jingwen, Liu Peng, Goldfarb R J, Goryachev N A, Pirajno F, Zheng Wei, Zhou Meifu, Zhao Chao, Xie Guiqing, Yuan Shunda, Liu Min. 2021. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia. Ore Geology Reviews, 136: 104270.

    • Martin L H J, Schmidt M W, Mattsson H B, Guenther D. 2013. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1~3 GPa. Journal of Petrology, 54(11): 2301~2338.

    • Martin R F, De Vito C. 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. The Canadian Mineralogist, 43(6): 2027~2048.

    • McLemore V T. 2015. Rare earth elements (REE) deposits in New Mexico: update. New Mexico Geology, 37(3): 59~69.

    • Mentani T. 2012. So-called “ion-adsorption type” REE deposits found in weathered crust of ilmenite-series granite in northern Vietnam: Master thesis of University of Tokyo.

    • Neary C R, Highley D E. 1984. The economic importance of the rare earth elements. In: Henderson P, ed. Developments in Geochemistry. Amsterdam: Elsevier, 423~466.

    • Ngwenya B T. 1994. Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: processes at the fluid/rock interface. Geochimica et Cosmochimica Acta, 58(9): 2061~2072.

    • Oreskes N, Einaudi M T. 1990. Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia. Economic Geology, 85(1): 1~28.

    • Orris G J, Grauch, R I. 2002. Rare earth element mines, deposits and occurrences. US Department of the Interior, US Geological Survey.

    • Padrones J T, Imai A, Takahashi R. 2017. Geochemical behavior of rare earth elements in weathered granitic rocks in northern Palawan, Philippines. Resource Geology, 67(3): 231~253.

    • Palmieri M, Brod J A, Cordeiro P, Gaspar J C, Barbosa P A R, de Assis L C, Junqueira-Brod T C, Silva S, Milanezi B P, Machado S A, Jácomo M H. 2022. The carbonatite-related Morro do Padre Niobium deposit, Catalão II Complex, central Brazil. Economic Geology, 117(7): 1497~1520.

    • Platt R G. 1996. Nepheline syenite complexes—an overview. Mineralogical Association of Canada Short Course Notes, 24: 63~99.

    • Preinfalk C, Morteani G. 1989. The industrial applications of rare earth elements. In: Möller P, Černý P, Saupé F, eds. Lanthanides, Tantalum and Niobium. Berlin: Springer, 359~370.

    • Preiss W V. 2000. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Research, 100(1): 21~63.

    • Qiu Wen. 2017. Longyan Wanan rare earth mining area metamorphic rock weathering crust ion adsorption type rare earth ore and its prospecting significance. World Nonferrous Metals, (4): 242~244(in Chinese with English abstract).

    • Research and Markets. 2019. Research Report on China’s Rare Earth Industry, 2019-2023. https: //www. researchandmarkets. com/reports/4771561/research-report-on-chinasrare-earth-industry (accessed 27. 09. 2019).

    • Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology, 37(3): 247~250.

    • Rocha A, Schissel D, Sprecher A, de Tarso P, Goode J. 2013. Process Development for the Serra Verde Weathered Crust Elution-deposited Rare Earth Deposit in Brazil, in Rare Earth Elements—Proceedings of the 52nd Conference of Metallurgists (COM 2013). In: London I, Goode J, Moldoveanu G, Rayat M, eds. Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum (MetSoc-CIM), Montreal, Canada.

    • Roden M F, Murthy V R, Gaspar J C. 1985. Sr and Nd isotopic composition of the Jacupiranga carbonatite. Journal of Geology, 93(2): 212~220.

    • Salvi S, Williams-Jones A E. 1990. The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: evidence from fluid inclusions. Geochimica et Cosmochimica Acta, 54(9): 2403~2418.

    • Salvi S, Williams-Jones A. 1996. The role of Hydrothermal processes in concentrating HFSE in the Strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Acta, 60: 1917~1932.

    • Salvi S, Williams-Jones A E, Linnen R, Samson I. 2005. Alkaline granite-syenite deposits. Geological Association of Canada Short Course Notes, 17: 315~341.

    • Samson I M, Wood S A. 2005. The rare earth elements: behaviour in hydrothermal fluids and concentration in hydrothermal mineral deposits, exclusive of alkaline settings. In: Linnen R L, Samson I M, eds. Rare Element Geochemistry and Mineral Deposits. Geological Association of Canada, GAC Short Course Notes, 17. Geological Association of Canada, Ottawa, 269~297.

    • Sanematsu K, Murakami H, Watanabe Y, Duangsurigna S, Siphandone V. 2009. Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in central and southern Laos. Bulletin of the Geological Survey of Japan, 60(11-12): 527~558.

    • Sanematsu K, Kon Y, Imai A, Watanabe K, Watanabe Y. 2013. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Mineralium Deposita, 48(4): 437~451.

    • Sanematsu K, Watanabe Y, Verplanck PL, Hitzman MW. 2016. Characteristics and genesis of ion adsorption-type rare earth element deposits, rare earth and critical elements in ore deposits. Society of Economic Geologists, 55~79.

    • Sengupta D, Gosen B S V, Verplanck P L, Hitzman M W. 2016. Placer-type rare earth element deposits, rare earth and critical elements in ore deposits. Society of Economic Geologists, 18: 81~100.

    • Seredin V V. 1996. Rare earth element-bearing coals from the Russian Far East deposits. International Journal of Coal Geology, 30(1): 101~129.

    • Seredin V V, Dai Shifeng. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94: 67~93.

    • Shi Zhemin, Li Xiaoyu. 1995. The discovery and its significance of Dalucao ore deposit of REE in Dechang. Acta Geologica Sichuan, 15(3): 216~218(in Chinese with English abstract).

    • Smith M P, Campbell L S, Kynicky J. 2015. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: multistage processes and outstanding questions. Ore Geology Reviews, 64: 459~476.

    • Stein H J, Markey R J, Morgan J W, Du A, Sun Y. 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China. Economic Geology, 92(7-8): 827~835.

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific.

    • Terry F. 2019. 2019 Rare Earths Rarely So Strategic [WWW Document]. Semicond. Dig.

    • Tohar S Z, Yunus M Y M. 2020. Mineralogy and BCR sequential leaching of ion-adsorption type REE: a novelty study at Johor, Malaysia. Physics and Chemistry of the Earth, Parts A/B/C, 120: 102947.

    • Torró L, Proenza J A, Aiglsperger T, Bover-Arnal T, Villanova-de-Benavent C, Rodríguez-García D, Ramírez A, Rodríguez J, Mosquea L A, Salas R. 2017. Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic. Ore Geology Reviews, 89: 114~131.

    • Veksler I V. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chemical Geology, 210(1): 7~31.

    • Veksler I V, Lentz D, Webster J. 2006. Parental magmas of plutonic carbonatites, carbonate-silicate immiscibility and decarbonation reactions: evidence from melt and fluid inclusions. Mineralogical Association of Canada Short Course, Montreal, Quebec, 36: 123~149.

    • Veksler I V, Dorfman A M, Dulski P, Kamenetsky V S, Danyushevsky L V, Jeffries T, Dingwell D B. 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica et Cosmochimica Acta, 79: 20~40.

    • Verplanck P L, Mariano A N, Mariano A Jr, Verplanck P L, Hitzman M W. 2016. Rare earth element ore geology of carbonatites, rare earth and critical elements in ore deposits. Society of Economic Geologists, 18: 5~32.

    • Vladykin N V. 2009. Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves. Russian Geology and Geophysics, 50(12): 1119~1128.

    • Voncken J H L. 2016. The Rare Earth Elements: an Introduction. Switzerland: Springer.

    • Wall F. 2020. Rare Earth Elements. Nottingham: Elsevier.

    • Walters A, Lusty P, Chetwyn C, Hill A. 2010, Rare earth elements, mineral profile series: United Kingdom. British Geological Survey, 53.

    • Wan Defang, Tian Shihong. 2004. Stable isotope evidence of deep source ore-forming fluid in the Dalucao REE deposit of the Panxi rift. Acta Geoscientica Sinica, 25(2): 161~164(in Chinese with English abstract).

    • Wang Denghong, Yang Jianmin, Yan Shenghao, Xu Jue, Chen Yuchuan, Pu Guangping, Luo Yaonan. 2001. A special orogenic-type rare earth element deposit in Maoniuping, Sichuan, China: geology and geochemistry. Resource Geology, 51(3): 177~188.

    • Wang Denghong, Zhao Zhi, Yu Yang, Wang Chenghui, Dai Jingjing, Sun Yan, Zhao Ting, Li Jiankang, Huang Fan, Chen Zhenyu, Zeng Zailin, Deng Maochun, Zhou Xinyong, Huang Huagu, Zhou Hui, Feng Wenjie. 2017. A review of the achievenens in the survey and study of ion-absorption type REE deposits in China. Acta Geoscientica Sinica, 38(3): 317~325 (in Chinese with English abstract).

    • Wang Fenlian, He Gaowen, Sun Xiaoming, Yang Yang, Zhao Taiping. 2016. The host of REE+Y elements in deep-sea sediments from the Pacific Ocean. Acta Petrologica Sinica, 32(7): 2057~2068 (in Chinese with English abstract).

    • Wang Jiaying, Li Zhidan, Zhang Qi, Li Chao, Xie Yu, Li Guangyao, Zeng Wei, Ding Ning. 2020. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating. Acta Geologica Sinica, 94(10): 2946~2964 (in Chinese with English abstract).

    • Wang Qingfei, Deng Jun, Liu Xuefei, Zhang Qizuan, Sun Silei, Jiang Chengzhu, Zhou Fang. 2010. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, west Guangxi, China. Journal of Asian Earth Sciences, 39(6): 701~712.

    • Wang Xuetian, Shao Longyi, Eriksson K A, Yan Zhiming, Wang Jumin, Li Hui, Zhou Ruxian, Lu Jing. 2020. Evolution of a plume-influenced source-to-sink system: an example from the coupled central Emeishan large igneous province and adjacent western Yangtze cratonic basin in the Late Permian, SW China. Earth-Science Reviews, 207: 103224.

    • Wang Xueqiu, Zhou Jian, Zhang Bimin, Liu Dongsheng, Xu Shanfa, Wang Wei, Wang Qiang, Qiao Yu, Xie Mingjun, Liu Futian, Chi Qinghua, Liu Yuheng, Hu Qinghai, Yan Taotao, Li Ruihong, Tian Mi, Wu Hui, Liu Hanliang, Liu Qingqing. 2022. Finding and implication of an undiscovered giant deposit of ion-adsorption rare earth elements in Honghe, South Yunnan, China. Acta Geoscientica Sinica, 43(4): 509~519 (in Chinese with English abstract).

    • Wang Zhen, Zhao Zhi, Zou Xinyong, Chen Zhenyu, Tu Xuejing. 2018. Petrogeochemical characteristics and metallogenetic potential of epimetamorphic rocks in South Jiangxi Province. Rock and Mineral Analysis, 37(1): 96~107 (in Chinese with English abstract).

    • Wang Zhen, Chen Zhenyu, Zhao Zhi, Chen Binfeng, Zou Xinyong. 2019. REE mineral and geochemical characteristics of Neoproterozoic metamorphic rocks in South Jiangxi Province. Mineral Deposits, 38(4): 837~850 (in Chinese with English abstract).

    • Winter J D. 2001. An introduction to igneous and metamorphic petrology. New Jersey, Prentice Hall, 697.

    • Williams-Jones A E, Migdisov A A, Samson I M. 2012. Hydrothermal mobilisation of the rare earth elements—a tale of “Ceria” and “Yttria”. Elements, 8(5): 355~360.

    • Witt W K, Hammond D P, Hughes M. 2019. Geology of the Ngualla carbonatite complex, Tanzania, and origin of the weathered Bastnaesite zone REE ore. Ore Geology Reviews, 105: 28~54.

    • Wu Bin, Wang Rucheng, Liu Xiaodong, Guo Guolin, Song Zhentao. 2018. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic-hydrothermal evolution. Acta Petrologica Sinica, 34(6): 1741~1757(in Chinese with English abstract).

    • Wu Chengyu, Huang Dianhao, Guo Zhongxun. 1989. REE geochemistry in the weathering process of granites in Longnan county, Jiangxi Province. Acta Geologica Sinica, 63(4): 349~362+387~388 (in Chinese with English abstract).

    • Wu Chengyu, Lu Hailong, Xu Lleiming, Hou Lei. 1993. A preliminary study on modes of occurrence of ree earth elements in the tropical subtropical weathering crust of Nanling region. Mineral Deposits, 12(4): 297~307 (in Chinese with English abstract).

    • Wu Chengyu, Yuan Zhongxin, Bai Ge. 1996. Rare earth deposits in China. In: Jones A P, Williams C T, Wall F, eds. Rare Earth Minerals: Chemistry, Origin and Ore Deposits: Mineralogical Society Series, 7. London: Chapman and Hall, 105~150.

    • Wu Fuyuan, Yang Yueheng, Marks M A W, Liu Zhichao, Zhou Qin, Ge Wenchun, Yang Jingsui, Zhao Zifu, Mitchell R H, Markl G. 2010. In situ U-Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1): 8~34.

    • Wu Taotao, Chai Lu, Bao Qingzhong, Zhou Yongheng, Wu Datian, Liu Jinlong. 2018. Geological features and resource potential of rare earth minerals in Mogolia. China Mining Magazine, 27(5): 82~87 (in Chinese with English abstract).

    • Woolley A R, Kjarsgaard B. 2004. Carbonatites of the world: map and database. Geological Survey of Canada, Open File Report 5796.

    • Xie Yuling, Yin Shuping, Xu Jiuhua, Chen Wei, Yi Longsheng. 2006. A study on the fluids in carbonatite of the Mianning-Dechang REE metallogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 25(1): 66~74 (in Chinese with English abstract).

    • Xie Yuling, Hou Zengqian, Goldfarb R J, Guo X, Wang L, Verplanck P L, Hitzman M W. 2016. Rare earth element deposits in China, rare earth and critical elements in ore deposits. Society of Economic Geologists, 18: 115~136.

    • Xie Yuling, Verplanck P L, Hou Zengqian, Zhong Richeng. 2019. Rare earth element deposits in China: a review and new understandings. Society of Economic Geologists Special Publications, 22: 509~552.

    • Xie Yuling, Xia Jiaming, Cui Kai, Qu Yunwei, Liang Pei, Zhong Richen. 2020. Rare earth elements deposits in China: spatio-temporal distribution and ore-forming processes. Chinese Science Bulletin, 65(33): 3794~3808 (in Chinese with English abstract).

    • Xu Cheng, Song Wenlei, Qi Liang, Wang Linjun. 2009. Geochemical characteristics and tectonic setting of ore-bearing carbonatites in Huanglongpu Mo ore field. Acta Petrologica Sinica, 25(2): 422~430 (in Chinese with English abstract).

    • Xu Cheng, Kynicky J, Chakhmouradian A R, Campbell I H, Allen C M. 2010a. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China. Lithos, 118(1): 145~155.

    • Xu Cheng, Wang Linjun, Song Wenlei, Wu Min. 2010b. Carbonatites in China: a review for genesis and mineralization. Geoscience Frontiers, 1(1): 105~114.

    • Xu Cheng, Chakhmouradian A R, Taylor R N, Kynicky J, Li Wenbo, Song Wenlei, Fletcher I R. 2014. Origin of carbonatites in the south Qinling orogen: implications for crustal recycling and timing of collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143: 189~206.

    • Xu Cheng, Song Wenlei, He Chen, Wang Lize. 2015. The overview of the distribution, type and genesis of the exogeneticrare earth elements (REE) deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 34(2): 234~241(in Chinese with English abstract).

    • Xu Cheng, Kynický J, Smith M P, Kopriva A, Brtnický M, Urubek T, Yang Yueheng, Zhao Zangzheng, He Chen, Song Wenlei. 2017. Origin of heavy rare earth mineralization in South China. Nature Communications, 8(1): 14598.

    • Xu Ying, Dai Zongming, Gong Daxing, Hui Bo. 2018. Study on the occurrence status of rare earth elements in Permian Xuanwei Formation in Guizhou Province. Mineral Comprehensive Utilization, (6): 90~94(in Chinese with English abstract).

    • Yang Juncheng, Wang Fenglin, Li Desheng, Fei Yongchu, Wang Lin. 2004. Investigation on occurrence and trend of rare and rare-earth elements associated in bauxite. Mining & Metallurgy, 13: 89~92 (in Chinese with English abstract).

    • Yang Kuifeng, Fan Hongrui, Santosh M, Hu Fangfang, Wang Kaiyi. 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: constraints for the mechanism of super accumulation of rare earth elements. Ore Geology Reviews, 40(1): 122~131.

    • Yang Meijun, Liang Xiaoling, Ma Lingya, Huang Jian, He Hongping, Zhu Jianxi. 2019. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite. Chemical Geology, 525: 210~217.

    • Yang Ruidong, Gao Hui, Wang Qiang, Bao Shen. 2005. Rare earth accumulation of Early Cambrian Gezhongwu Formation phosphorous rocks in Sanjia, Zhijin county, Guizhou Province, China. Journal of the Chinese Rare Earth Society, (6): 742~748(in Chinese with English abstract).

    • Yang Ruidong, Wang Wei, Bao Miao, Wang Qiang, Wei Huairui. 2006. Geochemical character of rare earth mineral from the top of Permian basalt, Hezhang county, Guizhou Province. Mineral Deposits, 25(S1): 205~208(in Chinese with English abstract).

    • Yang Wubin, Niu Hecai, Hollings P, Zurevinski S E, Li Ningbo. 2017. The role of recycled oceanic crust in the generation of alkaline A-type granites. Journal of Geophysical Research: Solid Earth, 122(12): 9775~9783.

    • Yang Wubin, Niu Hecai, Li Ningbo, Hollings P, Zurevinski S, Xing Changming. 2020. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: implications for rare metal mineralization. Lithos, 105411: 358~359.

    • Yang Xiaoyong, Lai Xiaodong, Ren Yisu, Ling Mingxing, Liu Yulong, Liu Jianyong. 2015. Geological characteristics and their scientific problems of the Bayan Obo Fe-REE-Nb deposit: discussion on the origin of Bayan Obo super-large deposit. Acta Geologica Sinica, 89(12): 2323~2350 (in Chinese with English abstract).

    • Yang Yueqing, Hu Chongsheng, Luo Zhanming. 1981. Geological characteristic of mineralization of rare earth deposit of the ion-absorption type and ther prospecting direction. Bulletin of the Chinese Academy of Geological Sciences, 2(1): 102~118 (in Chinese with English abstract).

    • Yang Zhuming. 1987. A study on clay minerals from the REE-rich weathered crust developed on the Longnan granite in Jiangxi. Chinese Journal of Geology, (1): 70~80+103 (in Chinese with English abstract).

    • Ye Xiantao, Zhu Weiguang, Zhong Hong, He Defeng, Ren Tao, Bai Zhongjie, Fan Hongpeng, Hu Wenjun. 2013. Zircon U-Pb and chalcopyrite Re-Os geochronology, REE geochemistry of the Yinachang Fe-Cu-REE deposit in Yunnan Province and its geological significance. Acta Petrologica Sinica, 29(4): 1167~1186(in Chinese with English abstract).

    • Ying Yuancan, Chen Wei, Lu Jue, Jiang Shaoyong, Yang Yueheng. 2017. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos, 290-291: 159~171.

    • Yu Xuefeng, Tang Haosheng, Han Zuozhen, Li Changyou. 2010. Geological characteristics and origin of rare earth elements deposits related with alkaline rock in the Chishan-Longbaoshan area, Shandong Province. Acta Geologica Sinica, 84(3): 407~417 ( in Chinese with English abstract).

    • Yuan Zhongxin, Bai Ge. 2001. Temporal and spatial distribution of endogenic rare andrare earth mineral deposits of China. Mineral Deposits, 20(4): 347~354 (in Chinese with English abstract).

    • Yuan Zhongxin, Li Jiankang, Wang Denghong, Zheng Guodong, Lou Debo, Chen Zhenghui, Zhao Zhi, Yu Yang. 2012. Metallogenic Regularity of REE Ore Deposits in China. Beijing: Geological Publishing House (in Chinese).

    • Zhang Jie, Sun Chuanmin, Gong Meiling, Zhang Qin, Chen Dailiang, Chen Jiyan. 2007. Geochemical characteristics and occurrence states of the REE elements of the phosphorite in Xinhua, Zhijin, Guizhou. Chinese Rare Earths, 28(1): 75~79 (in Chinese with English abstract).

    • Zhang Peishan. 1989. A study on the genetic classification of rare earth mineral deposits of China. Scientia Geologica Sinica, 24: 26~32 (in Chinese with English abstract).

    • Zhang Shuanhong, Zhao Yue, Liu Yongsheng. 2017. A precise zircon Th-Pb age of carbonatite sills from the world’s largest Bayan Obo deposit: implications for timing and genesis of REE-Nb mineralization. Precambrian Research, 291: 202~219.

    • Zhang Ting, Wang Chuansheng, Yao Zhongyou, Qiao Meiping, Ma Na, Xiao E. 2014. Types and metallogenic characteristics of rare earth deposits in Australia. Geological Bulletin of China, 33(2-3): 187~193 (in Chinese with English abstract).

    • Zhang Wei, Chen W T, Gao Jianfeng, Chen Huakai, Li Jinghui. 2019. Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: in-situ U-Th-Pb dating of bastnäsite and monazite. Mineralium Deposita, 54(8): 1265~1280.

    • Zhang Zhuhai. 1990. A study on weathering crust ion adsorption type REE deposits, South China. Contributions to Geology and Mineral Resources Research, 5(1): 57~71 (in Chinese with English abstract).

    • Zhao Zhi, Wang Denghong, Chen Zhenhui, Chen Zhenyu. 2017. Progress of research on metallogenic regularity of ion-adsorption type REE deposit in the Nanling range. Acta Geologica Sinica, 91(12): 2814~2827 (in Chinese with English abstract).

    • Zhou Baolu, Li Zhongxue, Zhao Yiqing, Zhang Cong, Wei Yixin. 2016. Rare Earth Elements supply vs. clean energy technologies: new problems to be solve. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 32(4): 29~44.

    • Zhou Baolu, Li Zhongxue, Chen Congcong. 2017. Global potential of rare earth resources and rare earth demand from clean technologies. Minerals, 7(11): 203.

    • Zhou Meifu, Li Xinxi, Wang Zhenchao, Li Xiaochun, Liu Jiacheng. 2020. The genesis of regolith-hosted rare earth element and scandium deposits: current understanding and outlook to future prospecting. Science Bulletin, 65(33): 3809~3824 (in Chinese with English abstract).

    • Zhou Tiancheng, Shi Xuefa, Huang Mu, Yu Miao, Bi Dongjie, Ren Xiangwen, Liu Jihua, Zhu Aimei, Fang Xishan, Shi Meijuan. 2021. Genesis of REY-rich deep-sea sediments in the Tiki basin, eastern South Pacific Ocean: evidence from geochemistry, mineralogy and isotope systematics. Ore Geology Reviews, 138: 104330.

    • Zhu Rixiang, Fan Hongrui, Li Jianwei, Meng Qingren, Li Shengrong, Zeng Qingdong. 2015. Decratonic gold deposits. Science China Earth Sciences, 58(9): 1523~1537.

    • Zhu Yusheng, Yang Jinhui, Sun Jinfeng, Zhang Jiheng, Wu Fuyuan. 2016. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: mineralogical and geochemical evidence from the Saima alkaline complex, NE China. Journal of Asian Earth Sciences, 117: 184~207.

    • 白鸽, 吴澄宇, 丁孝石, 袁忠信, 黄典豪, 王佩华. 1989. 南岭地区离子型稀土矿床形成条件和分布规律. 北京: 地质矿产部矿床地质研究所.

    • 包家宝, 张莲宝, 王和中, 陈聚兴. 1996. 中国矿床发现史(江西卷). 北京: 地质出版社, 155~158.

    • 柴东浩, 屈值明, 陈汉成, 柴峰. 2001. 山西铝土矿中稀有稀土元素的新发现及工业意义. 轻金属, 6: 6~11.

    • 陈代演, 王华. 1997. 贵州若干铝土矿床的稀土元素地球化学研究. 贵州地质, 14(2): 132~144.

    • 代世峰, 任徳贻, 周义平, VSeredin V, 李大华, 张名泉, Hower J C, Ward C R, 王西勃, 赵蕾, 宋晓林. 2014. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价. 煤炭学报, 39(8): 1707~1715.

    • 范宏瑞, 牛贺才, 李晓春, 杨奎锋, 杨占峰, 王其伟. 2020. 中国内生稀土矿床类型、成矿规律与资源展望. 科学通报, 65(33): 3778~3793.

    • 胡鹏. 2009. 国外稀土资源开发与利用现状. 世界有色金属, (9): 72~74.

    • 黄典豪, 王义昌, 聂凤军, 江秀杰. 1985. 一种新的钼矿床类型——陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制. 地质学报, 59(3): 241~257+275.

    • 黄典豪, 吴澄宇, 韩久竹. 1988. 江西足洞和关西花岗岩的稀土元素地球化学及矿化特征. 地质学报, 62(4): 311~328.

    • 黄卉, 潘家永, 洪斌跃, 康清清, 钟福军. 2020. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义. 矿床地质, 39(2): 351~368.

    • 蓝廷广, 范宏瑞, 胡芳芳, 杨奎锋, 王永. 2011. 山东微山稀土矿矿床成因: 来自云母Rb-Sr年龄、激光Nd同位素及流体包裹体的证据. 地球化学, 40(5): 428~442.

    • 李建康, 袁忠信, 白鸽, 陈毓川, 王登红, 应立娟, 张建. 2009. 山东微山稀土矿床成矿流体的演化及对成矿的制约. 矿物岩石, 29(3): 60~68.

    • 刘容, 王汝成, 陆现彩, 李娟. 2016. 赣南花岗岩风化壳型稀土矿床中纳米级稀土矿物的研究. 岩石矿物学杂志, 35(4): 617~626.

    • 陆蕾, 王登红, 王成辉, 赵芝, 冯文杰, 徐晓春, 于沨. 2019. 云南临沧花岗岩中离子吸附型稀土矿床的成矿规律. 地质学报, 93(6): 1466~1478.

    • 毛景文, 周振华, 丰成友, 王义天, 张长青, 彭惠娟, 于淼. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景. 中国地质, 39(6): 1437~1471.

    • 毛景文, 杨宗喜, 谢桂青, 袁顺达, 周振华. 2019a. 关键矿产——国际动向与思考. 矿床地质, 38(4): 689~698.

    • 毛景文, 袁顺达, 谢桂青, 宋世伟, 周琦, 高永宝, 刘翔, 付小方, 曹晶, 曾载淋, 李通国, 樊锡银. 2019b. 21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935~969.

    • 丘文. 2017. 龙岩市万安稀土矿区变质岩风化壳离子吸附型稀土矿的发现及其找矿意义. 世界有色金属, (4): 242~244.

    • 施泽民, 李小渝. 1995. 德昌大陆槽稀土矿床的发现及其意义. 四川地质学报, (3): 216~218.

    • 万德芳, 田世洪. 2004. 攀西大陆槽稀土矿床深源成矿流体的稳定同位素证据. 地球学报, (2): 161~164.

    • 王登红, 赵芝, 于扬, 王成辉, 代晶晶, 孙艳, 赵汀, 李建康, 黄凡, 陈振宇, 曾载淋, 邓茂春, 邹新勇, 黄华谷, 周辉, 冯文杰. 2017. 我国离子吸附型稀土矿产科学研究和调查评价新进展. 地球学报, 38(3): 317~325.

    • 王汾连, 何高文, 孙晓明, 杨阳, 赵太平. 2016. 太平洋富稀土深海沉积物中稀土元素赋存载体研究. 岩石学报, 32(7): 2057~2068.

    • 王佳营, 李志丹, 张祺, 李超, 谢瑜, 李光耀, 曾威, 丁宁. 2020. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据. 地质学报, 94(10): 2946~2964.

    • 王学求, 周建, 张必敏, 刘东盛, 徐善法, 王玮, 王强, 乔宇, 谢明君, 刘福田, 迟清华, 刘昱恒, 胡庆海, 严桃桃, 李瑞红, 田密, 吴慧, 刘汉粮, 柳青青. 2022. 云南红河州超大规模离子吸附型稀土矿的发现及其意义. 地球学报, 43(4): 509~519.

    • 王臻, 赵芝, 邹新勇, 陈振宇, 涂雪静. 2018. 赣南浅变质岩岩石地球化学特征及稀土成矿潜力研究. 岩矿测试, 37(1): 96~107.

    • 王臻, 陈振宇, 赵芝, 陈斌峰, 邹新勇. 2019. 赣南新元古代变质岩稀土矿物及其地球化学特征. 矿床地质, 38(4): 837~850.

    • 邬斌, 王汝成, 刘晓东, 郭国林, 宋振涛. 2018. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义. 岩石学报, 34(6): 1741~1757.

    • 吴澄宇, 黄典豪, 郭中勋. 1989. 江西龙南地区花岗岩风化壳中稀土元素的地球化学研究. 地质学报, 63(4): 349~362+387~388.

    • 吴澄宇, 卢海龙, 徐磊明, 侯磊. 1993. 南岭热带—亚热带风化壳中稀土元素赋存形式的初步研究. 矿床地质, 12(4): 297~307.

    • 吴涛涛, 柴璐, 鲍庆中, 周永恒, 吴大天, 刘金龙. 2018. 蒙古国稀土矿地质特征及资源潜力. 中国矿业, 27(5): 82~87.

    • 谢玉玲, 尹淑苹, 徐九华, 陈伟, 衣龙升. 2006. 冕宁-德昌稀土成矿带碳酸岩流体研究. 矿物岩石地球化学通报, (1): 66~74.

    • 谢玉玲, 夏加明, 崔凯, 曲云伟, 梁培, 钟日晨. 2020. 中国碳酸岩型稀土矿床: 时空分布与成矿过程. 科学通报, 65(33): 3794~3808.

    • 刑永辉, 马云良. 2019. 云南新营盘地区新发现离子吸附型稀土矿. 中国地质调查成果快讯, 5(103-104): 7~10.

    • 徐莺, 戴宗明, 龚大兴, 惠博. 2018. 贵州某地二叠系宣威组富稀土岩系稀土元素赋存状态研究. 矿产综合利用, (6): 90~94+101.

    • 许成, 宋文磊, 漆亮, 王林均. 2009. 黄龙铺钼矿田含矿碳酸岩地球化学特征及其形成构造背景. 岩石学报, 25(2): 422~430.

    • 许成, 宋文磊, 何晨, 王丽泽. 2015. 外生稀土矿床的分布、类型和成因概述. 矿物岩石地球化学通报, 34(2): 234~241.

    • 杨军臣, 王凤玲, 李德胜, 费涌初, 王玲. 2004. 铝土矿中伴生稀有稀土元素赋存状态及走向查定. 矿冶, 13(2): 89~92.

    • 杨瑞东, 高慧, 王强, 鲍淼. 2005. 贵州织金三甲寒武系戈仲伍组含磷岩系稀土富集规律研究. 中国稀土学报, (6): 742~748.

    • 杨瑞东, 王伟, 鲍淼, 王强, 魏怀瑞. 2006. 贵州赫章二叠系玄武岩顶部稀土矿床地球化学特征. 矿床地质, 25(S1): 205~208.

    • 杨晓勇, 赖小东, 任伊苏, 凌明星, 刘玉龙, 柳建勇. 2015. 白云鄂博铁-稀土-铌矿床地质特征及其研究中存在的科学问题——兼论白云鄂博超大型矿床的成因. 地质学报, 89(12): 2323~2350.

    • 杨岳清, 胡淙声, 罗展明. 1981. 离子吸附型稀土矿床成矿地质特征及找矿方向. 中国地质科学院矿床地质研究所文集, 2(1): 102~118.

    • 杨主明. 1987. 江西龙南花岗岩稀土风化壳中黏土矿物的研究. 地质科学, (1): 70~80+103.

    • 叶现韬, 朱维光, 钟宏, 何德锋, 任涛, 柏中杰, 范宏鹏, 胡文俊. 2013. 云南武定迤纳厂Fe-Cu-REE矿床的锆石U-Pb和黄铜矿Re-Os年代学、稀土元素地球化学及其地质意义. 岩石学报, 29(4): 1167~1186.

    • 于学峰, 唐好生, 韩作振, 李长有. 2010. 山东郗山-龙宝山地区与碱性岩有关的稀土矿床地质特征及成因. 地质学报, 84(3): 407~417.

    • 袁忠信, 白鸽. 2001. 中国内生稀有稀土矿床的时空分布. 矿床地质, 20(4): 347~354.

    • 袁忠信, 李建康, 王登红, 郑国栋, 娄德波, 陈郑辉, 赵芝, 于扬. 2012. 中国稀土矿床成矿规律. 北京: 地质出版社.

    • 张杰, 孙传敏, 龚美菱, 张覃, 陈代良, 陈吉艳. 2007. 贵州织金含稀土生物屑磷块岩稀土元素赋存状态研究. 稀土, 28(1): 75~79.

    • 张培善. 1989. 中国稀土矿床成因类型. 地质科学, (1): 26~32.

    • 张婷, 汪传胜, 姚仲友, 乔美萍, 马娜, 肖娥. 2014. 澳大利亚稀土矿床主要类型及其成矿特征. 地质通报, 33(2-3): 187~193.

    • 张祖海. 1990. 华南风化壳离子吸附型稀土矿床. 地质找矿论丛, (1): 57~71.

    • 赵芝, 王登红, 陈郑辉, 陈振宇. 2017. 南岭离子吸附型稀土矿床成矿规律研究新进展. 地质学报, 91(12): 2814~2827.

    • 中国科学院地球化学研究所. 1988. 白云鄂博矿床地球化学. 北京: 科学出版社.

    • 周美夫, 李欣禧, 王振朝, 李晓春, 刘嘉成. 2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望. 科学通报, 65(33): 3809~3824.

    • 祝向平, 张彬. 2019. 云南腾冲-陇川地区新发现一批中大型离子吸附型稀土矿. 中国地质调查成果快讯, 5(103-104): 1~6.

  • 参考文献

    • Amaral G, Bushee J, Cordani U G, Kawashita K, Reynolds J H. 1967. Potassium-argon ages of alkaline rocks from southern Brazil. Geochimica et Cosmochimica Acta, 31(2): 117~142.

    • Andrade F R D, Möller P, Lüders V, Dulski P, Gilg H A. 1999. Hydrothermal rare earth elements mineralization in the Barra do Itapirapuã carbonatite, southern Brazil: behaviour of selected trace elements and stable isotopes (C, O). Chemical Geology, 155(1): 91~113.

    • Baatar M, Ochir G, Kynicky J, Iizumi S, Comin-Chiaramonti P. 2013. Some notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu alkaline complexes, southern Mongolia. International Journal of Geosciences, 4(8): 1200~1214.

    • Badarch G, Cunningham W D, Windley B F. 2003. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of central Asia. Journal of Asian Earth Sciences. 21(1): 87~110.

    • Bai Ge, Wu Chengyu, Ding Xiaoshi, Yuan Zhongxin, Huang Dianhao, Wang Peihua. 1989. The forming condition and distribution law of ionic type rare-earth ore deposit in Nanling region. Beijing: Bulletin of Institute of Mineral Deposits (in Chinese).

    • Balaram V. 2019. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4): 1285~1303.

    • Bao Jiabao, Zhang Lianbao, Wang Hezhong, Chen Juxing. 1996. The Discovery History of Mineral Deposits of China—Volume of Jiangxi Province. Beijing: Geological Publication House, 155~158 (in Chinese).

    • Bao Zhiwei, Zhao Zhenhua. 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geology Reviews, 33(3): 519~535.

    • Barbosa E S R, Brod J A, Junqueira-Brod T C, Dantas E L, Cordeiro P F de O, Gomide C S. 2012. Bebedourite from its type area (Salitre I complex): a key petrogenetic series in the Late-Cretaceous Alto Paranaíba kamafugite-carbonatite-phoscorite association, Central Brazil. Lithos, 144-145: 56~72.

    • Batapola N M, Dushyantha N P, Premasiri H M R, Abeysinghe A M K B, Rohitha L P S, Ratnayake N P, Dissanayake D M D O K, Ilankoon I M S K, Dharmaratne P G R. 2020. A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka. Journal of Asian Earth Sciences, 200: 104475.

    • Bell K. 1998. Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks—a brief review. Journal of Petrology, 39(11-12): 1987~1996.

    • Bell K, Simonetti A. 2010. Source of parental melts to carbonatites-critical isotopic constraints. Mineralogy and Petrology, 98(1): 77~89.

    • Bern C R, Yesavage T, Foley N K. 2017. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: an effect of hydrothermal alteration. Journal of Geochemical Exploration, 172: 29~40.

    • Borst A M, Smith M P, Finch A A, Estrade G, Villanova-de-Benavent C, Nason P, Marquis E, Horsburgh N J, Goodenough K M, Xu C, Kynický J, Geraki K. 2020. Adsorption of rare earth elements in regolith-hosted clay deposits. Nature Communications, 11(1): 4386.

    • Cassidy K F, Towner R R, Ewers G R. 1997. Rare earth elements in Australia. Australian Geological Survey Organisation and Bureau of Resources Sciences, Canberra, Australia, Commercial-In-Confidence Report, November 1997.

    • Castor S B. 2008. The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. The Canadian Mineralogist, 46(4): 779~806.

    • Castor S B, Nason G W. 2004. Mountain pass rare earth deposit, California. In: Castor S B, Papke K G, Meeuwig R O, eds. Proceeding of 39th Forum on the Geology of Industrial Minerals. Nevada Bureau of Mines and Geology, Special Publications, 33: 68~81.

    • Castor S B, Hedrick J B. 2006. Rare earth elements. Industrial Minerals and Rocks, 769~792.

    • Chai Donghao, Qu Zhiming, Chen Hancheng, Cai Feng. 2001. New discovery and industrial significance of rare and rare-earth elements in Shanxi bauxite. Light Metals, (6): 6~11(in Chinese with English abstract).

    • Chakhmouradian A R, Zaitsev A N. 2012. Rare earth mineralization in igneous rocks: sources and processes. Elements, 8(5): 347~353.

    • Chau N D, Jadwiga P, Piestrzyński A, Duong V H, Phon L K, Pawel J. 2017. General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam. Vietnam Journal of Earth Sciences, 39(1): 14~26.

    • Chen Daiyan, Wang Hua. 1997. A study on REE geochemistry of some bauxite deposits in Guizhou. Guizhou Geology, 14(2): 132~144(in Chinese with English abstract).

    • Cheng Zhiguo, Zhang Zhaochong, Aibai A, Kong Weiliang, Holtz F. 2018. The role of magmatic and post-magmatic hydrothermal processes on rare-earth element mineralization: a study of the Bachu carbonatites from the Tarim Large Igneous Province, NW China. Lithos, 314-315: 71~87.

    • Cordeiro P F d O, Brod J A, Palmieri M, de Oliveira C G, Barbosa E S R, Santos R V, Gaspar J C, Assis L C. 2011. The Catalão I niobium deposit, central Brazil: resources, geology and pyrochlore chemistry. Ore Geology Reviews, 41(1): 112~121.

    • Dai Shifeng, Ren Deyi, Zhou Yiping, Vladimir V S, Li Dahua, Zhang Mingquan, James C H, Colin R W, Wang Xibo, Zhao L, Song Xiaolin. 2014. Coal-hosted rare metal deposits: genetic types, modes of occurrence, and utilization evaluation. Journal of China Coal Society, 39(8): 1707~1715(in Chinese with English abstract).

    • Deng Wei, Wen Hanjie, Du Shengjiang, Ling Kunyue, Fan Haifeng, Zhu Chuanwei, Luo Chongguang, Yang Yang. 2022. Provenance of Late Permian Nb-Zr-REE-Ga enrichment in western Guizhou: implications for the waning volcanism of Emeishan large igneous province. Ore Geology Reviews, 150: 105160.

    • Doroshkevich A G, Viladkar S G, Ripp G S, Burtseva M V. 2009. Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. The Canadian Mineralogist, 47(5): 1105~1116.

    • Dostal J, Verplanck P L, Hitzman M W. 2016. Rare-metal deposits associated with alkaline/peralkaline igneous rocks. In: Verplank P L, Hizman M W, eds. Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Reviews in Economic Geology, 18: 33~54.

    • Dushyantha N, Batapola N, Ilankoon I M S K, Rohitha S, Premasiri R, Abeysinghe B, Ratnayake N, Dissanayake K. 2020. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122: 103521.

    • Emsbo P, McLaughlin P I, Breit G N, du Bray E A, Koenig A E. 2015. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Research, 27(2): 776~785.

    • Emsbo P, McLaughlin P I, Bray E A d, Anderson E D, Vandenbroucke T R A, Zielinski R A, Verplanck P L, Hitzman M W. 2016. Rare earth elements in sedimentary phosphorite deposits: a global assessment. Society of Economic Geologists, (18): 101~113.

    • Fan Hongrui, Hu Fangfang, Yang Kuifeng, Pirajno F, Liu Xuan, Wang Kaiyi. 2014. Integrated U-Pb and Sm-Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan Obo REE deposit, northern China. Ore Geology Reviews, 63: 510~519.

    • Fan Hongrui, Niu Hecai, Li Xiaochun, Yang Kuifeng, Yang Zhanfeng, Wang Qiwei. 2020. The types, ore genesis and resource perspective of endogenic REE deposits in China. Chinese Science Bulletin, 65(33): 3778~3793 (in Chinese with English abstract).

    • Frost B R, Frost C D. 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49(11): 1955~1969.

    • Gerel O, Munkhtsengel B, Enkhtuvshin H, Iizumi S. 2005. Mushgai Khudag and Bayan Khoshuu volcanic-plutonic alkaline complexes with REE±Ta, Nb, Fe carbonatite mineralization. In: Seltmann R, Ger-el O, Kirwin D J, eds. Geodynamics Metallogeny of Mongolia with a Special Emphasis on Copper Gold Deposits. IAGOD Guide-book Series, 11: 215~221.

    • German C R, Holliday B P, Elderfield H. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553~3558. Gomes C B, Ruperti E, Morbidelli L. 1990. Carbonatite complexes from Brazil: a review. Journal of South American Earth Sciences, 3(1): 51~63.

    • Guo Zhengfu, Hertogen J, Liu Jiaqi, PasteelS P, Boven A, Punzalan L, He Huaiyu, Luo Xiangjun, Zhang Wenhua. 2005. Potassic magmatism in western Sichuan and Yunnan provinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis. Journal of Petrology, 46(1): 33~78.

    • Gupta C, Krishnamurthy N. 2005. Extractive metallurgy of rare earths CRC press. Boca Raton, Florida, 65: 70~75.

    • Halter W E, Webster J D. 2004. The magmatic to hydrothermal transition and its bearing on ore-forming systems. Chemical Geology, 210(1): 1~6.

    • Harmer R E, Nex P A M. 2016. Rare earth deposits of Africa. International Union of Geological Sciences, 39(2): 381~406.

    • Hong Jun, Ji Wenhua, Yang Xiaoyong, Khan T, Wang Rui, Li Wenyuan, Zhang Huishan. 2019. Origin of a Miocene alkaline-carbonatite complex in the Dunkeldik area of Pamir, Tajikistan: petrology, geochemistry, LA-ICP-MS zircon U-Pb dating, and Hf isotope analysis. Ore Geology Reviews, 107: 820~836.

    • Hou Zengqian, Tian Shihong, Yuan Zhongxin, Xie Yuling, Yin Shuping, Yi Longsheng, Fei Hongcai, Yang Zhiming. 2006. The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication. Earth and Planetary Science Letters, 244(1): 234~250.

    • Hu Peng. 2009. Development and utilization status of rare earth resources in foreign countries. World Nonferrous Metals, 9: 72~74(in Chinese with English abstract).

    • Huang Dianhao, Wang Yichang, Nie Fengjun, Jiang Xiujie. 1985. A new type of molybdenum deposit—geological characteristics and metal-logenic mechanism of the Huanglongpu carbonatite vein-type of molybdenum(lead) deposit, Shanxi. Acta Geologica Sinica, 59(3): 241~257+275 (in Chinese with English abstract).

    • Huang Dianhao, Wu Chengyu, Han Jiuzhu. 1988. REE geochemistry and mineralization characteristics of the Zudong and Guanxi granites, Jiangxi Province. Acta Geologica Sinica, 62(4): 311~328 (in Chinese with English abstract).

    • Huang He, Zhang Zhaochong, Santosh M, Zhang Dongyang. 2014. Geochronology, geochemistry and metallogenic implications of the Boziguo'er rare metal-bearing peralkaline granitic intrusion in south Tianshan, NW China. Ore Geology Reviews, 61: 157~174.

    • Huang Hui, Pan Jiayong, Hong Binyue, Kang Qingqing, Zhong Fujun. 2020. EPMA chemical U-Th-Pb dating of uraninite in Huayangchuan U-polymetallic deposit of Shaanxi Province and its geological significance. Mineral Deposits, 39(2): 351~368 (in Chinese with English abstract).

    • Huang Yufeng, He Hongping, Liang Xiaoliang, Bao Zhiwei, Tan Wei, Ma Lingya, Zhu Jianxi, Huang Jian, Wang Heng. 2021. Characteristics and genesis of ion adsorption type REE deposits in the weathering crusts of metamorphic rocks in Ningdu, Ganzhou, China. Ore Geology Reviews, 135: 104173.

    • Hutchinson M, Slezak P, Wendlandt R, Hitzman M. 2022. Rare earth element enrichment in the weathering profile of the Bull Hill carbonatite at Bear Lodge, Wyoming, USA. Economic Geology, 117(4): 813~831.

    • Jackson W D, Christiansen G. 1993. International strategic minerals inventory summary report: rare-earth oxides. Circular 930-N. US Geological Survey, Reston, VA, 68.

    • Jia Yuheng, Liu Yan. 2020. Factors controlling the generation and diversity of giant carbonatite-related rare earth element deposits: insights from the Mianning-Dechang belt. Ore Geology Reviews, 121: 103472.

    • Johnson J P, Cross K C. 1995. U-Pb geochronological constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Economic Geology, 90(5): 1046~1063.

    • Jones A P, Genge M, Carmody L. 2013. Carbonate melts and carbonatites. Reviews in Mineralogy and Geochemistry, 75(1): 289~322.

    • Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H. 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4(8): 535~539.

    • Kim N, Cheong A Cs, Yi K, Jeong Y J, Koh S M. 2016. Post-collisional carbonatite-hosted rare earth element mineralization in the Hongcheon area, central Gyeonggi massif, Korea: ion microprobe monazite U-Th-Pb geochronology and Nd-Sr isotope geochemistry. Ore Geology Reviews, 79: 78~87.

    • Konopleva N G, Ivanyuk G Y, Pakhomovsky Y A, Yakovenchuk V N, Mikhailova Y A, Selivanova E A. 2015. Typochemistry of rinkite and products of its alteration in the Khibiny Alkaline pluton, Kola Peninsula. Geology of Ore Deposits, 57(7): 614~625.

    • Kovalenko V I, Tsaryeva G M, Goreglyad A V, Yarmolyuk V V, Troitsky V A, Hervig R L, Farmer G L. 1995. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Economic Geology, 90(3): 530~547.

    • Kovalenko V I, Yarmolyuk V V, Kovach V P, Kotov A B, Kozakov I K, Salnikova E B, Larin A M. 2004. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. Journal of Asian Earth Sciences, 23(5): 605~627.

    • Lan Tingguang, Fan Hongrui, Hu Fangfang, Yang Kuifeng, Wang Yong. 2011. Genesis of the Weishan REE deposit, Shandong Province: evidences from Rb-Sr isochron age, LA-MC-ICP-MS Nd isotopic compositions and fluid inclusions. Geochimica, 40(5): 428~442 (in Chinese with English abstract).

    • Le Maitre R W. 2002. Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press.

    • Lehmann B, Nakai Si, Höhndorf A, Brinckmann J, Dulski P, Hein U F, Masuda A. 1994. REE mineralization at Gakara, Burundi: evidence for anomalous upper mantle in the western Rift Valley. Geochimica et Cosmochimica Acta, 58(2): 985~992.

    • Li Jiankang, Yuan Zhongxin, Bai Ge, Chen Yuchuan, Wang Denghong, Ying Llijuan, Zhang Jian. 2009. Ore-forming fluid evolvement and its controlling to REE (Ag) mineralizing in the Weishan deposit, Shandong. Journal of Mineralogy and Petrology, 29(3): 60~68 (in Chinese with English abstract).

    • Li Xiaochun, Zhou Meifu, Li Shihu, Zhang Xiaoran, Fan Hongrui, Groves D I, Xuan Dac N. 2022. An unusual early eocene, syncollisional carbonatite complex and related rare earth element deposit in the India-Asia collision zone, northwestern Vietnam. Economic Geology, doi. org/10. 5382/econgeo. 4969.

    • Li Y H M, Zhao W W, Zhou Meifu. 2017. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model. Journal of Asian Earth Sciences, 148: 65~95.

    • Linnen R, Samson I, Williams-Jones A, Chakhmouradian A. 2014. Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. Treatise on Geochemistry (Second Edition), 13: 543~568.

    • Linnen R L, Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen R L, Samson I M, eds. Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada, GAC, Short Course, 45~67.

    • Liu Rong, Wang Rucheng, Lu Xiancai, Li Juan. 2016. Nano-sized rare earth minerals from granite-related weathering-type REE deposits in southern Jiangxi. Acta Petrologica et Mineralogica, 35(4): 617~626 (in Chinese with English abstract).

    • Liu Peng, Gu Xiangping, Zhang Wenlan, Hu Huan, Chen Xiaodan, Wang Xiaolin, Song Wenlei, Yu Miao, Nigel J C. 2022. Jingwenite-(Y) from the Yushui Cu deposit, South China: the first occurrence of a V-HREE-bearing silicate mineral. American Mineralogist, doi. org/10. 2138/am-2022-8373.

    • Liu Yan, Chen Zhenyu, Yang Zhusen, Sun Xiang, Zhu Zhimin, Zhang Qichao. 2015a. Mineralogical and geochemical studies of brecciated ores in the Dalucao REE deposit, Sichuan Province, southwestern China. Ore Geology Reviews, 70: 613~636.

    • Liu Yan, Hou Zengqian, Tian Shihong, Zhang Qichao, Zhu Zhimin, Liu Jianhui. 2015b. Zircon U-Pb ages of the Mianning-Dechang syenites, Sichuan Province, southwestern China: constraints on the giant REE mineralization belt and its regional geological setting. Ore Geology Reviews, 64: 554~568.

    • Long K R. 2011. The future of rare earth elements—will these high-tech industry elements continue in short supply? US Geological Survey.

    • Long K R, Van Gosen B S, Foley N K, Cordier D. 2012. The principal rare earth elements depositsof the United States: a summary of domestic deposits and a global perspective. Scientific Investigations Report No. 2010-5220 (U. S. Geological Survey, Reston, VA, 2010) Available at http: //pubs. usgs. gov/sir/2010/5220/.

    • Lu Lei, Wang Denghong, Wang Chenghui, Zhao Zhi, Feng Wenjie, Xu Xiaochun, Yu Feng. 2019. Mineralization regularity of ion-adsorption type REE deposits on Lincang granite in Yunnan Province. Acta Geologica Sinica, 93(6): 1466~1478(in Chinese with English abstract).

    • Mancheri N A, Sprecher B, Bailey G, Ge J, Tukker A. 2019. Effect of Chinese policies on rare earth supply chain resilience. Resources, Conservation and Recycling, 142: 101~112.

    • Mao Jingwen, Pirajno F, Cook N. 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings—an introduction to the special issue. Ore Geology Reviews, 43(1): 1~7.

    • Mao Jingwen, Zhou Zhenhua, Feng Yuchuan, Wang Yitian, Zhang Changqing, Peng Huijuan, Yu Miao. 2012. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting. Geology in China, 39(6): 1437~1471 (in Chinese with English abstract).

    • Mao Jingwen, Yang Zongxi, Xie Guiqing, Yuan Shunda, Zhou Zhenhua. 2019a. Critical minerals: international trends and thinking. Mineral Deposits, 38(4): 689~698 (in Chinese with English abstract).

    • Mao Jingwen, Yuan Shunda, Xie Guiqing, Song Shiwei, Zhou Qi, Gao Yongbao, Liu Xiang, Fu Xiaofang, Cao Jing, Zeng Zailin, Li Tongguo, Fan Xiyin. 2019b. New advances on metallogenic studies and exploration on critical minerals of China in 21st century. Mineral Deposits, 38(5): 935~969 (in Chinese with English abstract).

    • Mao Jingwen, Liu Peng, Goldfarb R J, Goryachev N A, Pirajno F, Zheng Wei, Zhou Meifu, Zhao Chao, Xie Guiqing, Yuan Shunda, Liu Min. 2021. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia. Ore Geology Reviews, 136: 104270.

    • Martin L H J, Schmidt M W, Mattsson H B, Guenther D. 2013. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1~3 GPa. Journal of Petrology, 54(11): 2301~2338.

    • Martin R F, De Vito C. 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. The Canadian Mineralogist, 43(6): 2027~2048.

    • McLemore V T. 2015. Rare earth elements (REE) deposits in New Mexico: update. New Mexico Geology, 37(3): 59~69.

    • Mentani T. 2012. So-called “ion-adsorption type” REE deposits found in weathered crust of ilmenite-series granite in northern Vietnam: Master thesis of University of Tokyo.

    • Neary C R, Highley D E. 1984. The economic importance of the rare earth elements. In: Henderson P, ed. Developments in Geochemistry. Amsterdam: Elsevier, 423~466.

    • Ngwenya B T. 1994. Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: processes at the fluid/rock interface. Geochimica et Cosmochimica Acta, 58(9): 2061~2072.

    • Oreskes N, Einaudi M T. 1990. Origin of rare earth element-enriched hematite breccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia. Economic Geology, 85(1): 1~28.

    • Orris G J, Grauch, R I. 2002. Rare earth element mines, deposits and occurrences. US Department of the Interior, US Geological Survey.

    • Padrones J T, Imai A, Takahashi R. 2017. Geochemical behavior of rare earth elements in weathered granitic rocks in northern Palawan, Philippines. Resource Geology, 67(3): 231~253.

    • Palmieri M, Brod J A, Cordeiro P, Gaspar J C, Barbosa P A R, de Assis L C, Junqueira-Brod T C, Silva S, Milanezi B P, Machado S A, Jácomo M H. 2022. The carbonatite-related Morro do Padre Niobium deposit, Catalão II Complex, central Brazil. Economic Geology, 117(7): 1497~1520.

    • Platt R G. 1996. Nepheline syenite complexes—an overview. Mineralogical Association of Canada Short Course Notes, 24: 63~99.

    • Preinfalk C, Morteani G. 1989. The industrial applications of rare earth elements. In: Möller P, Černý P, Saupé F, eds. Lanthanides, Tantalum and Niobium. Berlin: Springer, 359~370.

    • Preiss W V. 2000. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Research, 100(1): 21~63.

    • Qiu Wen. 2017. Longyan Wanan rare earth mining area metamorphic rock weathering crust ion adsorption type rare earth ore and its prospecting significance. World Nonferrous Metals, (4): 242~244(in Chinese with English abstract).

    • Research and Markets. 2019. Research Report on China’s Rare Earth Industry, 2019-2023. https: //www. researchandmarkets. com/reports/4771561/research-report-on-chinasrare-earth-industry (accessed 27. 09. 2019).

    • Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology, 37(3): 247~250.

    • Rocha A, Schissel D, Sprecher A, de Tarso P, Goode J. 2013. Process Development for the Serra Verde Weathered Crust Elution-deposited Rare Earth Deposit in Brazil, in Rare Earth Elements—Proceedings of the 52nd Conference of Metallurgists (COM 2013). In: London I, Goode J, Moldoveanu G, Rayat M, eds. Metallurgical Society of the Canadian Institute of Mining, Metallurgy and Petroleum (MetSoc-CIM), Montreal, Canada.

    • Roden M F, Murthy V R, Gaspar J C. 1985. Sr and Nd isotopic composition of the Jacupiranga carbonatite. Journal of Geology, 93(2): 212~220.

    • Salvi S, Williams-Jones A E. 1990. The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: evidence from fluid inclusions. Geochimica et Cosmochimica Acta, 54(9): 2403~2418.

    • Salvi S, Williams-Jones A. 1996. The role of Hydrothermal processes in concentrating HFSE in the Strange Lake peralkaline complex, northeastern Canada. Geochimica et Cosmochimica Acta, 60: 1917~1932.

    • Salvi S, Williams-Jones A E, Linnen R, Samson I. 2005. Alkaline granite-syenite deposits. Geological Association of Canada Short Course Notes, 17: 315~341.

    • Samson I M, Wood S A. 2005. The rare earth elements: behaviour in hydrothermal fluids and concentration in hydrothermal mineral deposits, exclusive of alkaline settings. In: Linnen R L, Samson I M, eds. Rare Element Geochemistry and Mineral Deposits. Geological Association of Canada, GAC Short Course Notes, 17. Geological Association of Canada, Ottawa, 269~297.

    • Sanematsu K, Murakami H, Watanabe Y, Duangsurigna S, Siphandone V. 2009. Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in central and southern Laos. Bulletin of the Geological Survey of Japan, 60(11-12): 527~558.

    • Sanematsu K, Kon Y, Imai A, Watanabe K, Watanabe Y. 2013. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Mineralium Deposita, 48(4): 437~451.

    • Sanematsu K, Watanabe Y, Verplanck PL, Hitzman MW. 2016. Characteristics and genesis of ion adsorption-type rare earth element deposits, rare earth and critical elements in ore deposits. Society of Economic Geologists, 55~79.

    • Sengupta D, Gosen B S V, Verplanck P L, Hitzman M W. 2016. Placer-type rare earth element deposits, rare earth and critical elements in ore deposits. Society of Economic Geologists, 18: 81~100.

    • Seredin V V. 1996. Rare earth element-bearing coals from the Russian Far East deposits. International Journal of Coal Geology, 30(1): 101~129.

    • Seredin V V, Dai Shifeng. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94: 67~93.

    • Shi Zhemin, Li Xiaoyu. 1995. The discovery and its significance of Dalucao ore deposit of REE in Dechang. Acta Geologica Sichuan, 15(3): 216~218(in Chinese with English abstract).

    • Smith M P, Campbell L S, Kynicky J. 2015. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: multistage processes and outstanding questions. Ore Geology Reviews, 64: 459~476.

    • Stein H J, Markey R J, Morgan J W, Du A, Sun Y. 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China. Economic Geology, 92(7-8): 827~835.

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific.

    • Terry F. 2019. 2019 Rare Earths Rarely So Strategic [WWW Document]. Semicond. Dig.

    • Tohar S Z, Yunus M Y M. 2020. Mineralogy and BCR sequential leaching of ion-adsorption type REE: a novelty study at Johor, Malaysia. Physics and Chemistry of the Earth, Parts A/B/C, 120: 102947.

    • Torró L, Proenza J A, Aiglsperger T, Bover-Arnal T, Villanova-de-Benavent C, Rodríguez-García D, Ramírez A, Rodríguez J, Mosquea L A, Salas R. 2017. Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic. Ore Geology Reviews, 89: 114~131.

    • Veksler I V. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chemical Geology, 210(1): 7~31.

    • Veksler I V, Lentz D, Webster J. 2006. Parental magmas of plutonic carbonatites, carbonate-silicate immiscibility and decarbonation reactions: evidence from melt and fluid inclusions. Mineralogical Association of Canada Short Course, Montreal, Quebec, 36: 123~149.

    • Veksler I V, Dorfman A M, Dulski P, Kamenetsky V S, Danyushevsky L V, Jeffries T, Dingwell D B. 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica et Cosmochimica Acta, 79: 20~40.

    • Verplanck P L, Mariano A N, Mariano A Jr, Verplanck P L, Hitzman M W. 2016. Rare earth element ore geology of carbonatites, rare earth and critical elements in ore deposits. Society of Economic Geologists, 18: 5~32.

    • Vladykin N V. 2009. Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves. Russian Geology and Geophysics, 50(12): 1119~1128.

    • Voncken J H L. 2016. The Rare Earth Elements: an Introduction. Switzerland: Springer.

    • Wall F. 2020. Rare Earth Elements. Nottingham: Elsevier.

    • Walters A, Lusty P, Chetwyn C, Hill A. 2010, Rare earth elements, mineral profile series: United Kingdom. British Geological Survey, 53.

    • Wan Defang, Tian Shihong. 2004. Stable isotope evidence of deep source ore-forming fluid in the Dalucao REE deposit of the Panxi rift. Acta Geoscientica Sinica, 25(2): 161~164(in Chinese with English abstract).

    • Wang Denghong, Yang Jianmin, Yan Shenghao, Xu Jue, Chen Yuchuan, Pu Guangping, Luo Yaonan. 2001. A special orogenic-type rare earth element deposit in Maoniuping, Sichuan, China: geology and geochemistry. Resource Geology, 51(3): 177~188.

    • Wang Denghong, Zhao Zhi, Yu Yang, Wang Chenghui, Dai Jingjing, Sun Yan, Zhao Ting, Li Jiankang, Huang Fan, Chen Zhenyu, Zeng Zailin, Deng Maochun, Zhou Xinyong, Huang Huagu, Zhou Hui, Feng Wenjie. 2017. A review of the achievenens in the survey and study of ion-absorption type REE deposits in China. Acta Geoscientica Sinica, 38(3): 317~325 (in Chinese with English abstract).

    • Wang Fenlian, He Gaowen, Sun Xiaoming, Yang Yang, Zhao Taiping. 2016. The host of REE+Y elements in deep-sea sediments from the Pacific Ocean. Acta Petrologica Sinica, 32(7): 2057~2068 (in Chinese with English abstract).

    • Wang Jiaying, Li Zhidan, Zhang Qi, Li Chao, Xie Yu, Li Guangyao, Zeng Wei, Ding Ning. 2020. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating. Acta Geologica Sinica, 94(10): 2946~2964 (in Chinese with English abstract).

    • Wang Qingfei, Deng Jun, Liu Xuefei, Zhang Qizuan, Sun Silei, Jiang Chengzhu, Zhou Fang. 2010. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, west Guangxi, China. Journal of Asian Earth Sciences, 39(6): 701~712.

    • Wang Xuetian, Shao Longyi, Eriksson K A, Yan Zhiming, Wang Jumin, Li Hui, Zhou Ruxian, Lu Jing. 2020. Evolution of a plume-influenced source-to-sink system: an example from the coupled central Emeishan large igneous province and adjacent western Yangtze cratonic basin in the Late Permian, SW China. Earth-Science Reviews, 207: 103224.

    • Wang Xueqiu, Zhou Jian, Zhang Bimin, Liu Dongsheng, Xu Shanfa, Wang Wei, Wang Qiang, Qiao Yu, Xie Mingjun, Liu Futian, Chi Qinghua, Liu Yuheng, Hu Qinghai, Yan Taotao, Li Ruihong, Tian Mi, Wu Hui, Liu Hanliang, Liu Qingqing. 2022. Finding and implication of an undiscovered giant deposit of ion-adsorption rare earth elements in Honghe, South Yunnan, China. Acta Geoscientica Sinica, 43(4): 509~519 (in Chinese with English abstract).

    • Wang Zhen, Zhao Zhi, Zou Xinyong, Chen Zhenyu, Tu Xuejing. 2018. Petrogeochemical characteristics and metallogenetic potential of epimetamorphic rocks in South Jiangxi Province. Rock and Mineral Analysis, 37(1): 96~107 (in Chinese with English abstract).

    • Wang Zhen, Chen Zhenyu, Zhao Zhi, Chen Binfeng, Zou Xinyong. 2019. REE mineral and geochemical characteristics of Neoproterozoic metamorphic rocks in South Jiangxi Province. Mineral Deposits, 38(4): 837~850 (in Chinese with English abstract).

    • Winter J D. 2001. An introduction to igneous and metamorphic petrology. New Jersey, Prentice Hall, 697.

    • Williams-Jones A E, Migdisov A A, Samson I M. 2012. Hydrothermal mobilisation of the rare earth elements—a tale of “Ceria” and “Yttria”. Elements, 8(5): 355~360.

    • Witt W K, Hammond D P, Hughes M. 2019. Geology of the Ngualla carbonatite complex, Tanzania, and origin of the weathered Bastnaesite zone REE ore. Ore Geology Reviews, 105: 28~54.

    • Wu Bin, Wang Rucheng, Liu Xiaodong, Guo Guolin, Song Zhentao. 2018. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic-hydrothermal evolution. Acta Petrologica Sinica, 34(6): 1741~1757(in Chinese with English abstract).

    • Wu Chengyu, Huang Dianhao, Guo Zhongxun. 1989. REE geochemistry in the weathering process of granites in Longnan county, Jiangxi Province. Acta Geologica Sinica, 63(4): 349~362+387~388 (in Chinese with English abstract).

    • Wu Chengyu, Lu Hailong, Xu Lleiming, Hou Lei. 1993. A preliminary study on modes of occurrence of ree earth elements in the tropical subtropical weathering crust of Nanling region. Mineral Deposits, 12(4): 297~307 (in Chinese with English abstract).

    • Wu Chengyu, Yuan Zhongxin, Bai Ge. 1996. Rare earth deposits in China. In: Jones A P, Williams C T, Wall F, eds. Rare Earth Minerals: Chemistry, Origin and Ore Deposits: Mineralogical Society Series, 7. London: Chapman and Hall, 105~150.

    • Wu Fuyuan, Yang Yueheng, Marks M A W, Liu Zhichao, Zhou Qin, Ge Wenchun, Yang Jingsui, Zhao Zifu, Mitchell R H, Markl G. 2010. In situ U-Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1): 8~34.

    • Wu Taotao, Chai Lu, Bao Qingzhong, Zhou Yongheng, Wu Datian, Liu Jinlong. 2018. Geological features and resource potential of rare earth minerals in Mogolia. China Mining Magazine, 27(5): 82~87 (in Chinese with English abstract).

    • Woolley A R, Kjarsgaard B. 2004. Carbonatites of the world: map and database. Geological Survey of Canada, Open File Report 5796.

    • Xie Yuling, Yin Shuping, Xu Jiuhua, Chen Wei, Yi Longsheng. 2006. A study on the fluids in carbonatite of the Mianning-Dechang REE metallogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 25(1): 66~74 (in Chinese with English abstract).

    • Xie Yuling, Hou Zengqian, Goldfarb R J, Guo X, Wang L, Verplanck P L, Hitzman M W. 2016. Rare earth element deposits in China, rare earth and critical elements in ore deposits. Society of Economic Geologists, 18: 115~136.

    • Xie Yuling, Verplanck P L, Hou Zengqian, Zhong Richeng. 2019. Rare earth element deposits in China: a review and new understandings. Society of Economic Geologists Special Publications, 22: 509~552.

    • Xie Yuling, Xia Jiaming, Cui Kai, Qu Yunwei, Liang Pei, Zhong Richen. 2020. Rare earth elements deposits in China: spatio-temporal distribution and ore-forming processes. Chinese Science Bulletin, 65(33): 3794~3808 (in Chinese with English abstract).

    • Xu Cheng, Song Wenlei, Qi Liang, Wang Linjun. 2009. Geochemical characteristics and tectonic setting of ore-bearing carbonatites in Huanglongpu Mo ore field. Acta Petrologica Sinica, 25(2): 422~430 (in Chinese with English abstract).

    • Xu Cheng, Kynicky J, Chakhmouradian A R, Campbell I H, Allen C M. 2010a. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China. Lithos, 118(1): 145~155.

    • Xu Cheng, Wang Linjun, Song Wenlei, Wu Min. 2010b. Carbonatites in China: a review for genesis and mineralization. Geoscience Frontiers, 1(1): 105~114.

    • Xu Cheng, Chakhmouradian A R, Taylor R N, Kynicky J, Li Wenbo, Song Wenlei, Fletcher I R. 2014. Origin of carbonatites in the south Qinling orogen: implications for crustal recycling and timing of collision between the South and North China Blocks. Geochimica et Cosmochimica Acta, 143: 189~206.

    • Xu Cheng, Song Wenlei, He Chen, Wang Lize. 2015. The overview of the distribution, type and genesis of the exogeneticrare earth elements (REE) deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 34(2): 234~241(in Chinese with English abstract).

    • Xu Cheng, Kynický J, Smith M P, Kopriva A, Brtnický M, Urubek T, Yang Yueheng, Zhao Zangzheng, He Chen, Song Wenlei. 2017. Origin of heavy rare earth mineralization in South China. Nature Communications, 8(1): 14598.

    • Xu Ying, Dai Zongming, Gong Daxing, Hui Bo. 2018. Study on the occurrence status of rare earth elements in Permian Xuanwei Formation in Guizhou Province. Mineral Comprehensive Utilization, (6): 90~94(in Chinese with English abstract).

    • Yang Juncheng, Wang Fenglin, Li Desheng, Fei Yongchu, Wang Lin. 2004. Investigation on occurrence and trend of rare and rare-earth elements associated in bauxite. Mining & Metallurgy, 13: 89~92 (in Chinese with English abstract).

    • Yang Kuifeng, Fan Hongrui, Santosh M, Hu Fangfang, Wang Kaiyi. 2011. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: constraints for the mechanism of super accumulation of rare earth elements. Ore Geology Reviews, 40(1): 122~131.

    • Yang Meijun, Liang Xiaoling, Ma Lingya, Huang Jian, He Hongping, Zhu Jianxi. 2019. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite. Chemical Geology, 525: 210~217.

    • Yang Ruidong, Gao Hui, Wang Qiang, Bao Shen. 2005. Rare earth accumulation of Early Cambrian Gezhongwu Formation phosphorous rocks in Sanjia, Zhijin county, Guizhou Province, China. Journal of the Chinese Rare Earth Society, (6): 742~748(in Chinese with English abstract).

    • Yang Ruidong, Wang Wei, Bao Miao, Wang Qiang, Wei Huairui. 2006. Geochemical character of rare earth mineral from the top of Permian basalt, Hezhang county, Guizhou Province. Mineral Deposits, 25(S1): 205~208(in Chinese with English abstract).

    • Yang Wubin, Niu Hecai, Hollings P, Zurevinski S E, Li Ningbo. 2017. The role of recycled oceanic crust in the generation of alkaline A-type granites. Journal of Geophysical Research: Solid Earth, 122(12): 9775~9783.

    • Yang Wubin, Niu Hecai, Li Ningbo, Hollings P, Zurevinski S, Xing Changming. 2020. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: implications for rare metal mineralization. Lithos, 105411: 358~359.

    • Yang Xiaoyong, Lai Xiaodong, Ren Yisu, Ling Mingxing, Liu Yulong, Liu Jianyong. 2015. Geological characteristics and their scientific problems of the Bayan Obo Fe-REE-Nb deposit: discussion on the origin of Bayan Obo super-large deposit. Acta Geologica Sinica, 89(12): 2323~2350 (in Chinese with English abstract).

    • Yang Yueqing, Hu Chongsheng, Luo Zhanming. 1981. Geological characteristic of mineralization of rare earth deposit of the ion-absorption type and ther prospecting direction. Bulletin of the Chinese Academy of Geological Sciences, 2(1): 102~118 (in Chinese with English abstract).

    • Yang Zhuming. 1987. A study on clay minerals from the REE-rich weathered crust developed on the Longnan granite in Jiangxi. Chinese Journal of Geology, (1): 70~80+103 (in Chinese with English abstract).

    • Ye Xiantao, Zhu Weiguang, Zhong Hong, He Defeng, Ren Tao, Bai Zhongjie, Fan Hongpeng, Hu Wenjun. 2013. Zircon U-Pb and chalcopyrite Re-Os geochronology, REE geochemistry of the Yinachang Fe-Cu-REE deposit in Yunnan Province and its geological significance. Acta Petrologica Sinica, 29(4): 1167~1186(in Chinese with English abstract).

    • Ying Yuancan, Chen Wei, Lu Jue, Jiang Shaoyong, Yang Yueheng. 2017. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos, 290-291: 159~171.

    • Yu Xuefeng, Tang Haosheng, Han Zuozhen, Li Changyou. 2010. Geological characteristics and origin of rare earth elements deposits related with alkaline rock in the Chishan-Longbaoshan area, Shandong Province. Acta Geologica Sinica, 84(3): 407~417 ( in Chinese with English abstract).

    • Yuan Zhongxin, Bai Ge. 2001. Temporal and spatial distribution of endogenic rare andrare earth mineral deposits of China. Mineral Deposits, 20(4): 347~354 (in Chinese with English abstract).

    • Yuan Zhongxin, Li Jiankang, Wang Denghong, Zheng Guodong, Lou Debo, Chen Zhenghui, Zhao Zhi, Yu Yang. 2012. Metallogenic Regularity of REE Ore Deposits in China. Beijing: Geological Publishing House (in Chinese).

    • Zhang Jie, Sun Chuanmin, Gong Meiling, Zhang Qin, Chen Dailiang, Chen Jiyan. 2007. Geochemical characteristics and occurrence states of the REE elements of the phosphorite in Xinhua, Zhijin, Guizhou. Chinese Rare Earths, 28(1): 75~79 (in Chinese with English abstract).

    • Zhang Peishan. 1989. A study on the genetic classification of rare earth mineral deposits of China. Scientia Geologica Sinica, 24: 26~32 (in Chinese with English abstract).

    • Zhang Shuanhong, Zhao Yue, Liu Yongsheng. 2017. A precise zircon Th-Pb age of carbonatite sills from the world’s largest Bayan Obo deposit: implications for timing and genesis of REE-Nb mineralization. Precambrian Research, 291: 202~219.

    • Zhang Ting, Wang Chuansheng, Yao Zhongyou, Qiao Meiping, Ma Na, Xiao E. 2014. Types and metallogenic characteristics of rare earth deposits in Australia. Geological Bulletin of China, 33(2-3): 187~193 (in Chinese with English abstract).

    • Zhang Wei, Chen W T, Gao Jianfeng, Chen Huakai, Li Jinghui. 2019. Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: in-situ U-Th-Pb dating of bastnäsite and monazite. Mineralium Deposita, 54(8): 1265~1280.

    • Zhang Zhuhai. 1990. A study on weathering crust ion adsorption type REE deposits, South China. Contributions to Geology and Mineral Resources Research, 5(1): 57~71 (in Chinese with English abstract).

    • Zhao Zhi, Wang Denghong, Chen Zhenhui, Chen Zhenyu. 2017. Progress of research on metallogenic regularity of ion-adsorption type REE deposit in the Nanling range. Acta Geologica Sinica, 91(12): 2814~2827 (in Chinese with English abstract).

    • Zhou Baolu, Li Zhongxue, Zhao Yiqing, Zhang Cong, Wei Yixin. 2016. Rare Earth Elements supply vs. clean energy technologies: new problems to be solve. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 32(4): 29~44.

    • Zhou Baolu, Li Zhongxue, Chen Congcong. 2017. Global potential of rare earth resources and rare earth demand from clean technologies. Minerals, 7(11): 203.

    • Zhou Meifu, Li Xinxi, Wang Zhenchao, Li Xiaochun, Liu Jiacheng. 2020. The genesis of regolith-hosted rare earth element and scandium deposits: current understanding and outlook to future prospecting. Science Bulletin, 65(33): 3809~3824 (in Chinese with English abstract).

    • Zhou Tiancheng, Shi Xuefa, Huang Mu, Yu Miao, Bi Dongjie, Ren Xiangwen, Liu Jihua, Zhu Aimei, Fang Xishan, Shi Meijuan. 2021. Genesis of REY-rich deep-sea sediments in the Tiki basin, eastern South Pacific Ocean: evidence from geochemistry, mineralogy and isotope systematics. Ore Geology Reviews, 138: 104330.

    • Zhu Rixiang, Fan Hongrui, Li Jianwei, Meng Qingren, Li Shengrong, Zeng Qingdong. 2015. Decratonic gold deposits. Science China Earth Sciences, 58(9): 1523~1537.

    • Zhu Yusheng, Yang Jinhui, Sun Jinfeng, Zhang Jiheng, Wu Fuyuan. 2016. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: mineralogical and geochemical evidence from the Saima alkaline complex, NE China. Journal of Asian Earth Sciences, 117: 184~207.

    • 白鸽, 吴澄宇, 丁孝石, 袁忠信, 黄典豪, 王佩华. 1989. 南岭地区离子型稀土矿床形成条件和分布规律. 北京: 地质矿产部矿床地质研究所.

    • 包家宝, 张莲宝, 王和中, 陈聚兴. 1996. 中国矿床发现史(江西卷). 北京: 地质出版社, 155~158.

    • 柴东浩, 屈值明, 陈汉成, 柴峰. 2001. 山西铝土矿中稀有稀土元素的新发现及工业意义. 轻金属, 6: 6~11.

    • 陈代演, 王华. 1997. 贵州若干铝土矿床的稀土元素地球化学研究. 贵州地质, 14(2): 132~144.

    • 代世峰, 任徳贻, 周义平, VSeredin V, 李大华, 张名泉, Hower J C, Ward C R, 王西勃, 赵蕾, 宋晓林. 2014. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价. 煤炭学报, 39(8): 1707~1715.

    • 范宏瑞, 牛贺才, 李晓春, 杨奎锋, 杨占峰, 王其伟. 2020. 中国内生稀土矿床类型、成矿规律与资源展望. 科学通报, 65(33): 3778~3793.

    • 胡鹏. 2009. 国外稀土资源开发与利用现状. 世界有色金属, (9): 72~74.

    • 黄典豪, 王义昌, 聂凤军, 江秀杰. 1985. 一种新的钼矿床类型——陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制. 地质学报, 59(3): 241~257+275.

    • 黄典豪, 吴澄宇, 韩久竹. 1988. 江西足洞和关西花岗岩的稀土元素地球化学及矿化特征. 地质学报, 62(4): 311~328.

    • 黄卉, 潘家永, 洪斌跃, 康清清, 钟福军. 2020. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义. 矿床地质, 39(2): 351~368.

    • 蓝廷广, 范宏瑞, 胡芳芳, 杨奎锋, 王永. 2011. 山东微山稀土矿矿床成因: 来自云母Rb-Sr年龄、激光Nd同位素及流体包裹体的证据. 地球化学, 40(5): 428~442.

    • 李建康, 袁忠信, 白鸽, 陈毓川, 王登红, 应立娟, 张建. 2009. 山东微山稀土矿床成矿流体的演化及对成矿的制约. 矿物岩石, 29(3): 60~68.

    • 刘容, 王汝成, 陆现彩, 李娟. 2016. 赣南花岗岩风化壳型稀土矿床中纳米级稀土矿物的研究. 岩石矿物学杂志, 35(4): 617~626.

    • 陆蕾, 王登红, 王成辉, 赵芝, 冯文杰, 徐晓春, 于沨. 2019. 云南临沧花岗岩中离子吸附型稀土矿床的成矿规律. 地质学报, 93(6): 1466~1478.

    • 毛景文, 周振华, 丰成友, 王义天, 张长青, 彭惠娟, 于淼. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景. 中国地质, 39(6): 1437~1471.

    • 毛景文, 杨宗喜, 谢桂青, 袁顺达, 周振华. 2019a. 关键矿产——国际动向与思考. 矿床地质, 38(4): 689~698.

    • 毛景文, 袁顺达, 谢桂青, 宋世伟, 周琦, 高永宝, 刘翔, 付小方, 曹晶, 曾载淋, 李通国, 樊锡银. 2019b. 21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质, 38(5): 935~969.

    • 丘文. 2017. 龙岩市万安稀土矿区变质岩风化壳离子吸附型稀土矿的发现及其找矿意义. 世界有色金属, (4): 242~244.

    • 施泽民, 李小渝. 1995. 德昌大陆槽稀土矿床的发现及其意义. 四川地质学报, (3): 216~218.

    • 万德芳, 田世洪. 2004. 攀西大陆槽稀土矿床深源成矿流体的稳定同位素证据. 地球学报, (2): 161~164.

    • 王登红, 赵芝, 于扬, 王成辉, 代晶晶, 孙艳, 赵汀, 李建康, 黄凡, 陈振宇, 曾载淋, 邓茂春, 邹新勇, 黄华谷, 周辉, 冯文杰. 2017. 我国离子吸附型稀土矿产科学研究和调查评价新进展. 地球学报, 38(3): 317~325.

    • 王汾连, 何高文, 孙晓明, 杨阳, 赵太平. 2016. 太平洋富稀土深海沉积物中稀土元素赋存载体研究. 岩石学报, 32(7): 2057~2068.

    • 王佳营, 李志丹, 张祺, 李超, 谢瑜, 李光耀, 曾威, 丁宁. 2020. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据. 地质学报, 94(10): 2946~2964.

    • 王学求, 周建, 张必敏, 刘东盛, 徐善法, 王玮, 王强, 乔宇, 谢明君, 刘福田, 迟清华, 刘昱恒, 胡庆海, 严桃桃, 李瑞红, 田密, 吴慧, 刘汉粮, 柳青青. 2022. 云南红河州超大规模离子吸附型稀土矿的发现及其意义. 地球学报, 43(4): 509~519.

    • 王臻, 赵芝, 邹新勇, 陈振宇, 涂雪静. 2018. 赣南浅变质岩岩石地球化学特征及稀土成矿潜力研究. 岩矿测试, 37(1): 96~107.

    • 王臻, 陈振宇, 赵芝, 陈斌峰, 邹新勇. 2019. 赣南新元古代变质岩稀土矿物及其地球化学特征. 矿床地质, 38(4): 837~850.

    • 邬斌, 王汝成, 刘晓东, 郭国林, 宋振涛. 2018. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义. 岩石学报, 34(6): 1741~1757.

    • 吴澄宇, 黄典豪, 郭中勋. 1989. 江西龙南地区花岗岩风化壳中稀土元素的地球化学研究. 地质学报, 63(4): 349~362+387~388.

    • 吴澄宇, 卢海龙, 徐磊明, 侯磊. 1993. 南岭热带—亚热带风化壳中稀土元素赋存形式的初步研究. 矿床地质, 12(4): 297~307.

    • 吴涛涛, 柴璐, 鲍庆中, 周永恒, 吴大天, 刘金龙. 2018. 蒙古国稀土矿地质特征及资源潜力. 中国矿业, 27(5): 82~87.

    • 谢玉玲, 尹淑苹, 徐九华, 陈伟, 衣龙升. 2006. 冕宁-德昌稀土成矿带碳酸岩流体研究. 矿物岩石地球化学通报, (1): 66~74.

    • 谢玉玲, 夏加明, 崔凯, 曲云伟, 梁培, 钟日晨. 2020. 中国碳酸岩型稀土矿床: 时空分布与成矿过程. 科学通报, 65(33): 3794~3808.

    • 刑永辉, 马云良. 2019. 云南新营盘地区新发现离子吸附型稀土矿. 中国地质调查成果快讯, 5(103-104): 7~10.

    • 徐莺, 戴宗明, 龚大兴, 惠博. 2018. 贵州某地二叠系宣威组富稀土岩系稀土元素赋存状态研究. 矿产综合利用, (6): 90~94+101.

    • 许成, 宋文磊, 漆亮, 王林均. 2009. 黄龙铺钼矿田含矿碳酸岩地球化学特征及其形成构造背景. 岩石学报, 25(2): 422~430.

    • 许成, 宋文磊, 何晨, 王丽泽. 2015. 外生稀土矿床的分布、类型和成因概述. 矿物岩石地球化学通报, 34(2): 234~241.

    • 杨军臣, 王凤玲, 李德胜, 费涌初, 王玲. 2004. 铝土矿中伴生稀有稀土元素赋存状态及走向查定. 矿冶, 13(2): 89~92.

    • 杨瑞东, 高慧, 王强, 鲍淼. 2005. 贵州织金三甲寒武系戈仲伍组含磷岩系稀土富集规律研究. 中国稀土学报, (6): 742~748.

    • 杨瑞东, 王伟, 鲍淼, 王强, 魏怀瑞. 2006. 贵州赫章二叠系玄武岩顶部稀土矿床地球化学特征. 矿床地质, 25(S1): 205~208.

    • 杨晓勇, 赖小东, 任伊苏, 凌明星, 刘玉龙, 柳建勇. 2015. 白云鄂博铁-稀土-铌矿床地质特征及其研究中存在的科学问题——兼论白云鄂博超大型矿床的成因. 地质学报, 89(12): 2323~2350.

    • 杨岳清, 胡淙声, 罗展明. 1981. 离子吸附型稀土矿床成矿地质特征及找矿方向. 中国地质科学院矿床地质研究所文集, 2(1): 102~118.

    • 杨主明. 1987. 江西龙南花岗岩稀土风化壳中黏土矿物的研究. 地质科学, (1): 70~80+103.

    • 叶现韬, 朱维光, 钟宏, 何德锋, 任涛, 柏中杰, 范宏鹏, 胡文俊. 2013. 云南武定迤纳厂Fe-Cu-REE矿床的锆石U-Pb和黄铜矿Re-Os年代学、稀土元素地球化学及其地质意义. 岩石学报, 29(4): 1167~1186.

    • 于学峰, 唐好生, 韩作振, 李长有. 2010. 山东郗山-龙宝山地区与碱性岩有关的稀土矿床地质特征及成因. 地质学报, 84(3): 407~417.

    • 袁忠信, 白鸽. 2001. 中国内生稀有稀土矿床的时空分布. 矿床地质, 20(4): 347~354.

    • 袁忠信, 李建康, 王登红, 郑国栋, 娄德波, 陈郑辉, 赵芝, 于扬. 2012. 中国稀土矿床成矿规律. 北京: 地质出版社.

    • 张杰, 孙传敏, 龚美菱, 张覃, 陈代良, 陈吉艳. 2007. 贵州织金含稀土生物屑磷块岩稀土元素赋存状态研究. 稀土, 28(1): 75~79.

    • 张培善. 1989. 中国稀土矿床成因类型. 地质科学, (1): 26~32.

    • 张婷, 汪传胜, 姚仲友, 乔美萍, 马娜, 肖娥. 2014. 澳大利亚稀土矿床主要类型及其成矿特征. 地质通报, 33(2-3): 187~193.

    • 张祖海. 1990. 华南风化壳离子吸附型稀土矿床. 地质找矿论丛, (1): 57~71.

    • 赵芝, 王登红, 陈郑辉, 陈振宇. 2017. 南岭离子吸附型稀土矿床成矿规律研究新进展. 地质学报, 91(12): 2814~2827.

    • 中国科学院地球化学研究所. 1988. 白云鄂博矿床地球化学. 北京: 科学出版社.

    • 周美夫, 李欣禧, 王振朝, 李晓春, 刘嘉成. 2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望. 科学通报, 65(33): 3809~3824.

    • 祝向平, 张彬. 2019. 云南腾冲-陇川地区新发现一批中大型离子吸附型稀土矿. 中国地质调查成果快讯, 5(103-104): 1~6.